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1 Introduction The present book attempts to arrange a marriage between two tra-
ditions in the philosophy of mathematics which have arguably always belonged to-
gether. One tradition, now usually termed ‘structuralism’, is about a century old and
originates in Dedekind’s 1888 article “Was sind und was sollen die Zahlen” (reprinted
in [5]). In this paper, Dedekind argues that the mathematical content of number the-
ory is invariant under transformations defined on its subject matter which preserve
arithmetical structure. More generally, and more vaguely, the structuralist view is
that mathematics isabout structure: that the mathematical content of an assertion or
theory is invariant under isomorphisms of interpretations of that assertion or theory.

The other tradition, of more recent vintage, is sometimes called ‘modalism’. In
general terms, this is the view that classical mathematics is (covertly) modal in char-
acter; that the language of classical mathematics makes assertions about whatwould
hold in any structure of a certain sort, but does not assert the actual existence of any
such structure. The view originates, as far as I can tell, with Putnam in [11]. For-
mulated with reference to set theory, the view is that a statement is equivalent to a
modal assertion saying that its first-order representation holds in every possible stan-
dard model of the relevant rank (if the statement is of bounded rank; a more complex
use of modal notions leads to an interpretation of statements of unbounded rank). The
models in question are normally construed as possibleconcrete structures: in Put-
nam’s version, possible physical realizations of certain directed graphs.

The synthesis of these positions leads roughly to the following view. Putnam
is clearly not especially interested in physical realizations of graphs in terms, say, of
pencil points and arrows. Rather, the thesis is that these are of interest only because
they exemplify a certain structure or isomorphism type. The proper formulation of
modalism should rather make reference toall possible realizations whatever of the
relevant isomorphism type. That is to say that the language of classical mathematics
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makes assertions about what would hold in any concrete realization of a certain iso-
morphism type, but does not assert the actual existence of any such realization. Thus,
for example, in the case of set theoretic statements of bounded rank, whereα is the
relevant bound, the relevant isomorphism type is that of the structure consisting of
the sets of rank< α together with the set membership relation restricted to sets of
that rank. Hellman’s book is by far the most systematic and thorough attempt to spell
out the details of this sort of interpretation and to provide a philosophical rationale
for it.

My discussion will be structured as follows. I will first sketch Hellman’s modal-
structural interpretations of number theory, analysis, and set theory. I will then de-
scribe some technical problems which arise for these constructions. The problems
concern the interpretation of the modality employed and the status of certain second-
order devices appropriated by the constructions. I will then discuss a number of ad-
vantages claimed by Hellman and others for the modal-structuralist view and argue
that in each case the putative advantages have been exaggerated. I then turn to a
sketch of Hellman’s account of applied mathematics. I shall argue that that account
is incompatible with a broadly realistic view of the nature of scientific explanation
and is of limited applicability in the context of an antirealist view, though I shall state
and prove a general sufficient condition for its positive applicability. I will conclude
by sketching an alternative interpretation of the structuralist thesis, and by pointing
to some general limitations of the structuralist conception of mathematical truth.

2 A modal-structuralist primer

2.1 Elementary number theory Let us begin with the languageL of elementary
number theory. The idea is to construct a translation scheme that maps any first-order
number-theoretic sentence onto a modal assertion saying that the sentence holds in
any logically possible standard model of elementary number theory. For our target
language we take a second-order modal language with 2-ary function variables and
monadic (class) variables. LetQ be the set of axioms of Robinson’s arithmetic and
let IND be the second-order induction axiom

(∀X)((X0∧ (∀y)(Xy → Xy + 1)) → (∀y)Xy).

Define

AX ←→ (
∧

Q ∧ IND).

Given a statementϕ of L , at afirst approximation the translation ofϕ will say that

�(AX → ϕ), (1)

where ‘�’ signifies logical necessity.
The difficulty with this translation is that the primitive number-theoretic devices

occur in it schematically; they are provided with no interpretation. What we want to
say is thatϕ holds inany possible interpretation of the arithmetical primitives satis-
fying AX. To this end, we introduce quantifiers into the relevant positions, so that in
place of (1) we obtain

� (∀P) (∀ f ) (∀g) (∀x) (∀y) (AXp)( f/+, g/., x/0, y/1)

→ ϕp ( f/+, g/., x/0, y/1)), (2)
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where ‘f ’ and ‘ g’ are 2-place function variables, ‘P’ i s amonadic set variable, and
for any sentenceA, Ap indicates the relativization of quantifiers inA to P. Thus, un-
der its modal-structural translation, a sentence of the language of elementary number
theory is true if and only if it holds in all possible standard models of arithmetic, for
Robinson’s arithmetic, in conjunction with the second-order induction axiom, char-
acterizes the standard models categorically.

2.2 Das Kontinuum As a second example, we consider a modal structural inter-
pretation of classical analysis. LetOF be the first-order theory of ordered fields. De-
fine

BdX (y) ←→ (∃z) Xz ∧ (∀z) (Xz → z ≤ y),

that is,x is nonempty andy bounds each member ofX from above; and let LUB be
the statement

(∀X) (∀y) (BdX(y) → (∃z) (BdX(z) ∧ (∀w) (BdX(w) → z ≤ w))),

which asserts the existence for each nonempty bounded set of real numbers of a least
upper bound. The theory

� = OF ∪ {LU B}
characterizes the standard models of analysis categorically. Ifϕ is a sentence of anal-
ysis, then a formula analogous to (2), with

∧� in place ofAX, says thatϕ holds in
all possible standard models. It is this formula which the modal-structuralist will take
as giving the truth condition ofϕ.

2.3 ZF Here we distinguish statements of bounded from statements of unbounded
rank. Letα be a regular cardinal. A statement ofLZF is said to be bounded of rank
α if quantifiers of the statement are restricted to sets of rank< α. The idea is to say
that a statementϕ of rankα is true if ϕ holds in all possible standard interpretations
of rankα.

To implement this idea, letZF2 be the axioms ofZF minus the instances of the
replacement schema, together with the second-order replacement axiom

(∀R) ((∀x) (∃!y) Rxy → (∀z) (∃w) (∀u) (u ∈ w ←→ (∃v ∈ z) Rvu))).

ZF2 is ‘quasi-categorical’ in the sense that for any two models ofZF2, one is an end-
extension of the other. In fact, we have that if
 |= ZF2, then 
 is isomorphic to
Vα for some inaccessible cardinalα. As restricted to sets of rank< α, an arbitrary
statementϕ of LZF may be accorded the following structuralist truth-condition:

�(∀P) (∀R) ((∧ZF2 ∧ Aα)P (R/ ∈) → ϕP (R/ ∈)),

whereAα is a sentence that holds in any standard modelM if and only if M is of rank
α. Thus we have said thatϕ holds in each possible standard model of rankα.

Let us now turn to the problem of interpreting set theoretic statements of un-
bounded rank. The idea, going back to Putnam, is that ifϕ is a statement ofLZF in
prenex form, for example, the formula

(∀x) (∃y) (∀z) A, (3)
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whereA is quantifier-free, thenϕ asserts the following modal-structural content: for
any possible standard modelM1, andx in |M1|, there exists an extensionM2 of M1,
and ay in |M2| such that for each possible extensionM3 of M2 and z in |M3|, the
statementAxyz holds inM3. Formally, then, (1) may be written

�(∀M1) (∀x in M1) (M1 |= ∧ZF2 → � (∃M2) (∃y in M2) (M1 ≤ M2∧
M2 |= ZF2 ∧ �(∀M3) (∀z in M3) ((M2 ≤ M3 ∧ M3 |= ZF2

→ M3 |= Axyz))).1

3 Some technical problems with modal-structuralism This completes my out-
line of Hellman’s modal structural construal of classical mathematics. Two technical
questions of interpretation that immediately arise concern the ontological commit-
ments of the second-order notions and the interpretation of the modality employed.
Let us consider these in turn.

3.1 Interpreting second-order quantifiers Why is this a problem? On the standard
Tarskian-Platonist interpretation, second-order quantifiers range over the full power-
set of the relevant first-order domain. If these sets are just special objects within the
relevant possible situations, one wants to know why the operation of set-formation
does not apply iteratively in each such situation in such a way as to generate the usual
hierarchy. Even if such iteration is not allowed, however, it would seem in any case
that on the standard interpretation of the second-order quantifiers, the generality of
the structuralist interpretation will be compromised: there will be a residue of unre-
duced mathematical objects; and so Hellman explores the possibility of alternative,
nominalistic interpretations.

Hellman’s proposal is that the second-order quantifiers be interpreted as quan-
tifiers over sums, in Goodman’s sense, of individuals. I do not think this suggestion
comports very well with the intended reading of ‘�’ as narrowly logical necessity;
for, on Goodman’s view, sums of individuals are themselves a special sort of indi-
vidual, and quantifiers over them are ordinaryfirst-order quantifiers; the predicative
notation ‘Xa’ would on this reading involve a suppressed mereological relation: it
would mean that ‘X’ signifies an aggregate and ‘a’ an individual which ispart of that
aggregate. However, if, as on several of the translation schemes above, a sentenceϕ

is mapped onto a sentence of the form�ϕ∗, andϕ∗ is first-order,ϕ will be counted as
true if and only ifϕ∗ holds in all first-order interpretations. By the completeness the-
orem for first-order logic, then, the truth predicate for the relevant language would
be �1, which by Tarski’s theorem is false for any language containing elementary
number theory. One solution to this problem would be to hold the interpretation of
the first-order theory of sums fixed; in this case, the intended reading of ‘�’ would
apparently have to be modified. Another would be to interpret the second-order quan-
tifiers involved in Hellman’s construction as genuinely plural quantifiers. Boolos [3]
has argued that if the quantifiers are so interpreted, they are genuinely second-order
and yet free of ontological commitment to sets. If that is right, and the plural quanti-
fiers are genuinely logical devices, then the interpretation of second-order quantifiers
can be harmonized with the intended reading of ‘�’.
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However, both the logic-of-sums idea and the plurality conception afford only an
interpretation ofmonadic second-order quantification: there is still a problem about
interpretingpolyadic second-order quantification, of which essential use is made in all
of the indicated translations. Hellman suggests that we introduce a primitive notion
of pairing to reduce the polyadic case to the monadic one (p. 50); in place of quan-
tification over dyadic relations, for example, we would have monadic quantification
pluralities of pairs. Hellman’s idea is that the notion of pairing should bestructurally
interpreted, subject only to the requirement that, whereP is the pairing functor, the
condition

P(x, y) = P(x′, y′) ←→ x = x′ ∧ y = y′, (∗)

hold for eachx, y, x′,y′.2 In different contexts, different individuals will play the role
of ‘pairs’ and different relations between objects and ‘pairs’ will constitute the pairing
relation.

I do not believe that the present suggestion solves the problem. The difficulty is
that the pairing functor is stilluninterpreted; the principle(∗) constrains any accept-
able interpretation of ‘P’ but it does not itself provide such an interpretation. Thus
deployed, ‘P’ occurs schematically in constructions involving the notion of pairing.
The difficulty is essentially the same as with the proposal that the modal translate of
an arithmetical statement be taken to be the necessitation of the conditional whose
antecedent consists of the conjunction of the axioms of second-order arithmetic and
whose consequent is that statement itself. In this translate, the arithmetical primi-
tives occur schematically and are provided with no interpretation (though the number-
theoretic axioms constrain any acceptable interpretation). The remedy adopted by
Hellman in this case is to introduce quantification over functions or relations into
the positions occupied by the arithmetical primitives; that gives just the pattern of
translation considered above. Notice, however, that the corresponding solution for
the pairing function is unavailable in this context, for it would make ineliminable use
of dyadic second-order function quantification into the position occupied by the pair-
ing functor. It is just this sort of quantification that needs to be explicated. In the end
I believe that Hellman is left without any acceptable construction of polyadic second-
order quantification. One suggestion worth exploring, which I shall only hint at here,
is to appeal to another sort of interpretation of second-order logic, this time in terms of
generalized first-order quantifiers. It has been known for some time that the addition
to elementary logic of branching quantifiers such as( ∀x ∃α

∀y ∃β

)
,

interpreted in the manner described by Henkin [5], considerably enhances its expres-
sive power. In fact, it may be shown that if one allowsn-fold branching for anyn and
n ∀-quantified variables in the prefix, the resulting branching logic is equivalent to a
strong fragment of second-order logic, sufficient to phrase the translations considered
above, and in particular to express second-order replacement. If one could argue that
branching quantifiers of this sort are genuinely first-order devices, free of reference
to sets or functions, it might be argued that these devices could enable Hellman to
produce a simulacrum of a fragment of second-order logic adequate for his purposes;
but the ontological issues here have not been sorted out.
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3.2 Interpreting modality Hellman repeatedly stresses that the modality relevant
to modal-structural interpretations is a “logico-mathematical” one (pp. 8, 15, 17, 28,
36, and 59), but the nature of that modality is never clearly defined. It seems to be
Hellman’s intention that it be understood primitively, that is, without explanation in
terms of more fundamental (or at least other) notions, but I do not believe it is at all
clear that wedo understand it primitively. The modality in question is a rather arti-
factual notion equivalent, in application to nonmodal sentences, to the second-order
validity concept. Some sort of explanation of it is at least highly desirable, either in
terms of a reduction to other notions which are plausibly understood independently
of platonistic commitments or, alternatively, a direct explanation ofwhat it is to un-
derstand it primitively. I see no way of implementing the latter strategy; and so I shall
consider the former.

Wehave a notion of necessity, variously called ‘metaphysical’ or ‘broadly logi-
cal’ or sometimes ‘real’ necessity, which might be pressed into service here. This can-
not be quite the right notion to directly model the required modality, however, for on
this reading of ‘�’ i t isnecessary that water is H2O. This identity would not seem to be
a ‘logico-mathematical’ one. We perhaps also have a notion of a proposition’s being
apriori, orepistemically necessary, but this cannot be what is intended either. A sen-
tence of second-order Peano arithmetic, for example, would on the modal-structural
interpretation derived from this reading of ‘�’ say roughly that one can know a pri-
ori that the sentence is true under every possible interpretation rendering the axioms
of second-order number theory true; but there is no reason to suppose that this is the
case in general. Rather, the intended doctrine is the realist one that the sentence may
be true independently of our ability to know that it is true, even given knowledge of
the second-order axioms.

Historically, the possibilities for interpreting the notion of strictly logical ne-
cessity divide into proof-theoretic and modal-theoretic interpretations. On a proof-
theoretic interpretation, a statement of the form�ϕ will be counted as true if and
only if the embedded statementϕ is provable in a certain formal theory, but a modal-
structuralist interpretation based on a notion of provability runs afoul of some fairly
obvious limitative observations. First, if the proof predicate is primitive recursive (as
it will be if “provability” refers to provability in a fixed formal theory), the relevant
provability predicate is�1 and in this case by Tarski’s theorem even Hellman’s inter-
pretation of elementary number theory will fail to fix the correct truth-values.3

Opposed to syntactic characterizations of logical necessity there stand model-
theoretic ones. The appropriate characterization for the present context—the one with
a clear claim to capture the distinctivelylogical notion of necessity—is that of the
second-order model-theoretic validity concept. That is to say, we treat as ‘worlds’ all
structures for, say,LZF and provide that a sentence of the form�ϕ holds at a world
if and only if ϕ holds in all such structures. It is clear, of course, that this characteri-
zation is unavailable in the context of Hellman’s enterprise, since it makes essential
use of quantification over arbitrary sets.

However, there is a possible solution to this problem which seems quite in the
spirit of Hellman’s project. The remedy makes use of the idea of arepresentation
of a structure (say, a standard model ofZF). If M is such a model, a representation
of M is a concrete realization ofM in a possible counterfactual situation. Thus, for
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example, Putnam’s original modal construction ofZF made use of the idea of a ‘con-
crete standard model ofZF’, construed as a concrete directed graph in some possible
configuration of space-time. To articulate this idea, itis natural to make use of a prim-
itively understood notion of metaphysical possibility. Note that the objection made
above to the use of this notion to directly model the concept of logical necessity does
not arise here. The problem there was that there seem to be ‘logico–mathematical’
possibilities which are not metaphysical possibilities. On the present suggestion, our
account of logical necessity is the orthodox model-theoretic one, save that the role of
abstract structures in the model-theoretic characterization is played instead by their
possible concrete representations. Thus, for example, if ‘P’ signifies the parent-of
relation, the sentence

(∃x) (∀y) (yPx → xPy),

though arguably not metaphysically possible, is rendered logically possible by con-
crete realizations of the graph

�
�

�
�

���

�

�
�

�
�

���
��

�

�

wherein the relationP is represented by directed connection.
I believe that the present suggestion affords an adequate basis for an interpreta-

tion of the required modality if there aresufficiently many possible concrete represen-
tations. In order to achieve a satisfactory modal version of the mathematical theory of
an isomorphism type, we will require at least one possible concrete realization of that
type. In particular, as applied toZF under Putnam’s scheme, the assumption requires
that for each regular limit cardinalα there is a possible concrete graph isomorphic to
Vα.

This assumption, explicit in Putnam’s version of the modal interpretation ofZF,
has been criticized by Parsons and myself on rather similar grounds (see [9], n. 23;
[10], n. 33). The assumption that the required representations areconcrete is most
naturally interpreted as saying that anyVα is exemplified in some possible configura-
tion of space-time. What reason is there to suppose that this assumption is satisfied?
Putnam writes:

In order to “concretize” the notion of a model, let us think of a model as a graph.
The “sets” of the model will then be pencil points (or some higher dimensional
analogue of pencil points, in the case of models of large cardinality) and the
relation of membership will be indicated by “arrows”. (I assume that there is
nothing inconceivable about the idea of a physical space of arbitrarily high car-
dinality; so that models of this kind need not necessarily be denumerable, and
may even be standard.)4

The difficulty is that it is far from clear that the conceivability of such a state of affairs
ensures itspossibility in the required sense. Conceivability is, presumably, an epis-
temic modality, dual to the epistemic notion of necessity: to say thatϕ is conceivable
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is to say that¬ϕ is not epistemically necessary. For reasons which are now famil-
iar, the conceivability in this sense of a configuration of the world doesnot insure
its possibility (see Kripke [8], Lecture I). If the relation of concrete realization im-
plicitly refers to possible configurations of actual space-time and actual space-time is
treated substantivally, that is, as an extensive individual, it is at least not implausible
that the cardinality of space-time is one of its essential properties. In that case, there
is no possible configuration of the world in which space-time has a cardinality other
than its actual cardinality, notwithstanding the fact that configurations of space-time
of varying cardinality areepistemically possible. Unfortunately, in that case there are
Vαs for which there exist no possible concrete realization.

In the final chapter of the book, Hellman considers the possibility of relaxing the
assumption that the possible structures considered in a modal interpretation of, say,
ZF, are ‘concrete’ in the above sense:

If, in fact, as it presently appears,RA2 [second-order analysis] is not adequate
[for all purposes of physical theory], then even modal nominalism in this sense
is doomed. It seems likely that structures for even richer theories need to be en-
tertained, and with these we will have transcended what can even be conceived
as part of space-time as we understand it. (p. 116)

Structures beyondRA2 may not qualify as nominalistic, but we may still en-
tertain such structures hypothetically, dropping any claim to “grasp them” by
means of “geometric intuitions”. (p. 117)

The suggestion then, seems to be that, contra Putnam, the possible models for, say,
ZF should be conceived as non-spatio-temporal and, for reasons taken up below, as
causally inert.5 This proposal raises a number of interesting questions; let me call
attention to just one difficulty I find with it.

An object is abstract if it is not in space and time and it does not participate in
causal relations. Hellman’s suggestion would seem to require that the objects in the
structures entertained as models ofZF be conceived asabstract objects. It has some-
times been maintained that if such an object exists in a metaphysically possible situ-
ationw, then the propositon that it exists is (metaphysically) necessary inw. If the
metaphysical necessity concept respects the modal logicS5, it follows that the ob-
ject in question necessarily, and thus actually, exists. If this reasoning is sound also
with respect to the intended logical modality, then the actual existence of the relevant
structures would be ensured by their logically possible existence.

It is difficult to see what it is about the indicated argument, assuming it to be
sound for the metaphysical concept, that would prevent it from applying to the logi-
cal modality considered by Hellman. Indeed, if the suggested construction of logical
in terms of metaphysical possibilities is right, the argumentmust apply to the logical
modalities; and so the response must either be to deploy an alternative interpretation
of the notion of logical necessity and to argue that on this interpretation the purported
necessitation principle fails, or to attack the argument for the metaphysical case di-
rectly. Neither strategy is attempted. In general terms, the present suggestion seems
to be at odds with what has normally been taken to be an important part of the philo-
sophical motivation for the modal conception of mathematics. As Putnam put it, “the
conception of mathematics as the study of special objects has a certain implausibility
that the conception of mathematics as the study of ordinary objects with the aid of a
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special concept does not.” ([11], p. 57)
On the other hand, it might be suggested that theepistemic notion of possibil-

ity be substituted for the metaphysical one in carrying out the modal implementa-
tion of the model-theoretic framework sketched above. However, the epistemic no-
tion would appear to be too broad for this purpose. We require the relevant possi-
ble concrete realizations ofZF2 to bestandard models. Ifϕ is a sentence such that
ZF2 ∪ {¬ϕ} is epistemically possible but which holds in all standard models, then
any epistemically possible realization ofZF2 ∪ {¬ϕ} will be nonstandard. It isvery
plausible that such propositions can be found: the epistemic necessity concept ap-
plies to a statement relative toZF2 only if that statement is, in a more or less strong
sense,a priori relative to ZF2, and so the indicated assumption is simply that not all
standardly true propositions can be inferred fromZF2 a priori.

In sum, the notion of logical necessity is a modal analogue of the second-order
validity concept. This notion might be explicated either syntactically or model-
theoretically. Syntactic interpretations do not yield sound modal translation schemes
even for the language of elementary number theory, and model-theoretic ones are at
face value encumbered by ontological commitments of just the sort the modal transla-
tions are designed to avoid. Modal implementations of the model-theoretic idea suffer
from the following dilemma: either the modality employed isreal (metaphysical) or
ideal (epistemic). If it isreal, it is not clear that there are enough possible structures
to represent the standard models of, say,ZF; if it is ideal, there are too many possible
realizations ofZF2 to weed out the nonstandard models.

4 Putative advantages of modal-structuralist interpretations I shall consider the
following claims: (1) modal-structuralist interpretations are superior to platonist ones
on general semantical and epistemological grounds; (2) they are superior to platon-
ist interpretations of set-theory in enabling a convincing resolution of the paradoxes
and in motivating various higher axioms of infinity. Both sorts of claim have been
discussed previously in the literature, and both are discussed in Hellman’s book.
My claims will be that, first, the adjudged advantages of modal-structural interpre-
tations have been exaggerated—as regards both general semantical and epistemolog-
ical questions and special problems arising in the case of set theory—and, secondly,
that modal-structural interpretations require a seriously revisionist stance toward our
understanding of classical mathematics.

4.1 Argumenta Benacerrafa There is an attractive argument for the modal-struct-
uralist view stemming from two seminal papers by Benacerraf (see [1], [2]). Both
papers raise problems for the Tarskian-Platonist interpretation of classical mathemat-
ics, the first on semantical and the second on both semantical and epistemological
grounds. In “What numbers could not be,” Benacerraf presents Dedekind’s point in
semantical guise. Benacerraf argues that there is no fact of the matter to settle which
of the multiple set theoretic interpretations of arithmetic is the right interpretation,
since any interpretation that exemplifies the proper isomorphism type will be as math-
ematically correct as any other. The later paper “Mathematical truth,” on the other
hand, stresses problems about knowledge and reference stemming from the ontolog-
ical status of mathematical objects. The acausal character of the objects of classical
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mathematics has tended to obstruct philosophical attempts to conceive a workable
form either for theory of mathematical knowledge or for a theory of mathematical
reference or representation. The problem is explicit if it is assumed that cognitive
and referential relations are in some sense causal relations, and this is of course an
assumption which has figured prominently in much recent theorizing about knowl-
edge and representation.

The modal-structuralist conception of classical mathematics seems to offer a
means of addressing both of Benacerraf’s problems. On that conception, a statement
of arithmetic, for example, is accorded an explicitly structuralist truth condition, be-
ing counted true if and only if it holds in any possible standard model. The relevance
of such a construction to Benacerraf’s first problem is evident, for it avoids the ap-
parently arbitrary identification of one standard model as the intended interpretation
of arithmetic. Furthermore, since theobjects of classical mathematics on the modal-
structuralist view are (possible) concrete particulars, problems stemming from causal
theories of knowledge and representation may perhaps also be eased or at least use-
fully recast. Let us consider these points in turn.

As we have seen above, the semantical status of the relevant modality is seri-
ously unclear; that being the case, it is not surprising that its epistemology is similarly
unclear. In one sort of standard case, there is a second-order categorical axiomatiza-
tion (AX) such that any sentenceϕ in the relevant language goes over roughly into the
claim thatϕ holds in any possible realization ofAX. This suggests that the epistemol-
ogy of the relevant fragment of classical mathematics is no worse off than that of the
second-order consequence relation: to discover which sentences hold in the relevant
isomorphism type, one investigates what the second-order consequences ofAX are.
However, the second-order consequence relation presents problems of interpretation
within the modal-structuralist setting comparable to set theory itself, and in any case
we must be able to justify the claim that realizations ofAX are, in the required sense,
possible. If wework with the idea that mathematical possibilities are to be recovered
from metaphysical ones in the manner suggested above, what needs to be shown is
thatAX holds in some metaphysically possible structure. I suggested before that it
is questionable that the required possible realizations can be found; but there is the
further question of how one can know that they can if they can. Furthermore, even if
the required possibility claim can be justified, its justification may require nonmathe-
matical premises. On the suggested interpretation of logical possibility, on modestly
essentialist principles, it is a matter of substantive physical theory, in particular, of
our theory of both the fine and the large scale structure of space-time, whether there
exist possible standard models of analysis orZF. Although the exact epistemologi-
cal status of these theories is controversial, it seems implausible that considerations
of this sort are required for their justification.

4.2 Problems of logical form On what I would take to be the most plausible ac-
count of the modality required for the modal-structural interpretation, then, we may
have to seriously revise our conception of the epistemological status of classical
mathematics. However, the modal-structural interpretation also generates distortions
in semantic content which are largely independent of the nature of the modality em-
ployed. Benacerraf was aware that the language of classical mathematics appears
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to refer to a determinate interpretation; indeed, Benacerraf simply assumed that a
Tarskian interpretation was the only semantic description that captures what we are
saying when we employ that language. Consider, for example, the following asser-
tions:

(1) there are two recursively ennumerable sets of incomparable degrees
of unsolvability;

(2) the zeros of the Riemann zeta function in the critical strip all have the
same real part.

One way of motivating the Tarskian interpretation of classical mathematics is to com-
pare (1) and (2) with two assertions which clearly require such an interpretation and
which appear to have a similar structure; for example,

(1*) there are two logic students at the dissertation stage neither of whose
advisers have heard of the other;

(2*) the dissertation students in the philosophy department all have the
same adviser.

It seems very implausible that the respective pairs of sentences do not exemplify a
common structure, but the advocate of the modal-structuralist view appears to be
committed to just this claim. The quantificational devices appearing in the respec-
tive pairs of sentences appear to function in the same way, but according to the modal
interpretation this is simply an illusion.

This divided policy seems objectionable on general methodological grounds;
and it leads to trouble: the modal-structuralist account misses certain entailment re-
lations in which mathematical notions figure essentially. Consider, for example, the
following inference.

(a) There are infinitely many primes.
(b) There are only finitely many persons located in the city of Los Angeles.
(c) There are infinitely many things which are not persons located

in the city of Los Angeles.

By use of the generalized quantifierQ0, “for infinitely many,” we might give some-
thing like the following representation of this inference.

(a*) (Q0x)(Nx ∧ (∀y)(∀z)((y > 1∧ z > 1) → ¬Prod(x, y, z))
(b*) ¬(Q0x)(Px ∧ Loc(x, α))

(c*) (Q0x)¬(Loc(x, α) ∧ Px)).

On this representation, the inference is model-theoretically valid. That is as it should
be, for the inference is indeed valid. The difficulty is that it is not so construed on its
modal-structural representation. It would have been if (b) and (c) were to be modal-
ized in the same way as the modal translate of (a), but that would be absurd: (b) does
not claim that in any possible situation containing a standard model of arithmetic, say,
only finitely many people can be found in the city of Los Angeles, but that there are
actually only finitely many such inhabitants.6
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I believe that considerations such as these somewhat undermine the claim of the
modal-structural interpretation to constitute an accurate description of what our math-
ematical discourse literally means. At the very least, the modal-structuralist view
leads us to assign very different structures to sentences which on general semantical
grounds one would expect to exemplify similar structures, and it systematically dis-
torts certain entailment relations. In the end, the modal-structuralist should probably
say that he is not really trying to frame a description of the language of mathemat-
ics that completely captures what we take it to say. Rather, the modal-structuralist’s
claim seems to be that our theoretical purposes in speaking that language are to some
extentsubverted by what we literally mean, and that these purposes would be better
served if we meant something else instead. According to the modal-structuralist, a
fragment of classical mathematics should be taken to describe invariants of a class
of (possible) structures, and that isolating a single representative of that class as the
intended interpretation of the fragment is neither required for, nor conducive to, this
end. The success of a reconstructive enterprise based on this picture is to be judged
in terms of its consonance with the aims of mathematical practice and its success in
giving an account of the application of mathematics to the nonmathematical realm.
Both of these dimensions of appraisal are touched on below.

4.3 Higher axioms of infinity and limitation of size Beginning with Putnam ([11],
p. 58), advocates of modal translations of set theory have wanted to claim that the
modal view affords a satisfactory resolution of the paradoxes and a convincing jus-
tification of certain large cardinal axioms. The idea is that it should bepossible to
extend any concrete standard interpretation ofZF to another such interpretation in
which additional ranks are represented. The bearing of this idea the modal version of
certain large cardinal axioms is evident; in the presence of the assumption that there
exists a possible standard model, it leads, for example, to a justification for the ax-
iom of inaccessible cardinals and, suitably ramified, for other large cardinal axioms
as well. The same idea can be used to motivate the thesis that the classes comprising
all sets, all ordinals, or all cardinals are not sets.

It seems to me that the advantages of the modal conception in dealing with the
limitation of size problem, on the one hand, and the reciprocal problem of motivating
large cardinals on the other, have been exaggerated by its advocates. I noted above
that it is not clear how the required modal existence assumptions are to be justified:
let us grant that problem and set it aside. In the best possible case, for each Vα, α

inaccessible, there will be a possible concrete standard model isomorphic to Vα. In
this case, it seems to me, there will exist a natural correspondence between the modal
existence assumptions required to motivate a modalized axiom of infinity and literal
existence assumptions required to motivate the corresponding platonist version.

Consider, for example, the suggested justification of the modalized axiom of in-
accessibles. The idea was that, given any possible concrete standard model ofZF,
it should bepossible to extend that model by adding additional ranks. I do not know
whether this justification for the modal axiom should be considered successful or not,
but to the extent that it is convincing, using ordinary principles of set theory, it can be
translated into a justification for the corresponding unmodalized axiom by appealing
to an assumption implicit in both Hellman’s discussion and in Putnam’s. The assump-
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tion is that the collection of concrete individuals existing in any single possible situa-
tion forms a set. This assumption is equivalent to the condition that any fixed possible
space-time is of bounded cardinality (even if there exist possible space-times of ar-
bitrarily large cardinality). The assumption is integral to the whole modal-structural
approach to motivating large cardinal axioms: without it, there could be no reason
why one should not entertain the possibility of a world with a domain of concrete
individuals maximal with respect to inclusion or cardinality, which would of course
contradict the modal extendability assumption alluded to above.

Suppose, then, that this assumption is satisfied, and that we have succeeded in
motivating a modalized axiom of infinity by arguing that there is a possible situation
w in which a cardinal of the relevant typeT(x) has a concrete realization. By the as-
sumption, the collectionn(w) of all concrete individuals inw is a set, whence within
ZF supplemented with the relevant modal claims we can establish the existence of
a cardinal numberλ(w) of �(w). (The argument is the familiar one: using replace-
ment and choice, we obtain an ordinalα isomorphic to a well ordering of�(w); λ(w)

is then the smallest ordinal similar toα.) Thenλ(w) bounds all cardinals represented
in w, so that if a cardinal of typeT is represented inw, then(∃x)T(x) holds inVλ(w).
In other words, modulo the indicated assumption, theordinary principles of set the-
ory applied in the relevant modal context, allow us to lift any reason for supposing
that there is a possible concrete representation of a certain cardinal to an argument for
its actual existence.7

The other problem concerns limitation of size. Classically, the question is why
certain large totalities (such as the collection of all sets, or all ordinals) do not form
sets. Of course, theZF axioms imply that these totalities do not form sets; but this
has seemed to some not to provide a satisfactory explanation of why such totalities are
notsetlike. The feeling seems to be that sets are totalities formed by assembling well-
defined individuals in well-defined ways. The property of being aset itself is, in the
Cantorian view of the world, a well-defined attribute: it is determinate of any possible
object whether or not it is a set. The question is why sets do not form a setlike totality;
and if, as Boolos has claimed, set theory is our overall theory of all the setlike objects
there are, it has seemed to some to be unclear, notwithstanding theZF axioms, why
that totality does not form aset. Some sort of explanation is called for, and the modal-
structuralist purports to provide one, in terms of the modal extendability principle. As
Putnam put it, even God could not create a possible standard model ofZF which it
would bemathematically impossible to extend.

As I noted above, the extendability assumption requires the condition that the do-
mains of the possible worlds are themselves setlike, at least as restricted to concrete
objects, and this is an assumption which has seemed to many to be quite plausible;
but I do not think it is in the end any more plausible than the corresponding classical
limitation of size principle. Argue, in analogy to the previous paragraph, as follows.
Let us think of the concrete standard models ofZF, à la Putnam, as being made up
of possible pencil points (or their higher-dimensional analogues) and “arrows.” It is
not clear, given the determinacy of the relevant concrete objects, why these cannot be
assembled together in some single possible situation. That is to say, given a class (not
necessarily a set!) of worlds, why shouldn’t there exist a world whose domain com-
prises copies of the concrete particulars from all of the domains of the given worlds?
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It seems to me that the force of this question, to the extent that it has any, is about
the same as that of the corresponding question about sets, and that answering it will
require essentially the same sort of reasoning. Instead of talking about extendability
in the cumulative hierarchy, one will talk about extensions of domains of worlds. In
both cases, there is an amalgamation principle that has an intuitive hold on us; and it
is rather plausible that an argument that defeats one would suggest one that defeats
the other.

Let us sum up: I have argued that the modal-logical justifications for modal-
ized large cardinal principles can be translated, assuming the indicated limitation of
size principle for domains of worlds and theordinary principles of set theory, into
set theoretic justifications for the platonist versions of those principles. I have further
suggested that the problems affecting the justification of limitation of size principles
in set theory have counterparts in problems affecting the rationale for corresponding
principles for domains of worlds.

5 Applied mathematics

5.1 Measurement and modality I now turn to Hellman’s account of applied math-
ematics within the modal-structuralist framework. That account is contained in the
final chapter of the book and raises some interesting metaphysical issues. The diffi-
culty is that the previous translation pattern will not work as applied, for example, to
ameasurement context such as

(1) The length ofa is n centimeters,

for on that pattern (1) would say thatx has lengthn centimeters in each possible situ-
ation containing a standard model of arithmetic or analysis; but there presumably are
such possible situations in whicha has a length other thann; claims of this sort would
thus never be counted as true. To avoid this outcome, we shall have to assume that the
deviations from actuality which generate the relevant possible situations leave the ac-
tual measure ofa fixed. Generalizing on this theme, Hellman is led to a constraint he
terms thenon-interference proviso, that the possible worlds considered be restricted
to those which contain copies of the actual physical world (or the relevant part of it)
in which actual objects have all of their actual physical properties. The ‘mathemati-
cal’ objects in these possible worlds, then, must be conceived to be causally inert at
least with respect to actual events and objects.

Different questions about the non-interference proviso arise from different meta-
physical orientations in the philosophy of science. In the first place, the suggestion
seems to be committed to the existence of a well-defined physical configuration of
the world that obtains objectively and independently of mathematical characteriza-
tion. From an antirealist point of view, it can be questioned whether the notion of
such a configuration is intelligible at all, whether or not it essentially involves a math-
ematical architecture. Hellman takes this antirealist worry to constitute the most se-
rious challenge to his view of applied mathematics; for the idea here is to modify the
modality in the original translation scheme to restrict the possible worlds considered
to those which incorporate the actual physical configuration of the world. If the idea
of such a configuration is unintelligible, then so too is the suggested modification.
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However, even on what deserves to be called a ‘realist’ interpretation of scien-
tific theories, Hellman’s proposal is not entirely unproblematic; for it is possible to
question whether the actual physical configuration of the world obtains independently
of the mathematical facts. The question is whether the instantiation of a physical state
by a system mightconsist in the correctness of a mathematical description of the sys-
tem. If so, and if reference to mathematical facts is handled as in the original transla-
tion scheme, the whole problem at issue will arise again: for there would be no assur-
ance that actual objects retain their actual physical properties in the possible worlds
invoked to model the relevant mathematical structures.

The present worry does not concern a requirement that numerically specified
magnitude-properties be held fixed from world to world. Hellman is surely on strong
ground in supposing that the property we are ascribing to an object in attributing a
magnitude to it does not involve reference to any particularnumber. The realist idea
is that there are properties or states which constitute, for example, the mass or energy
content of an object in the actual world, which is what we are attributing to the object
when we describe it as having a mass ofX grams or an energy ofY electron volts;
but the same property could be specified in various other ways. The question I wish
to raise is rather whether the exemplification of even such an ‘intrinsic’ magnitude-
property might be a partly mathematical matter.

Let us consider what is involved in ascribing such a property to an object. In
general, there will be a set of constraints imposed on the acceptable representing func-
tions for the magnitude in question by a substantive theory of that magnitude, and one
shows that, to within a certain equivalence relation (for example, uniqueness up to a
scalar transformation) there is just one function defined for all causally possible sys-
tems of the relevant sort satisfying these constraints. Call such a functionadmissible
for the magnitude. As far as I can see, we have no way, in general, of specifying the
relevant intrinsic properties, and thus of characterizing the required modality, with-
out reference to the relevant collection of representing functions; and these functions
may be constrained in mathematically nontrivial ways. In this case, our conception
of what it is for an object to fall under such a property may be bound up with specific
mathematical commitments.

In general, it is possible for a realist to maintain that there is an objective physi-
cal architecture which underlies a metrical characterization of a system, but that this
architecture essentially involves mathematical facts of one sort or another. The as-
sumption required for the deployment of Hellman’s modality, then, is not simplyre-
alism with respect to the physical states of the systems in question, but realismin
combination with anominalist thesis about what it is for a system to instantiate such
astate. However, no justification for such a thesis has been provided.

5.2 Explanation and realism Even if we help ourselves to the relevant modality,
it is not clear that, on broadly realist assumptions about explanation, the replacement
of a piece of applied mathematics with its modal-structuralist counterpart preserves
explanatory relations. LetN represent the modality in question and H the conjunc-
tion of a set of statements involving the axioms of number theory or analysis which,
standardly construed, explain a nonmathematical sentence P. If the transition to the
modal-structuralist interpretation is to preserve explanatory relations, it must be the
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case that the sentenceNH explains P. The sentenceNH says roughly that the hypoth-
esis H obtains in each superstructure of the actual world containing a standard model
of second-order analysis (say). Thus we can explain,in such a world, why P is true;
but what does this circumstance have to do with our ability to explain why P obtains
in the actual world?

The question can perhaps be put into sharper focus by exhibiting it as an instance
of a more general situation. This time let H represent an arbitrary hypothesis which,
if true, would explain P; but suppose that H is in fact false. In analogy toN, consider
a modality M that applies to a sentence S to yield a statementMS which is true if
and only if S obtains in each superstructure of the actual world in which H obtains.
Thus the sentenceMH is true; but it is quite unexplanatory of the actual truth of P.
The reason, of course, is that H is in fact false: even though we can explain P in terms
of H in any situation in which H holds, this fact seems quite irrelevant to explaining
P in situations in which H fails to hold. The modalityN above is the special case
of M in which H is, for example, a formulation of mathematical physics in terms of
a nonmodalized (and thus, for the modal-structuralist, literally false) mathematical
theory.

Field has made a similar point but with a slightly different emphasis (see [6],
pp. 256–60). The modal-structuralist translate of applied mathematics is supposed to
show us how todispense with reference to (actual) mathematical objects by enabling
us to derive predictions about the actual world by showing that the predictions obtain
in every structure arising from the actual situation by adding copies of the relevant
mathematical structures. If this is so, however, why shouldn’t an analogous argument
allow us to dispense with alltheoretical architectures, by deriving statements about
the actual world by showing that they obtain in any model arising from theobserv-
able situation by adding entities playing the relevant causal-explanatory role? The
reasoning involved seems to be identical in the two cases.

The present difficulty for Hellman’s construal of applied mathematics arises on
a realist understanding of the nature of scientific explanation. It would not, as far as
I can see, bother someone who thought of a theory merely as a device for generat-
ing predictions about the observable realm. What Hellman has done very roughly
is to identify the truth condition of a theory in mathematical physics with the con-
dition that the actual world behavesas if there were mathematical structures of the
sort postulated by the unmodalized theory; a prediction registered by an observation
sentence is derived by showing that the sentence holds in any situation containing the
relevant part of the actual world together with the relevant mathematical structures.
Such a prediction is obtainable as well on the modal version of the theory as on the
nonmodal one. The problem arises only if the mathematical content of a theory in
physics is viewed as playing an ineliminable explanatory role, and the explanations
it generates as collapsing if their mathematical content is ‘modalized away’, just as
they would collapse if other parts of their theoretical content were ‘modalized away’.

5.3 Let’s be unrealistic So it is appropriate to briefly consider the fate of Hellman’s
proposal within an antirealist framework. The difficulty here is that the modality in-
volved in Hellman’s transcriptions of the claims of mathematical physics, for exam-
ple, doesn’t make any obvious sense within such a framework. The idea is to consider
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possible situations alternative to actuality in which the physical states and relations
of actual objects are held fixed, but from an antirealist point of view many of these
states and configurations are out of play. In response to this difficulty, Hellman at-
tempts to provide a reconstruction of the relevant modality without the assumption
that it makes sense to talk about a ‘determinate physical configuration of the world’.
There are two versions of the reconstruction.

5.4 Finite synthetic bases The general idea is to locate asynthetic basis for the
magnitudes in question, in the first version, afinite set of nonmathematical predicates
which are taken for the purposes at hand to completely describe a given magnitude.
The translation schemes given for analysis orZF are then conditionalized on the hy-
pothesis that all actual objects exist in the relevant possible worlds and fall under pre-
cisely the same predicates in the synthetic basis as they do in the actual world.

To state this condition, Hellman makes use of an actuality operator ‘@’ that ap-
plies to a statementϕ to give a sentence @ϕ that holds in any world if and only ifϕ
holds in the actual world. If

� = {R1, . . . , Rn}

is the relevant synthetic basis, then the required stability condition may be given by
the formula

(∃X) (@∀yX(y) ∧
(∀y1), . . . , (∀yn)(

m∧
i=1

Xyi →
n∧

i=1

(Ri yi, . . . , ym ←→ @Ri yi, . . . , ym))),

where by adding superfluous argument-places we may assume that eachRi is m-ary
for a fixedm.8

Hellman says little about why one should generally expect there to be such a
finite synthetic basis for a given physical magnitude; in the end, he appears to relax the
requirement of a finite synthetic basis in a somewhat problematic way, as we shall see.
It is worth exploring for a moment some assumptions that would ensure the existence
of such a basis.

If f is a rational-valued function that describes a given magnitude, a generally
sufficient condition for� to constitute a synthetic basis for that magnitude is the fol-
lowing.

(∗) For each rational numberr, there is a predicateϕr(x) in L(�) such
that for each objectα, ϕr(α) holds iff f (α) = r.

There is in turn a simple sufficient condition for(∗):

(C) (i) there is a unary predicateu(x) ∈ � such that
(∀x) (u (x) ←→ f (x) = 1);

(ii) there is a 3-place predicateS(x, y, z) ∈ � such that
(∀x) (∀y) (∀z) (S(x, y, z) ←→ f (x) = f (y) + f (z));

(iii) (∀r)(∃x) f (x) = r.
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Condition (i) says that� contains a unit predicate, and condition (iii) says thatf is
onto the rational numbers, that is, that every rational value is exemplified in the actual
world. Condition (ii) says that� contains a predicate expressing metrical difference,
the fact that the magnitude of one object differs from that of another by that of a third.

Let us see briefly why (C) implies(∗). First, for any natural numbern, we shall
assemble a predicateϕn(x) in L(�), expressing thatf (α) = n. For n = 0, take
ϕn(x) to beS(x, x, x). Proceeding inductively, assume thatϕn(x) is given and define

ϕn+1(x) ←→ (∃y) (∃z) (ϕn(y) ∧ S(x, y, z)).

Then by induction onn using (C), it follows easily thatϕn(α) holds if and only if
f (α) = n for anyn andα. Now taker = n/m, wherem > 0andm andn are relatively
prime. Define

ϕr(x) ←→ (∃x1), . . . , (∃xm)(x1 = x ∧
∧
i<m

S(xI+1, xi, x1) ∧ ϕn(xm)).

Then for anyα we haveϕr(α) if and only ifβ1, . . . , βm can be chosen such thatβ1 = α

and f (βi+1) = f (βi) + f (α) holds for eachi < m, with f (βm) = n. Thus we have
mf (α) = n so that f (α) = r, as required.

It is clear that the above construction makes essential use of the condition C(iii),
requiring each rational magnitude to be exemplified by some actual object. It is
equally clear that the range of cases in which one can expect this condition to be
met is very limited and rather special. If, for example, there is an integral value of
f that ismissed in the actual world, in the sense that for no actual objectα do we
have f (α) = n, thenϕk(β) is false for everyβ and everyk > n, as isevery statement
of the formϕ(β) = n/m with n andm relatively prime. The variations on the above
construction which naturally present themselves make use of analogous assumptions
about the actual exemplification of magnitudes.9

5.5 Infinite bases In order to get around technical and philosophical problems
about finite synthetic bases, Hellman considers the possibility of an infinite synthetic
basis (p. 131). For each rational numberr, we introduce aprimitive predicateϕr(x)

which expresses thatx has the valuer with respect to the magnitude in question. The
covariance claim, that the biconditionals

ϕr(x) ←→ @ϕr(x)

hold for each actual value ofx in the possible worlds considered, is expressed by
means of a satisfaction relation for the new class of predicates. LetS(ϕr, α) say that
α satisfies the predicateϕr. Then we stipulate that the sentence

(∃X) (@(∀y)Xy ∧ (∀y) (Xy → (∀q) (S(q, y) ←→ @S(q, y))))

holds in each of the relevant worlds, where ‘q’ ranges over the predicates{ϕr}.
The difficulty here is that the new predicates cannot really be primitive from the

standpoint of a theory of understanding and use for the language in question; else,
there would be no explaining how we could come to understand the totality of them.
Rather, it seems to be Hellman’s intention that theϕr ’s be interpretedoperationally:
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We could employ predicates of the form “x and y are separated by distance
bearing ratior to standard length�”, where ‘r’ i s arational constant and ‘�’ a
constant designating a preselected fixed standard (e.g., a well-isolated metre-
stick). Such predicates do not involve quantification over numbers; and our
understanding of them...can perhaps be explained operationally, without quan-
tifying over numbers or other mathematical objects. By invoking sufficiently
many such predicates, one may hope to supply the required ‘fixation of the ma-
terial facts’ without circularity, and without strong hypophysical commitments.
(p. 131)

Hellman does not say how such an operational interpretation leads to the required
satisfaction predicate for the{ϕr} but the answer is not too difficult to come by. One
imagines that there is an effective map

ϕr 
→ πr,

where for eachr, πr is an operational procedure which, when applied to an objectα,
gives an outcome 1 ifα falls underϕr and gives 0 otherwise. Then the satisfaction
relation S(ϕr, α) will be explicated in terms of a counterfactual that says that ifπr

were applied toα, it would give the outcome 1. Thus the covariance condition for the
ϕr will say that for eachϕr, any actual objectα falls underϕr in the relevant possible
situations if and only ifπr would yield the outcome 1 if it were to be applied toα in
the actual world.

Aside from general worries about operationism—set aside for the purposes of
this subsection—the most serious question facing this suggestion concerns the exis-
tence of the required operational bases. As far as I can see, there is no reason whatever
to expect a priori that for each rational magnitude (for concreteness, let us saymass,
in grams) an operational specification can be given for what it is for an object to in-
stantiate that mass. One would require, for example, for eachn, distinct operational
or procedural conditions governing the ascription to a system of a mass of 1+ 10−n

grams; indeed, for the construction of the satisfaction predicate required above, the
association that maps each positive integer onto a suitable coding of the correspond-
ing operational procedure must be effective (or, at least, definable). There seems little
reason to suppose that such procedures exist for eachn; still less plausible is the claim
that such a procedure can be specified effectively and uniformly for eachn. Such a
thesis would seem to require operational optimism on the scale of Bridgman’sThe
Logic of Modern Physics [4].

It emerges, however, that nothing quite so strong as an exact operational crite-
rion for each rational magnitude is required for a satisfactory synthetic determination
argument (p. 133); all (!) that is required is that for each positive rational numberr
and each positive integern, apredicateϕr,n can effectively be found which gives an
operational explanation of what it is for an object to have had a mass in the interval
[r − 10−n, r + 10−n]. But again, there seems to be no reason at all to suppose that
this requirement can be satisfied. The changes in instrumentation required even for
an order of magnitude improvement in the measurement of a physical quantity (cor-
responding, e.g., to the transition fromϕr,7 toϕr,8) may involve entirely novel techno-
logical discontinuities and sometimes substantive advances in theory. At the present
time, in fact, we simply have no conception of how to set up such a specification for
arbitraryr andn for any physical magnitude.
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6 Rethinking structuralism The general claim underlying structuralism in all of
its variants is that mathematics is the study of structures, or isomorphism types, inde-
pendently of any special interest in particular realizations of those structures. How-
ever, the evidence from the history of mathematics and its current practice adduced to
support this sweeping thesis seems rather thin. Perhaps the most frequently pointed
to facts are the alternative set-theoretic interpretations of the classical number sys-
tems: the natural numbers, the integers, the rational numbers, the real numbers, and
the complex numbers. Let us take the case of the natural numbers as typical. Some-
thing like the following argument has seemed persuasive to many philosophers:

(a) All standard interpretations of arithmetic are equally correct (one can-
not be correct to the exclusion of any other).

(b) No nonstandard interpretation is correct.
(c) Two Tarskian interpretations of arithmetic which assign distinct refer-

ences to a number-theoretic term cannot both be correct.
(d) The class of standard interpretations of arithmetic is closed under iso-

morphism.

(e) Therefore, no Tarskian interpretation of arithmetic can be correct.

Here ‘standard interpretation’ refers to any Tarskian interpretation of the proper iso-
morphism type. The argument is valid: Suppose thatA were a correct Tarskian inter-
pretation. ThenA is either standard or not. By (b), no nonstandard interpretation can
be correct; therefore,A must be standard. By (d), then, there exists an isomorphL of
A such thatL is a standard interpretation of arithmetic that disagrees withA on some
termζ. By (a),L is also correct, but sinceL diverges fromA on ζ, this contradicts
(c). The structuralist response to this contradiction is to replace reference to partic-
ular standard interpretations by quantification over all standard interpretations; the
differences between the modalist and the ‘actualist’ versions of the structuralist view
depend upon whether these quantifiers are regarded as modalized or not. In either
case, the response is, in effect, to deny premise (b): the structuralist interpretations
are nonstandard, because they are non-Tarskian. However, it is possible to question
both the premise (a) and the premise (c), and doing so will lead us to an alternative
construal of the structuralist view.

Premise (a) is very implausible if it is understood to say that all standard inter-
pretations are equally acceptable for mathematical purposes; and I see no other way
of understanding it. Different set-theoretic interpretations will have different mathe-
matical claims (of simplicity, explanatory adequacy, and so on) to be acceptable: it
is a condition of the mathematical acceptability of such an interpretation that it en-
able derivations of the laws of arithmetic, and these derivations will be more or less
good as judged in terms of these criteria. It seems simply false that an interpretation
in terms of say, anω-sequence of binary stars would be regarded as mathematically
acceptable.

Another problem with (a) is that whatever plausibility it may have for certain
classical theories such as number theory or analysis, it is not at all well supported
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by evidence from other mathematical domains. The analogue of (a) for classical set
theory, for example, seems quite unsupported. There simply is no plurality of iso-
morphic interpretations ofZFC each of which is actually regarded as mathematically
acceptable. (Although there are alternative settheories, and perhaps also alternative
conceptions of set.)

Premise (c), on the other hand, says that we cannot correctly ascribe more than
one reference to a number-theoretic term. But there is a familiar model of reference
on which onecan do this which deserves some consideration.

In recent mathematics, there are many good models of the number concept. In
different situations, we operate with different models, but in a situation in which a
determinate model has been introduced, questions about the identities of particular
natural numbers have definite answers. Similarly, while it is a matter of indifference
for (most) mathematical purposes whether real numbers are identified with Dedekind
cuts or with equivalence classes of Cauchy sequences of rational numbers, in the con-
text of a particular development of analysis, facts about one or the other construction
come into play: for it is part of the aim of the development to explain the data codi-
fied in an axiomatic characterization of the real number system. Let us call a situation
in which a particular model of number theory (or analysis, etc.) is deployed for this
purpose aconstructional context for that theory.

Questions such as ‘is 2 equal to{0, (0)}, or to {{0}}?’, then, though without
sense outside of a constructional context, may be meaningful within one. Such asser-
tions may be viewed as having an indexical component: their truth condition depends
upon the constructional context in which they are evaluated. On this view, the truth-
condition of an assertion of this type in a context of utterance depends on our ability
to coordinate the context uniquely with a constructional one. We may do this if the ut-
terance is part of a mature mathematical enterprise which is reasonably self-conscious
about foundations, for in such a situation, a particular standard model will have been
deployed. In a great many situations, however, noparticular standard model is at is-
sue, and in these situations, sentences which presuppose a particular construction of
the natural numbers will lack a determinate truth-value. However, since a sentence of
pure number theory holds or fails rigidly across standard models, any such sentence
will fall under an associated necessity concept if it is true in some standard model: it
is true relative to each admissible set-theoretic reduction, and so falls under the neces-
sity concept generated by allowing the models provided by the totality of all possible
constructional contexts to play the role of indices (or ‘worlds’, in some generalized
sense).

The present indexical picture affords an alternative interpretation of the struc-
turalist thesis which allows us to explicate the structuralist character of arithmetical
truth while allowing definite standard models to be associated with arithmetic in par-
ticular contexts. This interpretation resolves some apparently paradoxical aspects of
the linguistic behavior of the mathematical community. Switching from arithmetic
to analysis for a moment, different members of that community, or even the same
member on different occasions, may make apparently incompatible claims about the
identities of particular real numbers. When working with the Dedekind construction,
for example, she may assert
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e = {r ∈ Q| | (∃n)r <

n∑
k=0

(k!)−1},

and on another occasion, on a version of the Cauchy construction, thate is identical
to collection of all sequences{rn} of rational numbers such that the inequalities

| rn − rm |< n−1 + m−1,

and

| rn −
n∑

k=0

(k!)−1 |< 2n−1

hold for each pairn, m of positive integers. These identifications are flatly incompat-
ible if the reference of real constants such as ‘e’ i sheld fixed from context to context.
On the suggested indexical interpretation, however, these apparently contradictory
assertions are reconciled in a straightforward way: the apparent contradiction is gen-
erated by conflating indexical contexts.

The present suggestion fits nicely into an explanation of why mathematicians do
not regard reductions of one number system to another aspointless. If analysis is the
study of all structures isomorphic to the real line, the point of the subject will be to
investigate the consequences of a categorical description of that isomorphism type,
independently of any attempt to regard the objects in these structures as being con-
structed in a particular way. If this is so, why should a construction which identifies
real numbers with Dedekind cuts or equivalence classes of Cauchy sequences of ra-
tional numbers be considered to be mathematically significant? Similarly, if rational
arithmetic is the study of all structures satisfying categorical description of the ratio-
nal field, why should a repesentation of such a structure as the field of quotients of an
underlying integral domain be considered especially illuminating?

On the suggested interpretation of the structuralist thesis, the mathematician op-
erates, in a certain range of situations, in a manner analogous to a natural scientist
dealing with an entrenched but unexplicated set of laws: she looks for a reduction.
The familiar strategy is to produce a representation of the subject matter of the laws
that construes these objects as structured configurations of more basic objects, and to
derive the laws in question from a theory of these basic entities in conjunction with
the relevant ‘bridge’ principles. On the picture being suggested here, much the same
sort of thing was going on in the alternative constructions of the real numbers in nine-
teenth century analysis. There is a body of familiar laws which categorically describe
the real line and which are explained in terms of the theory of the rational field, in con-
junction with the identification of real numbers with, for example, equivalence sets
of Cauchy sequences of rational numbers and the induced construal of the field oper-
ations on the real numbers. The differences between the two sorts of cases are,inter
alia, first, that the standard of explanation in the second is a mathematical one, re-
quiring a certain sort of explicative proof; and, secondly, that the reductions in the
second case are essentially multiple. The only constraint on an acceptable reduction
is that it enable an explanation of the target laws: but this condition will obtain if
the ‘bridge’ principles facilitate an explanation of why some member of the relevant
isomorphism type satisfies those laws. The multiplicity of acceptable reductions is
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accommodated by the indexical character of the truth concept for the target theory,
which allows many constructions of the subject matter to be literally correct—in con-
text.

I cannot pretend to have said enough about the present ‘indexical-structuralist’
conception of mathematical truth to have characterized it adequately. It is intended
to apply to those fragments of classical mathematics which appearboth to be about a
definite system of objectsand, in some sense, to beabout structure; these, I submit,
are precisely the branches of classical mathematics which are normally thought of as
possessing multiple set-theoretic reductions. But not all of classical mathematics is
plausibly viewed in this way. For reasons some of which were indicated above, I do
not believe that set theory itself can, without quite serious distortion, be construed in
this way, notwithstanding the fact that set theory is our most general instrument for
describing structure.

I will conclude by making brief mention of another way in which mathemat-
ics appears not to be purely structural in character. This concerns what are generi-
cally termedrepresentations. Mathematicians are frequently interested in quite spe-
cial ways in which an isomorphism type can be presented or described. For example,
it is considered significant when one has a homomorphism mapping a group onto a set
of invertiblen × n matrices for a fixedn over the field of complex numbers, or, equiv-
alently, a set of invertible linear maps defined on complexn-space. There are similar
‘privileged’ representations for other classes of structures, for example, Boolean Al-
gebras, Lie Algebras, and Topological Groups. A different sort of representability
concerns the possibility ofeffectively describing the structure in question, that is, the
problem of constructively presenting a copy of the structure. In all of these cases, a
representation consists of a homomorphism mapping the structure in question onto a
more ‘concrete’ structure. It is the content and significance of this notion (or notions)
of relative concreteness which seem to me to be difficult to capture in purely structural
terms. The required concepts of relative concreteness are notoriously unpreserved by
isomorphisms of the structures to which they apply; but they seem nonetheless to be
mathematically significant notions, and this circumstance by itself points to an ob-
struction to a fully general identification of mathematical notions with structural ones.

7 Conclusion Hellman’s book presents an attractive synthesis. It is attractive, be-
cause it arrives simultaneously at a representation of mathematics that goes to the
core of part of what is actually involved in the elaboration of the mathematical do-
main, viz., a preoccupation with the structural properties of that domain, and also to
the heart of a number of serious philosophical problems about the nature of math-
ematical truth. I think many of the problems raised above for Hellman’s particular
attempt at this synthesis are likely to arise in one form or another for any attempt,
and so I have treated them in some detail, and, to some extent, in abstraction from the
particulars of Hellman’s presentation. However,Mathematics without Numbers must
surely stand as the definitive presentation of the modal-structuralist point of view. It
rewards close study.
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NOTES

1. Here we have used the following natural abbreviations:

‘ (∀Mi)’ for ‘ (∀Xi)(∀Ri)’
‘ (∃Mi)’ for ‘ (∃Xi)(∃Ri)’
‘ (∀v in Mi)’ for ‘ (∀v)(Xiv → )’
‘ (∃v in Mi)’ for ‘ (∃v)(Xiv ∧ )’
‘ Mi |= A’ for ‘ AXi (Ri/ ∈)’
‘ Mi ≤ M j ’ for ‘ (∀x)(∀y)((Xi y → x j y) ∧ (Rixy → R jxy))’.

2. On p. 50, Hellman uses a three-place pairing relation rather than a function symbol, but
this difference is inessential.

3. These considerations are generalized in my [9], to which the reader is referred for addi-
tional discussion.

4. Putnam, [11], p. 57. Italics mine.

5. Non-spatio-temporality seems by itself sufficient for one sort of causal neutrality, for an
object which does not exist in space and time cannot in the ordinary sense be an indi-
vidual constituent of the events that comprise the field of the causal relation. But for the
purposes of his account of applied mathematics, Hellman must require also that the con-
stituents of the relevant possible mathematical structures do not causally interact with
actual events; see Section 5.1.

6. Alternatively, it might be suggested that on the modal-structuralist view (b) and (c)
should be treated in the manner described below for assertions of applied mathemat-
ics. In that case, (b) would say roughly that there are finitely many people inhabiting
Los Angeles in any world containing a standard model of arithmetic and which is other-
wise sufficiently like the actual world. There are both technical and philosophical prob-
lems with this idea which are taken up below. But in any case, the use of this strategy in
the present context leads to some rather bizarre results. The sentence (b), for example,
would on this view have to be held to be radially ambiguous. In normal nonmathemati-
cal contexts, (b) would be assigned the form (b∗). In any mathematical context in which
it occurs, (b) would be assigned a semantic interpretation in terms of a conditional in-
volving reference to possible standard models of the mathematical theory in question;
and these interpretations would differ from context to context. There seems to be no
independent reason to postulate such ambiguity.

7. The present argument for the satisfiability ofT (x) is a capsule of a set-theoretic argument
which, when fully formulated, would make use of a suitable modal extension ofZFC.
Note that the present use of theZFC principles is notcircular. We are not attempting
to give a justification of theZFC axioms, but to motivate certain large cardinal prin-
ciples withinZFC augmented with whatever additional assumptions we can indepen-
dently justify. The classical set theorist is free to use any modal existence assumptions
in this enterprise that can be adequately justified in modal terms. In this, her position is
unlike that of the modal-structuralist, who must prescind from use of ordinary set theory
in justifying required modal principles.

8. The present condition embodies a slight technical correction to Hellman’s Condition 3.4.
That condition requires the covariance of @Rix1, . . . , xm in a possible worldw only for
those actual values ofx1, . . . , xm which exist in the possible worlds considered. Another
technical problem is that if ‘f ’ i s the term denoting the magnitude in question, there is
nothing in the condition stated by Hellman to coordinate the synthetic predicate corre-
sponding to a particular rational magnituder with the condition f (x) = r, interpreted



160 TIMOTHY G. McCARTHY

in the relevant possible standard models. In order to be able to apply mathematical con-
structions involvingf to actual magnitudes, we require a way of passing from sentences
of the form ‘ f (x) = r’ to the corresponding synthetic characterization of what it is to
have the magnituder and back again. To this end, we can require, ifϕr(x) is the rele-
vant synthetic predicate, that the equivalence

(∀x)( f (x) = r ←→ ϕr(x))

hold in the possible worlds considered. There are, of course, infinitely many such equiv-
alences, one for each rational numberr. We may absorb them into the antecedents of
Hellman’s translations in a finitary way by making use of satisfaction relations for the
predicatesϕr and for predicates of the form ‘f (x) = r’ saying, in effect, that these pairs
of predicates are co-extensional. This device of semantic ascent will make another ap-
pearance in Section 5.3.2.

9. In a certain range of cases, it may be possible to specify a finite synthetic basis for a mag-
nitude that does not fulfill the indicated conditions in terms of a finite synthetic basis for
another magnitude which does fulfill these conditions. Suppose that� is a finite syn-
thetic basis for a magnitude represented by a functionf satisfying (C), and it is regarded
as intelligible to ask, relative to given choices of units, of any objectsα andβ whether
α has thesame magnitude with respect tof asβ with respect to another magnitude-
describing rational-valued functiong. Let us say in this case thatf andg aresyntheti-
cally comparable. Let Eq f,g(x, y) be a synthetic predicate expressing this equivalence
relation, and for a given rational numberr, letϕr(x) be the synthetic predicate expressing
f (x) = r. Then, we have

g(y) = r ←→ (∃x) (ϕr(x) ∧ Eq f,g(x, y)),

so that� ∪ {Eq f,g} is a finite synthetic basis for the magnitude described byg. Perhaps
the problem could be solved generally by arguing that for each relevantg there exists an
f satisfying condition C such thatf andg are synthetically comparable.
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