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An Unclassifiable Unidimensional
Theory without OTOP

AMBAR CHOWDHURY and BRADD HART

Abstract A countable unidimensional theory without the omitting types or-
der property (OTOP) has prime models over pairs and is hence classifiable. We
show that this is not true for uncountable unidimensional theories.

1 Introduction In [4], Shelah settled the Main Gap for countable theories. Rough-
ly speaking, this result shows that for a countable first order theory T either there is a
reasonable set of cardinal invariants which describe the isomorphism type of models
of T or in some technical sense the class of models of T is chaotic. For countable
unidimensional theories this dichotomy is explained by two properties, prime models
over pairs (PMOP) and the omitting types order property (OTOP) both of which we
proceed to define.

A stable theory T is said to have PMOP if whenever M0 ≺ Mi ≺ N |= T for
i = 1, 2 and M1 is independent from M2 over M0 then there is a prime model over
M1 ∪ M2. If a unidimensional theory T of cardinality λ has PMOP then the class
of models of T is well behaved. For instance, every model of T is determined up to
isomorphism by its cardinality and a choice of relatively |T |+-saturated submodel.
This implies that I(κ, T ) ≤ 22|T |

for all κ > |T |.
A theory T has the OTOP if there is a type p(x̄, ȳ, z̄) so that for every λ there is

M, a model of T , and a sequence 〈āα : α < λ〉 in M so that p(x̄, āα, āβ) is realized in
M if and only if α < β. This is a particular instance of the more general concept of
having an L∞,ω-definable order. T has an L∞,ω-definable order if there is an L∞,ω-
formula ϕ(x, y) so that for every λ there is M, a model of T , and a sequence 〈āα :
α < λ〉 in M so that M |= ϕ(āα, āβ) if and only if α < β.

Theories which have L∞,ω-definable orders were first studied in Shelah [3]. A
theory T which has an L∞,ω-definable order has a chaotic class of models and is un-
classifiable. A theory T is said to be unclassifiable if for any regular cardinal λ > |T |
there are two nonisomorphic models of T which can be forced to be isomorphic by a
forcing notion which preserves cardinals (and adds no new small subsets of λ). A λ-
closed forcing is an example of such a forcing. The class of models of such a theory
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cannot have a reasonable set of cardinal invariants which determine isomorphism. It
should be remarked that any unidimensional theory with PMOP is not unclassifiable
(is classifiable).

A countable unidimensional theory which does not have the OTOP has PMOP
(see [4], ch. 12). In this paper we show that this is not true for uncountable unidi-
mensional theories. Precisely we give an example of a unidimensional theory with
no L∞,ω-definable order which nevertheless is unclassifiable.

We begin in this section by describing a particular theory, T , which has cardi-
nality 2ℵ0 and is unidimensional with R∞(x = x) = 2. In Section 2 we prove that T
has quantifier elimination and that one cannot code arbitrarily long L∞,ω-definable
orders in models of T . In the third section we prove that T is unclassifiable. In the fi-
nal section we consider a family of examples similar to T and give a characterization
of those which are classifiable and those which are not.

Let us first describe the particular theory T somewhat informally. The language
for T will be multisorted. One sort, V , will contain a vector space over the two ele-
ment field. There will be predicates to pick out a descending chain of subspaces Un

where [Un : Un+1] = 2. It will be convenient to introduce predicates for all the cosets
of Un. There will be continuum many other sorts Sη for η ∈ 2ω. Each of these can be
thought of as a cover of V and the fiber in Sη above any v ∈ V is acted on regularly
by V . For any fixed η, there is no interaction between the fibers in Sη above different
elements from V . However, for every v ∈ V , there is interaction between the fiber
above v in Sη and Sµ for η,µ ∈ 2ω, η 	= µ. Suppose that η|n = µ|n but η(n) 	= µ(n).
Un, the subspace of V , induces an equivalence relation with 2n many classes on the
fiber above v in both Sη and Sµ. We will introduce relations between Sη and Sµ which
will give a bijection between these sets of equivalence classes.

Now we give a formal description of T . We begin with a definition.

Definition 1.1 Given µ 	= η ∈ 2ω, i(µ, η) = the greatest n < ω for which µ|n = η|n.

The language L is defined as follows.

1. L has sorts {V} ∪ {Sη : η ∈ 2ω}.
2. In the sort V there is a constant 0, a binary function +, and unary predicates

{U j
n : n < ω, j < 2n}.

3. For each η ∈ 2ω, there are functions fη : Sη → V , gη : Sη × Sη → V and hη :
V × Sη → Sη.

4. For each pair µ 	= η ∈ 2ω, there are binary relations R j
(µ,η)

⊂ Sµ × Sη for j <

2i(µ,η).

Now let M be the following L-structure.

1. V is a countable abelian group in which every element other than the identity
has order 2. + and 0 are interpreted by the group operation and the identity
element of V , respectively. For each n < ω, U0

n is a subgroup of V such that
U0

n+1 ⊂ U0
n and [U0

n : U0
n+1] = 2. Finally, for each n < ω, {U j

n : j < 2n} is a list
of the cosets of U0

n in V .

2. For each η ∈ 2ω, Sη = V × V and the functions are interpreted as follows.

(a) fη(x, y) = y.
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(b) gη((x, y), (x′, y′)) = x − x′ provided that y = y′ and is undefined other-
wise.

(c) hη(u, (x, y)) = (u + x, y).

3. Given µ 	= η ∈ 2ω, R j
(µ,η)

((x, y), (x′, y′)) holds just if y = y′ and x − x′ ∈
U j

i(µ,η)
.

We define T to be the theory of M in the language L.
Throughout the rest of this paper we will drop the subscripts in the functions

fη, gη, hη whenever there is no confusion as to their domains. We end this section
with an easy, if somewhat inelegant, lemma which will be of use later.

Lemma 1.2 Let N be any model of T and µ, η, τ distinct members of 2ω. Suppose
that a, a′ ∈ Sµ, b, b′ ∈ Sτ, and c, c′ ∈ Sη.

(i) If N |= R j
(µ,τ)

(a, b) for some j < 2i(µ,τ) and if u, u′ ∈ V with u − u′ ∈ U0
i(µ,τ),

then N |= R j
(µ,τ)

(h(u, a), h(u′, b)).

(ii) If N |= R j
(µ,τ)

(a, b) ∧ R j
(µ,τ)

(a′, b′) for some j < 2i(µ,τ) and if u, u′ ∈ V with

u − u′ ∈ U0
i(µ,τ), then for any k < 2i(µ,τ)

N |= Rk
(µ,τ)(a, h(u, b)) ←→ Rk

(µ,τ)(a
′, h(u′, b′)).

(iii) Let n0 = i(µ, η), n1 = i(µ, τ), and n2 = i(τ, η) and suppose that n2 ≤ n0. Now
choose jl < 2nl for l = 0, 1, 2 and suppose that

N |= R j0
(µ,η)

(a, c) ∧ R j1
(µ,τ)

(a, b) ∧ R j2
(τ,η)

(b, c).

Then

N |= R j0
(µ,η)

(a′, c′) ∧ R j1
(µ,τ)

(a′, b′) =⇒ N |= R j2
(τ,η)

(b′, c′).

Proof: (i) and (ii) are immediate consequences of the definition of T . (iii): It suf-
fices to show that (iii) holds when N is our original model M. First note that µ|n2 =
η|n2 = τ|n2 — since i(τ, η) = n2 ≤ i(µ, η) — and we conclude that n2 ≤ n1. Since we
are working in M we may assume that a, a′, b, b′, c, c′ ∈ V (M) and our hypotheses
imply that

(a − c), (a′ − c′) ∈ U j0
n0

, (a − b), (a′ − b′) ∈ U j1
n1

and b − c ∈ U j2
n2

(1)

and it remains to prove that b′ − c′ ∈ U j2
n2

. Now

(b − c) − (b′ − c′) = ((a′ − b′) − (a − b)) + ((a − c) − (a′ − c′))

and so the required result follows from (1) and the fact that n2 ≤ min(n1, n0). �

2 T does not have OTOP

Proposition 2.1 Let N be any model of T. Then the set of partial isomorphisms
{ρ : D → N : D ⊂ N is finite} has the back and forth property.

Proof: Suppose a, b ⊂ N satisfy the same atomic formulas (we will write a ≡0 b)
and fix c ∈ N. We must find d ∈ N so that ac ≡0 bd. Denote by A, B the substructures
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of N generated by a, b, respectively. Then A is finite and A ≡0 B in the obvious way.
We may clearly assume that c 	∈ A. Now there are various possibilities.

Case 1: c ∈ V (N). Since V (A) is finite, we can find d ∈ V(N)\V (B) so that

for all n < ω, c − d ∈ U0
n (N). (2)

We claim that this d works. It is enough to verify that the following holds.

(i) For any u ∈ V (A), any n < ω and j < 2n,

u + c ∈ U j
n(N) if and only if u′ + d ∈ U j

n(N)

where u′ corresponds to u in V (B).
(ii) For any η,µ ∈ 2ω, v ∈ Sη(A),w ∈ Sµ(A) and j < 2i(µ,η),

N |= R j
(µ,η)

(w, h(c, v)) if and only if N |= R j
(µ,η)

(w′, h(d, v′))

where v′ corresponds to v in Sη(B) and w′ corresponds to w in Sµ(B).

This is an easy consequence of (2) above and Lemma 1.2(ii).

Case 2: For some η ∈ 2ω, c ∈ Sη(N).

Subcase 1: For all e ∈ A\V (A), f (e) 	= f (c). In this case, let u = f (c) and choose
u′ ∈ V (N), as in Case 1, so that Au ≡0 Bu′. It is now trivial to check that any d ∈
f −1
η (u′) works.

Subcase 2: There is e ∈ Sη(A) with f (e) = f (c). Let e′ ∈ B correspond to e. Now
let u = g(c, e) and choose u′ ∈ V (N), as in Case 1, so that Au ≡0 Bu′. Then since
c = h(u, e), taking d to be h(u′, e′) works. All that remains is

Subcase 3: The set Q = {τ ∈ 2ω : there is e ∈ Sτ(A)with f (e) = f (c)} is nonempty
and does not contain η. In this case, let n0 = max{i(τ, η) : τ ∈ Q} and choose µ ∈ Q
with i(µ, η) = n0. Further, let e ∈ Sµ(A) satisfy f (e) = f (c). Now for some j0 <

2n0 we have N |= R j0
(µ,η)

(e, c). Let e′ correspond to e in B and choose d ∈ Sη(N) so

that N |= R j0
(µ,η)

(e′, d). We claim that this d works.

By virtue of our hypotheses, it suffices to check that if τ ∈ 2ω, j2 < 2i(τ,η), z ∈ Sτ(A)

and u ∈ V (A), then

N |= R j2
(τ,η)

(z, h(u, c)) =⇒ N |= R j2
(τ,η)

(z′, h(u′, d))

where z′, u′ correspond to z, u respectively in B.
So suppose that N |= R j2

(τ,η)
(z, h(u, c)). By Lemma 1.2(ii) we may assume that

u = u′ = 0. Again by Lemma 1.2(ii), we may assume that τ 	= µ (note that if τ were
equal to µ, we would have g(e, z) ≡0 g(e′, z′)). Now observe that f (z) = f (c) =
f (e) (hence τ ∈ Q) and so for some j1 < 2i(µ,τ),

N |= R j1
(µ,τ)

(e, z) ∧ R j1
(µ,τ)

(e′, z′).

Now since τ ∈ Q, it follows that i(τ, η) ≤ n0 and thus Lemma 1.2(iii) implies that
N |= R j2

(τ,η)
(z′, d), as required. This completes the proof of the proposition. �
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The next corollary is an immediate consequence of Proposition 2.1.

Corollary 2.2 T admits quantifier elimination.

The following is now immediate from the quantifier elimination.

Corollary 2.3 T is superstable, unidimensional, and R∞(Sη) = 2 for all η < 2ω.

Corollary 2.4 T does not have an L∞,ω-definable order. In particular, T does not
have OTOP.

Proof: Suppose that there is an L∞,ω-formula ϕ(x̄, ȳ) so that for every λ there is a
model M |= T and a sequence 〈aα : α < λ〉 ⊂ Mn for some n < ω such that

N |= χ(aα, aβ) if and only if α < β.

By standard arguments then there is a model N |= T , an indiscernible sequence 〈aα :
α < ω〉 ⊂ Nn for some n < ω such that

N |= χ(aα, aβ) if and only if α < β.

By indiscernibility the pairs (a0, a1) and (a1, a0) have the same L-type in N. It then
follows from Proposition 2.1 that they have the same L∞,ω-type in N, a contradiction.

�

3 T is unclassifiable

Definition 3.1 Let L∗ be any language and N1, N2 L∗-structures. Then a set, � 	=
∅, of partial isomorphisms π : N1 → N2, is called a λ-back-and-forth system for
N1, N2 if

(i) for all π ∈ �, |dom(π)| < λ, and
(ii) given π ∈ � and C ⊂ N1, D ⊂ N2 with |C|, |D| < λ, there are π1, π2 ∈ �

extending π such that C ⊂ dom(π1) and D ⊂ ran(π2).

If there is a λ-back-and-forth system � between two models which in addition is
closed under unions of chains of length less than λ, then we say that the models are
strongly equivalent. Such a � is λ-closed as a forcing notion (see Kunen [2]) and
hence satisfies the forcing condition listed above. Hyttinen and Shelah [1] show that
for any unsuperstable theory T and any regular cardinal λ > |T | there are models M
and N of cardinality λ which are strongly equivalent and nonisomorphic.

We will prove that T is unclassifiable by coding certain graphs into models of
T . Given a graph G let IG, EG denote the vertex and edge sets, respectively, of G.
We will be interested in those graphs which are symmetric and irreflexive, contain no
triangles, and satisfy: |IG| ≥ 2ℵ0 and every vertex has valence at least 2. Let G be the
class of all such graphs, and let L′ be the language of graphs.

We will show that for every G ∈ G, there is a corresponding model NG |= T with
|NG| = |IG|, so that if G, H ∈ G, then

(i) NG
∼= NH implies G ∼= H, and

(ii) if |IG| = |IH | = λ > 2ℵ0 and G, H are strongly equivalent, then NG and NH

are strongly equivalent.
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It easily follows that T is unclassifiable.
We now fix a large saturated model C |= T , and from here on we will work in-

side C. Thus V, Sη, and so on, will mean V (C), Sη(C), and so on. We also denote
U0

n simply by Un for all n < ω and we denote
⋂

n<ω Un by U. Clearly U has 2ℵ0 many
cosets in V . Notice that by the definition of T , V is a vector space over the field of two
elements. With this in mind we will sometimes refer to the linear dependence (inde-
pendence) of subsets of V , and given any A ⊂ V we will denote by A the subspace
generated by A.

We may assume that M ≺ C where M is our original model. Denote V(M) ⊂ V
by V∗. We will assume that U ∩ V∗ is infinite. Now since M is countable, the set of
cosets of U which intersect V∗ is countable; let us list this set as {Wk : k < ω}.
Definition 3.2 The model N ≺ C is said to be small, if for any coset, W of U,

W ∩ V (N) 	= ∅ if and only if W = Wk for some k < ω.

We now describe a general method for constructing small models. First let us adopt
the following notation: for v ∈ V , a sequence above v is a sequence av = 〈av,η : η ∈
2ω〉 where for each η ∈ 2ω, av,η ∈ Sη and f (av,η) = v.

Now let Y be any subset of U and let VY = Y ∪ V∗. For each v ∈ VY , choose a
sequence over v, say av. Now let N be the substructure of C generated by VY ∪ {av :
v ∈ VY}. Then it is easily seen that N is a model of T (simply check that the set of
partial isomorphisms, ρ : N → M, has the back and forth property, precisely as in the
proof of Proposition 2.1). It follows from Corollary 2.2 that N ≺ C and we also note
that |N| = |Y | + 2ℵ0 . Moreover, V (N) = VY and thus, since Y ⊂ U, it follows that
N is small.

Given a graph G ∈ G we will construct the model NG as described above by
making an appropriate choice for the set Y and for the sequences av. In order to code
G, we will need to be able to recognize a given element of V (NG) as being one of two
types according to which sequence was chosen over that element. The next lemmas
demonstrate that this is possible.

Lemma 3.3 Let v ∈ V. Then there are sequences av = 〈av,η : η ∈ 2ω〉, bv = 〈bv,η :
η ∈ 2ω〉 over v such that

(i) for all η 	= µ ∈ 2ω, |= R0
(µ,η)(av,µ, av,η);

(ii) for all η 	= µ ∈ 2ω, |= ¬R0
(µ,η)(bv,µ, bv,η).

Moreover, the sequences av, bv can be chosen for all v ∈ V so that whenever v1, v2 ∈
V satisfy v1 ≡0 v2, then av1 ≡0 av2 and bv1 ≡0 bv2 .

Proof: (i) is like (ii) except easier and the moreover clause is routine. (ii): Let
η0, . . . , ηm ∈ 2ω. By compactness it suffices to show that in our original model M,
there are a0, . . . , am ∈ V (M) such that

for all j 	= k ≤ m, a j − ak ∈ Ui(η j,ηk )−1 \ Ui(η j,ηk ). (†)

The proof is by induction on m, the case m = 1 being trivial. So let us assume that
m > 1 and that (†) holds for all smaller m.
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Let n = max{i(η j, ηk) : j 	= k ≤ m} and assume without loss of generality that
n = i(ηm−1, ηm). By the inductive hypothesis, choose a0, . . . , am−1 ∈ V (M) so that
(†) holds for these elements. Now choose am ∈ V(M) so that am − am−1 ∈ Un−1 \ Un.
We claim that {a0, . . . , am} satisfies (†).

Fix j < m − 1 and let n1 = i(η j, ηm), n2 = i(η j, ηm−1). It suffices to show
that a j − am ∈ Un1−1 \ Un1 . Now since a j − am−1 ∈ Un2−1 \ Un2 and am − am−1 ∈
Un−1 \ Un, it is enough to show that n > n1 and n1 = n2. But this is an immediate
consequence of the maximality of n and Definition 1.1. Thus the lemma is proved.

�
We call any sequence satisfying (i) in the lemma a sequence of Type I over v, and any
sequence satisfying (ii) a sequence of Type II over v.

Lemma 3.4 Suppose that N ≺ C is small and v ∈ V (N). Then N does not contain
both a Type I and a Type II sequence over v.

Proof: Suppose for a contradiction that a = 〈aη : η ∈ 2ω〉 ⊂ N is a Type I sequence
over v and b = 〈bη : η ∈ 2ω〉 ⊂ N is a Type II sequence over v. Since N is small,
there are µ 	= η ∈ 2ω and k < ω such that both g(aη, bη) and g(aµ, bµ) belong to Wk.
Since aη = h(g(aη, bη), bη) and aµ = h(g(aµ, bµ), bµ), we obtain a contradiction
from Lemma 1.2(i). �
We are now able to construct the models NG for G ∈ G. Begin by fixing for each
v ∈ V, a Type I sequence av and a Type II sequence bv over v as in the moreover
clause of Lemma 3.3. Further fix a basis X for V∗ ∩ U and a subspace Z ⊂ V∗ such
that V∗ = (V∗ ∩ U) ⊕ Z (= X ⊕ Z).

Now fix G ∈ G and let YG be a linearly independent subset of U which contains
X and such that |YG| = |IG|. Index YG as {yp : p ∈ IG} and let VG = V∗YG. Observe
that by our choice of YG we have

VG = YG ⊕ Z. (
)

Now for each v ∈ VG choose one of the sequences av or bv over v as follows.

1. If v = yp for some p ∈ IG, then choose the sequence av.
2. If v = yp + yq for some p, q ∈ Ig such that (p, q) ∈ EG, then choose the se-

quence av.
3. Otherwise choose the sequence bv.

For v ∈ VG, let seq(v) denote the sequence chosen above v (that is, seq(v) is either āv

of b̄v) and now let NG be the substructure generated by VG ∪{seq(v) : v ∈ VG}. By our
earlier discussion, NG is a small (elementary) submodel of C with |NG| = |IG|. Let
us call v ∈ VG(= V (NG)) of Type I (Type II) in NG just if seq(v) is of Type I (Type
II). Given distinct elements v0, v1, v2 of VG, call the set {v0, v1, v2} a notable triple
if each vi is of Type I in NG and v0 + v1 + v2 = 0. We leave to the reader to verify
the following consequence of our assumptions on G and the linear independence of
YG.

Lemma 3.5

(i) For any v ∈ VG, v = yp for some p ∈ IG if and only if v belongs to at least two
notable triples.
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(ii) For any p, q ∈ IG, (p, q) ∈ EG if and only if yp + yq is of Type I in NG.

Combining Lemmas 3.4 and 3.5 yields

Corollary 3.6 If G, H ∈ G and NG
∼= NH, then G ∼= H.

Corollary 3.7 I(λ, T ) = 2λ for all λ ≥ 2ℵ0 .

It remains to prove that if G, H ∈ G have cardinality λ > 2ℵ0 and are strongly equiv-
alent then NG and NH are strongly equivalent.

It is convenient at this juncture to expand the languge L to a new language L1

by adding a new unary predicate Q to the sort V . For any G ∈ G, NG is made into an
L1-structure by interpreting Q as follows:

NG |= Q(v) just if v has Type I in NG.

Now let us fix G, H ∈ G so that |IG| = |IH | = λ > 2ℵ0 and G, H are strongly equiv-
alent. We also fix a λ-back-and-forth system � for G, H which is closed under the
union of chains of length less than λ. It certainly suffices to find a λ-back-and-forth
system for NG, NH with respect to the enriched language L1 which is also closed un-
der the union of short chains. Call a substructure A ⊂ NG full if for all v ∈ V (A),
seq(v) ⊂ A, similarly for substructures of NH . Given the definition of the sequences
av, bv, it is straightforward to verify the following.

Fact 3.8 Suppose that A ⊂ NG, B ⊂ NH are full substructures. Then the following
are equivalent.

1. There is an onto L1-partial isomorphism θ : V (A) → V (B).

2. There is an onto L1-partial isomorphism θ : A → B such that θ ⊂ θ and for all
v ∈ V (A), θ(seq(v)) = seq(θ(v)).

Let L2 be the restriction of L1 to the sort V . Then VG, VH are naturally L2-structures,
and we conclude from the above fact that it suffices to find a λ-back-and-forth system
for the L2-structures VG, VH . We now proceed to define just such a system. Recall
that we fixed a λ-back-and-forth system � for the graphs G, H. Given ϕ ∈ �, we
define a corresponding L2-partial isomorphism, θϕ : VG → VH , as follows. Suppose
that dom(ϕ) = J ⊂ IG and ran(ϕ) = K ⊂ IH . Then θϕ is the unique linear map sat-
isfying

1. dom(θϕ) = {yp : p ∈ J} ⊕ Z and ran(θϕ) = {yr : r ∈ K} ⊕ Z,

2. θϕ(yp) = yϕ(p), and

3. θϕ|Z = id|Z .

That θϕ is a L-partial isomorphism follows from the fact that YG, YH ⊂ U. To see
that θϕ is in fact a L2-partial isomorphism, we need only check that θϕ preserves the
predicate Q, but this is immediate since ϕ is an L′-partial isomorphism. Note also
that since |J| < λ, we have |dom(θϕ)| < λ also. Now let

� = {θϕ : ϕ ∈ �}.
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Lemma 3.9 � is a λ-back-and-forth system closed under the union of chains of
length less than λ.

Proof: Let θ ∈ � and suppose that C ⊂ VG satisfies |C| < λ. We must find θ′ ∈ �

so that θ ⊂ θ′ and C ⊂ dom(θ′). By definition, there is ϕ ∈ � such that θ = θϕ. Now
by (
) above, there is J ′ ⊂ IG such that |J ′| < λ and

C ⊂ {yp : p ∈ J ′} ⊕ Z.

Since � is a λ-back-and-forth system, there is ϕ′ ∈ � which extends ϕ and satisfies
J ′ ⊂ dom(ϕ′). Clearly taking θ′ = θϕ′ satisfies our requirements. The closure under
unions of short chains is straightforward since � is closed under such unions, and
hence the lemma is proved. �
We conclude from our discussions above that NG and NH are indeed strongly equiv-
alent and therefore that T is unclassifiable.

4 Other examples In this section we will introduce a family of examples of uni-
dimensional theories that explores the ways that PMOP can fail. For each limit or-
dinal δ < ω1, let ηδ = 〈δn : n ∈ ω〉 be an increasing sequence whose limit is δ. Let
S = ω<ω

1 ∪ {ηδ : δ a limit ordinal, δ < ω1}. Fix X ⊆ S and define TX as in Definition
1.1 except that η now ranges over X and not just 2ω. So in particular there is a sort Sη

for every η ∈ X, and all corresponding functions and relations are also defined. Let
X = {δ : ηδ ∈ X}. We can repeat the proofs in Section 2 and get

Proposition 4.1 For X as above, TX is unidimensional and does not have an L∞,ω-
definable order.

One way that prime models can be built is by inevitable construction.

Definition 4.2 Fix a complete theory T .

1. A type p ∈ S(A) is called inevitable if p is realized in any model M of T which
contains A.

2. Suppose M is a model of T and A ⊆ M. We say that M is inevitably constructed
over A if M can be enumerated as 〈aα : α < β〉 for some β so that for all α < β,
tp(aα/{aγ : γ < α} ∪ A) is inevitable.

If M is inevitably constructed over A then it is prime over A. A strong way for a
theory T to have PMOP would be to have inevitably constructed models over pairs
of models independent over a common submodel, ICMOP.

We remind the reader that ωω
1 is topologized by the initial segment topology: that

is, basic open sets are of the form {η ∈ ωω
1 : ν ⊆ η} where ν ∈ ωn

1 for some n ∈ ω. We
will prove

Proposition 4.3 For X as above, TX has ICMOP if and only if

1. there is no uncountable C ⊆ X which can be homeomorphically embedded into
2ω, and

2. X is not stationary.
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Proof: Fix a monster model of TX . We leave it to the reader to verify that TX has
ICMOP if and only if there is an enumeration of all the sorts of TX , 〈Sηi : i < α〉 so
that for some (equivalently any) a ∈ V and sequence 〈ai : i < α〉 with ai ∈ Sηi and
fηi (ai) = a, for each j < α, tp(a j/{ai : i < j}) is isolated. In fact, this type will be
isolated if and only if η j is not in the closure of {ηi : i < j} (in the topology induced
by ω<ω

1 on X). Hence TX has ICMOP if and only if X can be enumerated so that
every initial segment of the enumeration is closed; call such an enumeration a good
enumeration.

Let us begin the proof of the proposition by proving that if (1) and (2) hold then
TX has ICMOP. Let Xα = X ∩ αω; note that Xα is closed. For any α < ω1, αω can
be homeomorphically embedded into 2ω. It follows that Xα can also be so embed-
ded. If for any α, Xα is uncountable this would contradict condition 1. So each Xα

is countable. Since X is not stationary, there is a cub C ⊆ ω1 so that C ∩ X = ∅.
Suppose that C = 〈αi : i < ω1〉 and this enumeration is in increasing order. Since C
and X have empty intersection, for any limit ordinal δ, Xαδ

= ∪i<δ Xαi . Hence, if one
enumerates Xαi+1 \ Xαi in order type ω and places these enumerations in increasing
order, one obtains an enumeration of X in order type ω1 which is good.

For the other direction we will show first that if condition 1 fails then X does not
have a good enumeration. So suppose that C ⊆ X is an uncountable set which can be
homeomorphically embedded into 2ω. Take any enumeration and concentrate on the
first ω1 many elements of C which are listed. There must be a countable subset of
these which is dense. Hence this enumeration cannot be good.

It follows then that if condition 1 does not fail then all the sets Xα introduced
above are countable. So X is of size ω1. We will prove by induction on order type
that for all α and all such X, if X is stationary then X cannot have a good enumeration
of order type α.

The case where α = β+ 1 is straightforward. If cf(α) = ω then suppose we have
an enumeration of the required type of order type α. Suppose α = ∪n∈ωαn and X is
enumerated 〈ηi : i < α〉. Let Xn = {ηi : i < αn}. Since X is stationary, for some n, Xn

is stationary, and since it can be enumerated in order type αn this is a contradiction.
Finally, suppose that cf(α) = ω1. Let 〈αi : i < ω1〉 be a continuous increasing

chain of ordinals whose union is α. Define a function g : ω1 → ω1 so that g(β) =
the least i such that Xγ is enumerated before αi for all γ < β. g is continuous and
cofinal so there is a cub C of limit ordinals so that for every β ∈ C, g(β) = β. (Note
that g(β) is not necessarily greater than or equal to β but by Fodor’s lemma, the set
of β for which g(β) < β is not stationary.) �

Claim 4.4 Let Y be the set of δ ∈ X for which ηδ is in the closure of ∪β<δ Xβ. Then
Y is stationary.

Proof: Suppose not. Then since X is stationary, there is an n ∈ ω with the following
property: there is a stationary set W ⊆ X such that for any δ ∈ W , ηδ � n 	= ζ � n for
any ζ ∈ ∪β<δ Xβ. But now by n applications of Fodor’s lemma, we can assume that
ηδ � n is constant for all δ ∈ W which is clearly a contradiction to the choice of n.

Define a function f : C ∩ Y → ω1 as follows: for δ ∈ C ∩ Y , ηδ is in the clo-
sure of ∪β<δ Xβ. So since we are assuming we have a good enumeration, ηδ must be
enumerated before αδ. Let f (α) = i where i is the least such that ηδ is enumerated
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before αi. f is regressive so there is a set Z ⊆ X so that Z ⊆ Y ∩ C is stationary and
f (Z) is constant, say ζ. But then all ηα for α ∈ Z are enumerated before αζ which
contradicts the inductive assumption. �

Proposition 4.5 If X ⊆ S and C ⊆ X is uncountable and can be homeomorphically
embedded into 2ω, then TX is unclassifiable.

Proof: The proof from Section 3 works here as well. �

Remark 4.6 One thing which is not at issue here is whether or not TX is classifiable
or unclassifiable. The definitions of these terms that we have given in this paper seem
to leave the possibility that there may be unidimensional theories which are neither.
Although that cannot be ruled out now, it can for these theories. To see this, note that
what is really at issue in attempting to build a prime model over a pair of small models
is what the structure of the collection of fibers over a point in the vector space is. If
there is only one way up to isomorphism to define the fibers over a point in the vector
space then the theory has PMOP and is classifiable. On the other hand, if there are
two ways which are not isomorphic then the proof outlined in Section 3 will show
that that theory is unclassifiable.

The point of this investigation was not to show that the dichotomy was satisfied for
this class of examples but to isolate the exact properties that gave rise to unclassifia-
bility. We still believe that all examples TX where X is stationary are unclassifiable
but at this moment we only know that they do not have inevitably constructed models
over pairs.
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