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An Unclassifiable Unidimensional
Theory without OTOP

AMBAR CHOWDHURY and BRADD HART

Abstract A countable unidimensional theory without the omitting types or-
der property (OTOP) has prime models over pairs and is hence classifiable. We
show that thisis not true for uncountable unidimensional theories.

1 Introduction  In[i4], Shelah settled the Main Gap for countable theories. Rough-
ly speaking, this result shows that for acountable first order theory T either thereisa
reasonable set of cardinal invariants which describe the isomorphism type of models
of T or in some technical sense the class of models of T is chaotic. For countable
unidimensional theories this dichotomy is explained by two properties, prime models
over pairs (PMOP) and the omitting types order property (OTOP) both of which we
proceed to define.

A stable theory T is said to have PMOP if whenever Mg < M; < N =T for
i =1, 2and M; isindependent from M, over Mg then there is a prime model over
M1 U My. If aunidimensional theory T of cardinality A has PMOP then the class
of models of T iswell behaved. For instance, every model of T is determined up to
isomorphism by its cardinality and a choice of relatively |T|*-saturated submodel.
Thisimpliesthat | (x, T) < 22" for al « > |T|.

A theory T hasthe OTOP f thereisatype p(X, V¥, 2) so that for every A thereis
M, amodel of T, and asequence (a, : @ < 1) in M sothat p(X, &, ag) isrealizedin
M if and only if @ < 8. Thisisaparticular instance of the more general concept of
having an L .,-definable order. T has an L ,-definable order if thereisan Ly (-
formula ¢(x, y) so that for every A thereis M, amodel of T, and a sequence (&, :
a < XA)inMsothat M = ¢(4,, 8g) if andonly if o < B.

Theories which have L, ,-definable orders were first studied in Shelah [3]. A
theory T which hasan L ,,-definable order has a chaotic class of modelsand is un-
classifiable. A theory T issaid to be unclassifiableif for any regular cardina A > |T|
there are two nonisomorphic models of T which can be forced to beisomorphic by a
forcing notion which preserves cardinals (and adds no new small subsetsof A). A A-
closed forcing is an example of such aforcing. The class of models of such atheory
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cannot have areasonable set of cardinal invariants which determine isomorphism. It
should be remarked that any unidimensional theory with PMOP is not unclassifiable
(isclassifiable).

A countable unidimensional theory which does not have the OTOP has PMOP
(see [[4], ch. 12). In this paper we show that thisis not true for uncountable unidi-
mensional theories. Precisely we give an example of a unidimensional theory with
No L, ,-definable order which nevertheless is unclassifiable.

We begin in this section by describing a particular theory, T, which has cardi-
nality 2% and is unidimensional with R®(x = x) = 2. In Section 2 we provethat T
has quantifier elimination and that one cannot code arbitrarily long L ,,-definable
ordersinmodels of T. Inthethird section we provethat T isunclassifiable. In the fi-
nal section we consider afamily of examplessimilar to T and give acharacterization
of those which are classifiable and those which are not.

Let usfirst describe the particular theory T somewhat informally. The language
for T will be multisorted. One sort, V, will contain a vector space over the two ele-
ment field. There will be predicates to pick out a descending chain of subspaces Uy,
where[Up, : Upy1] = 2. It will be convenient to introduce predicatesfor all the cosets
of Un. Therewill be continuum many other sorts S, for n € 2*. Each of these can be
thought of as a cover of V and thefiber in S, above any v € V is acted on regularly
by V. For any fixed n, thereis no interaction between thefibersin S, above different
elements from V. However, for every v € V, there is interaction between the fiber
abovevin§,and S, for n, u € 2°, n # p. Supposethat nln = w|n but n(n) # w(n).
Un, the subspace of V, induces an equivalence relation with 2" many classes on the
fiber abovevinboth S, and S,. Wewill introducerelationsbetween S, and S, which
will give abijection between these sets of eguivalence classes.

Now we give aformal description of T. We begin with a definition.

Definition 1.1  Givenu #n € 2%,i(u, n) =thegreatest n < w for which p|n = n|n.
The language L is defined as follows.

1. Lhassorts{V}U{S, : n e 2}

2. Inthe sort V there is a constant 0, a binary function +-, and unary predicates
(Ul:n<w, j<2".

3. For eachn € 2°, therearefunctions f,,: §, — V,q,: §, x §, = Vandh, :
VxS, —§S,.

4. For each pair ju # 1 € 22, there are binary relations ng) C S, xS forj<
21Gum)

Now let M be the following L-structure.

1. Visacountable abelian group in which every element other than the identity
has order 2. 4 and O are interpreted by the group operation and the identity
element of V, respectively. For eachn < w, U? is a subgroup of V such that

U2, cUfand[UJ: U2, ] =2 Finaly,foreachn < w, {U}: j < 2"}isalist

of the cosets of U2 in V.

2. Foreachn € 2°, S, = V x V and the functions are interpreted as follows.

@ f,(x,y)=y.
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(b) 9,((x,y), (X,y)) =x— X provided that y =y’ and is undefined other-
wise.
(© hy(u, (X, y)) = (U+X,Y).
3. Givenp #n€2?, Rl ((xy). (X.y)) holdsjust if y =y and x— X &
j
Ui(u,n)'
We define T to be the theory of M in the language L.
Throughout the rest of this paper we will drop the subscripts in the functions
f,. 9y, h, whenever there is no confusion as to their domains. We end this section
with an easy, if somewhat inelegant, lemmawhich will be of use later.

Lemmal.2 LetNbeanymode of T and i, , t distinct members of 2. Suppose
thata,a’ € S,,b,b’' € S;,andc,c’ € S,.

() IfN = Rgu’r)(a, b) for some j < 29 andif u, ' € Vwithu—u' e US, _,
then N = Rglu)(h(u, a), h(u, b)).

(i) If N = Rg/u)(a, b) A Rgu,r)(a’, b') for some j < 2/+D andif u, U’ € V with

u—u euf, ., thenfor any k < 2/

NE R (ah(ub) < R (@, h,b)).

(1, 7) (78]

(iii) Letng=1i(u,n),ny=i(u, t),andny =i(z, n) and supposethat n, < ng. Now
choose j| < 2" for | =0, 1, 2 and suppose that

j j j
N = R(lohn)(a’ C) A R(/lL,t) (@ b)A R(in)(b’ C).
Then
NERP (@.c)ARL (@.b) = NER2 (b.c).

Proof: (i) and (ii) are immediate consequences of the definition of T. (iii): It suf-
fices to show that (iii) holds when N is our original model M. First note that 1|n, =
Nln, = Tln, —Sincei(z, n) = ny <i(n, n) —andweconcludethat n, < n;. Sincewe
areworking in M we may assumethat a,a’, b, b/, ¢, ¢’ € V(M) and our hypotheses
imply that

(@a—c), (@ -c)eUL, (a-b),@-b)eUl ad b-ceUZ (1
and it remainsto provethatb’ — ¢’ € Urjé. Now
(b—0c)—W-c)=(@~-b)—(a-b))+(a-c)—(@-c))

and so the required result follows from (1) and the fact that n, < min(ny, ng). O

2 T does not have OTOP
Proposition 2.1 Let N be any model of T. Then the set of partial isomorphisms
{o: D— N:Dc Nisfinite} has the back and forth property.

Proof: Suppose@, b C N satisfy the same atomic formulas (we will write@ = b)
andfixce N. Wemust find d € N sothat ac =g bd. Denoteby A, B the substructures
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of N generated by @, b, respectively. Then Aisfiniteand A = B inthe obviousway.
We may clearly assume that ¢ ¢ A. Now there are various possibilities.

Casel: ce V(N). SinceV(A) isfinite, wecanfindd € V(N)\V(B) so that
foraln<w, c—deUYN). 2)

We claim that this d works. It is enough to verify that the following holds.
(i) Foranyue V(A),anyn<wand j < 2",

u+ceUNN) ifandonlyif u +deULN)

where u’ correspondstouin V(B).
(i) Forany n, ue€2”,ve S,(A),we S, (A and j < 2k,

NER (whecv) ifandonlyif NE=R (. hdv))

where v’ correspondsto v in S;(B) and w’ correspondsto w in S, (B).
Thisis an easy consequence of (2] above and LemmallZii).
Case2: Forsomen € 2”,ce S;(N).

Subcasel: Fordlee A\V(A), f(e)# f(c). Inthiscase, letu= f(c) and choose
U € V(N), asin Case 1, so that Au =g BU'. It isnow trivial to check that any d €
f, L (U') works.

Subcase2: Thereisee S,(A) with f(e) = f(c). Let€ € B correspondto e. Now
let u = g(c, e) and choose U’ € V(N), asin Case 1, so that Au =y Bu'. Then since
¢ = h(u, e), taking d to be h(u’, &) works. All that remainsis

SQubcase3: Theset Q= {r € 2¢:thereisee S;(A)withf(e) = f(c)} isnonempty
and does not contain n. Inthiscase, let ng = max{i(z, n) : T € Q} and choose 1 € Q
withi(u, n) = ng. Further, lete e S, (A) satisfy f(e) = f(c). Now for some jo <

2 wehave N = Rgz’n)(e, C). Let & correspondto ein B and choosed € S;(N) so

that N = Rg;,n)(e/, d). We claim that this d works.

By virtue of our hypotheses, it sufficesto check that if T € 22, j, < 2", ze S,(A)
andu € V(A), then
NER? (zhuc) = NER? (Z.hu.d)

(t.n (T,n

where Z, U’ correspond to z, u respectively in B.

So supposethat N k= R!?  (z h(u, ¢)). By LemmalL2{ii) we may assume that
u=u =0. Again by LemmalL.2(ii), we may assumethat  # u (notethat if = were
equal to u, we would have g(e, 2) =¢ g(€¢/, Z)). Now observethat f(z) = f(c) =

f (e) (hence r € Q) and so for some j; < 2D,
j j /
NER: (AR (€.2).

Now since T € Q, it follows that i(z, n) < ng and thus Lemmal[L2{jii) implies that

N E Réim (Z, d), asrequired. This completes the proof of the proposition. O
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The next corollary is an immediate consequence of Proposition[2.1]

Corollary 2.2 T admits quantifier elimination.

The following is now immediate from the quantifier elimination.

Corollary 2.3 T issuperstable, unidimensional, and R*(S,) = 2 for all n < 2.

Corollary 2.4 T does not have an L ,,-definable order. In particular, T does not
have OTOP.

Proof: Suppose that thereisan Lo, ,,-formula (X, ¥) so that for every A thereisa
model M = T and asequence (a, : o < A) C M" for some n <  such that

NE x(@y,ap) ifandonlyif o <§p.

By standard arguments then thereisamodel N = T, an indiscernible sequence (3, :
a < w) C N"for somen < w such that

N = x(@y,ag) ifandonlyif o<§g.

By indiscernibility the pairs (ag, @;) and (@, ap) havethe same L-typein N. It then
followsfrom PropositionZ.1that they havethe same L ,,-typein N, acontradiction.
O

3 Tisunclassifiable

Definition 3.1 Let L* be any language and Np, N, L*-structures. Then a set, IT #
@, of partial isomorphisms 7 : N; — Ny, is called a A-back-and-forth system for
N1, Ny if

(i) foradl = € I, [dom(x)| < A, and
(ii) givenm € ITand C C Ny, D C Ny with |C|, |D| < A, there are ry, mp € T1
extending 7 such that C ¢ dom(sr1) and D C ran(mo).

If there is a A-back-and-forth system IT between two models which in addition is
closed under unions of chains of length less than A, then we say that the models are
strongly equivalent. Such aIT is A-closed as a forcing notion (see Kunen [E]) and
hence satisfies the forcing condition listed above. Hyttinen and Shelah [[I] show that
for any unsuperstable theory T and any regular cardinal A > |T| there are models M
and N of cardinality A which are strongly equivalent and nonisomorphic.

We will prove that T is unclassifiable by coding certain graphs into models of
T. Given agraph G let Ig, Eg denote the vertex and edge sets, respectively, of G.
We will be interested in those graphs which are symmetric and irreflexive, contain no
triangles, and satisfy: |lg| > 2% and every vertex hasvalenceat least 2. Let G bethe
class of all such graphs, and let L’ be the language of graphs.

Wewill show that for every G € G, thereisacorresponding model Ng = T with
INg| = |lgl, sothat if G, H € G, then

(i) Ng = Ny impliesG = H, and
(i) if |Ig] = |Ix] = A > 2% and G, H are strongly equivalent, then Ng and Ny
are strongly equivalent.
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It easily followsthat T is unclassifiable.
We now fix alarge saturated model C = T, and from here on we will work in-
side C. Thus V, S,, and so on, will mean V(C), S,(C), and so on. We aso denote

U2 simply by U, for al n < » and we denote () U, by U. Clearly U has 2% many
cosetsin V. Noticethat by the definition of T, V isavector space over thefield of two
elements. With thisin mind we will sometimes refer to the linear dependence (inde-
pendence) of subsets of V, and given any A C V we will denote by A the subspace
generated by A.

We may assumethat M < C where M isour origina model. Denote V(M) Cc V
by V*. We will assume that U N V* isinfinite. Now since M is countable, the set of

cosets of U which intersect V* is countable; let uslist thisset as {Wk : k < w}.
Definition 3.2 Themodel N < C issaid to be small, if for any coset, W of U,

WNV(N)#£ @ ifandonlyif W =W forsomek < w.

We now describe a general method for constructing small models. First let us adopt
the following notation: for v € V, a sequence above v isasequencea, = (ay,, : 1 €
2°) wherefor eachn € 2°, a,, € S, and f(a,,) = v.

Now let Y be any subset of U and let Vy = Y U V*. For each v € Vy, choose a
sequence over v, say a,. Now let N be the substructure of C generated by VW U {3, :
v e W}. Thenitiseasly seenthat N isamodel of T (simply check that the set of
partial isomorphisms, p : N — M, hasthe back and forth property, precisely asinthe
proof of Proposition[2.1). It follows from Corollary[2.2that N < C and we also note
that |N| = |Y| + 2%. Moreover, V(N) = Vy and thus, since Y c U, it follows that
N issmall.

Given agraph G € G we will construct the model Ng as described above by
making an appropriate choice for the set Y and for the sequences@,. In order to code
G, wewill need to be ableto recognize agiven element of V (Ng) asbeing one of two
types according to which sequence was chosen over that element. The next lemmas
demonstrate that thisis possible.

Lemma3.3 Letve V. Thentherearesequencesa, = (a,,, : n € 2*), b, = (b, :
n € 2*) over v such that

() foralln#pe2e, ER, (@, au,);

(i) foralln#pue2e, E=-R) (b, byy).

Moreover, the sequencesa,, b, can be chosen for all v € V so that whenever vy, v, €
\Y &atlsfy V1 =g V2, then évl =0 évz and bvl =0 bvz-

Proof: (i) is like (ii) except easier and the moreover clause is routine. (ii): Let
no, - - -, NMm € 2¢. By compactness it suffices to show that in our origina model M,
thereareay, ..., am € V(M) such that

foral jZk<m, aj—a € Uig -1\ Vig;.no- @)

The proof is by induction on m, the case m = 1 being trivial. So let us assume that
m > 1 and that (1) holds for al smaller m.
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Let n = max{i(nj, nk) : ] # K < m} and assume without loss of generality that
Nn=1i(nm-1, nm). By theinductive hypothesis, choose ag, ..., an_1 € V(M) so that
(1) holdsfor these elements. Now choosean, € V(M) sothat am — am-_1 € Up_1 \ Un.
Weclamthat {ap, ..., am} satisfies ().

Fix j < m—1andlet ny =i(nj, nm), N2 = i(nj, nm-1). It suffices to show
that a; — am € Up,—1 \ Up,. Now sinceaj — am—1 € Up,—1 \ U, and am — am_1 €
Un_1 \ Uy, it is enough to show that n > n; and n; = ny,. But thisis an immediate
conseguence of the maximality of n and Definition Thus the lemma is proved.

U

We call any sequence satisfying (i) in the lemmaa sequence of Type| over v, and any
sequence satisfying (ii) a sequence of Type |l over v.

Lemma3.4 Supposethat N < Cissmall andv € V(N). Then N doesnot contain
both a Type | and a Type 1l sequence over v.

Proof:  Supposefor acontradictionthata = (a, : n € 2°) C N isaTypel sequence
over vand b = (b, : n € 2°) c N isaType Il sequence over v. Since N is small,
thereare u # n € 2” and k < w such that both g(a,,, b,) and g(a,,, b,,) belong to W.
Since a,, = h(g(a,, by), b,) and a, = h(g(a,, b,), b,), we obtain a contradiction
from Lemmal[L.2{i). O

We are now able to construct the models Ng for G € G. Begin by fixing for each
v eV, aType | sequence @, and a Type |l sequence b, over v as in the moreover
clause of Lemmal[3.3] Further fix abasis X for V* N U and a subspace Z C V* such
that V: = (V' NU) @ Z (= X P 2).

Now fix G € G and let Yg be alinearly independent subset of U which contains
X and such that | Yg| = |lg|. Index Y as{yp: p € I} and let Vg = V*Yg. Observe
that by our choice of Yg we have

Ve =Yoo Z ()]
Now for each v € Vg choose one of the sequencesa, or b, over v asfollows.

1. If v=yp for some p € |g, then choose the sequence a,.

2. If v=yp+ yq for some p, g € Iy such that (p, q) € Eg, then choose the se-
guence a,.

3. Otherwise choose the sequence b,.

For v € Vg, let seq(v) denote the sequence chosen above v (that is, seq(v) iseither 4,
of b,) and now let Ng bethe substructure generated by Vg U {seq(v) : v € V). By our
earlier discussion, Ng isasmall (elementary) submodel of C with |[Ng| = |Ig|. Let
uscal v e Vg(= V(Ng)) of Typel (Typell) in Ng just if seq(v) isof Typel (Type
I1). Given distinct elements vg, v1, vo Of Vg, cal the set {vg, v1, v2} anotable triple
if each vj isof Typel in Ng and vg + v; + v, = 0. We leave to the reader to verify
the following consequence of our assumptions on G and the linear independence of
Yo.

Lemma3.5

(i) Foranyv e Vg, v=Yypforsomep e Igif and onlyif v belongsto at least two
notable triples.
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(ii) Forany p,ge lg, (p,q) € Egifandonly if y, 4 yq isof Typel in Ng.
Combining Lemmas34landBSlields
Corollary 36 If G,H € Gand Ng = Ny, then G = H.

Corollary 3.7 1(x, T) = 2" for all A > 2%,

It remainsto provethat if G, H € G have cardinality A > 2% and are strongly equiv-
alent then Ng and Ny are strongly equivalent.

It is convenient at this juncture to expand the languge L to a new language L*
by adding anew unary predicate Q to the sort V. For any G € G, Ng ismade into an
L1-structure by interpreting Q as follows:

Ng E Q(v) justif v has Typel in Ng.

Now let usfix G, H € G sothat |Ig| = |Ix| = A > 280 and G, H are strongly equiv-
alent. We aso fix a A-back-and-forth system @ for G, H which is closed under the
union of chains of length lessthan A. It certainly suffices to find a A-back-and-forth
system for Ng, Ny with respect to the enriched language L* which isalso closed un-
der the union of short chains. Call a substructure A C Ng full if for all v € V(A),
seq(v) C A, similarly for substructures of Ny . Given the definition of the sequences
a,, by, it is straightforward to verify the following.

Fact 3.8 Supposethat A C Ng, B ¢ Ny arefull substructures. Then the following
are equivalent.

1. Thereisan onto L!-partial isomorphismé : V(A) — V(B).
2. Thereisanonto L -partial isomorphism6 : A — B suchthat # ¢ 6 and for all
v e V(A), 0(seq(v)) = seq(f(v)).

Let L? betherestriction of L! tothesort V. Then Vg, Vy arenaturally L2-structures,
and we conclude from the above fact that it sufficesto find a A-back-and-forth system
for the L2-structures Vg, V4. We now proceed to define just such a system. Recall
that we fixed a A-back-and-forth system @ for the graphs G, H. Given ¢ € &, we
define a corresponding L2-partial isomorphism, 6, : Vg — Vi, asfollows. Suppose
that dom(¢) = J C Ig and ran(¢) = K C Iy. Then 6, isthe unique linear map sat-
isfying
1. dom(b,) ={yp: pe J}® Zandran(,) ={yr :r € K} @ Z,

2. 0,(Yp) = Yo(p)» and
3. 0,02 =id|z.

That 6, is a L-partial isomorphism follows from the fact that Yg, Yy C U. To see
that 9, isin fact a L2-partial isomorphism, we need only check that 6,, preserves the
predicate Q, but this is immediate since ¢ is an L’-partial isomorphism. Note also
that since | J| < A, we have [dom(6,)| < A aso. Now let

©={6,:¢pcd)
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Lemma3.9 O isa A-back-and-forth system closed under the union of chains of
length less than A.

Proof: Let6 e ® and supposethat C C Vg satisfies|C| < A. Wemust find ¢’ € ©
sothat 0 C ¢ and C C dom(¢’). By definition, thereis ¢ € ® suchthat 6 = 6,,. Now
by (1) above, thereis J' C I suchthat |J'| < A and

C C |({yp:ped}io Z

Since @ is a A-back-and-forth system, there is ¢’ € ® which extends ¢ and satisfies
J' Cc dom(¢’). Clearly taking 6" = 6, satisfies our requirements. The closure under
unions of short chainsis straightforward since @ is closed under such unions, and
hence the lemmais proved. O

We conclude from our discussions above that Ng and N are indeed strongly equiv-
alent and thereforethat T is unclassifiable.

4 Other examples In this section we will introduce a family of examples of uni-
dimensional theories that explores the ways that PMOP can fail. For each limit or-
dinal § < wy, let ns = (8n : N € w) be an increasing sequence whose limit is 8. Let
S=w;”U{ns:salimitordina, § < wy}. Fix X € Sand define Ty asin Definition
[L.1]except that  now ranges over X and not just 2°. Soin particular thereisasort S,
for every n € X, and al corresponding functions and relations are also defined. Let
X ={8:ns € X}. We can repeat the proofs in Section 2 and get

Proposition 4.1  For X asabove, Tx isunidimensional and doesnot havean L -
definable order.

One way that prime models can be built is by inevitable construction.
Definition 4.2  Fix acomplete theory T.

1. Atypepe S(A)iscdledinevitableif pisrealizedinany model M of T which
contains A.

2. Suppose M isamode of T and A C M. Wesay that M isinevitably constructed
over Aif M canbeenumerated as (a, : o < B) for some 8 sothat for all o« < 8,
tp(ay/{a, : y < a} U A) isinevitable.

If M isinevitably constructed over A then it is prime over A. A strong way for a
theory T to have PMOP would be to have inevitably constructed models over pairs
of models independent over a common submodel, ICMOP.

Weremind the reader that «$’ istopologized by theinitial segment topology: that
is, basic open setsare of theform {n € { : v € n} wherev € o} for somen € . We
will prove

Proposition 4.3 For X asabove, Tx hasICMOP if and only if

1. thereisno uncountable C C X which can be homeomor phically embedded into
2¢ and
2. X isnot stationary.
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Proof: Fix a monster model of Tx. We leave it to the reader to verify that Tx has
ICMOP if and only if there is an enumeration of all the sortsof Tx, (S, i < ) SO
that for some (equivalently any) a € V and sequence (& : i < «) witha € S, and
f, (&) =a,foreach j < a,tp(a;/{a :i < j}) isisolated. In fact, this type will be
isolated if and only if n; isnotinthe closure of {n; : i < j} (in the topology induced
by w;® on X). Hence Tx has ICMOP if and only if X can be enumerated so that
every initial segment of the enumeration is closed; call such an enumeration a good
enumeration.

L et us begin the proof of the proposition by proving that if (1) and (2) hold then
Tx has ICMORP. Let X, = XN a®; note that X, isclosed. For any o < wj, a® can
be homeomorphically embedded into 2¢. It follows that X, can also be so embed-
ded. If for any «, X, isuncountable this would contradict condition 1. So each X,
is countable. Since X is not stationary, thereisacub C C w; sothat CN X = @.
Suppose that C = («; : i < wp) and thisenumeration isin increasing order. Since C
and X have empty intersection, for any limit ordinal 8, Xy = Ui<s Xy . Hence, if one
enumerates X,, ., \ X inorder type o and places these enumerations in increasing
order, one obtains an enumeration of X in order type w; which is good.

For the other direction wewill show first that if condition 1 failsthen X does not
have agood enumeration. So supposethat C C X isan uncountable set which can be
homeomorphically embedded into 2“. Take any enumeration and concentrate on the
first w; many elements of C which are listed. There must be a countable subset of
these which is dense. Hence this enumeration cannot be good.

It follows then that if condition 1 does not fail then all the sets X, introduced
above are countable. So X is of size w;. We will prove by induction on order type
that for all o and all such X, if X isstationary then X cannot have agood enumeration
of order type .

Thecasewherex = g+ lisstraightforward. If cf (o) = w then supposewe have
an enumeration of the required type of order type a. Suppose o = Upe,an and X is
enumerated (n; 1 i < «). Let X = {ni 1 i < an}. Since X isstationary, for somen, Xp
is stationary, and since it can be enumerated in order type an, thisis a contradiction.

Finally, suppose that cf (o) = w;. Let (¢ ;i < wy) be acontinuous increasing
chain of ordinals whose union is «. Define afunction g: w; — w; so that g(8) =
the least i such that X, is enumerated before «; for @l y < . g is continuous and
cofinal so thereisacub C of limit ordinals so that for every 8 € C, g(8) = 8. (Note
that g(B) is not necessarily greater than or equal to g but by Fodor’s lemma, the set
of B for which g(8) < B isnot stationary.) O

Claim 4.4 LetY betheset of § € X for which ;s isinthe closure of Ug_; Xg. Then
Y is stationary.

Proof: Supposenot. Then since X isstationary, thereisan n € o with thefollowing
property: thereis a stationary set W € X such that for any § € W, s [ n# ¢ | nfor
any ¢ € UgsXg. But now by n applications of Fodor’s lemma, we can assume that
ns | nisconstant for all § € W which is clearly a contradiction to the choice of n.
Define afunction f : CNY — w asfollows: for § € CNY, n; isin the clo-
sure of Ug_s Xg. So since we are assuming we have a good enumeration, ns must be
enumerated before as. Let f(a) =i wherei isthe least such that 5 is enumerated
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beforew;. f isregressivesothereisaset Z € X sothat Z € YN Cisstationary and
f(Z) is constant, say ¢. But then all 7, for « € Z are enumerated before o, which
contradicts the inductive assumption. O

Proposition 45 If X € Sand C € Xisuncountable and can be homeomorphically
embedded into 2¥, then Tx is unclassifiable.

Proof: The proof from Section 3 works here as well. O

Remark 4.6 Onethingwhichisnot at issue hereiswhether or not Tx isclassifiable
or unclassifiable. The definitions of these termsthat we have given in this paper seem
to leave the possibility that there may be unidimensional theories which are neither.
Although that cannot be ruled out now, it can for these theories. To seethis, note that
what isreadlly at issuein attempting to build aprime model over apair of small models
iswhat the structure of the collection of fibers over a point in the vector spaceis. If
thereisonly one way up to isomorphism to define the fibers over apoint in the vector
space then the theory has PMOP and is classifiable. On the other hand, if there are
two ways which are not isomorphic then the proof outlined in Section 3 will show
that that theory is unclassifiable.

The point of this investigation was not to show that the dichotomy was satisfied for
this class of examples but to isolate the exact properties that gave rise to unclassifia-
bility. We still believe that all examples Ty where X is stationary are unclassifiable
but at this moment we only know that they do not haveinevitably constructed models
over pairs.
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