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Toward the Limits of the
Tennenbaum Phenomenon

PAOLA D’AQUINO

Abstract Weconsider the theory Pand its weak fragments in the language

of arithmetic expanded with the functional symbol #. We prove thét &

its weak fragments, down tE% (N) and| E;#, are subject to the Tennenbaum
phenomenon with respect tp, -, and #. For the last two theories it is still
unknown if they may have nonstandard recursive models in the usual language
of arithmetic.

1 Introduction LetL={0,S +, -, <}bethe usual language of Peano Arithmetic
(PA), and letN denote the standard model f6r Tennenbaum showed il that in

any nonstandard model of PA the operations-adnd - cannot be recursive. Anal-
ogous results have also been obtained for weak fragments of PA. McAloon showed
in that the+ and - of any nonstandard models b, are not recursive, and
Wilmers proved the same result for nonstandard model&of(see @) On the

other hand, Shepherdsdid constructed recursive nonstandard models©pen

and more recently recursive models Id®pen + normality have been constructed

(seelR)).

Definition 1.1 A theoryT in a language containing has the Tennenbaum phe-
nomenon for the operationsand - if for every nonstandard modé¥( of T there is
no isomorphism betweeM andw such that the operations efand - of M corre-
spond to recursive operations on

A very natural question is: How weak can a fragment of arithmetic be and still have
the Tennenbaum phenomenon? Kaydzhdonsidered, as a possible candidate, the
theoryl E;, where induction is applied only t&;-formulas with no parameters. He
proved the following relations betwedrE; and the theoryE;(N), the universal
existentially bounded true sentences.

Theorem 1.2 (i) VEi(N) - IE]; (i) Foreveryo e VEL(N)if M = IE] +
—o then M isnot recursive.
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So the problem is shifted to studying the Tennenbaum phenomenon for the theory
VE1(N). Itiseasy to construct a recursive nonstandard model of the thgolN),

the set of truevi-sentences. Ada > N and consider the ring of polynomials in
overN. This is a recursive nonstandard modeVg{N).

In [ it is left open if YE;(N) has nonstandard recursive models. A positive
answer is given under the hypothesis that there exists a function of exponential growth
and whose graph i§;-definable inL. But this is still an open problem.

In recent work on fragments of PA the function # has played an important role
(seel@, [, [15)). Recall that # is defined by, y) = x°%Y, and it is a poly-
nomial time computable function. It has been relevant both for coding of syntax
([15)) and for some proofs of elementary number theory, such as cofinality of primes
[12] and Lagrange’s TheorerB]] Sometimes we will use the equivalent notation
#(x, y) = x¥!, where|y| denotes the length ofin basis 2. In this paper we will con-
sider the Tennenbaum phenomenon for various fragments of PA involving #, and re-
late this to[B]. Many of Kaye's results on the relative strength of some fragments of
PA proved in [B] are purely formal and hence can be easily extended to the relative
theories in the languagé”.

We will work in the languageL” = £ U {#} and all the theories we will consider
will have some basic obvious axioms about # (see &lBo Two different results are
proved. On the one hand we show that the # of a nonstandard modef’ i§ RAt
recursive, thus sharpening the classical result of Tennenbaum. On the other hand, we
show that+, -, and # of any nonstandard model of the theories of universal existen-
tially bounded sentences af’ true inN—which we will denote by Ej*(N)—and of
existentially bounded parameter free induction—which we will denoﬂd@?—are
never recursive operations, a result currently unknowwr(N) andl E; in L. It
seems to us that these are the weakest fragments of PA for which this phenomenon
has been proved.

Notice that if we add to the language a symbol for the exponential funetipn
then the theory Epr(N) is subject to the Tennenbaum phenomenon{fand - (this
is implicit in [E]).

Remark 1.3 In order to prove that Ag (or | E;) satisfies the Tennenbaum phe-
nomenon it is sufficient to construct in any nonstandard médedf | Ag (or | E;)
anonstandard initial segmen; such thatl = PA. Let A, B be two disjoint recur-
sively inseparable r.e. sets and define the following type

T(v) ={pnlv: ifne AU {py fv: if ne B}

wherepy, denotes thath prime. Clearlyz(v) is anr.e. set, and by Craig’s trick there
is a recursive set of formulas generating the same type. So without loss of generality
we can assume(v) to be a recursive set. Itis finitely satisfiableliand of bounded
complexity, hence realized ih say by some € |. Define

neC iff 3Jg@a=qg+qg+---+0Q)

N
pn times
ngC iff 3r < ppIq(r ¢0Aa=q+q+.--+9+r).
p. times




TENNENBAUM PHENOMENON 83

So the formulas definin@ and the complement @& are the same ihandM. So if

+ of M was recursive the@ also would be recursive which is a contradiction since
A andB are recursively inseparable. To show that the produé#/df not recursive
asimilar argument is used.

We will also use these results to prove that the function # of any nonstandard
model of the corresponding fragments in the languajés never recursive. Since
the initial segment is a model of PA, the functiotx, y) — x['°92)] is total overl in
asuitable sense. We will have to show that this function coincides with the function
#, and this will imply thatl is closed under #, and hence # cannot be recursive. A
slightly more delicate argument will be used for the theoBf (N).

Notice that there are recursive binary functions which may be recursive over
nonstandard models of arithmetic. For example, consider the function defined as fol-

lows:
|1 ifx<y
f(X’y)_{Oifx>y'

Since< can always be chosen recursive, thealso is recursive.

2 The nonrecursiveness of # We will show that the Tennenbaum phenomenon
holds for the function # in all of the theories for which the classical Tennenbaum phe-
nomenon has been establishedfaand - . Our proof will also work for any function
whose graph ia\g-definable and which satisfies some basic properties of #. Itis easy
to define in a simple way the graph-efand - from xY:

a-b=c iff (&P=x,
atb=c iff - xXX=x
This implies the Tennenbaum phenomenondorThe same argument does not seem
to adapt straightfowardly to #: it seems to us that there is not an easy definition of
and/or- in terms of #.

One can easily define from - and % via 220 = (22) . (2°). Semenov showed
that - cannot be defined from+ and Z, and in fact the 2 of a nonstandard model
of PA may be recursive (see Rem@. Recall that the graph of the exponential
function

(X, y) = x’

is Ag-definable, and the recursion laws of exponentiation are provalla gn(see

[@, [ED. Leto(x, v, z) be such a formula. Actually, for the purposes of this section it
is not necessary to work with a formula of low complexity since induction is allowed
to all formulas, but we prefer to refer to the)-definition of exponentiation since it
will be used also in the next section. Via the formabae can also define the length
of an element in basis 2:

IXl=n iff 3Jz<x(0(2,n,2)AX<22).

We will use the standard notation enriched with the superscript # for formulas, theo-
ries, and so on, in the languagié. While an axiomatization fos- and - is obvious,
it is less obvious which axioms we need to choose for the function #. The recursion
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equations for # are not so immediate asfoand - . We have chosen the following
axioms:

1. VX > OVYy(#(x,0) = #(x, 1) =#(0, y) = 0),

2. VX > 0VYy > O((Powa(y+ 1) A#(X, Y+ 1)

= X#(X, Y)V (=Powa(y+ 1) A#(X, y+1) =#(X, ¥))),

where Pow,(y) stands foivx < y(x]y — 2|x). Notice that axioms 1 and 2 are of
the typev followed by aA-formula. We will denote by PAthe theory axiomatized
by the usual axioms of PA with induction applied £6-formulas and by the above
axioms for #. With standard techniques it is easy to show th&ti$A conservative

extension of PA. In fact, via thay-formula defining the graph of exponentiation we
can give ameaning to x°92Y in any model of PA. The graph of

(X, y) [N X[IOg2 Y]
is defined as
IN<yIv<ylB2,nv)Av=<Yy<20A6(Xn,?2).

It can be proved in PAthat such a definition satisfies the axioms of # (see also
Lemma3.]).

Theorem 2.1  Let M beanonstandard model of PA*. Then# of M isnot recursive.

Proof: The proof proceeds as in the classical case.A.ahd B be recursively in-
separable r.e. sets, and lgt denote thenth prime of . Construct the following
type as before:

T(v) ={pnlv:ne AfU{pn fv:ne B}.

7(v) is an r.e. set and there is a recursive set of formulas generating the same type,
so without loss of generality we can assunie) to be a recursive set. It is finitely
satisfiable and of bounded complexity, hence it is realize@ifirsayby a. Let X =

{ne N: ppla}. ObviouslyA € X andBn X = @. We will show that bothX and

N — X are r.e. in #. First of all notice that ¥is a power of 2 then

#X,y) =#(2,2) iff Xyl =1z.
As recalled in Remar_3lwe have
ne X iff Juu+---+u)=a,
e e’
p. times
and if we use the fix element2ve have thaX isr.e. in -

neX iff Jvw.----v)=22
e e
pn times
(think of v as 2'). Now using the fix element?2 we can show thaX is r.e. in #.
Consider the exponential version of

‘U.....v
-

a ; 28
ve---op=2%: thatis, 2 =2.
—— —

p, times
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We can express this equality in terms of # as follows:

B HH2.2°),2°), ..., 2") = #(2.27).
5,—#
pn times

Hence we have that

ne X iff Jw@HH - -#2,w),w),..., w)=#2,2%).
——
pn times

In an analogous way it can be shown thiat- X is r.e. in #. We have in fact

neN—X iff ISHH- - (#(s,22),9), ..., 5) = #2,2%).
i e —

pn—1
=1 .
J p, times

O

Remark 2.2 Notice that the above proof can be reproduced in any nonstandard ini-
tial segment [0«] of M since in a model of PA all initial segments determined by an
element are recursively saturated. We can in fact realize the typedij for « arbi-
trarily small and nonstandard i#: that is, of the order double length || and still
nonstandard. In the above proof take- ||b|| for some small nonstandabgand - |
computed iV . The existential quantifiers in the definition of botrandN — X can

be bounded by3. So f 22 < « then # restricted to [Qx] is not recursive.

We are now concerned about fragments of PBy | Ag we denote the theory axiom-
atized by induction on bounded formulas £f and axioms 1 and 2 for #. 1] we
showed that Ag is bi-interpretable with the more familiar theohg + Q1.

Itis more complex to find a natural axiomatization for the thedg{. The pre-
vious axioms for # are not suitable anymore since they have a higher complexity with
respect to the induction we allow. Later we will use the axiomatizatiorEgfgiven
in E] since all the axioms are truq. They describe the basic properties of the func-
tion #. We will discuss this theory in more detail in the next section.

3 The Tennenbaum phenomenon for weak fragmentsof PA*  McAloon showed
in [IQ) that any nonstandard mod®! of | Ay has a nonstandard initial segment
which is a model of PA. Using McAloon'’s result we can prove thatffis a model
of IA?,E also the operation # is not recursive, but this requires an argument.
Recall that the graph of the exponential functionigdefinable, and the recur-
sion laws of exponentiation are provableling (seell], [B]). Let6(x, v, z) be a for-
mula defining it with the above properties. M is a model ofl A%, in particular is
amodel ofl Ag, and by McAloon’s result it has a nonstandard initial segmewiich
is a model of PA. Inl the exponential function is total and via the formalae can
define the graph of the function

(X, y) — X[Ing y]

as follows
IN<ydv<yB2,nv)Av<Yy<20A6(XN,2Z).
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Denote such a formula by (X, y, ). In order to prove the nonrecursiveness of # it
is enough to show that the function definedypgoincides with the function # that
inherits from/. This is proved in the following lemma.

Lemma3.l MEVx> 1y z(y(XY,2) — #XY) =2).

Proof: Fix x > 1and applyA¢-induction o = y+ z. Suppose the implication has
been proved for alin < n. Assumey (X, y+ 1, z) with y+ 14 z= n. Wedistinguish
two cases.

Casel: If Pows(y+ 1) then#x,y+ 1) =#(Xy)-x,and|ly+ 1 =]y +1. So
from (X, y, 2) and the recursion properties of exponentiation it follaws, y, z/X).
By inductive hypothesis,#, y) = z/xand so #x, y+ 1) = z

Case2: If =Powa(y+ 1), then #x, y+ 1) = #(X, y), and|y+ 1| = |y|. So from
(X, y+ 1, 2) it follows ¥ (X, y, z) and by inductive hypothesis(¥ y) = zand so
#X, y+1) =z U

Now using TheoreTlwe can deduce that # df and so also of//, is not recursive.

The situation becomes more complex for the thedEf and weaker fragments.
Werecall that the theoryEf is the theory introduced if5] and axiomatized by induc-
tion on Ef-formulas and the twelve axioms listed below which describe the complex
recursion laws of the function # insample way: that is, using only formulas of the
type universal followed by an open formula.

1. VX#X 0 =1A#X 1) =1);

YXVY > O#(X, 2X) = X#(X, Y));

VXYY > 1(#(X, Y) /X = #(X, [y/2]));

VX(#(2, 2X) > X);

VX > O(#(2X, X) < X#(X, X));

YXVY > OVZ > O(#(X, yZ) > #(X, Y)#(X, 2));

VXYY < X(#(2X, y) < #(2x—1, 2y));

YXVWZ#H(2,2) < Y+ 1 <#(2,z+1) - #(X, Y+ 1) = #(X, Y));
9. VXYWz#H(2,2) =y+1— #X, Y+ 1) = x#(X, ¥));

10. VXVYWz(y < z— #(X, ¥) < #(X, 2));

11. VXVWz(#(Xz, y) = #(X, Y)#(Z, ¥));

12. Vx> IVWz(#(X, y) = #(X, 2) — Yw(#(w, y) = #(w, 2))).

©NOOOA~®WN

In 5] an E¥-formula which defines the graph of exponentiation is found. At the mo-
ment this is the formula of lowest complexity which defines the exponential function
(at the cost of adding the polynomial time computable function # to the language).
The theoryl Ef has been introduced as an adequate fragment in which the obvious
recursion laws of exponentiation can be proved forEﬁe‘ormuIa defining it. We
refer to |5] for more details.

Werecall also that Matijasevic showed that the graph of exponentiation is exis-
tentially definable. This is the key step in the proof that every r.e. set is existentially
definable. In[f], the following definition ofa” = mis obtained:

[M]

Yn+1(N)
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wherey,,1(Na) is the(n+ 1)st solution of the Pell equatiotf — (N2a2 — 1)y? =1
andyn1(N) is the (n + 1)st solution of the Pell equatioxf — (N?> — 1)y? = 1, for
N > nm?. This definition is clearly existential. We will denote the formula defining
the relationxY = z by Jwe(X, Yy, z, w) whereg(X, y, z, w) is quantifier free, anab
denotes a finite sequence. Using the properties of the solutions of a Pell equation it
is easy to see that the above definition satisfies the recursion laws of the exponential
function in PA.

Wilmers showed in16] that any nonstandard model bE; has a nonstandard
initial segment which is a model of PA. So if we work in a modélof | E} we have
anonstandard initial segment | which is a model of PA, and ¢ime function

(%) (X, y) — x[1092 Y]

is total. As in the case dfAj, in order to show that # of\/ is not recursive it will
be enough to show that the functios) coincides with the function # thdtcarries
inherited fromA/. This will be shown in the following theorem.

Theorem 3.2 If M is a nonstandard model of | E¥ then the operations +, -, and
# are each nonrecursive.

Proof: Let | be a nonstandard initial segment®f which is a model of PA. Our
main goal is to show that the function

(X, y) — X[IOQZ y]

coincides with the function # ohinherited from?/. We need to show this formally:
hence, we need to express formally what we meaxi'®#¥! to coincide with #x, y).
This time we cannot use they-formula defining exponentiation sincei we have
available only induction on existentially bounded formulas. We will use the Mati-
jasevic definition of exponentiation which we denoteddiy (X, vy, z, w). The idea
now is to show that for every instance of tla&s which makesp true for somea, b, c,
then the #-version of it is also true: that igatb) = ¢. We db not attempt to show
that this is true in the whole model, but it will be sufficient to show the implication
low in the model.

Consider the formulg(s) defined as follows:

Va,b,d,c < sVl < sVw < s(a+b+d+c+l0+w=
sAhe2,n,d,i)Ad=<b<2dAg(an,c w)— #@b)=c).

&(s) says that ifn, b, a, ¢, 0, w are belows andn = |b| anda" = c in the Matijasevic
sense, then@, b) = c. Notice thatt(s) is a universally bounded formula, ag¢m)

is true for allm € N. Notice also that no #-term appears in the bounded quantifiers.
We need to distinguish various cases.

Casel: Forallse M we haveM = £(s). Inthis case we have that over the whole
model M the Matijasevic definition o&l®l coincides with #a, b), and this implies
that # is not recursive.

Case2: Thereiss e M such thatM = —&(s). By the least number principle ap-
plied to—£(s) € Ef (seelE]) there issp such thatM = —&(so) A VS < So&(S).
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Subcase 1. If | < 5, then over we have the same situation as in Case 1 and hence
also in this case # is not recursive.

SQubcase2: If 55 € I, thenl = Vs < 5£(s). One first shows that there is a non-
standardr € | such that wheneverare the first witnesses of*!, for u, v < « then
ull < s, 22 < spands + u+ v + |v] + Ul < s9. The existence of suadl can be
obtained by applying overspill (ih) to aformalization of the above sentence. Now
chooseb < « such that & < o, and the result is that, in the initial segmen;t:kéb],
the functionsxV! and #x, y) coincide. From Remailk.3it follows that # is not re-
cursive. O

We now consider the fragmentE; which was suggested by Kaye {B] [as apos-

sible candidate to be the weakest fragment of PA to be subject to the Tennenbaum
phenomenon. As we have already recalled in Section 1, he showed strong connec-
tions between the theorig€; andvE;(N) (see Theorefi2). More precisely, he
proved that ifM is a model ofl E; but not a model o¥E; (N) then+ and - of M

are not recursive and left open the problem whethéis a model ofvE;(N). We

will consider the theorie$ E;# andVE}(N) in the languageL* and we will show

that the operations-, -, and # of any nonstandard model of either theory cannot be
recursive.

Theorem 3.3  Let M be a nonstandard model of | E;# and assume A is not a
model of VE;(N). Then the operations +, -, and # of M are not recursive.

Proof: Kaye proved that if\/ is a model of E; but not a model o¥E;(N) then

there is a nonstandard initial segment®f which is a model of PA. We can now
easily adapt the proof of the previous theorem to this case, simply taking care in Case
2. If M = 3s—&(s), we can no longer appeal to the least number principIeEfpr
formulas since it is not equivalent to parameter free induction, but we can still be sure
that there is a nonstandasglsuch thatM = £(sp) A —£€(Sp + 1.) Otherwise byul—#-
induction (recall that EI# H IUf#, see[B]) we would haveM |= Vs&(s)—notice

that we have used only thaj is nonstandard. Now just repeat the same proof as in
Theoreni3.2] O

It is left to show that the theoryE’f(N) is subject to the Tennenbaum phenomenon
for the functions+, -, and #. Kaye inl] sketched a proof of the nonrecursive-
ness of+ and - of any nonstandard model &fE; (N) assuming the existence of a
function growing at least as fast as exponentiation and whose gr&nhdsfinable.
The existence of such a function is still an open problem5]m{e showed that the
graph of exponentiation is definable i using only existentially bounded quan-
tifiers. We will denote such a formula by(x, y, z), and it is of the form3t <
(X, Y, 20G(X, ¥, z,T), with G quantifier free and a term of the languag&”. For
any modelM of VE}(N) we define

No=M and Nyi={aeM:3ce N, M =TI(a a c)}.
Notice that the;’s are initial segments db/. Infact, inN it is true that if['(n, n, m)

for somen, mthenI'(n’, n’, k) for all " < nand somé& < m, and this sentence is of
the formvE%.
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Kaye in [8] attached to any modé¥ of | E; asequence of initial segments de-
fined as follows:

Mo=M and Miyy={aecM:3Ibe Mi, M = x(a, b)},

wherey(a, b) is anE;-formula,3d < t(a, b)F(a, b, 0), with F quantifier free antla
term, saying thab is a solution of the Pell equatioft — ((a+ 1) — 1)y? = 1, andb
is in the equivalence class 0 modue- 1 and is greater than or equal ta+ 1)1,
(In N for fixed a the leastb satisfying x is the (a + 1)st solution of the equation.)
Notice thaty is not functional. The following estimates on the size of the- 1)st
solution of the Pell equatior? — (a2 — 1)y? = 1 will be useful later (sedd)):

(2a—1)" < ynp1(a) < 2a)".

IV'exp = ﬂ M;
lew
is a model ofl Ag + exp. Notice that both sequences Bf's and of M;’s may be
constant.
Itis easily seen thatE% (N) - | E{¥. So Kaye’s construction of théli’s can be

reproduced in any model M’Ef(N). We will, in fact, show thatN; = M; for all i.
Lemma34 Let M beamode of VE(N). Then Nj = M; for all i.

Kaye showed that

Proof: We prove the lemma for= 1 since the general case can be treated in a sim-
ilar way. We want to show that whenevg(a, b) is true then alsd@'(a, a, ) is true

for somec, and vice versa. Obviously, this is always the cadd,ibut since we work

in M model ofVEf(N) we need to express the above implications in the appropri-
ate complexity in order to have them satisfied als@4n There is a further problem
that x is not functional, and this also needs to be taken into account. We will use the
estimates given irl on the size of thenth solution and the Matijasevic definition

of exponentiation in order to identify the smallést 0 satisfying x(a, b). Consider

the VE7-sentence:

Va,b, 0, w((F(a,b,0) Ap(2a+1,a,b, w)) - 3c < bl'(a, a, c)).

It says that whenevey(a, b) andb < (2a+ 1)2 (that is,b is the (a + 1)st solution
of the equation® — ((a+ 1)2 — 1)y? = 1) thenI'(a, &, ¢) for ¢ < b. This implies
M; € N;.

To prove the reverse direction consider the followirigf-sentence:

Va, c, t(G(a, a,c, ) - 3b < c3x(a b)).

This says that whenevér(a, a, ¢) then we can find < cd satisfying x(a, b), and
it implies N; € M. Notice that the inequalitp < ¢ is an easy consequence of the
inequalities of[f]. In fact, ya,1(a+ 1) < (2(a+ 1)) < (a®)3. There is no problem
in guaranteeing the existence of these objects since we wdtk in

The proof thatM;, 1 = Nj. 1, assumingM; = N,; is very similar to the one shown
above except that thﬂif-sentences become longer since they have to sap traic
are inM; andN;, respectively, and this can be expressed without increasing the com-
plexity of the sentences. O
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We can then extend many of the properties of Mgs proved by Kaye to the\;'s
(€.9.,Nicw Ni = Nexp is a model ofl A 4 exp) and we will use them in the proof of
our last theorem.

Theorem 3.5 If M isa nonstandard model of VE’f(N) then the operations +, -,
and # are not recursive.

Proof: LetN;’'s be as above. IN; = N for all i, then?/ is a model ofl Ag + exp
and hencet, -, and # are not recursive. For the nonrecursiveness of # just notice
that M being a model of Ag + exp it has a nonstandard initial segmenwhich is a
model of PA. Itis not difficult to adapt the proof done mg to this case.

If N; # Ni1 for all i then Proposition 6.3 o] and Lemmd#8.4juarantee that
the initial segmeniNey, is nonstandard and this is enough to deduce that the three
operations oM are not recursive. Notice that only these two cases are possible. In
fact, suppose thatl; € NpandN; = N, =, ..., and leta € Ng — N;. Consider the
following VE}-sentence:

VYa, bvYi(G(2, b, a,0) — dc < #(a, a)['(b, b, ©)).

It says that ifo = log, athenb® = ¢ < #(a, a). This is obviously true iN, and hence
also inM. Clearly,a < b° = (log, a)'°%2. FromN; = N, andb e N it follows that
b € N, and sdbP e Ny, but this gives a contradiction sinee< b? anda ¢ N; (here
we have used the functionality o). O

We have shown that in the languagé the Tennenbaum phenomenon holds also for
the fragment of existentially bounded free induction, a result which is still unknown
for L.

Remark 3.6 We can extend this result to mammary functions f in the following
sense: there are nonstandard models of PA where the funti®recursive. Letf
be a unary function satisfying the following conditions:

1. fisl-1,
2. rangef) is winfinite, and
3. f has no cycles.

We assume thaf is a computable function over the integers. It will be clear later
why we need the last hypothesis. Examples of such functions includedx*, or
|X|.

The idea is to find a recursively saturated modelTd#f(N, f) and impose
+, -, < to make this a nonstandard model of PA. First of all we try to understand
what a countable modéM, g) of the theory off looks like. Given an elemerat of
amodel of f we define the orbiO, of a as follows:

O.={fk@) kewlU{fXa) :kew.

Clearly, distinct orbits are disjoint. For amthere are two possibilities:

1. O,N'M — range( f) = @, and this happensi e ), , range( %) (Z-orbits);
2. O, M — range(f) # @ and this is a singletotfa}, and this happens if
a € ik, range( f¥) anda ¢ range( f*1) (N-orbits).
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Obviously, a model off is completely determined by the humberdforbits, n,,

and the number dfl-orbits,n;. From the hypothesis that the rangefofs coinfinite
it follows thatn; is always infinite. Itis easy to show that the theoryfaé complete.
This is implied by the following lemma.

Lemma3.7 For any given model (M, f), there is an elementary extension
(M*, f*) such that ny, isinfinite.

Proof: It is a simple compactness argument applied to the elementary diagram of
(M, 1) together with the following set of sentences in an expanded language with
new constant symboly for eachi € w.

{di#dj:i, jew,ij u{fld)#£fNdp):mli jew,m#Ilju
(AxfK(x) = d : forall k, i € w}.

Eachd; generates @-orbit. Any finite subset of the above set of sentences has a
model, since itis true iiM, f). O

Two models of f with bothn,, andn; infinite are obviously isomorphic and hence
elementary equivalent. Via the previous lemma the theorfyisfcomplete. Itis also
clear that the model with,, andn; both infinite is recursive and can be represented
as the union of countably many copiesMfand countably many copies @f. De-

note such a model b§N, f). We can always find an elementary extensior{Nf f)

which is recursively saturated, and without loss of generality the model so obtained
has countably man¥-orbits. If not, letO,,, ..., Oy, be the onlyZ-orbits of (N, f).
Consider the following type:

fv# i) kew, 1<i<nU{e # fX0) tkew, 1<i<njU
AKX = v ik e o).

This type is finitely satisfiable iGN, f) and hence by recursive saturation is realized
in the model. In factny is infinite if and only if (N, f) is recursively saturated. The
last stepis to expandN, f)toamodel of PA, and this is obtained via resplendency of
(N, f). First expand the language with the relational symbolstp¥, 0, ¢ (0 andc
are just constant symbols). Consider the forndi¢dg y) defining the graph of over
N (0 € 1 N T4, using the hypothesis thdtis computable). LeT be the theory in
the expanded language containing the axioms of PA, the definitibnafdthe set of
sentencefdxf (x) = ¢, c # fK(0) : k € w}. T is consistent witlTh(N, f) sinceN is
amodel of any finite fragment of, and hence by resplendency there is an expansion
of (N, f)to a model ofT. The model we get is a nonstandard model of PA where the
function f is recursive. So functions such a§ 8!, p, nth prime may be recursive
functions over nonstandard models of PA. We believe that with minor adjustments
this result can be expanded to most unary recursive functions and may consider this
in a later paper.

If we consider functions of two variables suchxsand x[°%¥ they are not
recursive in any nonstandard model of PA, even if they are definable ffoam@®
x[°9:X ‘respectively. The complexity of the defining formula is higher thanand
so the recursiveness of andx!'°%2X cannot be transferred s andx!'°%¥, respec-
tively.
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