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An Algebraic Theory of Structured Objects

CHRYSAFIS HARTONAS

Abstract We present an algebraic theory of structured objects based on and
generalizing Aczel’s theory of form systems. Notions of identity of structured
objects and of transformations of systems of such objects are discussed. A gen-
eralization of Aczel’s representation theorem is proven.

1 Introduction Wedevelop an algebraic theory of structured objects,1 artifacts or
otherwise, well founded or not, based on and generalizing Aczel’s theory ofform sys-
tems [2]. Aczel’s theory, further developed by Lunnon in her doctoral thesis [8], has
been originally conceived as part of a long term project to provide a mathematical
framework forsituation theory and it has been, in fact, set to motion by an unpub-
lished paper [5] of Barwise, proposing a formal sketch of a model for situation theory.

Considerations from situation theory lead to a need to regard the objects of
the theory asstructured objects, objects within which other objects may occur as
theircomponents. The component-of relation, generalizing the membership relation,
need not be well founded: in fact, applications of situation theory as in Barwise and
Etchemendy [7] would require an antifounded relation, allowing for objects that are
components of themselves. Aczel’s theory of form systems formalizes the intuitive
idea of a universe of structured objects, well founded (wf) or antifounded (af), under
an operation ofreplacement of components of an object by other objects.

Wegeneralize Aczel’s theory of form systems to the theory of what we callsys-
tems of objects. What we have found missing in the original theory is (1) a discus-
sion of appropriate concepts ofidentity of structured objects, (2) a study of adequate
notions oftransformations of systems of structured objects, and (3) some more re-
strained view onpermissible replacement maps. We take up these issues here, ex-
ploring natural alternatives to notions of identity of objects that arise by experiment-
ing with objects with the means available: namely, by replacement of components by
other components. Transformations of systems of objects, we insist, should respect
both replacement and components but they should also reflect identity of the abstract
behavior of objects under replacement experiments. Discussing these issues leads us
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to a pleasant algebraic theory of systems of structured objects. We prove existence of
free systems and derive from this a representation theorem that generalizes the rep-
resentation theorem of [2].

As in [2] and unlike the direction taken in [9] we do not seek to provide atheory,
first-order or otherwise, of universes of structured objects. Rather we aim at model-
ing our pretheoretic intuitions about structured objects, their components, and change
they may undergo due to replacement of components, by describing a formal model,
some kind ofreplacement algebra that adequately reflects our basic intuitions.

2 Systems of structured objects To fix a context for discussion let us denote byV
the class of all objects of our metatheory. This may include sets, atoms, structured
physical objects, and whatever the reader’s ontological views allow for. For a struc-
tured objecta, we denote byCa the set of all objects that appear as components of
a. However, in different contexts different components mapsC may be considered.
If σ is a map defined on the components ofa we writeσ.a for the object obtained,
intuitively speaking, by simultaneously replacing every componentx of a by σx. In
[2] a liberal view is taken, allowing for arbitrary replacements without imposing any
constraint that the objectσx replacingx as a component ofa must be of the “same
kind” as x. Thus, if a happens to be a physical object thenσ.a may or may not be
physically realizable. Without assuming any preset notion of “sameness” we impose
some restrictions on permissible replacements, thus diverging from and generalizing
the approach of [2]. To make things more precise, let us suppose some given classX
of parts, or components.

Definition 2.1 A system of objects with parts from the classX ( a systemover X)
is a structureA = (A, CA , SA , .A ) where (dropping the subscriptA for simplicity)

1. A is a class of structured objects;

2. C is the components map andCa is a subset ofX for each objecta ∈ A;

3. S is a collection of mapsσ : Ca → X, wherea ∈ A, with a partial composition
map (denoted by concatenation) and such that

(a) for eacha ∈ A, σ ∈ S, if σ : Ca → X, thenσ.a is also inA,

(b) for eacha ∈ A, the identity mapidCa ∈ S,

(c) if σ, τ ∈ S, τ : C(σ.a) → X, thenτσ ∈ S;

and where

4. the replacement operation.A and the components mapC satisfy the following
axioms:

(a) C(σ.a) = {σx|x ∈ Ca},
(b) if σ = idCa , thenσ.a = a,

(c) τ.(σ.a) = τσ.a, for all σ, τ ∈ S, σ : Ca → X, τ : C(σ.a) → X.

Membership of a replacement mapσ in the setS is thus our notion of apermissible
replacement. Theform systems over some classX of [2] are exactly the systems of
objects overX whereS is the collection of all mapsσ : Ca → X, for a ∈ A. An
ontology is defined in [2] as aform system over the classV of all objects. We recall
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also from [2] that anelementary universe is a form systemA = (A, C, .) over the
classA. Some simple examples will help fix these ideas.

Example 2.2 TheInstantiation Systems of [11] are examples of systems of objects.
There, replacement maps are calledinstantiations, objects are referred to asterms,
and their components are taken from a setVar of items called variables. Some finite-
ness conditions are imposed in [11] which make instantiation systems a special case
of systems of objects.

Example 2.3 Let � be a signature, that is to say, a set of operation symbols with
prescribed arities, and letT be the set of all closed�-terms. If t = f (t1, . . . , tn),
for somen-ary f ∈ �, then letCt = {t1, . . . , tn}. If σ : Ct → T is a map, then let
σ.t = f (σt1, . . . , σtn). Wemay let equality of terms be pure syntactic equality or else
assume an equational theory� and declares = t just in case�

�
s = t. Depending on

our interest, we may allow for all possible replacements or impose restrictions. For
example, permissible replacement maps may be taken to be the mapsσ such that for
anyt ∈ dom(σ) we havet = σt (which is more interesting when we interpret equality
as�

�
t = σt). In any caseτ.(σ.t) = τσ.t and the rest of the axioms also trivially hold.2

Example 2.4 Let H F be the set of well-founded, hereditarily finite sets, that is,
setss that are finite and such that every member of their transitive closureTc(s) is
finite. In the cumulative hierarchy the well-founded, hereditarily finite sets are ex-
actly the sets of rank less thanω, so that H F = R(ω). Let Cs = s andX = H F. If
σ : Cs → X, thenσ.s = {σx|x ∈ s} ∈ H F. This gives us an example of an elementary
universe in the sense of [2].

Example 2.5 For a more mundane example, letA be the set of all blocks in a Lego
toy that can possibly be formed out of a given collectionL of basic items of fixed
shapes and colors. In speaking of possible blocks we do not mean to refer to object-
types but rather to concrete particulars differentiated by the time interval of their ex-
istence. For example, suppose we form a block out of four pieces, then take it apart
and form an identical block with the same pieces again. At the moment, we count
these as two different objects. We will discuss the question of identity later.

Now if u is such a block we letCu ⊆ L be the set of basic items used in the
construction of the block. A replacement map is permissible only if it replaces a basic
item by another basic item of the same shape but not necessarily of the same color. If
σ : Cu → L, thenσ.u has the obvious meaning.

Example 2.6 To outline the boundaries of the theory we give a nonexample. Let
M be a proper class of atoms andVM the class of all well-foundedM-sets: namely,
sets with atoms fromM possibly occurring in their build-up. For anM-sets let Cs
be the set of atomsx such thatx ∈ s or there is some sets′ ∈ Tc(s) such thatx ∈ s′.
Now let X = VM ∪ M. Given a mapσ : Cs → X defineσ.s by ∈-induction:

σ.s = {σx|x ∈ s ∩ M} ∪ {σ.s′|s′ ∈ s ∩ VM }.
This fails to be a form system or a system of objects in the sense of Definition2.1
because the axiomC(σ.s) = {σx|x ∈ Cs} does not hold for anyσ that assigns a pure
set to atoms inCs.



68 CHRYSAFIS HARTONAS

Example2.5 is an example of a system of objects that is not a form system, in that
we have imposed restrictions on the permissible replacement maps. It justifies our
generalizing the theory of form systems to that of systems of objects in the sense of
Definition2.1. Restrictions on replacement can be imposed by introducing an explicit
typing of objects and their components as well as of the replacement maps. An inves-
tigation along these lines has been carried out in [8]. The approach we take abstracts
away from an awkward explicit typing but maintains the basic idea of not granting to
all possible replacement maps the status of a permissible map.

2.1 Identity and transformation Suppose a given systemA . Objects inA change
as a result of replacement actions. On the other hand, we should be able to think of
the systemA itself as being transformed into some other system as a result of simul-
taneously transforming all objects in the system.

Example 2.7 Suppose our system consists of all cars of a certain make and model.
Replacement of parts by parts of the same make results in another car of the same
make and model. Suppose, however, all cars of that make and model turn out to be
defective: their ignition systems involve a serious risk of fire with potentially life-
threatening consequences. A new part is manufactured and replacement of the old
part with the new is offered free of charge. Our system of objects has thus been trans-
formed.

To model our intuitions of structured objects we need to extend our treatment and
provide fortransformations of systems. There is a question, however, as to just what
a legitimate transformation should be when the subject is approached in the abstract.
This relates to an intricate question: that of the identity of objects through change due
to replacement actions. Some systems of objects have an intrinsic relation of identity.
For example, in the system of hereditarily finite sets (Example2.4) identity of objects
is pure extensional identity of sets. When either intensional objects or physical ob-
jects such as artifacts constitute the universe of a system of objects, identity is not a
straightforward issue. One option is to postulate some relationR of identity on the
system and then modify the presentation of a system so as to axiomatize the interac-
tion of identity and replacement. Another option, which is the one we take here, is to
classify various notions of identity that naturally arise in the system itself. What we
are concerned with can be, perhaps, better described in a pragmatic and experimental
language. Given a system of objects we can “experiment” with them with the means
that we have available: that is to say, by replacing components. What we would like
to have is some notion of an abstract behavior of an object through this experimenta-
tion. Roughly then, we can construe two objects as being of the same type, identical,
if they exhibit the same abstract behavior.

As it turns out there are different notions of identity we can formulate. We dis-
cuss two natural options below. To simplify the discussion we often avoid explicit
mention of what the domain of a replacement mapσ is when this can be unambigu-
ously inferred from the context of the discussion. For example, in stating something
like ∀σ∃τ σ.a = τ.b we really mean to say that for any permissibleσ with domain the
setCa, there exists a permissibleτ with domainCb such thatσ.a = τ.b.

By abstact identity of objects in a systemA we mean identity of the behaviors of
the objects under the operation of replacement. A general notion of abstract identity
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may be taken to be a binary relation∼ on A such that

a ∼ b iff (∀σ∃τ σ.a ∼ τ.b and∀τ∃σ σ.a ∼ τ.b). (1)

Call this double implication condition1. The intuition should be clear: two objects
a andb are to be deemed abstractly identical just in case every way to change one of
them by a permissible replacement of components can be matched by a way to change
the other, resulting again in abstractly identical objects. Note that identity of abstract
behaviors is thus dependent on the collectionS of available replacement experiments.
This concept of identity is very broad and it covers a number of particular cases.

Example 2.8 In [11], two objectsa, b are deemed of the same type, denoted by
a � b just in case there exist instantiationsσ andτ such thata = σ.b andb = τ.a.
Identity is thus construed as the possibility for mutual reduction of each object to the
other by replacement of components. Assuming we have a broad notion of identity
∼ satisfying condition1, it is immediate thata � b impliesa ∼ b, for any objectsa
andb.

There is a notion ofbisimilarity in the literature on process algebras of which our
concept of abstract identity is a generalization. Unfortunately, as process languages
cannot be described as systems of objects, we cannot make the connection clearer.

Obviously now, we cannot take (1) as adefinition of∼ because of the circularity
involved. However, there is a standard way around this problem.

Definition 2.9 Let A andB be systems of objects (not necessarily over the same
class of components). A binary relationR from A to B is apre-identity if and only
if for any a ∈ A andb ∈ B, aR b implies

1. ∀σ∃τ σ.aR τ.b, and
2. ∀τ∃σ σ.aR τ.b.

Let F be the operator on binary relationsR from A to B defined by

F (R) = {(a, b)|∀σ∃τ σ.aRτ.b and∀τ∃σ σ.aRτ.b}.
ThenF is clearly monotone and a relationR is a pre-identity just in caseR ⊆ F (R).
Let ∼ be the largest fixed point ofF . Explicitly,

∼ =
⋃

{R ⊆ A × B| R ⊆ F (R)}.

Lemma 2.10 The relation ∼ is a (in fact, the largest) pre-identity and it satisfies
condition 1.

Proof: That∼ is a pre-identity follows from the way we constructed this relation.
For condition 1, the direction from left to right is straightforward. For the converse,
let R be the binary relation defined by

aRb iff ∀σ∃τ σ.a ∼ τ.b and∀τ∃σ σ.a ∼ τ.b.

It is enough to verify thatR is a pre-identity. So assumeaRb holds. Givenσ, let τ be
such thatσ.a ∼ τ.b. Then we have that for anyσ′ there is someτ′ such thatσ′.(σ.a) ∼
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τ′.(τ.b). Conversely, for anyτ′ we can findσ′ such thatσ′.(σ.a) ∼ τ′.(τ.b). Thus
σ.aRτ.b holds by definition ofR. We may then conclude thatR is a pre-identity.
Hence∼ satisfies condition 1. �
Identity as∼ is a very broad notion and it is probably best to think of it as reflecting
structural similarity of objects. Objects that are identified by∼ need not even have
the same components, and this is perhaps too liberal a notion of identity for many ex-
amples. Consider Example2.4. It should be clear that the relation of equinumerosity
of (hereditarily finite) sets satisfies condition 1. In a sense then, it abstracts away too
much structure.

Wenow define a more stringent notion of abstract identity, requiring that identity
in the new sense implies that the two objects are built on the same set of components
(but of course not at the same time if temporal considerations are relevant to some
particular case, such as the Lego toy example). For our new notion of identity, de-
noted by≡, we would like to have

a ≡ b iff Ca = Cb and∀σ σ.a ≡ σ.b. (2)

We call this condition 2. As this cannot be taken for a definition of≡, we proceed
again as we did for the relation∼.

Definition 2.11 Let A andB be systems of objects. A binary relation� from A to
B is acongruence if and only if a�b implies thatCa = Cb and for allσ, σ.a�σ.b.

If G is the operator on binary relations fromA to B such that

G(R) = {(a, b)| Ca = Cb and∀σ σ.aRσ.b}

then clearlyG is monotone and a relation� is a congruence just in case� ⊆ G(�).
We then let≡ be the largest fixed point ofG. Explicitly,

≡ =
⋃

{� ⊆ A × B|� ⊆ G(�)} .

As for the relation∼ we can verify (by similar argument) the following lemma.

Lemma 2.12 The relation ≡ is a (in fact, the largest) congruence from A to B and
a refinement of ∼. Furthermore, it satisfies condition 2.

Toget some intuition on what sense of identity is captured by∼ and≡ we return to the
Lego toy example (Example2.5). There are two intuitive notions of abstract identity
we can have. We may say that temporal instances of the “same” object are to be iden-
tified. We alluded to that when we first described the example. Given some object
constructed from the basic itemsx, y, z, decompose the object and then recompose
“it” again at a different time, using exactly the same basic itemsx, y, z. Regarding
objects strictly as particulars as we do, we are forced to see the two instances as dis-
tinct objects. This leaves us with the need for a notion of abstract identity that counts
the two instances as the same object.

The second intuitive notion of identity is that of two objects being copies of each
other. We may say that the blocksa andb are copies of each other when they have
exactly the same structure and they are composed by basic items that are copies of
each other. Basic items are to be considered copies of each other if they have the same
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shape but not necessarily the same color (of course, we can change the convention and
require sameness of color as well).

Given the constraints we have imposed on replacement maps it should be clear
that the relation∼ formalizes the second intuitive notion of abstract identity, which is
probably better described as structural similarity. On the other hand,≡ captures the
first, more stringent notion of identity.

There are some other options. If the systemA = (A, C, S, .) is a universe (a
system of objects overA), then it is natural to consider a further notion of identity, in
between≡ and∼.

Definition 2.13 Define a relationR ⊆ A × A to be apartial-identity if aRb implies

1. ∀a′ ∈ Ca∃b′ ∈ Cb a′ Rb′

∀b′ ∈ Cb∃a′ ∈ Ca a′ Rb′

2. ∀σ∃τ σ.aRτ.b
∀τ∃σ σ.aRτ.b

We may then let≈ be the union of all partial identities and verify that≈ itself is a
partial identity. It is clear that≡⊆≈⊆∼.

Wecan also relativize the definitions of pre-identity and congruence for arbitrary
systems to some given relationr ⊆ X × Y on components. Thus a pre-identity can
be defined as a relationR ⊆ (A ∪ X) × (B ∪ Y ) such thatxRy if and only if xry and
then by requiring thataRb satisfies conditions similar to those of Definition2.13. We
will not explore these notions further but perhaps they may be useful for potential
applications.

2.2 Transformations of systems of objects Our concept of a permissible transfor-
mation of a systemA (over some classX) to asystemB (over some classY) must
reflect what we perceive to be important in the structure of systems of objects. Hence
transformations must be well behaved with respect to components and replacement
and they must reflect abstract identity of objects. We do not require that transfor-
mations should only be allowed for systems over thesame class of components as
this seems to be an undue restriction. This complicates the question of specifying
what a transformation should be, since we must provide both a mapθ taking an ob-
ject a ∈ A to some objectθa ∈ B as well as a map that changes components fromX
to such fromY . There is the option of doing the latter globally, by assuming a map
i : X → Y , or locally, by assuming a family of mapsia, one for each objecta ∈ A,
such thatia : CA a → Y . As the global option is a special case of the pointwise op-
tion (take the restrictionia = i|Ca) we prefer first to describe the general notion of
a transformation.3 The most significant difference between the two views is that in
the global viewi is taken to be a function fromX to Y while in the local view it is a
relationi ⊆ X × Y allowing for the same component to be changed in different ways
depending on the object of which it is a component.

Definition 2.14 A transformation (homomorphism) of systems of objectsA =
(A, CA , SA , .A ) → B = (B, CB , SB , .B ), over classesX andY , respectively, is a pair
(θ, i) such thatθ : A → B andi is a family of mapsi = (ia)a∈A, whereia : CA a → Y
and the following hold:
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1. preservation of components:CB (θa) = ia(CA a) = {ia(x)| x ∈ CA a},
2. for eacha ∈ A and mapσ ∈ SA , σ : CA a → X, there is a unique mapσi ∈ SB ,

σi : CB (θa) → Y satisfyingiσ.a ◦ σ = σi ◦ ia, and

3. preservation of replacement:σi.B (θa) = θ(σ.A a).

CompositionA
(θ,i)−→B

(ϕ, j)−→C is defined by(ϕ, j) ◦ (θ, i) = (ϕθ, ji), where( ji)a =
jθa ◦ ia.

The conditions of preservation of components and of replacement should be intu-
itively clear. The second condition is a technical requirement as we need to make
sure that components are changed in a coherent way.

Remark 2.15 Our definition of a legitimate transformation imposes strong restric-
tions. It is justified by our desire to investigate transformations that respect both com-
ponents and replacement while also reflecting abstract identity of objects. There are,
of course, contexts where the objectives may be different. For example, intuitively
every replacement mapσ may be thought of as inducing a transformation of a system
of objects. Given a system of objects overX consider all mapsπ, wheredom(π) is
asubset ofX. Given an objecta, let π.a = π|a.a where

π|ax =
{

πx if x ∈ dom(π) ∩ Ca
x if x ∈ Ca \ dom(π)

.

For the purpose of this remark we may drop the restriction to permissible maps. Then
we can think ofπ as inducing a transformation of the systemA , π : A → B, where
B = {π.a|a ∈ A} and the replacement operation and component maps inB are as in
A . The transformation is the pair(π, π), whereπ is once viewed as a map acting on
objects and then also as a map changing componentsi = π = (π|a)a∈A. Preserva-
tion of components is no problem, but an arbitrary replacement mapπ will fail, in
general, our definition of a legitimate transformation since we will not be able to find
the unique mapπi required in the definition. We may relax requirements as follows.
Given an arbitrary objecta and a replacement mapσ : Ca → X, call π compatible
with σ if and only if

∀x, y ∈ Ca πx = πy =⇒ π(σx) = π(σy).

Givena andσ the assumption of compatibility implies that there exists a mapπi as
required in our definition. Simply letπi : C(π.a) → X be the mapπi(πx) = π(σx).

It may be of interest to relax the definition of a legitimate transformation by mak-
ing preservation of replacement depend on some compatibility condition. This ap-
proach is taken in [4]. We will maintain here the requirement for strict preservation of
replacement for two reasons. First, replacement is the backbone of the structures we
have called systems of objects. The components map is secondary and it arises only
because we regard replacement maps concretely as functions. The abstract structure
of a system of objects consists in some monoid-like setS of items we call replacement
maps and an action ofS to a setA of structured objectsS × A → A. If anything is to
be preserved then it seems that this should be the action of replacement.
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Second, there is no compelling reason why we should want to model our notion
of transformation on the behavior of replacement maps when considered as transfor-
mations. The functional behavior of replacement maps in the way components are
changed is not always desirable as our next example demonstrates.

Example 2.16 Consider a collection of human individuals, the citizens of an imag-
inary state, a fixed set of tasks to be accomplished, and committees formed to under-
take these tasks. The structured objects we consider are all the possible committees
that can be formed for the given set of tasks. The components map delivers the set
of individuals making up a committee. Membership of an individual on a committee
changes over time for various reasons. We assume that every citizen is eligible for
membership on any committee and thus all replacement maps are permissible. Sup-
pose Charles Smith is on the committee for energy preservation and protection of the
environment and that he wishes to resign from both. After replacing Smith on these
two committees we have a new system of committees. In the global view of transfor-
mations of systems of objects, Smith should be replaced by thesame individual on
both committees. This, however, seems to be unduly restrictive, and hence, there is
potential usefulness in considering the more general class of transformations we have
described in Definition2.14.

Wehave gone a good way toward satisfying our requirements since the maps we have
described as legitimate transformations are well behaved with respect to both compo-
nents and replacement. We would also like for a legitimate transformationθ to reflect
identity of abstract behavior of objects in the sense that for any two objectsa, a′ ∈ A,
θa = θa′ only if a anda′ are abstractly identical. This is a minimal criterion by which
transformations respect identity of objects. The reason for the failure of reflecting
identities is that the second condition in the definition is too weak. We strengthen it
in the following definition.

Definition 2.17 (θ, i) : A → B is afull transformation if it satisfies the conditions
of Definition2.14and, in addition, the following holds:

for all replacement mapsρ ∈ SB , if ρ : CB (θa) → Y for somea ∈ A,
then there is some replacement mapσ ∈ SA such thatσ : CA a → X
andρ.B (θa) = θ(σ.A a).

Of course, in the light of the other conditions on transformations this is equivalent to
saying that every replacement mapρ ∈ SB , defined on the components of an object
of the formθa in B, is of the formσi, for someσ ∈ SA . In other words, in trans-
forming a system of objects abstract identity is reflected provided that in the system
{θa|a ∈ A} no “new” experiments have been added. Every replacement experiment
on θa is the reflection of some replacement experiment ona. Though strong, the re-
quirement seems to be natural.

Lemma 2.18 Full transformations respect abstract identity in the sense that θa =
θb only if a ∼ b.

Proof: It is enough to show that the relationR defined byaRb if and only if θa = θb
is a pre-identity. SupposeaRb and letσ : Ca → X. Thenθ(σ.a) = σi.(θa) = σi.(θb).
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Let σi = ρ. Sinceθ is full, there is a replacement mapτ : Cb → X such thatρ = τi.
Thus,θ(σ.a) = ρ.(θb) = θ(τ.b), henceσ.aRτ.b. �
The refinement≡ of ∼ is not necessarily respected even by full transformations. If
for certain applications≡ is our desired notion of identity of abstract behavior then
further restrictions need to be imposed.

Definition 2.19 (θ, i) : A → B is anormal transformation if it satisfies the condi-
tions of Definition2.14and, in addition,i is an injective functioni : X ↪→ Y .

Lemma 2.20 Normal transformations reflect ≡-identity of objects.

Proof: It is enough to show that the relationR defined byaRb if and only if θa =
θb is a congruence. Ifθa = θb, thenC(θa) = {ix|x ∈ Ca} = {iy|y ∈ Cb} = C(θb).
Sincei is an injectionCa = Cb follows. If σ : Ca → X, let τ = σ and observe that
θ(σ.a) = θ(σ.b), hence we may conclude thatσ.aRτ.b holds. Thusa ≡ b. �
When restricting to systems over the same classX of components it is useful to con-
sider a special class of transformations defined below.

Definition 2.21 A standard transformationA → B of systems over the same class
X is a transformation(θ, i) whereia = idCa for eacha ∈ A.

When referring to standard transformations we will not mention the mapi (sinceia =
idCa) and will regard it simply as a mapθ : A → B.

Lemma 2.22 Standard transformations reflect ≡-identity of objects.

3 Representation of systems of objects We develop in this section the algebraic
theory of systems of objects, concluding with the Representation Theorem (Theorem
3.12) for systems of objects over some fixed classX. We show that every system is
isomorphic to a quotient of a restriction of a free ontology. We discuss first the oper-
ations of restriction and quotient. To make use of quotients we establish a Homomor-
phism Theorem (Theorem3.4). We then turn to proving existence of free ontologies
and form systems thus leading to our representation theorems.

Wewill have use of twooperations of restriction. The simplest one is to restrict
to a classX of components, introduced in [2]. This operation will be very useful in
the proof of the Representation Theorem for Form Systems (Theorem3.11). If A is a
system over the classX of components then the restrictionA |Y to a subclassY ⊆ X
is the new system with universe of objectsA[Y ] = {a ∈ A|Ca ⊆ Y} and permissi-
ble replacement mapsS[Y ] = {σ ∈ S|σ ⊆ Y × Y}. The components map and the
replacement operation are the obvious restrictions of the corresponding maps inA .
In particular, we will have use of the restriction ofontologies: that is, form systems
(all replacement maps are permissible) over the classV of all objects.

For the second restriction operation define first apartial monoid of functions
as a set of functionsσ : dom(σ) → V such that ifτ, σ ∈ S anddom(τ) = rng(σ),
then τσ ∈ S. Furthermore, for eachσ ∈ S, both the left and the right identities
iddom(σ), idrng(σ) are inS.

Given a systemA = (A, C, SA , .) and a partial monoidS ⊆ SA let A |S be the
system with
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1. universe of objectsA [S] = {a ∈ A|idCa ∈ S},
2. components mapCS a = Ca, and
3. replacementσ.S a = σ.a.

For representation purposes we will be interested only in restrictionsU|S of ontolo-
gies to partial monoids.

Quotient systems are systems obtained by factoring out by congruences (Defini-
tion 2.11). Since systems may be large—their universes may be proper classes—we
need to make sure that we have available some form of a quotient existence principle.
Thus we assume global choice, which allows us to pick representatives from possi-
bly proper classes of congruent objects. IfA is a system of objects over some class
X and� is a congruence onA we let [a]� (or simply [a] when no confusion is pos-
sible) be a representative of the congruence class ofa. Sincea�b impliesCa = Cb,
we may letC[a] = Ca. Furthermore, sincea�b implies thatσ.a�σ.b, for any per-
missible replacement mapσ : Ca → X, the replacement operation can be defined by
σ.[a] = [σ.a]. Strictly speaking, quotient systems are not unique. However, unique-
ness up to isomorphism can be established.

Proposition 3.1 Let A be a system and � a congruence on A. Let [.] and [.] ′ be
choice functions selecting representatives of the congruence classes. Let A� and
(A�)′ be the two quotient systems obtained. Then the standard transformation ϕ :
A� → (A�)′ is an isomorphism, where ϕ([a]) = [a] ′.

Proof: The only interesting point is preservation of replacement. However, given
σ : C[a] → X, let σi = σ and observe that

ϕ(σ.[a]) = ϕ([σ.a]) = [σ.a] ′ = σ.[a] ′ = σ.ϕ([a]).

The rest is immediate. �
In the sequel we will feel free to refer tothe quotient systemA� since any two such
systems are isomorphic.

Operations of product and disjoint sum can be defined in the natural way. In
defining disjoint sum we must take “copies” of the original systems to make sure that
the operation of replacement in the new system is well defined. We point out the fol-
lowing.

Proposition 3.2 If j : X � Y is a bijection and U is an ontology, then there is a
normal isomorphism U|X � U|Y.

Proof: Let (θ, j) : U|X → U|Y be defined byja = j|Ca andθa = ja.a for eacha ∈
U[ X]. Since j is injective, givenσ : Ca → V we can defineσ j = jσ.a ◦ σ ◦ ( ja)

−1.
Thus(θ, j) is a legitimate normal transformation, but so is the map(ϕ, i) : U|Y →
U|X, wherei = j−1 andϕb = ( j−1)b.b. Givena ∈ U[ X], b ∈ U[Y ] weclearly have
ϕθa = a andθϕb = b, henceU|X � U|Y . �

Corollary 3.3 Assume global choice. Then for every ontology U and cardinal κ

the form system U|κ is the unique, up to normal isomorphism, X-form system with
|X| = κ. In particular, if X is a proper class, then there is a normal isomorphism
U � U|X.
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In view of the representation theorem, form systems over setsX, Y of the same car-
dinality are normally isomorphic.

Weturn now to establishing a homomorphism theorem (Theorem3.4). Next we
prove existence of free systems (Theorem3.6, 3.9) for an appropriate notion of free-
dom (Definition3.5).

Theorem 3.4 (Homomorphism Theorem) Let θ : A → B be a standard transfor-
mation of systems over the class X of components and � a congruence on A such
that � ⊆ ker(θ), that is, a�a′ implies θa = θa′. Let A� be the quotient by � and
π : A → A� the standard epimorphism πa = [a]. Then there exists a unique standard
transformation θ̂ : A� → B such that θ̂ ◦ π = θ. Furthermore, θ̂ is an isomorphism
if and only if θ is surjective and � = ker(θ).

Proof: The transformation̂θ is simply defined bŷθ([a]) = θa. By the assumption
that� ⊆ ker(θ), θ̂ is well defined. Now suppose thatθ̂ : A�

∼= B. Then clearlyθ
must be surjective. Ifθa = θb, then θ̂([a]) = θ̂([b]), hence [a] = [b]: that is,a�b
holds. The converse is immediate, too. �
By a signature we mean, as in [2], a pair(
, α) where
 is a class and for eachω ∈

, αω is a set. However, for technical reasons we also need to consider here transfor-
mations of signatures, which we define by analogy to transformations for systems of
objects. Thus(θ, i) : (
, α) → (
′, α′) is a morphism of signatures ifθ : 
 → 
′ and
i = (iω)ω∈
 is a collection of mapsiω : αω → V such thatα′(θω) = {iωx|x ∈ αω}. A
standard morphism of signatures is a morphism(θ, i) whereiω = idαω. When(θ, i)
is standard we simply refer to it as the morphismθ : (
, α) → (
′, α′). Technically,
we have two distinct categories of signatures, depending upon what signature maps
we consider. We let SGN be the category of signatures with standard signature mor-
phisms and SGN* the category of signatures with the more general notion of map
described above. Similarly, we let ON be the category of ontologies with standard
ontology transformations and ON* the category of ontologies with the more general
notion of transformation.

3.1 Ontologies For a given signature(
, α), thesignature ontology U
 is defined
in [2] as the ontologyU
 = (
[V ], C, .) where

1. 
[V ] = {(ω, f )|ω ∈ 
 and f : αω → V},
2. C(ω, f ) = { f x|x ∈ αω} = rng( f ), and
3. σ.(ω, f ) = (ω, σ f ), if σ : rng( f ) → V .

Given any systemA = (A, C, S, .) of objects we may take(A, C) as its underlying
signature. We denote the mapA �→ (A, C) by |A |. Note that the map|.| acts on
transformations of systems too, delivering transformations of signatures (by just for-
getting properties about replacement). Specifying in our particular context the notion
of free objects we have the following.

Definition 3.5 An ontologyU in ON* is free over a signature (
, α) in SGN* if
there is a signature map(ϕ, i) : (
, α) → |U| such that for any ontologyU ′ and sig-
nature map(θ, j) : (
, α) → |U ′| there is a unique ontology transformation(θ̂, ĵ) :
U → U ′ such that(θ̂, ĵ) ◦ (ϕ, i) = (θ, j), similarly for U in ON and(
, α) in SGN,
in which case we restrict to standard morphisms.
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Theorem 3.6 (Free Ontologies) For every signature (
, α) there is an ontology U
free over (
, α).

Proof: We give the proof for the case where general ontology and signature mor-
phisms are considered. The proof for the restriction to standard transformations is
similar and simpler. Given(
, α), let U
 be the signature ontology and let(ϕ, i) :
(
, α) → |U
| be the mapjω = idαω andϕω = (ω, jω). Now letU be any ontol-
ogy and(θ, j) : (
, α) → |U| a signature map. Define the ontology transformation
(θ̂, ĵ) : U
 → U by ĵ(ω,σ) = jω, if σ = idαω and otherwise let̂j(ω,σ) = idrng(σ). De-

fine alsoσ ĵ : C(ϕω) → V by σ ĵ ◦ jω = σ, if σ �= idαω and otherwise letσ ĵ = idrng(σ).

Finally, defineθ̂(ω, σ) = σ ĵ.θω.
Verification that(θ̂, ĵ) is an ontology transformation is immediate and the equa-

tion (θ̂ϕ, ĵi) = (θ, j) is easily seen to hold. Uniqueness of the ontology transforma-
tion (θ̂, ĵ) with the prescribed property is also easy to see. �
By uniqueness of free objects, up to isomorphism when they exist, we can conclude
the following.

Corollary 3.7 The free ontologies over a signature (
, α) are exactly the ontolo-
gies isomorphic to the signature ontology U
.

Theorem 3.8 (Ontology Representation) For every ontology U there is a signa-
ture (
, α) and a congruence � on the signature ontology U
 such that there is a
standard isomorphism U ∼= U
,�.

Proof: U
,� is the quotient of the signature ontologyU
 when factored out by the
congruence�. For the proof, given an ontologyU = (U, C, .) let (
, α) be the
signature|U| = (U, C) andU
 the signature ontology. Since the identity is a mor-
phism(
, α) → |U| andU
 is free over(
, α) there must be a (unique) morphism
(θ̂, ĵ) : U
 → U. It is easy to see that this morphism is surjective. Let� = ker(θ̂).
By the homomorphism theorem (Theorem3.4) it follows thatU
,�

∼= U. It is also
clear that(θ̂, ĵ) is a standard morphism since both the identity(
, α) → |U| and the
morphism(ϕ, i) : (
, α) → |U
| are standard. �

3.2 Form systems We dealt with ontologies first because this case is quite sim-
ple. In this section we turn to considering form systems over some fixed classX.
Again, depending on what transformations we consider, we distinguish between the
categories X-FS, with standard transformations, and X-FS*, with the general notion
of transformation. To prove existence of free form systems and representation we re-
strict the class of signatures to theX-bounded signatures: that is, signatures(
, α)

such that for eachω ∈ 
, αω can be injected intoX. If A = (A, C, .) is a form sys-
tem overX, then its underlying signature|A | = (A, C) is obviouslyX-bounded. The
definition of what it means for a form system (overX) to be free over anX-bounded
signature(
, α) is completely analogous to Definition3.5. Without further ado we
state and prove the following theorem.

Theorem 3.9 (Free Form Systems) For every X-bounded signature (
, α), there
is an X-form system A free over (
, α).
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Proof: If (
, α) is X-bounded, we may in fact assume thatαω ⊆ X, for eachω ∈

, for if not, let iω : αω ↪→ X be the injections and consider the signature(
, α′),
whereα′ω = {iωx|x ∈ αω}. The two signatures are isomorphic and so we may as well
assume at the outset thatαω ⊆ X.

Given the signature(
, α), let U
 be the signature ontology free over(
, α)

and consider the restrictionU
|X. By a completely analogous argument to that in the
proof of Theorem3.6we can verify thatU
|X is free over theX-bounded signature
(
, α). �

Corollary 3.10 The free X-form systems over the X-bounded signature (
, α) are
exactly the systems isomorphic to the system U
|X.

Theorem 3.11 (Representation of Form Systems)For every X-form system A ,
there is an X-bounded signature (
, α) and a congruence � on the system U
|X
such that there is a standard isomorphism A ∼= (U
|X)�.

3.2.1 General systems of objects Wewill prove here directly a representation the-
orem without detouring through a proof of existence of free systems. We can define
a suitable notion of anS-bounded signature, for a partial monoidS, as asignature
(
, α) such that for everyω ∈ 
 the trivial replacement mapσ = idαω ∈ S. We can
then proceed, in principle at least, as we did for the case of ontologies and form sys-
tems and derive a result on free systems of objects over a givenS-bounded signature.
The interested reader might want to carry out the details. Here we constrain ourselves
to the following.

Theorem 3.12 (Representation of Systems of Objects)For every system A =
(A, C, S, .), there is a (in fact, an S-bounded) signature (
, α) and a congruence
� on the restriction U
|S such that there is a standard isomorphism A ∼= (U
|S)�.

Proof: GivenA , let |A | = (
, α) be its underlying signature(A, C) and consider
the restrictionU
|S of the signature ontologyU
. The universe of objects inU
|S
consists of pairs(a, σ), a ∈ A = 
 anddom(σ) = αa = Ca. Letπ : U
|S → A be the
mapπ(a, σ) = σ.a. Thenπ is a standard morphism. Satisfaction of the requirement
for components of Definition2.14is obviously satisfied since

C′(a, σ) = rng(σ) = {σx|x ∈ αa = Ca}.

Givenτ ∈ S with dom(τ) = rng(σ), π(τ.(a, σ)) = π(a, τσ) = τ.(σ.a). Hence a map
τi = τ exists such that the replacement requirement of Definition2.14is satisfied. In
fact τ is the unique such map since ifρ were another one it should satisfyiτ.a ◦ τ =
ρ ◦ ia. Given thatπ is a standard map, the components mapsia are identities and
therebyρ = τ.

Now clearlyπ is surjective, since for eacha ∈ A the pair(a, idCa) is in the uni-
verseU
[S] of the systemU
|S. Let then� = ker(π). By the homomorphism the-
orem (Theorem3.4) it follows thatπ is a standard isomorphismπ : A ∼= (U
|S)�.

�
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4 Summary We have developed a model for our pretheoretic intuitions of struc-
tured objects subject to change under permissible replacement of components. Our
notion of a system of objects generalizes that of a form system presented in [2]. We
approached the question of identity of objects through change describing the question
in an experimental-like language. The general idea is that objects are to be classified
as of the same type (abstractly identical) if they exhibit the same abstract behavior
under replacement experiments. We distinguished some notions of identity (≡,≈,

and∼) where≡ is a refinement of≈ and≈ a refinement of∼. Systems of objects
are themselves entities subject to change. We introduced a broad notion of permissi-
ble transformations that respects both components and replacement experiments. We
also investigated further restrictions on transformations that will guarantee that ab-
stract identity of objects is reflected. Systems of objects can be regarded asreplace-
ment algebras. It is natural then to raise some purely algebraic questions, such as the
question of representation, also raised in [2]. For ontologies and form systems we
obtained our representation results by essentially algebraic means, proving first, ex-
istence of free systems and a homomorphism theorem. A representation theorem for
form systems was first given in [2]. Our proof is different (and much shorter!). We
also generalized the result here to a representation for arbitrary systems of objects.
An essentially algebraic development for ontologies was also started in an appendix
in [2]. There, ontologies are regarded as some kind of many sorted algebras. We
have taken a much simpler approach here that, nevertheless, allows us to recapture
and strengthen results of [2].

NOTES

1. A very first draft of this paper was written some years ago while I was still a graduate
student. I have greatly benefited from discussions with Jon Barwise and have also had
the good fortune to discuss things with Peter Aczel and Rachel Lunnon. It was not until I
read Tzouvaras’s paper [9] that my interest in the subject was revitalized, even though the
direction taken in [9] isquite different from that taken here. This report is a completion
of these old notes of mine, written in the hope that it will contribute to the discussion on
formal theories of structured objects.

2. It goes without saying that we assume that the theory� is well behaved with respect
to the signature. In other words, a replacement theorem holds: if�

�
si = ti, then�

�

f (s1, . . . , sn) = f (t1, . . . , tn).

3. There are also some technical arguments for the local version, based on some simple
category-theoretic considerations, which we have omitted from this paper.

REFERENCES

[1] Aczel, P.,Non-Well-Founded Sets, CSLI Lecture Notes, vol. 14, Stanford University,
Stanford, 1988.Zbl 0668.04001 MR 89j:03039

http://www.emis.de/cgi-bin/MATH-item?0668.04001
http://www.ams.org/mathscinet-getitem?mr=89j:03039


80 CHRYSAFIS HARTONAS

[2] Aczel, P., “Replacement systems and the axiomatization of situation theory,” pp. 3–33 in
Situation Theory and its Applications, CSLI Lecture Notes, vol. 1, Stanford University,
Stanford, 1990.1, 1, 1, 2, 2, 2, 2, 2, 2.4, 3, 3, 3.1, 4, 4, 4, 4, 4

[3] Aczel, P., and N. Mendler, “A final coalgebra theorem,” pp. 357–65 inLecture Notes in
Computer Science, vol. 389, Springer-Verlag, Berlin, 1994.MR 91f:18001

[4] Aczel, P., and R. Lunnon, “Universes and parameters,” pp. 1–22 inSituation Theory
and its Applications, CSLI Lecture Notes, vol. 2, Stanford University, Stanford, 1991.
MR 1167607 2.15

[5] Barwise, J., “Notes on a model for situation theory,” preprint, 1989.1

[6] Barwise, J.,Admissible Sets and Structures, Springer-Verlag, Berlin, 1975.
Zbl 0316.02047 MR 54:12519

[7] Barwise, J., and J. Etchemendy,The Liar, Oxford University Press, Oxford, 1987.
Zbl 0678.03001 MR 88k:03009 1

[8] Lunnon, R.,Generalized Universes, Ph.D. Disssertation, University of Manchester,
Manchester, 1991.1, 2

[9] Tzouvaras, A., “Significant parts and identity of artifacts,”Notre Dame Journal of For-
mal Logic, vol. 34 (1993), pp. 445–52.Zbl 0795.03006 MR 94f:03037 1, 4, 4

[10] Westersthal, D., “Parametric types and propositions in first-order situation theory,”
pp. 98–117 inSituation Theory and its Applications, CSLI Lecture Notes, vol. 1, Stan-
ford University, Palo Alto, 1990.

[11] Williams, J. G.,Instantiation Theory, Lecture Notes in Artificial Intelligence, vol. 518,
Springer-Verlag, Berlin, 1991.Zbl 0785.68084 MR 94d:68093 2.2, 2.2, 2.8

University of Sussex at Brighton
School of Cognitive and Computing Sciences
Falmer, Brighton BN1 9QH
UNITED KINGDOM
email: hartonas@cogs.susx.ac.uk

http://www.ams.org/mathscinet-getitem?mr=91f:18001
http://www.ams.org/mathscinet-getitem?mr=1167607
http://www.emis.de/cgi-bin/MATH-item?0316.02047
http://www.ams.org/mathscinet-getitem?mr=54:12519
http://www.emis.de/cgi-bin/MATH-item?0678.03001
http://www.ams.org/mathscinet-getitem?mr=88k:03009
http://www.emis.de/cgi-bin/MATH-item?0795.03006
http://www.ams.org/mathscinet-getitem?mr=94f:03037
http://www.emis.de/cgi-bin/MATH-item?0785.68084
http://www.ams.org/mathscinet-getitem?mr=94d:68093
mailto: hartonas@cogs.susx.ac.uk

