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An Algebraic Theory of Structured Objects

CHRYSAFIS HARTONAS

Abstract We present an algebraic theory of structured objects based on and
generalizing Aczel's theory of form systems. Notions of identity of structured
objects and of transformations of systems of such objects are discussed. A gen-
eralization of Aczel's representation theorem is proven.

1 Introduction We develop an algebraic theory of structured objéastjfacts or
otherwise, well founded or not, based on and generalizing Aczel’s thefoyobys-
tems[2]. Aczel's theory, further developed by Lunnon in her doctoral thé&Jishas
been originally conceived as part of a long term project to provide a mathematical
framework forsituation theory and it has been, in fact, set to motion by an unpub-
lished papell] of Barwise, proposing a formal sketch of a model for situation theory.

Considerations from situation theory lead to a need to regard the objects of
the theory astructured objects, objects within which other objects may occur as
theircomponents. The component-of relation, generalizing the membership relation,
need not be well founded: in fact, applications of situation theory as in Barwise and
Etchemendy[]] would require an antifounded relation, allowing for objects that are
components of themselves. Aczel’s theory of form systems formalizes the intuitive
idea of a universe of structured objects, well founded (wf) or antifounded (af), under
an operation ofeplacement of components of an object by other objects.

We generalize Aczel's theory of form systems to the theory of what wesgsil|
tems of objects. What we have found missing in the original theory is (1) a discus-
sion of appropriate concepts ialentity of structured objects, (2) a study of adequate
notions oftransformations of systems of structured objects, and (3) some more re-
strained view orpermissible replacement maps. We take up these issues here, ex-
ploring natural alternatives to notions of identity of objects that arise by experiment-
ing with objects with the means available: namely, by replacement of components by
other components. Transformations of systems of objects, we insist, should respect
both replacement and components but they should also reflect identity of the abstract
behavior of objects under replacement experiments. Discussing these issues leads us
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to a pleasant algebraic theory of systems of structured objects. We prove existence of
free systems and derive from this a representation theorem that generalizes the rep-
resentation theorem dg].

As in [2] and unlike the direction taken iB]we do not seek to provide theory,
first-order or otherwise, of universes of structured objects. Rather we aim at model-
ing our pretheoretic intuitions about structured objects, their components, and change
they may undergo due to replacement of components, by describing a formal model,
some kind ofreplacement algebra that adequately reflects our basic intuitions.

2 Systemsof structured objects  To fix a context for discussion let us denote gy

the class of all objects of our metatheory. This may include sets, atoms, structured
physical objects, and whatever the reader’s ontological views allow for. For a struc-
tured objecta, we denote byCa the set of all objects that appear as components of
a. However, in different contexts different components m@psay be considered.

If o is a map defined on the componentsaofe write o.a for the object obtained,
intuitively speaking, by simultaneously replacing every compomeaita by ox. In

[2] aliberal view is taken, allowing for arbitrary replacements without imposing any
constraint that the objeetx replacingx as a component af must be of the “same
kind” as x. Thus, ifa happens to be a physical object thea may or may not be
physically realizable. Without assuming any preset notion of “sameness” we impose
some restrictions on permissible replacements, thus diverging from and generalizing
the approach ofg]. To make things more precise, let us suppose some givenXlass

of parts, or components.

Definition 2.1 A system of objects with parts from the clasX ( asystemover X)
is a structured = (A, C,, S,, .,) where (dropping the subscrigtfor simplicity)
1. Ais aclass of structured objects;
2. Cis the components map a4 is a subset oK for each objech € A,
3. Sis acollection of maps : Ca— X, wherea € A, with a partial composition
map (denoted by concatenation) and such that
(a) foreachae A,o € S if 0 : Ca— X, theno.ais also inA,
(b) for eacha € A, the identity mapd_, € S,
(c) ifo,Te S 1:C(0.a) > X, thento € S
and where
4. the replacement operatiopand the components mé&psatisfy the following
axioms:
(a) C(o.a) = {oX|x € Ca},
(b) if o =id,,, thenc.a= a,
(c) t.(c.a) =to.a,forallo,te So:Ca— X, t: Clo.a) > X
Membership of a replacement mapn the setSis thus our notion of germissible
replacement. Théorm systems over some clas¥ of [2] are exactly the systems of

objects overX whereSis the collection of all maps : Ca — X, forae A. An
ontology is defined in[P] as aform system over the clasé of all objects. We recall
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also from [P] that anelementary universe is a form systen? = (A, C, .) over the
classA. Some simple examples will help fix these ideas.

Example2.2 Thelnstantiation Systemsof [L1] are examples of systems of objects.
There, replacement maps are caliegtantiations, objects are referred to aerms,

and their components are taken from a\éat of items called variables. Some finite-
ness conditions are imposed [ which make instantiation systems a special case
of systems of objects.

Example2.3 Let T be a signature, that is to say, a set of operation symbols with
prescribed arities, and 18t be the set of all close®-terms. Ift = f(ty,...,tn),

for somen-aryf € %, then letCt = {t1,...,ty}. If 0 : Ct - T is a map, then let
ot= f(oty, ..., oty). Wemay let equality of terms be pure syntactic equality or else
assume an equational the@dyand declares =t just in case-, s=t. Depending on

our interest, we may allow for all possible replacements or impose restrictions. For
example, permissible replacement maps may be taken to be thesrsaph that for

anyt e dom(o) we havet = ot (which is more interesting when we interpret equality
ast, t=ot). Inany case.(o.t) = ro.t and the rest of the axioms also trivially hald.

Example2.4 Let HF be the set of well-founded, hereditarily finite sets, that is,
setss that are finite and such that every member of their transitive cloBofs) is
finite. In the cumulative hierarchy the well-founded, hereditarily finite sets are ex-
actly the sets of rank less than so thatHF = R(w). LetCs=sand X = HF. If

0 :Cs— X, theno.s= {oXx|x € s} € HF. This gives us an example of an elementary
universe in the sense @]}

Example2.5 Fora more mundane example, Bebe the set of all blocks in a Lego

toy that can possibly be formed out of a given collectlonf basic items of fixed
shapes and colors. In speaking of possible blocks we do not mean to refer to object-
types but rather to concrete particulars differentiated by the time interval of their ex-
istence. For example, suppose we form a block out of four pieces, then take it apart
and form an identical block with the same pieces again. At the moment, we count
these as two different objects. We will discuss the question of identity later.

Now if u is such a block we le€Cu C L be the set of basic items used in the
construction of the block. A replacement map is permissible only if it replaces a basic
item by another basic item of the same shape but not necessarily of the same color. If
o : Cu— L, theno.u has the obvious meaning.

Example2.6 To outline the boundaries of the theory we give a nonexample. Let
M be a proper class of atoms al( the class of all well-founded1-sets: namely,
sets with atoms fronM possibly occurring in their build-up. For avi-setslet Cs

be the set of atoms such thatx € sor there is some se&t € Tc(s) such thatx € S.

Now let X = V,, U M. Given a mag : Cs — X defineo.s by e-induction:

0.5={ox|x e SN M}U{o.S|S e sNV,,}.

This fails to be a form system or a system of objects in the sense of Defifitlbn
because the axiofi(o.S) = {ox|X € Cs} does not hold for any that assigns a pure
set to atoms irCs.
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Example2.Slis an example of a system of objects that is not a form system, in that
we have imposed restrictions on the permissible replacement maps. It justifies our
generalizing the theory of form systems to that of systems of objects in the sense of
Definition[Z2_1] Restrictions on replacement can be imposed by introducing an explicit
typing of objects and their components as well as of the replacement maps. Aninves-
tigation along these lines has been carried oUgJnThe approach we take abstracts
away from an awkward explicit typing but maintains the basic idea of not granting to
all possible replacement maps the status of a permissible map.

2.1 Identity and transformation ~ Suppose a given systefh Objects in4 change

as a result of replacement actions. On the other hand, we should be able to think of
the systen? itself as being transformed into some other system as a result of simul-
taneously transforming all objects in the system.

Example2.7 Suppose our system consists of all cars of a certain make and model.
Replacement of parts by parts of the same make results in another car of the same
make and model. Suppose, however, all cars of that make and model turn out to be
defective: their ignition systems involve a serious risk of fire with potentially life-
threatening consequences. A new part is manufactured and replacement of the old
part with the new is offered free of charge. Our system of objects has thus been trans-
formed.

To model our intuitions of structured objects we need to extend our treatment and
provide fortransformations of systems. There is a question, however, as to just what
alegitimate transformation should be when the subject is approached in the abstract.
This relates to an intricate question: that of the identity of objects through change due
to replacement actions. Some systems of objects have an intrinsic relation of identity.
For example, in the system of hereditarily finite sets (ExafglEidentity of objects

is pure extensional identity of sets. When either intensional objects or physical ob-
jects such as artifacts constitute the universe of a system of objects, identity is not a
straightforward issue. One option is to postulate some reld&iofidentity on the
system and then modify the presentation of a system so as to axiomatize the interac-
tion of identity and replacement. Another option, which is the one we take here, is to
classify various notions of identity that naturally arise in the system itself. What we
are concerned with can be, perhaps, better described in a pragmatic and experimental
language. Given a system of objects we can “experiment” with them with the means
that we have available: that is to say, by replacing components. What we would like
to have is some notion of an abstract behavior of an object through this experimenta-
tion. Roughly then, we can construe two objects as being of the same type, identical,
if they exhibit the same abstract behavior.

As it turns out there are different notions of identity we can formulate. We dis-
cuss two natural options below. To simplify the discussion we often avoid explicit
mention of what the domain of a replacement maap when this can be unambigu-
ously inferred from the context of the discussion. For example, in stating something
like Vo3t 0.a = t.b we really mean to say that for any permissibl@ith domain the
setCa, there exists a permissibtewith domainCb such thav.a = z.b.

By abstact identity of objects in a systefinve mean identity of the behaviors of
the objects under the operation of replacement. A general notion of abstract identity
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may be taken to be a binary relatienon A such that
a~ biff (Vo3ro.a~ r.bandvrdo o.a~ t.b). D

Call this double implication conditioll The intuition should be clear: two objects
aandb are to be deemed abstractly identical just in case every way to change one of
them by a permissible replacement of components can be matched by a way to change
the other, resulting again in abstractly identical objects. Note that identity of abstract
behaviors is thus dependent on the collectai available replacement experiments.

This concept of identity is very broad and it covers a number of particular cases.

Example2.8 In [11], two objectsa, b are deemed of the same type, denoted by
a~ bjust in case there exist instantiatiomsand r such thata = o.b andb = 7.a.
Identity is thus construed as the possibility for mutual reduction of each object to the
other by replacement of components. Assuming we have a broad notion of identity
~ satisfying conditioff] it isimmediate that ~ b impliesa ~ b, for any objectsa

andb.

There is a notion obisimilarity in the literature on process algebras of which our
concept of abstract identity is a generalization. Unfortunately, as process languages
cannot be described as systems of objects, we cannot make the connection clearer.

Obviously now, we cannot tak)(as adefinition of~ because of the circularity
involved. However, there is a standard way around this problem.

Definition 29 Let 4 andB be systems of objects (not necessarily over the same
class of components). A binary relatigh from Ato B is apre-identity if and only
if for anya € Aandb € B, a® b implies

1. Vo3t g.aR t.b, and
2. Vrido g.aR t.b.

Let 7 be the operator on binary relatiofsfrom A to B defined by
F(R) ={(a, b)|Yoatr 0.aRr.b andVr3o c.aRz.b}.

Then 7 is clearly monotone and a relatidhis a pre-identity justin casB C 7 (R).
Let ~ be the largest fixed point of. Explicitly,

~=|JIRS AxB|RS F(R)}.

Lemma2.10 Therelation ~ isa (in fact, the largest) pre-identity and it satisfies
condition[1]

Proof: That~ is a pre-identity follows from the way we constructed this relation.
For condition 1, the direction from left to right is straightforward. For the converse,
let R be the binary relation defined by

aRb iff Vo3t o.a ~ r.b andVvVtio o.a ~ t.b.

Itis enough to verify thaR s a pre-identity. So assunab holds. Givery, let z be
such that.a ~ 7.b. Then we have that for any/ there is some’ such that’'.(c.a) ~
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7’.(z.b). Conversely, for anyt’ we can findo’ such tha’'.(¢.a) ~ t’.(z.b). Thus
o.aRt.b holds by definition ofR. We may then conclude thaR is a pre-identity.
Hence~ satisfies condition 1. O

Identity as~ is a very broad notion and it is probably best to think of it as reflecting
structural similarity of objects. Objects that are identified~byeed not even have

the same components, and this is perhaps too liberal a notion of identity for many ex-
amples. Consider Examfed] It should be clear that the relation of equinumerosity

of (hereditarily finite) sets satisfies condition 1. In a sense then, it abstracts away too
much structure.

Wenow define a more stringent notion of abstract identity, requiring that identity
in the new sense implies that the two objects are built on the same set of components
(but of course not at the same time if temporal considerations are relevant to some
particular case, such as the Lego toy example). For our new notion of identity, de-
noted by=, we would like to have

a=biff Ca= CbandVo c.a=o.h. (2)

We call this condition 2. As this cannot be taken for a definition=gfwe proceed
again as we did for the relation.

Definition 2.11 Let.A4 andB be systems of objects. A binary relatidgnfrom Ato
B is acongruence if and only if awb implies thatCa = Cb and for allo, o.a¥o.b.

If G is the operator on binary relations frofto B such that
G(R) = {(a, b)| Ca= CbandVo c.aRo.b}

then clearlyG is monotone and a relatiol is a congruence just in caseC G(W).
We then let= be the largest fixed point af. Explicitly,

==Jivc AxBwC GW).

As for the relation~ we can verify (by similar argument) the following lemma.

Lemma?2.12 Therelation=isa (infact, the largest) congruencefrom Ato B and
a refinement of ~. Furthermore, it satisfies condition 2.

Toget some intuition on what sense of identity is captureetland= we return to the

Lego toy example (Examd@. There are two intuitive notions of abstract identity

we can have. We may say that temporal instances of the “same” object are to be iden-
tified. We alluded to that when we first described the example. Given some object
constructed from the basic itemsy, z, decompose the object and then recompose
“it” again at a different time, using exactly the same basic iteqng z. Regarding
objects strictly as particulars as we do, we are forced to see the two instances as dis-
tinct objects. This leaves us with the need for a notion of abstract identity that counts
the two instances as the same object.

The second intuitive notion of identity is that of two objects being copies of each
other. We may say that the blocksandb are copies of each other when they have
exactly the same structure and they are composed by basic items that are copies of
each other. Basic items are to be considered copies of each other if they have the same
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shape but not necessarily the same color (of course, we can change the convention and
require sameness of color as well).

Given the constraints we have imposed on replacement maps it should be clear
that the relation- formalizes the second intuitive notion of abstract identity, which is
probably better described as structural similarity. On the other kamaptures the
first, more stringent notion of identity.

There are some other options. If the systdm= (A, C, S,.) is a universe (a
system of objects oveh), then it is natural to consider a further notion of identity, in
between= and~.

Definition 2.13  Define arelatiorR C A x Ato be gpartial-identity if aRb implies

1. va' € Cadb’' e Cb a' Ry
Vb’ € Cbh3da’ e Caa’ Rb’

2. Yoar 0.aRt.b
VYtdo o.aRt.b

We may then let~ be the union of all partial identities and verify thratitself is a
partial identity. It is clear thas S~ C ~.

Wecan also relativize the definitions of pre-identity and congruence for arbitrary
systems to some given relatior= X x Y on components. Thus a pre-identity can
be defined as arelatioR C (AU X) x (BUY) such thaiRy if and only if xry and
then by requiring tha&Rb satisfies conditions similar to those of DefinitBi3 We
will not explore these notions further but perhaps they may be useful for potential
applications.

2.2 Transformations of systems of objects  Our concept of a permissible transfor-
mation of a systenfl (over some clasX) to asystem® (over some clas¥) must
reflect what we perceive to be important in the structure of systems of objects. Hence
transformations must be well behaved with respect to components and replacement
and they must reflect abstract identity of objects. We do not require that transfor-
mations should only be allowed for systems over saime class of components as

this seems to be an undue restriction. This complicates the question of specifying
what a transformation should be, since we must provide both agntepng an ob-

jecta e Ato some objecfa € B as well as a map that changes components fxom

to such fromY. There is the option of doing the latter globally, by assuming a map

i : X =Y, orlocally, by assuming a family of mapg, one for each objed € A,

such thai, : C,a — Y. Asthe global option is a special case of the pointwise op-
tion (take the restrictioi, = i|ca) we prefer first to describe the general notion of
atransformatior?. The most significant difference between the two views is that in
the global viewi is taken to be a function fronx to Y while in the local view it is a
relationi C X x Y allowing for the same component to be changed in different ways
depending on the object of which it is a component.

Definition 2.14 A transformation (homomorphism) of systems of objects =
(A,C,.S,,.,) > B=(B,C,. S, .;), over classeX andY, respectively, is a pair
(0,1) such that : A— Bandi is a family of maps = (ia)aca, Whereiz : C,a— Y
and the following hold:
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1. preservation of componentS;, (a) = ia(C,a) = {ia(X)| x € C,a},
2. fc_)r eachae Aandmap € S,, o: CAa—> X, there is a unique maqﬂ SIS
o' : Cy(ha) — Y satisfyingisa oo =o' oiy, and

3. preservation of replacemeraf:.B(ea) = 6(0.,a).
Compositiona- 23 8% Y ¢ is defined by(g, |) o (6.1) = (46, ji), where(ji)a =
jea ola.
The conditions of preservation of components and of replacement should be intu-
itively clear. The second condition is a technical requirement as we need to make
sure that components are changed in a coherent way.

Remark 2.15 Our definition of a legitimate transformation imposes strong restric-
tions. Itis justified by our desire to investigate transformations that respect both com-
ponents and replacement while also reflecting abstract identity of objects. There are,
of course, contexts where the objectives may be different. For example, intuitively
every replacement mapmay be thought of as inducing a transformation of a system
of objects. Given a system of objects ovéconsider all mapg, wheredom(r) is
asubset ofX. Given an object, let r.a = 7|5.a where

X = ax if xe dom(zx) N Ca
TaX=1 if x e Ca\ dom(m)

For the purpose of this remark we may drop the restriction to permissible maps. Then
we can think ofr as inducing a transformation of the systeimz : 4 — B, where

B = {m.ala € A} and the replacement operation and component mafsaire & in

A. The transformation is the pairr, ), wherer is once viewed as a map acting on
objects and then also as a map changing compomeats = (r]3)aca. Preserva-

tion of components is no problem, but an arbitrary replacement:mapl fail, in
general, our definition of a legitimate transformation since we will not be able to find
the unique map' required in the definition. We may relax requirements as follows.
Given an arbitrary objed and a replacement map: Ca — X, call x compatible

with ¢ if and only if

VX, y € Canx=ny=— n(oX) = n(ay).

Givena ando the assumption of compatibility implies that there exists a mlags
required in our definition. Simply let' : C(;r.a) — X be the mapr' (7x) = 7 (0X).

It may be of interest to relax the definition of a legitimate transformation by mak-
ing preservation of replacement depend on some compatibility condition. This ap-
proach is taken irlg]. We will maintain here the requirement for strict preservation of
replacement for two reasons. First, replacement is the backbone of the structures we
have called systems of objects. The components map is secondary and it arises only
because we regard replacement maps concretely as functions. The abstract structure
of a system of objects consists in some monoid-likessdtitems we call replacement
maps and an action &to a setA of structured object§ x A— A. If anything is to
be preserved then it seems that this should be the action of replacement.
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Second, there is no compelling reason why we should want to model our notion
of transformation on the behavior of replacement maps when considered as transfor-
mations. The functional behavior of replacement maps in the way components are
changed is not always desirable as our next example demonstrates.

Example2.16 Consider a collection of human individuals, the citizens of an imag-
inary state, a fixed set of tasks to be accomplished, and committees formed to under-
take these tasks. The structured objects we consider are all the possible committees
that can be formed for the given set of tasks. The components map delivers the set
of individuals making up a committee. Membership of an individual on a committee
changes over time for various reasons. We assume that every citizen is eligible for
membership on any committee and thus all replacement maps are permissible. Sup-
pose Charles Smith is on the committee for energy preservation and protection of the
environment and that he wishes to resign from both. After replacing Smith on these
two committees we have a new system of committees. In the global view of transfor-
mations of systems of objects, Smith should be replaced bgatie individual on

both committees. This, however, seems to be unduly restrictive, and hence, there is
potential usefulness in considering the more general class of transformations we have
described in Definitiof2.14]

Wehave gone a good way toward satisfying our requirements since the maps we have
described as legitimate transformations are well behaved with respect to both compo-
nents and replacement. We would also like for a legitimate transformatmreflect
identity of abstract behavior of objects in the sense that for any two olgieats A,

pa = 6a’ only if aanda’ are abstractly identical. This is a minimal criterion by which
transformations respect identity of objects. The reason for the failure of reflecting
identities is that the second condition in the definition is too weak. We strengthen it
in the following definition.

Definition 2.17  (6,1) : A — Bis afull transformation if it satisfies the conditions
of DefinitionP.14land, in addition, the following holds:

for all replacement mapse S,, if p: C,(fa) — Y for somea € A,
then there is some replacement map S, such thatr : C,a — X
andp.,(ba) = 6(o.,a).

Of course, in the light of the other conditions on transformations this is equivalent to
saying that every replacement mag S,, defined on the components of an object

of the forméa in B, is of the formo', for someos € S,. In other words, in trans-
forming a system of objects abstract identity is reflected provided that in the system
{paja € A} no “new” experiments have been added. Every replacement experiment
onda s the reflection of some replacement experimenaonhough strong, the re-
quirement seems to be natural.

Lemma?2.18 Full transformations respect abstract identity in the sense that 6a =
b onlyifa~ b.

Proof:  Itis enough to show that the relatiétdefined byaRbif and only ifba = 6b
is a pre-identity. SupposeRb and lets : Ca— X. Thend(o.a) = ¢'.(0a) = ¢'.(6b).
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Leto' = p. Sinced is full, there is a replacement map Cb — X such thaip = 7'
Thus,f(c.a) = p.(Ab) = 6(z.b), hences.aRz.b. O

The refinemeng& of ~ is not necessarily respected even by full transformations. If
for certain applications= is our desired notion of identity of abstract behavior then
further restrictions need to be imposed.

Definition 219  (6,1) : A — Bis anormal transformation if it satisfies the condi-
tions of Definition2.14land, in additionij is an injective function : X < Y.

Lemma2.20 Normal transformations reflect =-identity of objects.

Proof: It is enough to show that the relatidddefined byaRb if and only if fa =
6b is a congruence. Wa = 6b, thenC(fa) = {ix|x € Ca} = {iy|y € Cb} = C(6b).
Sincei is an injectionCa = Cb follows. If 0 : Ca — X, let 7 = o and observe that
f(o.a) = 6(o.b), hence we may conclude thataRz.b holds. Thusa = b. O

When restricting to systems over the same chsd components it is useful to con-
sider a special class of transformations defined below.

Definition 2.21 A standard transformatiord — B of systems over the same class
X is a transformationig, i) wherei, = idc, for eacha € A.

When referring to standard transformations we will not mention theirtgipcei, =
idca) and will regard it simply as a map: 4 — B.

Lemma?2.22 Sandard transformations reflect =-identity of objects.

3 Representation of systems of objects We develop in this section the algebraic
theory of systems of objects, concluding with the Representation Theorem (Theorem
for systems of objects over some fixed classWe show that every system is
isomorphic to a quotient of a restriction of a free ontology. We discuss first the oper-
ations of restriction and quotient. To make use of quotients we establish a Homomor-
phism Theorem (Theoref4). We then turn to proving existence of free ontologies
and form systems thus leading to our representation theorems.

Wewill have use of twapperations of restriction. The simplest one is to restrict
to a classX of components, introduced i]l This operation will be very useful in
the proof of the Representation Theorem for Form Systems (Théatein If 4 is a
system over the class of components then the restrictidtjY to a subclasy C X
is the new system with universe of obje@gY] = {a € A|Ca C Y} and permissi-
ble replacement mapgY] = {0 € So C Y x Y}. The components map and the
replacement operation are the obvious restrictions of the corresponding mdps in
In particular, we will have use of the restriction @itologies. that is, form systems
(all replacement maps are permissible) over the dlaskall objects.

For the second restriction operation define firgaatial monoid of functions
as a set of functions : dom(os) — V such that ifr, 0 € Sanddom(t) = rng(o),
thento € S. Furthermore, for eaclh € S, both the left and the right identities
iddom(g), idmg(g) are inS.

Given a systerd = (A, C, S,, .) and a partial monoi® C S, let 4|Sbe the
system with
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1. universe of objectdl[§ = {a € Alidca € S},
2. components maf ,a = Ca, and
3. replacement..a = o.a.

For representation purposes we will be interested only in restricfi&f ontolo-
gies to partial monoids.

Quotient systems are systems obtained by factoring out by congruences (Defini-
tionP_17). Since systems may be large—their universes may be proper classes—we
need to make sure that we have available some form of a quotient existence principle.
Thus we assume global choice, which allows us to pick representatives from possi-
bly proper classes of congruent objectsAlis a system of objects over some class
X and® is a congruence oA we let [a]g (or simply [a] when no confusion is pos-
sible) be a representative of the congruence claas 8incea®b impliesCa = Cb,
we may letC[a] = Ca. Furthermore, sinca®b implies thato.a®o.b, for any per-
missible replacement map: Ca — X, the replacement operation can be defined by
o.[@] = [o.a]. Strictly speaking, quotient systems are not unique. However, unique-
ness up to isomorphism can be established.

Proposition 3.1 Let 4 bea systemand ® a congruenceon A. Let [.] and [.]’ be
choice functions selecting representatives of the congruence classes. Let Ag and
(Ap)’ be the two quotient systems obtained. Then the standard transformation ¢ :
A — (Ag)’ isan isomorphism, where ¢([a]) = [a]'.

Proof:  The only interesting point is preservation of replacement. However, given
o:C[a] — X, leto' = o and observe that

p(ofa]) = ¢([o.a]) =[0.8]" = o.[a] = o.p([a]).

The rest is immediate. O

In the sequel we will feel free to refer the quotient systenflg since any two such
systems are isomorphic.

Operations of product and disjoint sum can be defined in the natural way. In
defining disjoint sum we must take “copies” of the original systems to make sure that
the operation of replacement in the new system is well defined. We point out the fol-
lowing.

Proposition 3.2 If j : X ~ Y isa bijection and U is an ontology, then there is a
normal isomorphism U| X >~ U|Y.

Proof: Let (0, j): U|X — U|Y be defined byj5 = j|ca andfa = jy.aforeachace
U[X]. Since] is injective, giverns : Ca— V we can defingl = j,5000 (ja) %
Thus (6, |) is a legitimate normal transformation, but so is the noap) : U|Y —
U|IX, wherei = j~tandgb = (j~1)p.b. Givena e U[X], b € U[Y] weclearly have
pha = aandbpb = b, henceU| X >~ U|Y. O

Corollary 3.3 Assume global choice. Then for every ontology U and cardinal «
the form system U|« is the unique, up to normal isomorphism, X-form system with
|X| = k. In particular, if X isa proper class, then there is a normal isomorphism
U~ UX.
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In view of the representation theorem, form systems over$g¥sof the same car-
dinality are normally isomorphic.

We turn now to establishing a homomorphism theorem (Thedeiin Next we
prove existence of free systems (Theof@#l[3.9) for an appropriate notion of free-
dom (Definition3.5.

Theorem 3.4 (Homomorphism Theorem) Let 6 : 4 — ‘B be a standard transfor-
mation of systems over the class X of components and ® a congruence on A such
that ® C ker (0), that is, a®a’ implies fa = 6a’. Let Ay be the quotient by ® and
. A — Ag thestandard epi morphismna [a]. Thenthereexi stsaunlque standard
transformation 6 : 4g — B such that 6 o = = 6. Furthermore, 6 isan isomor phism
if and only if 6 is surjective and ® = ker (9).

Proof: The transformatio is simply defined by([a]) = #a. By the assumption
that® C ker (6), 0 is well defined. Now suppose that 4, = B. Then clearlyy
must be surjective. Ia = 6b, thenéd([a]) = 6([b]), hence [a] = [b]: that is,a®b
holds. The converse is immediate, too. O

By asignature we mean, as i), a pair (2, ) whereQ is a class and for each €

Q, awis aset. However, for technical reasons we also need to consider here transfor-
mations of signatures, which we define by analogy to transformations for systems of
objects. Thusgo,i) : (2, «) — (', &’) isamorphism of signaturesdf. @ — Q" and

i = (in)weq is acollection of maps, : aw — V such thatr' (Ow) = {i,X|X € aw}. A
standard morphism of signatures is a morphigm i) wherei,, = idy,. When(9, i)

is standard we simply refer to it as the morphi8m(2, o) — (', &’). Technically,

we have two distinct categories of signatures, depending upon what signature maps
we consider. We let &N be the category of signatures with standard signature mor-
phisms and 8N* the category of signatures with the more general notion of map
described above. Similarly, we letNCbe the category of ontologies with standard
ontology transformations andN® the category of ontologies with the more general
notion of transformation.

3.1 Ontologies For a given signaturé, «), thesignature ontology U, is defined
in [l as the ontologyl, = (Q[V], C, .) where

1. Q[V]={(w, Hwe Qandf:aw — V},
2. C(w, ) ={fx|x € aw} =rng(f), and
3. o(w, f)=(w,0f),ifo:rng(f) - V.

Given any systenl = (A, C, S, .) of objects we may takéA, C) as its underlying
signature. We denote the mapr— (A, C) by |4|. Note that the maj.| acts on
transformations of systems too, delivering transformations of signatures (by just for-
getting properties about replacement). Specifying in our particular context the notion
of free objects we have the following.

Definition 3.5 An ontology U in ON* is free over a signature (2, @) in SGN* if
there is a signature map, i) : (2, «) — |U| such that for any ontolog¥/’ and S|g-
nature mago, j) : (8, a) > || there is a unique ontology transformatici DE
U — U such that®, j) (p,1) = (6, ), similarly for ¢/ in ON and(£2, «) in SGN,
in which case we restrict to standard morphisms.
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Theorem 3.6 (Free Ontologies) For every signature (€2, «) thereisan ontology U
freeover (2, o).

Proof: We give the proof for the case where general ontology and signature mor-
phisms are considered. The proof for the restriction to standard transformations is
similar and simpler. Given<2, «), let U, be the signature ontology and lgt, i) :

(2, o) — |Ug| be the mapj, = idy, andpw = (w, j,). Now let U be any ontol-

ogy. and@, j) : (R, a) — |U| asignature map. Define the ontology transformation
0, j) ‘UQ — Uby | j(w o) = jw, if o =idy, and otherwise Iet(w o) = |dmg((,) De-

fine alsao! : Clpw) = V by olo jo = o, if 0 # idy, and otherwise et = irng(o) -

Finally, defined(w, o) = o bo.

Ver|f|cat|on that(@, |) is an ontology transformation is immediate and the equa-
tion (Ggp, ji) = (0, j) is easily seen to hold. Uniqueness of the ontology transforma-
tion (6, |) with the prescribed property is also easy to see. O

By uniqueness of free objects, up to isomorphism when they exist, we can conclude
the following.

Corollary 3.7 The free ontologies over a signature (2, «) are exactly the ontolo-
gies isomorphic to the signature ontology U,.

Theorem 3.8 (Ontology Representation) For every ontology U there is a signa-
ture (2, o) and a congruence ® on the signature ontology U, such that thereisa
standard isomorphism U = Ug .

Proof: Ug e is the quotient of the signature ontolo@l, when factored out by the
congruenced®. For the proof, given an ontolog¥l = (U, C,.) let (2, «) be the
signaturg | = (U, C) and U, the signature ontology. Since the identity is a mor-
phlsm(Q a) — |U| andUg is free over(L2, «) there must be a (unique) morphlsm
(9 j) Ua — U. Itiseasy to see that this morphism is surjective. et ker(@)

By the homomorphism theorem (Theorm) it follows that 7, ¢ = U. Itisalso
clear that(, |) is a standard morphism since both the identity ) — |7/| and the
morphism(g, i) : (R, o) — |Ug| are standard. O

3.2 Form systems  We dealt with ontologies first because this case is quite sim-
ple. In this section we turn to considering form systems over some fixed Xlass
Again, depending on what transformations we consider, we distinguish between the
categories X-B, with standard transformations, and >X&#-with the general notion

of transformation. To prove existence of free form systems and representation we re-
strict the class of signatures to tbebounded signatures: that is, signaturéR, o)

such that for each € , aw can be injected intX. If 4 = (A, C,.) is a form sys-

tem overX, then its underlying signatutel| = (A, C) is obviouslyX-bounded. The
definition of what it means for a form system (ow€yto be free over anX-bounded
signature(R2, o) is completely analogous to Definitifh3 Without further ado we

state and prove the following theorem.

Theorem 3.9 (Free Form Systems) For every X-bounded signature (2, ), there
isan X-form system A4 free over (2, «).
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Proof: If (2, @) is X-bounded, we may in fact assume that C X, for eachw €
Q, for if not, leti, : aw < X be the injections and consider the signat@ «’),
wherea’w = {i,X|X € aw}. The two signatures are isomorphic and so we may as well
assume at the outset thab C X.

Given the signaturéS, o), let Ug be the signature ontology free ovee, o)
and consider the restrictictig| X. By a mmpletely analogous argument to that in the
proof of Theoren.6lwe can verify thatll,| X is free over theX-bounded signature
(2, a). U

Corollary 3.10 Thefree X-form systems over the X-bounded signature (2, «) are
exactly the systems isomor phic to the system U | X.

Theorem 3.11 (Representation of Form Systems)yor every X-form system A4,
there is an X-bounded signature (2, «) and a congruence ® on the system Uq| X
such that thereis a standard isomorphism 4 = (Ug | X)e.

3.2.1 General systemsof objects We will prove here directly a representation the-
orem without detouring through a proof of existence of free systems. We can define
a suitable notion of ars-bounded signature, for a partial mondslas asignature

(2, @) such that for everw e Q the trivial replacement map =id,,, € S. We can

then proceed, in principle at least, as we did for the case of ontologies and form sys-
tems and derive a result on free systems of objects over a §beunded signature.

The interested reader might want to carry out the details. Here we constrain ourselves
to the following.

Theorem 3.12 (Representation of Systems of Objectsfor every system 4 =
(A,C, S ), thereisa (in fact, an Sbounded) signature (2, @) and a congruence
©® ontherestriction Ug | Ssuch that thereis a standard isomorphism 4 = (Ug|S)e .-

Proof: GivenA, let|A4] = (22, a) be its underlying signatureA, C) and consider
the restrictionli | S of the signature ontolog¥l,. The universe of objects ifilg|S
consists of pair¢éa, 0),ae A= Qanddom(c) = ea= Ca. Letxr: Ugy|S— A bethe
mapr(a, o) = o.a. Thenx is a standard morphism. Satisfaction of the requirement
for components of Definitid®_14lis obviously satisfied since

C'(a,0) =rng(o) = {oX|x € aa= Ca}.

Givent € Swithdom(t) =rng(o), n(t.(a, o)) = n(a, To) = t.(0.a). Hence amap
7' = r exists such that the replacement requirement of Defirfiiadls satisfied. In
fact t is the unigue such map sincedfwere another one it should satisfy, o 7 =
p olia. Given thatr is a standard map, the components miapare identities and
therebyp = .

Now clearlyr is surjective, since for eache Athe pair(a, idcy) is in the uni-
verselq[ 9 of the systenti|S. Let then® = ker (7). By the homomorphism the-
orem (Theorerf8.4] it follows thatr is a standard isomorphism: 4 = (Ug|S)e.

O
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4 Summary We have developed a model for our pretheoretic intuitions of struc-
tured objects subject to change under permissible replacement of components. Our
notion of a system of objects generalizes that of a form system preseni&gd Vig
approached the question of identity of objects through change describing the question
in an experimental-like language. The general idea is that objects are to be classified
as of the same type (abstractly identical) if they exhibit the same abstract behavior
under replacement experiments. We distinguished some notions of idesatity, (
and~) where= is a refinement ok and~ arefinement of~. Systems of objects

are themselves entities subject to change. We introduced a broad notion of permissi-
ble transformations that respects both components and replacement experiments. We
also investigated further restrictions on transformations that will guarantee that ab-
stract identity of objects is reflected. Systems of objects can be regardeuars-

ment algebras. It is matural then to raise some purely algebraic questions, such as the
question of representation, also raisedZh [For ontologies and form systems we
obtained our representation results by essentially algebraic means, proving first, ex-
istence of free systems and a homomorphism theorem. A representation theorem for
form systems was first given i]. Our proof is different (and much shorter!). We

also generalized the result here to a representation for arbitrary systems of objects.
An essentially algebraic development for ontologies was also started in an appendix
in [2] There, ontologies are regarded as some kind of many sorted algebras. We
have taken a much simpler approach here that, nevertheless, allows us to recapture
and strengthen results @[

NOTES

1. A very first draft of this paper was written some years ago while | was still a graduate
student. | have greatly benefited from discussions with Jon Barwise and have also had
the good fortune to discuss things with Peter Aczel and Rachel Lunnon. It was not until |
read Tzouvaras's pap&fthat my interestin the subject was revitalized, even though the
direction taken inl§] i s quite different from that taken here. This report is a completion
of these old notes of mine, written in the hope that it will contribute to the discussion on
formal theories of structured objects.

2. It goes without saying that we assume that the thédig well behaved with respect
to the signature. In other words, a replacement theorem holds; § = t;, thenk
f(Sl""aSﬂ) = f(tl,---»tn)-

3. There are also some technical arguments for the local version, based on some simple
category-theoretic considerations, which we have omitted from this paper.
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