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The Numerical Syllogism and
Existential Presupposition

WALLACE A. MURPHREE

Abstract The paper presents a numerical interpretation of the quantifiers of
traditional categorical propositions and then offers a generalization to accom-
modate all other numerical values. Next, it considers the implications possible
on the basis of both minimum and maximum existential presuppositions; and
finally, it shows that every pair of categorical premises yields multiple conclu-
sions when appropriate minimum and maximum presuppositions are made for
the terms of the premises.

1 Introduction When its quantifiers are interpreted numerically, the assertions pos-
sible in categorical logic are increased ad infinitum; then, from each valid, traditional
syllogistic form an endless number of numerically different inferences can be made.
For example, one such expansion of Barbara is:

At least all but 5 M’s are P
At least all but 4 S’s are M
At least all but 9 S’s are P.

Furthermore, the expanded quantifiers present the potential for countless additional
inferences based on diverse minimum and maximum existential presupposition. For
example, on the minimum presupposition that there exist at least eleven S’s (S ≥ 11),
the numerical premises above also entail an additional conclusion:

At least 2 S’s are P.

And on the maximum presupposition that there exist at most nine M’s (M ≤ 9), the
following numerical instance of III, Fig. 1, is valid as well:

At least 7 M’s are P
At least 5 S’s are M
At least 3 S’s are P.

This paper probes the limits of this numerically expanded logic, and in so doing it
discloses a vast expanse of validity hitherto unclaimed for syllogistic reasoning. In
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fact, it shows that every pair of syllogistic premises yields multiple conclusions when
appropriate minimum and maximum presuppositions are strategically combined.

In [2] and [3] I worked out the system of numerically expanded quantifiers and
noted its possibility for further inferences based on minimum presupposition; how-
ever, in these I failed to consider maximum presupposition which, it turns out, is the
key that unlocks the full potential of the logic.

In the first part of this paper I present the numerically expanded propositions.
Here I summarize equivalences and distribution patterns before turning to the cru-
cial topic of implications based on minimum, maximum, and combined existential
presuppositions. Then in the second part I present the expanded syllogistic argument
forms. I advance necessary criteria of validity for inferences based on numerically
expanded propositions themselves, before commencing the principal project of de-
riving the various conclusions based on existential presupposition.

2 Basics of the numerical proposition Perhaps the most straightforward route
into the numerically expanded syllogism begins by recasting the traditional proposi-
tions to make their implicit structure more pronounced. For the particulars this only
amounts to adopting alternative expressions that already are in common usage, viz.,
“Some S’s are P” becomes “At least one S is P,” and “Some S’s are not P” becomes
“At least one S is not P.”

The E proposition deviates just a bit more: “No S’s are P” is rendered as, “At
most zero S’s are P.” Here the substitution of “zero” for “no” should not be problem-
atic, but it might be suggested that the qualifier should be “exactly,” rather than “at
most,” if indeed a qualifier is needed at all. However, “Exactly zero S’s are P” trans-
lates into the conjunction,

At least zero S’s are P and at most zero S’s are P

and since “At least zero S’s are P” is vacuous (for it holds for every S and P whatever),
it is “At most zero S’s are P” which is the significant conjunct. In fact, it is precisely
because the “at least. . .” alternative is vacuous that the “at most.. .” qualifier is not
needed for ordinary expressions of this form. Accordingly, the addition of “at most”
simply serves to make explicit a qualification that goes without saying in the econ-
omy of natural language; and with this having been made explicit, the E proposition
exhibits a structure that it shares with other assertions whose qualifications do not go
without saying.

Finally, the traditional “All S’s are P” is rendered as “At least all but zero S’s are
P.” Here again, the addition of “at least. . .” and “.. .but zero” only makes explicit what
goes without saying in this case: that is, an indicated quantity might be “all but ten”
or “all but five,” and so on, but when “all” occurs without an exception specified, it is
understood to carry the exception of zero, and the above rendition simply states this
in the open. Moreover, “All (but zero) S’s are P” is also understood to mean “at least
all. . .” since the alternative, “At most all (but zero) S’s are P,” like “At least zero S’s
are P,” is vacuous.

So again, the above rendition of “All S’s are P” does not change its meaning.
Rather, it makes explicit the qualification (at least) and exception (zero) that are un-
derstood in this case, and with these having been made explicit, the A proposition
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exhibits a structure that it shares with other claims whose qualifications and excep-
tions require articulation.

Now each proposition so rendered can be symbolized by prefixing the appropri-
ate numeral to its traditional symbolization as follows:

Traditional Expanded
Symbolization Rendition

SAP = 0SAP = At least all but 0 S’s are P
SEP = 0SEP = At most 0 S’s are P
SIP = 1SIP = At least 1 S is P
SOP = 1SOP = At least 1 S is not P

The numerical prefix indicates what will be called the “exception” of each proposition
(even though it is only the A proposition that is clearly worded in an exceptive fashion
here), and different propositions can be formed by altering the numerical value of the
exceptions, such as:

7SAP = At least all but 7 S’s are P
44SEP = At most 44 S’s are P
567SIP = At least 567 S’s are P

1000SOP = At least 1000 S’s are not P
When values for the exceptions are not specified, the general types of propositions
can be indicated as:

xSAP = At least all but x S’s are P
xSEP = At most x S’s are P
xSIP = At least x S’s are P
xSOP = At least x S’s are not P

(Alternatively, xSOP might be phrased as “At most all but x S’s are P,” as it is in [2]
and [3].)

Perhaps it should be noted at this point that propositions of the same quantity and
quality are stronger or weaker than one another according to their exception values.
For example, “At least all but zero S’s are P” (0SAP) is a stronger claim than “At
least all but one S’s are P” (1SAP), and as the exceptions are increased these claims
become weaker. On the other hand, “At least one S is P” (1SIP) is a weaker claim
than “At least two S’s are P” (2SIP), and as the exceptions are increased these claims
become stronger. Furthermore, the stronger claims always imply the weaker ones:

−→−→−→ progressively weaker claims −→−→−→
0SAP implies 1SAP implies 2SAP implies 3SAP...etc.
0SEP implies 1SEP implies 2SEP implies 3SEP...etc.

−→−→−→ progressively weaker claims −→−→−→
4SIP implies 3SIP implies 2SIP implies 1SIP...etc.
4SOP implies 3SOP implies 2SOP implies 1SOP...etc.

(It was mentioned earlier that 0SIP is vacuous and, of course, so is 0SOP; hence they
are necessarily true, and are therefore implied by every proposition. And the same is
case for −1SIP, −2SOP, and so on, if they are admissible at all.) Now, other than for
the value of the exceptions, the numerically expanded forms are like the traditional
ones.
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2.1 Equivalences and distribution First of all, the immediate inferences are the
same, as is recorded below where the expressions equivalent to the original ones are
set in boldface. That is, for any exception x, the converse of the E and I, the con-
trapositive of the A and O, and the obverse of all four are equivalent to the original
forms.

Original Conversion(Cv) Obversion(Ob) Contraposition(Cp)
xSAP xPAS xSEP xPAS
xSEP xPES xSAP xPES
xSIP xPIS xSOP xPIS
xSOP xPOS xSIP xPOS

Also, the distribution values of the terms are the same: that is, the subject of the uni-
versals (if they might still be so called, even with nonzero exceptions), and the predi-
cates of the negatives remain distributed, while the others remain undistributed. (See
[3] and [4] for more thorough treatments of distribution values of exceptive proposi-
tions.)

2.2 Existential import On the Boolean interpretation, particulars are considered
inherently existential while universals are not, although the latter are considered capa-
ble of being existential by presupposition. It is this basic interpretation—generalized
to cover the expanded propositions—that is required for the logic below. According
to the generalized Boolean view, particulars with an exception of x (xSIP and xSOP)
are inherently existential “to the magnitude of x”; that is, they entail that at least x S’s
exist, while universals (xSAP and xSEP) remain nonexistential except by presuppo-
sition. This generalization follows from the contention that

1. a statement is inherently existential to the magnitude of x if and only if
the existence of at least x S’s is a precondition for the statements truth,

together with the observation that

2. the existence of at least x S’s is a precondition for the truth of xSIP
and xSOP, but xSAP and xSEP are compatible with the existence of
any number of S’s whatever.

That is, a particular statement, such as “At least x S’s are P” is true if and only if x
or more S’s are P in fact: that is, when and only when fewer than x S’s are P is the
statement false. Accordingly, to assert “At least x S’s are P” is tacitly to assert also
that there exist at least x S’s, for it is only under this existential condition that it is
possible for the asserted statement to be true. And the same holds for xSOP, since it
is equivalent to xSIP.

On the other hand, a universal statement, such as “At most x S’s are P” (xSEP)
is true if and only if x or fewer S’s are P in fact. Accordingly, to assert that at most
x S’s are P is not tacitly to assert that there exist at least x S’s, for it can be—indeed,
it will be—true if only x − 1, x − 2, and so on, or zero S’s exist. The same holds for
xSAP, since it is equivalent to xSEP.

Incidentally, Englebretsen [1] rejects the Boolean perspective at this point by
arguing that SAP is inherently existential, while SEP is not, and since the presenta-
tion below proceeds from the Boolean perspective, the claims made of SAP will not
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be meaningful to any who read them through Englebretsen’s eyes. However, since
the Boolean view takes the A-form to be perfectly equivalent to and, hence, logically
interchangeable with, its obverse E-form, the impasse can be averted: those who sub-
scribe to Englebretsen’s view can simply read the A-form by its obverse expression.
Then, for example, the expansion of Barbara given in the introduction, viz.,

At least all but 5 M’s are P
At least all but 4 S’s are M
At least all but 9 S’s are P,

would be read as

At most 5 M’s are nonP
At most 4 S’s are nonM
At most 9 M’s are nonP;

and with the systematic application of this procedure, each point presented from the
Boolean perspective will hold from Englebretsen’s perspective as well. But clearly,
there is no similar accommodation possible for those who reject the Boolean perspec-
tive in favor of the Aristotelian view, since the latter interprets both affirmative and
negative universals as being inherently existential.

So, in summary of the generalized Boolean perspective, xSIP and xSOP entail
the existence of at least x S’s since it is impossible for them to be true under any other
condition; but xSAP and xSEP do not entail the existence of any S’s, because it is
possible for them to be true under any existential condition whatever. Nevertheless,
the existence of any number of S’s may be presupposed, or assumed, as a separate, or
additional, consideration; and then inferences from the conjunction of the universals
and the additional, existential presuppositions can be made.

2.3 Minimum presuppositions With the exceptions of the traditional logic limited
to zero and one, the standard existential presupposition was understandably that of “at
least one,” even when many more may have been known or assumed to exist. How-
ever, with the introduction of alternative exceptions, alternative presuppositions be-
come significant. For example, 0SAP implies 100SIP on the presupposition that there
exist at least one hundred S’s (S ≥ 100); and on the same presupposition,

1SAP implies 99SIP by presupposition,
2SAP implies 98SIP by presupposition,
3SAP implies 97SIP by presupposition,

97SAP implies 3SIP by presupposition,
98SAP implies 2SIP by presupposition, and
99SAP implies 1SIP by presupposition.

Furthermore, since 99SIP implies 98SIP, 97SIP, and so on, because they are weaker
claims, 1SAP likewise implies each of these by presupposition as well. Henceforth,
only the strongest implication will be noted, although it is to be understood that any
weaker proposition of the same form is also implied a fortiori. And the exception of
the strongest particular implied by a universal by virtue of existential presupposition
is: the value of exception of the particular is equal to the presupposition minus the
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exception of the implying universal. Accordingly, on the presupposition that there
exist at least y S’s (S ≥ y), xSAP implies y − xSIP.

It should be noted that if x is equal to y, then the form implied is the vacuous
one mentioned earlier, viz., 0SIP; and if x is greater than y then the form implied, for
example, −1SIP, is also vacuous (if again, negative exceptions are admissible at all).
Such implications can be avoided if it is stipulated that the minimum presupposition
be greater than the exception.

Here such implications will be avoided by the convention that a, b, and c be vari-
ables whose instantiations may not be zero, although they may be any value greater
than zero, while w, x, y, and z remain variables whose instantiations may either be
zero or any greater value. Then the universal, xSAP, will always imply the nonvac-
uous particular, aSIP, if the presupposition is set for the sum of their exceptions: S
≥ a + x. This will hold good for the traditional instantiations (where a = 1 and x = 0),
as well as for each expanded value. Now analogous presuppositions can be made for
E-forms: that is, on the presupposition that there exist at least a + x S’s (S ≥ a + x),
then xSEP implies aSOP.

The presuppositions so far have been made for the subject terms S of the two
universals; however, a minimum presupposition can significantly be made for each
term that is distributed relative to a universal, since each such term is the subject of
an equivalent expression of that universal. Therefore, on the presupposition that there
exist at least a + x nonP’s (P ≥ a + x), xSAP implies aPIS, since xSAP is equivalent
to xPAS by contraposition,

xSAP ⇐= Cp =⇒ xPAS,

and with the presupposition, (P ≥ a + x), xPAS implies aPIS. Likewise, on the pre-
supposition that there exist at least a + x P’s, xSEP implies aPOS, since xSEP is
equivalent to xPES by conversion,

xSEP ⇐= Cv =⇒ xPES,

and with the presupposition, (P ≥ a + x), xPES implies aPOS. Accordingly, both
aSIP and aPIS follow from xSAP, and both aSOP and aPOS follow from xSEP, when
the respective presuppositions are made.

2.4 Maximum presuppositions Although the traditional logic only employed the
presupposition of “at least one,” it might have made use of the presupposition of “at
most one” also. Then, for example, from

Some God is omniscient (1SIP)

traditional logic might have inferred

Every God is omniscient (0SAP)

on the presupposition that there exists at most one God (S ≤ 1); and with the intro-
duction of alternative exceptions, alternative maximum presuppositions, as well as
alternative minimum presuppositions, now also become significant. For example,

1SIP implies 99SAP by presupposition,
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on the presupposition that there exist at most one hundred S’s (S ≤ 100), since “one
of 100” is equal to “all but 99 of 100”; and on the same presupposition,

2SIP implies 98SAP by presupposition,
3SIP implies 97SAP by presupposition,
4SIP implies 96SAP by presupposition,

98SIP implies 2SAP by presupposition,
99SIP implies 1SAP by presupposition, and

100SIP implies 0SAP by presupposition.

Also, as with the case of minimum presupposition, since 0SAP implies the weaker
claims of 1SAP, 2SAP, and so on, 100SIP implies each of these by presupposition as
well.

Here, if the presupposition is greater then exception of the particular, the form
implied is a universal with a positive exception (such as 1SAP), and if the presup-
position is equal to the exception of the particular, the form implied is the full, tradi-
tional universal (0SAP). However, if the presupposition were less than the exception
of the particular (such as would be the case for 101SIP on the presupposition above),
then the form implied (−1SAP) would be necessarily false (if again, negative excep-
tions are admissible at all). Put another way, if the maximum presupposition is less
than the exception of the particular proposition, then the presupposition is inconsis-
tent with the proposition, as the presupposition that there exists at most 100 S’s (S ≤
100) is inconsistent with the claim that there exist at least 101 S’s that are P (101SIP).
To avoid such incongruousness it can be stipulated that the exception of the particu-
lar not be greater than the maximum presupposition, and the convention of setting
the maximum presupposition at the sum of the exceptions of the particular and the
implied universal will ensure compliance with the stipulation. Then the particular,
aSIP, will imply the universal, xSAP, and also be consistent with the presupposition,
(S ≤ a + x).

Now analogous implications by presupposition hold for the O-forms, for on the
presupposition that there exist at most a + x S’s, aSOP implies xSEP. Furthermore, on
the presupposition that there exist at most a + x P’s, aSIP implies xPAS, since aSIP
is equivalent to aPIS by conversion,

aSIP ⇐= Cv =⇒ aPIS,

and with the presupposition, (P ≤ a + x), aPIS implies xPAS. Likewise, on the pre-
supposition that there exist at most a + x nonP’s, aSOP implies xPES, since aSOP is
equivalent to aPOS,

aSOP ⇐= Cp =⇒ aPOS,

and with the presupposition, (P ≤ a + x), aPOS implies xPES.
There are several distinctive points of contrast between the two types of presup-

position. Perhaps the most interesting is that while universals imply particulars by
virtue of minimum presupposition, particulars imply universals by virtue of maxi-
mum presupposition, as the examples above illustrate.

A second point of contrast is that minimum presuppositions are to be made for
distributed terms relative to universals, whereas maximum presuppositions are to be
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made for undistributed terms relative to particulars. Of course, any presupposition
can be made for any term whatever; but it is only in these cases that the original propo-
sition implies some other significant form by virtue of the presupposition. For exam-
ple, nothing new follows from 1SIP on the presupposition that there exist at least one
hundred S’s; and nothing new follows from 0SAP on the assumption that there exist
at most one hundred S’s.

A third point of contrast is that while no proposition is true or false by virtue
of minimum presupposition, universals can be true, and particulars can be false, by
virtue of maximum presupposition. That is, on the presupposition that there exist at
most x S’s, xSAP and xSEP are both vacuous, and true by presupposition. For exam-
ple, on the presupposition that there exist at most 0 S’s, the traditional forms of 0SAP
and 0SEP are no longer contraries, but are both true instead; and such is always the
case when a maximum presupposition is equal to (or less than) the universal excep-
tion. On the presupposition that there exist at most b S’s, a + bSIP and a + bSOP are
both false by presupposition since, as was stated above, they are inconsistent with the
presupposition. For example, on the presupposition that there exist at most 0 S’s, the
traditional forms of 1SIP and 1SOP are no longer subcontraries, but both are false by
presupposition instead; and such is always the case when a maximum presupposition
is less than the particular exception.

Finally, no categorical proposition follows from the mere presupposition that
some minimum quantity of S’s exist; however, every universal form having S as its
subject follows from the mere presupposition that some maximum quantity of S’s ex-
ists: that is, from the presupposition that there exist at most x S’s, both xSEP and
xSAP follow, for any P.

2.5 Combined presuppositions When appropriate minimum and maximum pre-
suppositions are made in combination, each proposition implies three additional
propositions, producing a total of four nonequivalent propositions in all. For exam-
ple, a proposition of the SAP-form implies a proposition of the SIP-form, another of
the SAP-form, and still another of the SIP-form. Of course, the two particulars fol-
low from the SAP-form by minimum presupposition, as was shown earlier; but then
the additional universal follows, in turn, as a secondary implication from one of the
implied particulars by maximum presupposition.

The three implied forms follow when minimum presuppositions are made for
the distributed terms relative to the original proposition and maximum presupposi-
tions are made for the undistributed terms relative to it. This is shown below where
the three implied forms are derived from the original form entered on line 5 along
with the presuppositions listed on lines 1–4. The derivation proceeds by appealing to
obversion (Ob) and valid applications of conversion (Cv) and contraposition (Cp), to-
gether with implication based on (maximum or minimum) existential presupposition
(IP).

1. S ≥ a + x Presup
2. S ≤ b + y Presup
3. P ≤ a + y Presup
4. P ≥ c + x Presup
5. xSAP original proposition
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6. aSIP IP 1, 5
7. aPIS Cv 6
8. yPAS IP 3, 7
9. ySAP Cp 8

10. bSIP IP 2, 9.

That is, given presuppositions 1–4, xSAP (5) implies aSIP (6), ySAP (9), and bSIP
(10). In fact, these follow without any appeal to the presupposition for nonP (on line
4). However, the SIP-form can also be derived by appealing to that presupposition,
as was shown earlier:

11. xPAS Cp 5
12. cPIS IP 4, 11
13. cSIP Cv 12

Here bSIP (10) is equivalent to cSIP (13) if b equals c; otherwise, the one with the
greater exception implies the other. This proof of the propositions implied by xSAP
also holds for the propositions implied by xSEP, mutatis mutandis. Likewise, when
maximum and minimum presuppositions are again made for its undistributed and dis-
tributed terms, respectively, a proposition of the SIP-form implies a proposition of the
SAP-form, another of the SIP-form, and still another of the SAP-form. This is shown
in the derivation below.

1. S ≤ a + x Presup
2. S ≥ b + y Presup
3. P ≤ a + y Presup
4. P ≥ c + x Presup
5. aSIP original proposition
6. xSAP IP 1, 5
7. aPIS Cv 5
8. yPAS IP 3, 7
9. ySAP Cp 8

10. bSIP IP 2, 9 (Compare with line 13.)

After line 9 the derivation might have continued:

11. xPAS Cp 6
12. cPIS IP 4, 11
13. cSIP Cv 12 (Compare with line 10.)

And this proof holds, mutatis mutandis, for the analogous implications of the O
proposition.

3 Syllogistic inferences The fifteen valid forms of the traditional logic are also
valid for the expanded syllogism so far as the common features are concerned. How-
ever, new possibilities for invalidity (as well as for validity) are introduced in the ex-
panded logic by the unlimited number of exceptions such propositions can have; ac-
cordingly, supplemental rules are required to ensure that the exception value of the
conclusion is warranted.
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3.1 Inferences without presupposition The first supplementary rule for the numer-
ically expanded logic is:

Rule 3.1 The exception for a universal conclusion must not be less than the sum of
the exceptions in the premises.

If the exception is less than the totaled exceptions of the premises, then the argument
is invalid; if the exception is equal to those exceptions (as in the cases below), then it is
the strongest conclusion that is entailed; and if it is greater, then it is a valid conclusion
that is weaker than the strongest one entailed.

The necessity of this rule should be obvious, I believe, at least after a moment’s
reflection. For example, the following instances of Barbara illustrate it.

Some Other
Traditional Expanded Expanded General

Values Values Values Formula

0MAP 3MAP 487MAP yMAP
0SAM 5SAM 1832SAM xSAM
0SAP 8SAP 2319SAP x + ySAP

The second supplementary rule is:

Rule 3.2 The exception for a particular conclusion must not be greater than the ex-
ception of the particular premise minus the exception of the universal premise.

Again, for the strongest conclusion entailed, the exception of the conclusion must
equal the exception of the particular premise minus the exception of the universal,
as they do in the instances of Darii below.

Some Other
Traditional Expanded Expanded General

Values Values Values Formula

0MAP 3MAP 487MAP xMAP
1SIM 9SIM 1832SIM aSIM
1SIP 6SIP 1345SIP a − xSIP

Here again, the conclusion, a − xSIP, will be vacuous unless the exception of the par-
ticular, a, is greater than the exception of the universal, x. So to ensure that the con-
clusion is not vacuous, the convention of including the exception of the universal in
the exception of the particular will be adopted:

xMAP
a + xSIM
aSIP

Perhaps it should be noted that these supplementary rules do not impose any new re-
quirements on the syllogism. However, there was no need to articulate them when
the exceptions were limited to the classical values, since then there was no way they
could be violated.

With this numerical extension, the power and flexibility of the syllogism is
immensely—indeed, infinitely—expanded, and it is expanded even infinitely further
by the introduction of inferences based on existential presupposition.
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3.2 Inferences based on presuppositions As was reported earlier, when appropri-
ate presupposition is allowed, each set of premises yields multiple conclusions. In-
deed, each yields a conclusion of the SAP[P]-form, another of the SIP[P]-form, still
another of the SAP[P]-form, and also one of the SIP[P]-form; and, of course, each of
these four nonequivalent conclusions has three other equivalent statements (by ob-
version, etc.), and each also represents the possibility of infinitely many specific in-
stantiations.

Below I advance derivations to show that such conclusions do follow. Of course,
alternative derivations are possible, and the conclusions follow from more than one
pattern of presuppositions in each case; but I do not attempt to be exhaustive, instead
I only make the presuppositions required for the derivations actually advanced.

Furthermore, presupposition and exception variables could be arbitrarily set, and
general derivations could proceed on the basis of them. However, below I adjust the
presupposition variables to those of the exceptions of the premises so as to preclude
the possibility of any line’s having an inconsistent or vacuous instantiation.

Now a set of propositions yields a conclusion if and only if (1) at least one of
them is universal, and (2) they share a middle term whose occurrences have opposite
distribution values. Accordingly, four groups of premise sets can be distinguished on
the basis of whether they conform to both conditions: only the first, only the second,
or neither, as follows:

Fig. 1 Fig. 2 Fig. 3 Fig. 4

AA AE AI AA
AI AO AO AE

First EA EA EI EI Satisfies both
Group EI EI EO EO criteria

IE IE IA IA
OE OA IE IE

OA
OE

AE AA AI
AO AI AO

Second EE EE AA EA Satisfies first
Group EO EO AE EE criterion only

IA IA EA OA
OA OE EE OE

Third IO IO OI Satisfies second
Group OO OI OO criterion only

II
Fourth IO Satisfies neither
Group II II OI II criterion

OI OO OO IO
16 16 16 16
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Below I provide a derivation of the four conclusion forms for one or two sets of
premises from each group; these derivations, then, will hold, mutatis mutandis, for
the remaining sets of premises of each group.

Appeals will be made to Barbara (Ba) and Darii (Da), in addition to (Ob), (Cv),
(Cp), and (IP), in the derivation of these conclusions from the premises and presup-
positions. Each application of Barbara and Darii will conform to the relevant sup-
plementary rule advanced above. The exception of a proposition inferred by Barbara
will equal the combined exceptions of the universal propositions from which it is in-
ferred, and the exception of a proposition inferred by Darii will equal the exception
of the particular minus the exception of the universal proposition from which it is in-
ferred.

Premises that conform to both conditions yield conclusions as they stand but
again, they also imply three additional conclusions when the appropriate presupposi-
tions are made. Perhaps the most obvious way to proceed with the sets of this group
is to take the premises of Barbara and Darii, draw the presuppositionless conclusion
from each, and then derive the remaining three from it.

AA , Fig.1 AI , Fig 1

1. S ≥ a + x + y Presup 1. S ≤ a + x + y Presup
2. S ≤ b + z Presup 2. S ≥ b + z Presup
3. P ≥ b + x + y Presup 3. P ≤ a + z Presup
4. xMAP Premise 4. xMAP Premise
5. ySAM Premise 5. a + xSIM Premise
6. x + ySAP Ba 4, 5 6. aSIP Da 4, 5
7. aSIP IP 1, 6 7. x + ySAP IP 1, 5
8. x + yPAS Cp 6 8. aPIS Cv 6
9. bPIS IP 3, 8 9. zPAS IP 3, 8

10. bSIP Cv 9 10. zSAP Cp 9
11. zSAP IP 2, 10 11. bSIP IP 2, 10

(The first sample argument by presupposition given in the introduction instantiates
lines 4–7 of this derivation from the premises of Barbara when a = 2, x = 5, and
y = 4.)

Here the maximum presupposition of y (in S ≤ a + x + y) is not necessary for
the derivation of four different conclusions from the premises of Darii; however, it
is included here to make the formula fully general. Otherwise, on the presupposition
that (S ≤ a + x), the particular premise on line 5 (a + xSIM) would imply the full uni-
versal, 0SAM, for every instantiation of a + x. So y is included in the presupposition
to make alternative implications possible; but it also retains the original possibility,
since y can be instantiated with zero. (The determination of the maximum presup-
positions for the remaining derivations having a particular premise is based on this
consideration as well.)

Now these same procedures hold, mutatis mutandis, for all other cases of the first
group. That is, each other conclusion-yielding set of premises can be reduced either
to AA or AI , Fig. 1, and then the derivations above will produce the analogous
conclusions from analogous presuppositions.

Premises that conform only to the first condition (viz., that at least one premise
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be universal) either have both or neither occurrence of the middle term distributed,
as in PEM–SEM and MAP–SOM, or PAM–SAM and PAM–SIM. But the problem is
the same: it merely manifests itself as having both middle terms distributed with one
statement of the premises and as having neither distributed with an alternate statement
of them. That is, since the distribution value of M is always opposite to that of M, the
equivalent expression of PEM–SEM, viz., PAM–SAM, suffers from having neither
middle term distributed, whereas both are distributed in the original expression. The
same is the case with each set of premises in this group.

The essential step in derivations from such premises is that of implication (IP)
from a presupposition made for a middle term. This step fulfills the otherwise un-
met second condition since the distribution value of the middle term in the implied
proposition will be opposite that of the original one.

When both premises are universal, the obvious strategy is to make a minimum
presupposition for the distributed middle, derive a particular by implication, draw a
conclusion by Darii, and proceed from there, and when one premise is particular, the
parallel strategy is to make a maximum presupposition for the undistributed middle,
derive a second universal, draw a conclusion by Barbara, and proceed from there.
These strategies are employed in the derivations below.

EE , Fig.1 IA , Fig 1

1. S ≥ a + w Presup 1. S≥ a + x + y Presup
2. S ≤ b + x + y Presup 2. S ≥ b + z Presup
3. M ≥ b + x + z Presup 3. M ≤ a + y Presup
4. P ≤ b + w Presup 4. P ≥ a + z Presup
5. xMEP Premise 5. aMIP Premise
6. zSEM Premise 6. xSAM Premise
7. zMES Cv 6 7. yMAP IP 3, 5
8. zMAS Ob 7 8. x + ySAP Ba 6, 7
9. b + xMIS IP 3, 8 9. aSIP IP 1, 8

10. b + xSIM Cv 9 10. aPIS Cv 9
11. xMAP Ob 5 11. zPAS IP 4, 10
12. bSIP Da 10, 11 12. zSAP Cp 11
13. x + ySAP IP 2, 12 13. bSIP IP 2, 12
14. bPIS Cv 12
15. wPAS IP 4, 14
16. wSAP Cp 15
17. aSIP IP 1, 16

The same derivations work, mutatis mutandis, for the other sets of this group: that
is, each other set of premises in this group can be reduced either to EE or IA ,
Fig. 1, from which the same derivations yield analogous conclusions from analogous
presuppositions.

Premises that conform only to the second condition have the middle terms dis-
tributed properly but lack a universal premise. Here a maximum presupposition for an
extreme term, either S or P, will allow the derivation of a universal premise, whereas
it will leave the distribution value of the middle terms the same. It might seem that the
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inference of the four conclusions could then proceed as with the earlier cases. How-
ever, this group is different in that the derivations require maximum presuppositions
for both complements of a set of terms in order to reach all four conclusions. In the
derivation below these presuppositions are made for P and P, although they might
have been for either of the other sets of complementary terms.

IO , Fig. 1

1. S ≤ a + x + y Presup 9. xMAP Cp 8
2. S ≥ b + z Presup 10. a + xSIM Ob 6
3. P ≤ b + x Presup 11. aSIP Da 9, 10
4. P ≤ a + z Presup 12. x + ySAP IP 1, 11
5. bMIP Premise 13. aPIS Cv 11
6. a + xSOM Premise 14. zPAS IP 4, 13
7. bPIM Cv 5 15. zSAP Cp 14
8. xPAM IP 3, 7 16. bSIP IP 2, 15

The noteworthy consequence of having maximum presuppositions for both comple-
ments of a term is that it restricts the domain of discourse to the totality defined by
the sum of those presuppositions. Of course, there is no limitation on how great this
finite domain may be, but for the pattern of presuppositions above it must be some
instantiation of (b + x) + (a + z), and this holds, mutatis mutandis, for the other sets
of this group.

Premises that conform to neither condition are the particular premises whose
middle terms have like distribution value, such as POM–SOM and MIP–SIM. How-
ever, both of these conditions can be corrected at once with a maximum presuppo-
sition for the undistributed middle, for then a universal proposition whose subject is
the distributed middle is implied. The implied universal, together with the remaining
original premise, yields a conclusion by Darii, and the three additional conclusions
follow from it. This is illustrated below where the introductory example is general-
ized and completed.

II , Fig. 1

1. S ≤ a + w + x Presup 8. aSIP Da 6, 7
2. S ≥ b + x + y Presup 9. w + xSAP IP 1, 8
3. M ≤ a + w + y Presup 10. aPIS Cv 8
4. P ≤ a + x + y Presup 11. x + yPAS IP 4, 10
5. a + yMIP Premise 12. x + ySAP Cp 11
6. a + wSIM Premise 13. bSIP IP 2, 12
7. wMAP IP 3, 5

Here the crucial consideration is to ensure that (1) the sum of the members asserted
to belong to M by both premises combined is greater than the maximum amount pre-
supposed for M, but that (2) neither individual premise has an exception greater than
the maximum presupposed for M. For if condition 1 is unmet as in,

3. M ≤ 10 Presup
5. 4M I P Premise
6. 6SI M Premise
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the application of Darii produces a vacuous conclusion on line 8:

7. 6MAP IP 3, 5
8. 0SIP Da 6, 7;

and if condition 2 is unmet as in,

3. M≤ 10 Presup
5. 11MIP Premise;

the premise is inconsistent with the presupposition.
The choice of the variables above ensures that both conditions will be met for

every instantiation. The other sets of particular premises that assign the same value to
both occurrences of the middle term can be handled in like fashion. That is, they can
all be reduced to II , Fig. 1, and their analogous conclusions derived from analogous
presuppositions.

4 Summary The system of numerically expanded quantifiers increases the scope
of each of the standard syllogisms infinitely, and this increase, furthermore, intro-
duces the possibility of endless further inferences by presupposition for each different
quantificational value. As mentioned at the outset, this quantificational extension, to-
gether with the further inferences possible on the basis of minimum presuppositions,
was worked out earlier. In the above analysis the field is expanded once again to in-
clude inferences that are valid on the basis of maximum and combined presupposi-
tions, and the magnitude of this final expansion is extraordinary: it discloses an infi-
nite quantificational range for each of four nonequivalent conclusion forms for every
pair of syllogistic premises.

The logic resulting with this final expansion “fills a gap” in that it delineates a
set of problems which raw, critical thinking would likely struggle with and whose so-
lutions by derivation in the first order predicate calculus with identity would be im-
practically protracted. For example, both of these approaches might be frustrated in
the attempt to determine from the information given in lines one through five below:
How many of a university’s philosophy majors are not in the class?

1. S≥ 65 There are at least 65 students in the class.
2. M≤ 50 There are at most 50 math majors (in all).
3. P≤ 30 There are at most 30 philosophy majors (in all).
4. 15SAM All but 15 of the students in the class are math majors.
5. 10MIP At least 10 of the math majors are also philosophy majors.

However, the problem is quite simple when addressed as a numerically expanded syl-
logism with presuppositions.

6. 40MAP 2, 5 IP All but 40 math majors are also philosophy majors.
7. 55SAP 4, 6 Ba All but 55 students in the class are philosophy majors.
8. 10SIP 1, 7 IP At least 10 students in the class are philosophy majors.
9. 10PIS 8 Cv At least 10 philosophy majors are students in the class.

10. 20PAS 3, 9 IP All but 20 philosophy majors are students in the class.
11. 20PES 10 Ob At most 20 philosophy majors are not students in

the class.
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Even far more complicated problems are readily solved by this method. For exam-
ple, proofs for sorites—including additional presuppositions for the terms of the ad-
ditional premises—can be constructed in the same fashion. Another way of charac-
terizing the expansion presented above is that it identifies a certain set of problems
and offers a practical way of dealing with them from within the framework of the nu-
merically expanded rendition of the traditional syllogism.
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