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Algebraic Methods and
Bounded Formulas

DOMENICO ZAMBELLA

Abstract We present some algebraic tools useful to the study of the ex-
pressive power of bounded formulas in second-order arithmetic (alternatively,
second-order formulas in finite models). The techniques presented here come
from Boolean circuit complexity and are adapted to the context of arithmetic.
The purpose of this article is to expose them to a public with interests ranging
from arithmetic to finite model theory. Our exposition is self-contained.

1 Introduction We present some algebraic tools useful to the study of the expres-
sive power of bounded formulas in second-order arithmetic (alternatively, second-
order formulas in finite models). The techniques presented here come from Boolean
circuit complexity and are adapted to the context of arithmetic. The purpose of this
article is to expose them to a public with interests ranging from arithmetic to finite
model theory. Our exposition is self-contained. The machinery developed in Sec-
tion Bruns, to some extent, parallel to that of Smolensky [[J—our formulation is
more explicit. In Sectionwe also include some related techniques devel oped in [E].
In [ an alternative proof of atheorem of Yao (exponential lower bound for circuits
of bounded depth computing parity) isgiven. The techniques used by Yao had
been introduced by Ajtai [[[J and, independently, by Furst, Saxe, and Sipser [3]. Sub-
sequently, these have been improved and refined by Hastad [(], Razborov [[E], and
others. All these proofs have, however, atopological flavor, whereas the ideas intro-
duced in [[7] are of algebraic nature. Both methods can be adapted to our context and
give interesting information on the combinatorial properties of Eg formulas. How-
ever, Smolenky’s method (based on some ideas of Razborov [B]) yields a stronger
result than what is obtainable by the topological method: namely, the nondefinahility
of parity is extended to a language expanded with a generalized quantifier express-
ing counting modulo a prime number > 2. Moreover, nondefinability extendsto any
function that approximates parity on essentially more than half of the sets.
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2 Preliminaries Thelanguage L isthat of second-order arithmetic. It consists of
two constants: 0, 1; two binary functions: +, - ; andtwo binary relations. <, €. Vari-
ables are of two sorts: first-order, X, y, z, ... and second-order, X, Y, Z, ... that are
meant to range over numbers and, respectively, finite sets of numbers.

The semantics of thislanguage isthe usual one but for the following interpreta-
tions. X < y (inwords, X islessthan y) holds when al elements of X are lessthan
y. Note that terms are just polynomials in first-order variables.

Bounded quantifiers are those quantifiersthat appear in the context: (Qx € X)g,
(Qx < t)g, or (QX < t)p, where Qiseither V or 3 andt isaterm inwhich x does not
occur. A formulaisbounded if all of itsquantifiersare bounded. The classof bounded
formulaswithout second-order quantifiersisdenoted by 28 . Inthefollowing weshall
concentrateonthisclass. Thisclassisthegroundlevel of ahierarchy of formulas, Eip,
Hip that is obtained by counting the alternation of second-order quantifiers. Fori > 0
these classes coincide with those of the polynomial time hierarchy.

The standard model of thislanguage isthe set of natural numbers together with
the set of its finite subsets. This model will be kept fixed throughout this note. The
language L is expanded to include constants for every element of the standard model.
We call these new constants parameters. The classes defined above are naturally ex-
tended to this expanded language (but they will keep the same name). Practically,
we shall restrict the attention to formulas with afree variable X that ranges over the
subsets of some fixed but arbitrary finite set S. The formulas may have arbitrary pa-
rameters. The size of these constants and the length of the formula are the relevant
inputs of the theorems below.

Letq > 1. Wewrite = for the relation “congruent modulo g”. The next the-
orem says that the formula || X|| =¢ X is not Zg definable. (With || X]|| we denote the
cardinality of X.) Moreover, given any set Swhich islarge enough, no 28 formula
coincides with || X|| =q x on essentially more than half of the subsets X of S. In Sec-
tion[Blthis theorem is generalized to a language containing a generalized quantifier
for counting modulo a prime number p that does not divide . We say that a for-
mula ¢ (x, X) counts X modulo q if and only if for al x, ¢(x, X) istrueif and only if
I X]I =g x.

Theorem 2.1  Let p(x, X) bea 28 formula and let Sbe a (finite) set. The formula
(X, X) counts X modulo q for at most 25-1[1 + (a"//S)] subsets X of S, where

1. sisthecardinality of S,

2. misa constant that depends only on the syntax of ¢(x, X) (mis proportional
to the length of ¢(x, X)), and

3. aisany number whichislarger than mand such that par bounds Sand all the
parameters occurring ¢ (X, X).

To have a more concrete example in mind, fix S= [0, s) and suppose that sislarge
enough to havethat 2 - [logs]?™ < /s and that no parameter in ¢(x, X) does exceed
s. Take [logs]™ for a and apply the theorem. We obtain that ¢ (X, X) fails to count
X modulo q for at least one subset X of S. The proof is given in Section[5] The next
sections are dedicated to some preparatory work which is of independent interest.
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3 Formulas, functions, and the Mdbius inversion. Fix a commutative ring with
unity R. Formulas will be interpreted as functions that take as input tuples of num-
bers and sets and output 1, if these make the formula true, Or otherwise (the sub-
script Rwill be omitted in the sequel). We define sum and multiplication of function,
as usual, by point-wise addition and product. Multiplication with elements of Ris
defined in asimilar way. We shall consider aso the operators of sum )", ., > "y _;
and the operator of product [ [, _;; these act on functions in the obvious way. We de-
note by 1 (X) the Mdbius function: [, x(—1), that is, u(X) is—1, if X hasan odd
number of elements, 1 otherwise.

In the following, X isrestricted to range over the subsets of S. The set of unary
functions from the power set of Sto R, constitutes aring and, forgetting multiplica-
tion, an R-module. This module has dimension 2°. The functions {E = X} .—that
is, the functions that map X to 1 if X = E and to 0 otherwise—for E ranging over
subsets of S, form the canonical base of this module. In fact, every function §(X)
can bewrittenas ) ¢ 8(E)(E = X). (When therange of asubscript isomitted thisis
implicitly understood to be S.) Lemmal3.6]below shows auseful way of constructing
new bases. Let ¢(X) be an arbitrary function: we use the following abbreviation.

p(X) = Y u(E)-g(E).

ECX
Thisis called the discrete Fourier transform of ¢(X). The following property of the
Mabius function will be used repeatedly in the algebraic manipul ations of functions.
Fact 3.1 } ecxu(BE)=(X= 2).

Proof: If X # @, choosean x € X,

D uE) = Y wE) + uEUKD = Y wE) - wE = 0

EcX ECX\{x} ECX\{x}

On the other side, if X = @, then } 'y, n(Y) equals (@) and so, it equals 1 as
required. O

Fact 3.2 *(AC X)=pu(A)-(X=A).
Proof: Observethat *(A C X) isequivaent to

D WE)(ASE)=(ASX) ) wAUE)

ECX ECX\A
= (ASX)-u(A) Y u(E)
ECX\A
Now apply Fact[3.1] O
In particular, we have that *(x € X) = — (X = {X}).
Lemma3.3 **p(X) = ¢p(X).
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Proof: Observe that

Po(X) = D wE) Y u(A)-p(A) =Y u(E) Y (A -9(A)- (ACE)
ECX ACE ECX A
= D A -9(A) ) u(E)-(ASE) =) u(A)-¢(A)- (A X)-
A EcCX A
The lemma follows from Fact B.2] O

If o(E) = Oforadl E C X, then *p(E) = ) ,cgn(Z)-0 = Ofordl EC
X. From the lemma above it follows that the converse aso holds. The functions
w(E) - (E € X) arelinearly independent and form abase; * isan invertible linear
transformation. The function ¢ (E) gives the components of ¢(X) with respect to
the baseu (E) - (E C X).

We define the degree of afunction ¢(X) to be the least d such that *p(X) = 0
for al X of cardinality > d. Theterminology is justified by the following observa-
tion. Suppose ¢(X) has degree d. Assign to every x € Savariable Xy and write the
polynomial 273 " "¢ (E) [ [,.g Xx in R. Then this polynomial has degree d. The
value of function ¢(X) at X coincides with the value the polynomial assumes when
we assign to Xy value 1 or 0 according to whether x isin X or not.

Fact 34 *[p(X) - ¥(X)] = 3 aup—x #(AN B) - %(A) - *¥(B).

Proof: Expressing ¢ and v through their transforms, we have

e(X)-p(X) = Y u(A)-“p(A)- u(B)- Y (B)

A,BCX
= Y D w(A)-"e(A) - u(B)-*Y(B)
YCSX AUB=Y
= Y u() ) u(ANB)-"p(A)-*¥(B).
YcX AUB=Y
The fact follows from Lemmal3.3] a

The fact above generalizes easily to the operator [ [,_,. We stateiit in the following
fact.

Fact 35 *[leiox X)=n0) X g=x [lxet #(Ex) - Bo(x, Ex).

From these facts we can give an upper bound to the degree of a product from the de-
gree of the factors. For example, the degree of [ [,_; ¢(X) is at most the sum of the
degrees of ¢(x) for x < t. Needlessto say, the degree of ) ", _ ¢(X) isjust the maxi-
mum of the degrees of ¢(x) for x < t.

The following lemma shows asimple way of obtaining new bases of the module
of unary functions.

Lemma3.6 Let§(X) beany function. The function §(E N X) has degree < | E]|.
Moreover, if for all X, *§(X) hasan inversein Rthen {§(EN X)}E is a base of the
modul e of the unary functions.
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Proof: To check that §(E N X) has degree < || E||, compute *5(E N X) and check
thatitisOfor X £ E

*S(ENX) = ZM(A)S(EHA) = Z w(AU B) - 8(A)

AcCX BCX\E ACXNE

= D WASENA) = Y u(A-8A) ) u(B)
AC X ACXNE BCX\E

= D uA-3(A)-(XCE)
ACXNE

= (XSE) ) u(A)-8A)

ACX

= (XS E)$(X).

To check that {§(E N X) } e generates all the unary functions, observe that from the
equivalence above we have (note the renaming of variables)

[BE)] ™Y k(ASANX) = (EC X).
ACE

Since {(E € X)}g is abase, the claim follows. To check the linear independence
apply acardinality argument. O

Let g be any element of Rsuch that (1 — g) ! existsin R. To prove Theorem.1lwe
shall need thefact that thefunctions g/ %Il form abase. We check that the hypothesis
of the lemmais satisfied. It is easy to check that when X = & then X(g!*!l) is 1. If
instead X # &, pick an arbitrary c € X,

;L(E)-g”E” — ,u(E)-[g”E” _ gHE||+1]
;( Ec;\{c}
= (1-9 Y wE-d"
ECX\{c}

Iterating this argument for all elements of X we can conclude that *(g'*') is (1 —
g)!XIand our claim follows from the lemma.

4 Approximations In general, even very simple formulas may have high degree.
For instance, by Fact@] theformula A C X hasdegree || A||. Nevertheless, we shall
see that every formula g in Eg can be approximated by a function v of low degree,
namely, of degree that is polynomial in the logarithm of the parameters occurring in
¢. By “approximating” we mean that for all but a small fraction of the sets X the
functions ¢(X) and (X) are equivalent. The rest of this section is devoted to the
proof of thistheorem. We will give two proofs: the first works only when Risafield
of characteristic > 0, the second is general. The first proof is due to Smolensky [[7]
and uses combinatorial techniquesof Razborov [[5]. The second isof Tauri [E]; it uses
ideas of Vazirani and Vardi [[10]. Thefirst proof we giveissimpler and it is sufficient
to prove Theorem[2_Tland Corollary[6.2] The second proof isincluded for complete-
ness and because of the general combinatorial ideas used there that make the method
interesting in itself.
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Theorem 4.1 Let o(X) bea Eg formula and let « be a subset of the power set of
S. Thereisa function v(X) of degree < a" that is equal to ¢(X) for all but at most
220N-3) ||| sets X € o, where

1. nisproportional to the length of ¢(X), and
1
2. a> nand 22" islarger than Sand of all the parameters occurring in ¢(X).

Proof: We call the function y» an approximation of ¢ and the fraction of setsin «
such that ¢ (X) differs from (X) the error probability. We will proceed by induc-
tion on the syntax of formulas. In the statement of the theorem there is no claim on
uniformity: namely, nothing is claimed on the syntax of the function . Indeed the
way one constructs v from atomic functions by means of the operator of products and
sumsisintimately connected with the syntax of ¢. Some nonuniformity occurring in
the construction results in the presence of some extra parameters. We shall not make
this explicit.

To prove the basic step of the induction let us assume that second-order equality
does not occur in ¢ (if it does we eliminate it using extensionality). Eliminate in ¢
all connectives but —, A, and 3. Also, for definiteness, replace the quantifiers of the
form (3x € T) with (Ix < t)(x € T) — , wheret isan appropriate parameter. We can
assumethat t < 22, so we may assume that all quantifiers occurring in the formulas
are of theform (Ix < t).

By Fact3.Thnd FactB.2]theatomicformulast = s, t < s, andt € X havedegree
< 1. Theinduction step for negation istrivial. In fact, negation coincideswith ‘1—’,
soitisalinear operator and it does not increase the degree. Conjunction (i.e., multi-
plication of functions) is easy. Suppose that ¢ is of the form ¢; A ¢, and that ¢4, ¢o
have approximations v/1, v» of degree < a". We claim that the product /1 - v, isthe
required approximation of ¢. From Fact[3.4labove it follows that /1 - v, has degree
< 2a". The error probability is at most the sum of that of the two conjuncts sepa-
rately, that is, < 2. 22"~ The claim (with n + 1 for n) follows from the induction
hypothesis.

The relevant part of the proof consists in proving the induction step for the ex-
istential quantifier. A “bruteforce” strategy—replace quantification with product, as
we did with conjunction—has no chance. In fact, large products make us lose any
control on the degree of the functions. We will express (though, in an approximate
form) existential quantification using sums and small products. that is, products of
theform [ [,_ .« ¥(x, X). Then, if for all x < ak the degree of ¥ (x, X) islessthan a"
then the degree of [, _ (X, X) islessthan a™,

For the expository reasons explained above, wefirst prove the theorem in aspe-
cial case, that is, when Risafield of nonzero characteristic p. We need also assume
that p < a. Lett < 22 Assume that, for al x < t, the function ¥(x, X) of degree
< a"isan approximation of ¢(x, X). We can assume that these approximations have
error probability < 22("~®_ Therefore, all but at most 22 . 220"~ || || sets X € « are
such that (X, X) equals ¢(x, X) fordl x < t.

Thefollowing isthereason for afixed X. Supposethat (3x < t)¢(X, X) and fix
X such that ¢(X, X). Choose at random (with respect to the uniform distribution) a
function | from [0, t) into [0, p — 1). We show that, with probability at least 1/ p, we
havethat >, . [(X)¢(x, X) is 1. Infact, for every choice of | (x) for x # X there is
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one choice (out of p) of I (X) that makes the sum equal to 1. Now let h be afunction
from [0, t) x [0, pa?) into [0, p — 1) obtained by choosing independently pa? times
afunction such as| asabove. The probability that ), _, h(X, y)¢(X, X) # 1for every
y < pa2is(1—1/p)P&¥ < 22,

By counting, we concludethat for all X in« but at most (2“"‘2 + 2""(”““"‘)) llet]|
the formula (3x < t)e(x, X) holdsif and only if for some 'y < pa?,

D hx, yex, X) = 1.

X<t

It follows that for these X the function (3Ix < t)e(X, X) equals

1- 71 |:1—Zh(x, Y)o(x, X):|. (*)

y< pa? x<t

Thisfunction has degree < a"* and the error probability is < 22("+2-3_ Therefore,
the claim of the lemma is established for (Ix < t)e(x, X) with n+ 2 for n. This
completes the proof of the special case of the theorem.

Now we resume the general proof. We need to prove the inductive step for the
existential quantifier inthe casein which Rhascharacteristic 0. Thefollowinglemma
of Valiant and Vazirani [[L0] gives usthetechnical toolswe need to complete the proof
of thetheorem. Theideaof applyingitin thiscontext isof Tauri [[]. To better under-
stand the statement of the lemma and its role in the proof, let us make some simple
considerations.

Theideaof thelemmaisto hash theinterval [0, t) intoa+ 1 subsetsCy, ..., Cy
suchthat, if (3Ix < t)¥(x, X) istrue, then at least one of these subsetsisol ates exactly
onewitness, that is, (3z < a)(A!x € C,) #(Xx, X). We can rewrite (3x < ) (X, X) as

1-— H[l—Zﬁ(x,X)]

z<a xeC;

The sets C, are a suitable parameter depending on ¢. They need to succeed for a
‘large’ fraction of the X € a.

Lemma4.2 Fixaformulaof theform (3x < t)d#(x, X) wheret < 22, Let o bean
arbitrary set of subsets of S. TherearesomesetsC, < t,for z=0, ..., a such that
for all but at most (1/2)|«|| sets X € «,

Ax < DX X) «— (Az< a)(@' x e C (X, X). (%)

Proof: Fixanarbitrary X € « suchthat (3x < t)(x, X). Weshall seethat, choosing
C, at random (with respect to the distribution specified below), we have that (3z <
a)(3! x € C,)¥(x, X) with probability > 1/2. By counting, thereare sets Co, . . ., Ca
that satisfy (x) for all but at most (1/2) ||« sets X € «. Thelemmafollows.

Fix an arbitrary injection of the interval [0, 22) into the set of binary strings of
lengtha. Wecanview {0, 1}2 asavector space onthefinitefield {0, 1}. Thecanonical
basefor thisvector spaceisdenoted withey, .. ., e;. Below weshall identify numbers
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< 22 and vectors; to simplify notation we assumethat O correspondsto the zero of the
vector space. The scalar product of two vectorsu, v € {0, 1}2 isdefined in the natural
way: itis O if the coordinates of u and v coincide on an even number of entries, 1
otherwise.

The sets C; are constructed from a sequence of a mutually orthogonal vectors
vo, ..., Va_1. L€t vg := 0 (the zero of the vector space). If v, ..., v,_1 are defined,
let C, bethe set of vectors orthogonal to all vy, .. ., v,_;. Let v, be chosen at random
in C, (with uniform distribution). Observe that Cy = {0, 1} and C, = {0}.

Therank of asubset of {0, 1}2 isthe minimal dimension of a subspace contain-
ing it. Let uswrite F for the set {x < t : #(x, X)}. We shall show that whatever the
nonempty set F is, by choosing Co, .. ., C, at random as explained above we obtain
that, with probability > 1/2, thereisaz < a such that C, N F has cardindlity 1, that
is, (3'x € C,)V(x, X) for somez < a.

It sufficesto provethat with probability greater than 1/2 for some z < atherank
of C;,N Fis 1. Infact, supposetherank of C,N F is 1. Then either the cardinality
of C;N F is1—inthis case we are finished—or 0 belongs C, N F, so since C; = {0},
stage a will be successful.

Let z < a be arbitrary and let the rank of C,N F bed > 1. We claim that
C,1 N F # @ with probability greater than 1 — 279, To prove the claim, observe
that the probability distribution is invariant under orthonormal transformations. We
can assumethat thevectorsvy, . . ., vy arethebasevectorsey, ..., e, that C;N F con-
tains the vectors e, 1, .. ., €, 4 and these generate the subspace containing C; N F.
Now the vector v, 1 ischosen randomly among the vectors orthogonal to ey, . . ., €,
that is, among the nonzero linear combinations of e, 1, .. ., €5. We have

CHnF = C*n(C*nF) 2 C*1nieyt, ..., 04}

Therefore, C*1 N F isempty if and only if the (z+ 1)-th, ..., (z+ d)-th coordinates
of v,,1 aredl 0. This happens with probability lessthan 2-9. This provesthe claim.

From this claim it follows easily that the probability of (3z < ¢)||C*NF| = 1
isat least

a o0 o0 g 1
]_[(1—2—0‘) > ]_[(1—2—0') > 1_[2—2 = =
d=2 d=2 d=2 2

(for the last inequality we have used that 1 — x < 2=2*for all positive x < 1/2). The
lemmafollows. O

Observe that applying the lemma a? times and concatenating the results, we can ob-
tain that for some {C},_ 541)a2:

(AX < (X, X) «— 3z < (a+ 1)a2)3A'x € C)p(x, X)

holdsfor al X € « but for at most 2—'32||a||. We shall use the lemmain thisform.
Finally, we areready to prove theinductive step for the existential quantifier. As
in the special case above, using the uniforminductive hypothesis: let t < 22 and as-
sume that, for al x < t, the function v (x, X) of degree < a" is an approximation of
@(X, X). We can assume that each approximation has error probability < 23",
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Therefore, all but at most 22"1-3) ||| sets X € « are such that ¥ (x, X) equals
(X, X) for al x < t. Thefunction

1 - ]_[ [1— Zw(x, X):|

z<(at+l)a? xeC;

istherequired approximation of (3x < t)¢(x, X). Itsdegreeis < a™*. Thenew error
probability is 2-% 4 2a(+1-a) _ 2a+2-a) The claim of the lemma s established
for (Ax < H)p(x, X) with n+ 4 for n. This completes the proof of the induction step
for the existential quantifier.

To complete the theorem we are left only to verify the claim on the size of n.
Indeed n increases by at most 4 at the inductive steps for 3 and A. Though to apply
the proof we may need to change the syntax of ¢ (i.e., to eliminate V, —, etc.), the
growth in sizeislimited by afixed factor. The proof of Theorem[4.1]scomplete. [

5 Proof of Theorem[2.1] We have now established al that is needed in order to
prove Theorem[2.1]

Proof: Let o betheset of those X € Ssuchthat theformulag(x, X) counts X mod-
ulo g. Fix aring R that has a gth root of the unity g suchthat 1 — g hasan inversein
R. By the observation above, g!'E"XIl isabase, so every function y(X) can bewritten
as

y(X) =Y g'=X g (E),
E

for some function *y(E). Assume sis odd (the case when s is even is similar but
requires somewhat lengthier writing). Every subset of Shaseither cardinality < s/2
or it is the complement of a set of cardinality < s/2, so every function y(X) can be
written asfollows

v(X) = Z [g”EmX”-*w(E) + glEnX '*w(EC)]
E:|El<$
= Z g”EﬂXll-*w(E) + g||xu Z g—||EﬂX|\.*1//(Ec).
E:|El<3 E:El<$

Therefore, every functionisthe sum of afunction of degree at most s/2 and afunction
which is gl multiplied by afunction of degree < s/2. Since g isag-root of unity,
the function g!*!l coincides in « with the linear combination 3", _, g* - ¢(x, X). By
Theorem[4.1] on aset of cardinality < (1 — 228" ||| the function g!*!l coincides
with a function of degree a" where n is fixed by the theorem. There is a submodule
of dimension > (1 — 22("®) ||| where every function has degree < (s/2) + a".
We can derive the claimed bound on the cardinality of « from asimple argument of
dimensionality. The functions of degree < a" are

3+’ n
B0 EO @)

i<S4gn )
|<2+a I_2
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(For the last inequality use Robhins's sharp form of Stirling’s formula, see [2], 11.9)
Therefore,
2 n
(1 . 2a(n—a)) el < 251 (1 + %) i
and o
o < (14 22) 27 (1 + %) :

Recall that S < 22, soin particular s < 22. If a > nweobtain

1 2a" 5a"
1+ = )21 (1 4+ = 11+ = ).
la]| < ( +S) ( + ﬁ) < ( + Jg)

Assuming a > 5, we conclude that

an+1
o] < 2571 (1 + fs),

Theorem[2_1follows, O

6 Expansionsof thelanguage Givenaformulat(X) withonly freevariable X we
definethe (bounded first-order) generalized quantifier Q. stipulating (by induction on
the nesting generalized quantifiers) that (Q.x < t)¢(x) holdsif and only if 7(X) holds
when X = {X <t : ¢(x)}. Inthe example considered below 7(X) is X =p 0. When
p=2, (Q:x < t)p(x) spelsout: thereis an even number of X < t that satisfy ¢(X).
Theclass £§(Q;) isdefined as = but it is also closed under Q.. Theorem [ Tlcan
be easily extended to the following.

Theorem 6.1 Let ¢(X) bea ES(QT) formula and let « be a subset of the power
set of S. Thereisa function y(X) of degree < a", that is equal to ¢(X) for all but at
most 220"~ || || sets X € o, where

1. nisproportional to the length of ¢(X), and
1
2. a> nand 22" islarger than Sand of all the parameters occurring in ¢(X);
moreover, *t(X) # 0 for at most 22 subsets X of S.

Proof:  We only need to prove the induction step of the proof of Theorem[4.1or the
generalized quantifier Q.. Consider the identity

(X) = Z,U,(E)-E‘L'(E).

EcCX

Substituting the set {x <t : ¢(x)} for X, we obtain

(Q:x < DX, X) = t({X<t: o X)})
= Y [(vxe E)p(x, X)]- u(E) - *r(E).
E<t

Take as an approximation of (Q.x < t)p(x, X) the linear combination

D W(E, X) - u(E) - "1(E), ()

E<t
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where v/ (E, X) isthe approximation of degree < a" of theformula (Yx € E)¢(X, X)
as given by theinduction hypothesis. Note that we can only claim that for each E the
function ¢ (E, X) approximates (Yx € E)p(x, X) on some large set. This set may
depend on E, but only the sets such that fz(E) # 0 arerelevant. Since 5z (E) # O for
less than 22 sets, we can assume that (%) coincideswith (Q.x < t)e(x, X) for all but
22(+1-3) Thjs proves the theorem. O

Theorem[2.1]generalizes to the following.

Corollary 6.2  Let p and g be two different prime numbers. Let ¢(x, X) be a
ES(QHXHZPO) formula and let Sbe a set. The formula ¢(x, X) counts X modulo g
for at most 2511+ (a™/./S)] subsets X of S, where

1. sisthecardinality of S,
2. misproportional to length of ¢(x, X), and

3. aisany number whichislarger than mand p and such that 2""”% bounds Sand
all the parameters occurring (X, X).

Proof: Let F beafield of characteristic p with agth root of the unity. The formula
| X|| =p Oisequivalent to

p—1
1— IX|P =1 - (er x) ,
xeS
by FactsB2land B4] || X||P~1 has degree < p. By Theorem[E1the proof of Theo-
remB.IFemains valid (with F for R) when 2§ isreplaced with 25(Qxj=,0). O

We conclude by remarking that for the proof above it is essential that p is a prime.
It is open whether the corollary above holds for a composite numbers. Also it is not
known if we can sharp the bound in the error probability as p increases.

Acknowledgments Thisresearch was supported by the Netherlands Foundation for Scien-
tific Research (NWO) grant PGS 22-262.

REFERENCES

[1] Ajtai, M., “x1 formulason finite structures,” Annals of Pure and Applied Logic, vol. 24
(1983), pp. 1-48.[MR 85b:03048

[2] Feller, W., AnIntroduction to Probability Theory and Its Applications, val. 1, 2d edition,
J. Wiley and Sons, New York, 1957.|Zbl 0077.12201jMR 19.466a

[3] Furst, M., J. B. Saxe, and M. Sipser, “ Parity circuitsand the polynomial-time hierarchy,”
Mathematical Systems Theory, vol. 17 (1984), pp. 13-27.|Zbl 0534.94008
MR 86€:68048

[4] Hastad, J., “Almost optimal lower bounds for small depth circuits,” pp. 143-70in Ran-
domness and Computation, vol. 5, Advances in Computing Research, edited by S. Mi-
cali, JAI Press, Greenwich, 1989. [T


http://www.ams.org/mathscinet-getitem?mr=85b:03048
http://www.emis.de/cgi-bin/MATH-item?0077.12201
http://www.ams.org/mathscinet-getitem?mr=19,466a
http://www.emis.de/cgi-bin/MATH-item?0534.94008
http://www.ams.org/mathscinet-getitem?mr=86e:68048

48

(5]

(6]

(7]

(8]

(9]

[10]

(11]

DOMENICO ZAMBELLA

Razborov, A. A., “Lower bounds for the size of circuits of bounded depth with basis
{An, ®},” Mathematical Notes of the Academy of Science of the USSR, vol. 41 (1987),

pp. 333-38. [1][4]

Razborov, A. A., “Bounded arithmetic and lower bounds in Boolean complexity,”
pp. 344-86 in Feasible Mathematics 2, Birkhauser, Boston, 1995.
[MR96d:03057]

Smolensky, R., “Algebraic methods in the theory of lower bounds for Boolean circuit
complexity,” pp. 77-82 in Proceedings of the 19th Annual ACM Symposiumon the The-
ory of Computing, 1987. [LILILIE]

Tauri, J., “Probabilistic polynomials, ACy functions, and the polynomial-time hierar-
chy,” Theoretical Computer Science, vol. 113 (1993), pp. 167-83. [LI4][4]

TodaS., and M. Ogiwara, “Counting classes are at least as hard as the polynomial-time
hierarchy,” SIAM Journal on Computing, vol. 21 (1992), pp. 316-28. [Zbl 0755.68055]
[MR 93n:68052]

Valiant, L. G., and V. V. Vazirani, “NP is as easy as detecting unique solutions,” The-
oretical Computer Science, vol. 47 (1986), pp. 85-93.[zbl 0621.68030IMR 88i:68021]
[l

Yao, A. C., “Separating the polynomial-time hierarchy by oracles,” pp. 1-10 in Pro-
ceedings of the 26th Annual Symposium on Foundations of Computer Science, |IEEE
Computer Society Press, Los Alamitos, 1985. [1]

Department of Mathematics and Computer Science
University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

THE NETHERLANDS

email: Igomenico@fvvi .uva.nl |



http://www.emis.de/cgi-bin/MATH-item?0838.03044
http://www.ams.org/mathscinet-getitem?mr=96d:03057
http://www.emis.de/cgi-bin/MATH-item?0755.68055
http://www.ams.org/mathscinet-getitem?mr=93h:68052
http://www.emis.de/cgi-bin/MATH-item?0621.68030
http://www.ams.org/mathscinet-getitem?mr=88i:68021
mailto: domenico@fwi.uva.nl

