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Another Characterization of Alephs:
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JOHN C. SIMMS

Abstract A theorem of Siergiski of 1919 characterized the cardinality of
the continuum by means of lines in two orthogonal directions in the plane: CH
if and only if there is a subse? of the plane such that every horizontal cross-
section ofSis countable and every vertical cross-sectiorsas co-countable.

A theorem of Sikorski of 1951 characterizes the cardinality of an arbitrary set
by means of hyperplanes in orthogonal directions in finite powers of that set.
A theorem of Davies of 1962 characterizes the cardinality of the continuum by
means of lines in nonorthogonal directions in the plane, which, by another the-
orem of Davies of 1962, may be generalized to finite-dimensional Euclidean
space. The main results of this paper unify these analogous theorems of Siko-
rski and Davies by characterizing the cardinality of an arbitrary set by means of
hyperplanes in nonorthogonal directions in that set.

1 Introduction In 1919, Sierpiski [6] proved the following theorem.
Definition 1.1 Let SC R? andA be a set. Then
1. Ais avertical cross-section of S if and only if Ir € R such thatA =
{(x,y) e S: x=r},and
2. Ais ahorizontal cross-section of Sif and only if 3r € R such thatA =
{(X,y) e S:y=r}.

Theorem 1.2 (Sierpirski’'s Theorem) CH if and only if 3S € R? such that

1. every horizontal cross-section of Sis countable, and

2. every vertical cross-section of Sis co-countable, that is, every vertical cross-
section of R? \ Sis countable.

Sierpihski’s Theorenfl.2has subsequently undergone a fascinatingly elaborate de-
velopment. In 1951 one line of investigation issuing from Siesgi's Theorenfl.2]
culminated in the following theorem of Sikorski][
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Notation 1.3 Let X be a set and be a cardinal. Then

1. [X]< = {Y C X: Y| = «},
2. [X]<“ = (Y C X:|Y]| <«

Definition 1.4 Let Xbe asetn, me w; A € [n]™; andY be a set. Thel is aA-set
in "X if and only if 3 (a)j., € *X suchthaty = {x € "X : Vi € A, X = &}.

Terminology 1.5 Let X bea set and C be a collection of sets. Then C coversX if
andonly if | JC = X.

Theorem 1.6 (Sikorski’'s Theorem) Let X be a nonempty set; n € w such that n >
2; mbesuchthat 0 < m < n; and @ be an ordinal. Then | X| < 8, if and only if
there is a sequence (S ) <[y Of Sets covering "X such that VA e [n]™, every A-set
Y in "X intersects S, in fewer than X, points.

Sierpiski’s TheorenfiL 2lis the corollary of Sikorski's Theorefh6bbtained by set-
ting X=R,n=2,m=1, ande = 1.

In 1962, another line of investigation issuing from Siégki's Theorenil.Z]
reached a culmination when Davies proved, in effect, the following thedzgia. [

Theorem 1.7 (Davies’ Theorem) Let n be a nonzero element of w. Then the fol-
lowing are equivalent.

1. 2% < Ry,

2. VK € w, if k > 2, then for every sequence (Li)icn 2 Of linesin RX, no two of
which are parallel, there is a sequence (S )cn.» Of sets covering R such that
Vi e n+ 2, every linein RK parallel to L; intersects S in finitely many points.

3. Thereisasequence (Li)icnyo Of linesin the plane and a sequence (S )jcn, 2 Of
sets covering R? such that Vi € n+ 2, every linein R? parallel to L; intersects
S infinitely many points.

In 1985, in[F], Freiling formed natural intuitions about randomly selecting real num-
bers into an attractive philosophical argument for a number of set-theoretic principles,
one of the weaker of which, 4, he showed to be equivalent to the negation of the
continuum hypothesis. Itturns out that Freiling’s principles are related to S&kifs
TheorenfL.2land that many of them can be derived from Sikorski’s Thedteit

The main result of this paper is a generalization of Sfeski's Theoreni.2khat
embraces both Sikorski’s Theoréirfland Davies’ Theorei.ZF The proof of the
main result of this paper is based on the proof of DavieB]Jn [

The following three sections of this paper establish the main result. The fourth
section applies the main result to Sikorski's Theokiefland to Davies’ Theorefh.7]
establishes a very general result for finite-dimensional vector spaces, and then takes
alook at some of Freiling’s principles. The concluding section of this paper presents
asuccinct recapitulation of Freiling’s philosophical argument f@g And indicates
how it might lead one to believe that®is weakly inaccessible.

2 From decompositions to cardinalities This section shows how to use certain
coverings of a set to say something about its cardinality.
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Definition 2.1 # is anS-indexecdhyperspaceon X if and only if # is anS-indexed
sequencefs)q, , of partitions ofX.

A hyperspace may be thought of as a list of hyperplanes in a space, a hyperplane being
identified with the set of hyperplanes parallel to it.

Convention 2.2 Let(#s)g_, bean S-indexed hyperspaceon X and Se . We con-
found #s with its associated equivalence relation. Thus, in particular,

1. vxe X, [X] 4 stands for the unique H € Hs such that x € H, and
2. VX, y € X, x Hs y meansthat [X] 5 = [Y] s

Definition 2.3  Let H be anS-indexed hyperspace oX. ThenH is an S-hyper-
plane of # if and only if

1. Se §,and
2. H 6.7‘[5.

Definition 2.4 Let # be anS-indexed hyperspace ox; §', S” C S; andA C X.
Then

1. tis anS”-invariant S’-trandation of Ain # if and only if

@t: A X,
(b) Vxe AVS € ¥, x Hg t(x), and
(c) Vx,ye AVS’ € §": x Hg yif and only ift (X) Hg t (y).

2. T is an $"-invariant §’-trandate of A in A if and only if there is an$’'-
invariant§’-translationt of Ain # such thafl = R ().

Definition 25 Let A be anS-indexed hyperspace aX; S, §” € S; andk be a
cardinal. ThenS’ «-trandates over §” in # if and only if VA € [ X] =¥, there is an
S”-invariant$’-translateT of Ain H such thafl N A= &.

Proposition 2.6  Let A be an S-indexed hyperspace on X; S, 5" € S; « be an
infinite cardinal; and A € [X]=*. Supposethat §’ k-trandates over S” in A . Then
there is a sequence (Ay) e, Of pairwise digoint S”-invariant §'-translates of A in
AH.

Proof: By induction ona < k. Suppose that < « and thatvg < «, Ag has been
defined. LetB = AU U/S<a Ag. Then|B| = |A| (1+ |a|) < k. SincesS’ k-translates
overS” in # , there is anS”-invariantS’-translatiort of Bin # suchthaBnNt[B] =
@. Let A, = t[A]. O

Definition 2.7  E is an S-indexeddecomposition of X if and only if E is an §-
indexed sequencEs) s. s such thatX = ( Jg_ Es.

Definition 28  Let# be ans-indexed hyperspagéfs)s_,0nX, Y C X, 5’ C 5, E
be an$’-indexed decompositio(Es)s. ¢ 0of Y, ando be a cardinal. Thek is o-fine
in H ifand only if YSe §' VH € #Hs, |[HN Eg| < 0.

Notation 2.9 Leto be a cardinal. Then
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1. 09 =0, and
2.Vne w, ot™D = (O‘+n)+.

Notation 2.10  Let (X;)jc; be a sequence of sets. THegn., X; is the set of all func-
tions f such that

1. D(f)=1,and

2. Viel, f(ieX.

Theorem 2.11  Let X beanonempty set, # be an S-indexed hyperspaceon X, n €
w, and x and o beinfinite cardinals. Supposethat (5;); -1 isa sequence of subsets
of § such that
1 Ui<n+15i =S5 and
2. Vi<n+1,
() Si«-trandatesover |J;_; Sjin %, and
(b) 1Sil < cf(ot).
Then, if thereis a o-fine S-indexed decomposition of X in #, it followsthat « < o*™".
Proof: Assume, on the contrary, thélEs) s 5 is ao-fine S-indexed decomposition
of Xin #, but that > o". Note that sinceX is nonempty,S is nonempty, too. We

construct a sequence of sequer<(¢[e§)&el_[j<i ) such that

1. X() e X,
2. Vi <n+1Vg < o™, thereis d J;_; Sj-invariantS-translationt of

ey

j<i
such that '

j<i
3. Vi < n+ 2, thex; of (X&>aen- _,; are pairwise distinct.
I<i

Let x;, be any element oK. Leti < n+ 1and suppose that thg fora € [;_; ot

have been defined. Let
A= {X&:&EHO’+j}.

j<i
Then|A| < ot < 6™ < k. Sinces; k-translates oveLri<i Sj in A, there is a se-
quencelts),_,. of U, Sj-invariantSj-translations ofA in # such that theR (ts)
are pairwise disjointy8 < o' Va € [, 0™, letxg ~ 5 = tg (x;). Next we con-

struct a sequence _
Miznsre [ o™
j<n+1
such that

Vi<n+1vSe Siivae [] ot %y, ¢ Es,

i< <yj>je(n+l)\(n—i)
<n—
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by induction oni.
Suppose that < n+1 and thatvj € (n+1) \ (n—i+ 1), yj has been con-
structed. Let € [[;_,_jo™). Let Se S-i. Now,

VB < O’+(n_i), X5 ,'7‘[3 X&A(,B)’

SO
VIB, ﬁ/ < U+(n_|), X&A(ﬂ> }[S X&A(ﬂ/)’
whence
X~ 18y (e Hs X, ~ 510 (4 :
a” (B) <yl>je(n+1)\(n—i+l) a” (B) (yJ>je(n+1)\(n—i+1)
Let

< a+(n_i)} .

Ay = {X&“<ﬁ>u(m)
Let H; be theS-hyperplane

je(+D\(n—i+1)

[X&Aw)ub’i)ie(n+1>\<n—i+1)]}[s
in H. ThenA; € H;. By hypothesis,

|A; NEs| < |H;NEs| <o
Let A= Usery,_, ot s

Subclaim2.12  |ANEg| < ot D,
Subproof:  To see this, first suppose that n. Then

o< 1_[ G+j <G+(n—i)’
j<n—i
SO
|[ANEg| < l_[ otl|.o <ot D,
j<n—i

Next suppose that=n. Then

|ANEs| = |Ay NEg| <o =o™".

Now, by assumptiof,i| < cf (o+) . Thus,

AﬂUES

SeSn-i

< 0+(n—i).

Now, VB € oD |et

— Iy -2 +]
Aﬁ - [Xa (ﬂ)u<yi>je(n+1)\(n—i+l) o€ 1_[ o ] ’

j<n—i
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By construction Ais the disjoint union of the\s. Accordingly, there is @ < o+ ("=
such that

Asn | ) Es|=2.

Sesni

Let yn_; be any sucl8. Accordingly,VSe S, X;, ¢ Es. But (Es)scs is a decomposi-
tion of X, sothis is a contradiction. O

3 From cardinalitiesto decompositions  This section shows how to use the cardi-
nality of a set to say something about its decompositions, giving a general converse

to Theoreni2.11]

Definition 3.1  Let# be anS-indexed hyperspace ofi n € w, andz be a cardinal.
Then# is t-fine to depth n if and only if ¥x € X, for every linear orderings of
{[Xls : Se S}, thereis a subset(’ of {[X], : S S} of sizensuch thavH’ € #,
IN{H = H :=3H" € ' suchthatH < H”" < H'}| <.

Theorem 3.2 Let # bean S-indexed hyperspaceon X, n € w, and r beacardinal.
SQupposethat S is nonempty and finite and that #{ is t-fineto depth n. Let o beanin-
finite cardinal greater than . Thenif | X| < o™, it follows that thereisan S-indexed
decomposition of X that iso-finein # .

Proof: Note first that the result is trivial i = 0. Assume, therefore, that> 0. Let
us say thatd is ahyperplanejustin caseH € ( g Hs. Let N be a set of hyperplanes.
Let us say thaN is anetwork if and only ifV.§" € SV(Hg)s. s € [[sc s (HsN N), if
|Nses Hs| < 7, thenyx € Mg ¢ HVS € S, [X]4 € N. Clearly, an intersection of
networks is a network.

Sublemma 3.3 Let M bea set of hyperplanesand N be the smallest network such
that N © M. Then |N| < max{|M|, o}.

Subproof:  Define(N;)ic, by induction oni as follows. LetNy = M. Suppose that
N; has been defined. Then let

Niy1 = NjU {H:as’gsams)sgy € ]_[ (HsNNi)3Ix e ﬂ HsASe S
Ses’ Ses’

such that

[ Hs

Sey’

<t&H =[X]5{S}

Clearly, N = ., Ni. Moreover, |[Ng| < max{|M|, o}, andVi € o, if [Nj| <
max{|M|, o}, then|Ni;1| < max{|M|, o} - T = max{|M|,o}. Thus,|N| < -
max{|M|, o} = max{|M|, o}. a

Sublemma3.4 Letk € w and N be a network such that |[N| < otX. Then thereis
awell-ordering < of N such that

(*k) YH € N, there are fewer than o finite sets ' of hyperplanes such that
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(1) H isthe <-greatest element of #’,

) NH' + 2, and

30 3H" e [H']" such that VH” € H”, |N{H e H':H < H" &
—~3H"e H" suchthat H' < H” < H"}| < .

Subproof: By induction onk. First assume thd& = 0. Then|N| < o. Let < be any
well-ordering ofN. Then below anyH there are, of course, fewer tharfinite sets

of whatever kind. Next, assume that the sublemma is truk.fove seek to show it
true fork + 1. To this end, assume thhtis a network and thatN| < o+ |f

IN| < o&+D then the result is trivial by the induction hypothesis, so assume that
IN| = ot ®&+D | Let (Hy),_ +k1 enumerateN. Va € ot®+D\ o+K et N, be the
smallest network containinfHg : 8 < }. Then, by the preceding sublemnva,

ot ktD\ oK Ny | = 01K Vo € ot D\ 61K Jet <, be a well-ordering oN,, as
guaranteed by the induction hypothesis. NgW, € N, let« (H) be the least such
thatH € N,. Finally, define the well-ordering by H; < Hy if and only if either

a(Hy) < a(Hy)

or
a(Hp) = a(Hy) & Hy <¢(H,) Hoa.

We need to shovw(*kH). To this end, letH € N and suppose tha’ is a finite set
of hyperplanes that satisfi¢$,1) — (3«1). Let H” be as in(3;1), o that in par-
ticular, #" is of sizek + 2, and letH” be the<-least element of{" .

We show thatx (H”) = « (H). For suppose otherwise. Ther{H") < « (H),
and moreover, by3,.1), | {H € #': H' < H"}| < r. Butthen, by(2,;1), H €
Ny (Hry, Whenceo (H) < o (H”), which contradicts our supposition. Accordingly,
{H’ eH H > H”} satisfies(1x) — (3¢) with respect to<,4). Now there are by
construction of<, 1), fewer thano finite sets#* of hyperplanes satisfyingly) —
(3k) with respect to<,(n). Let H* be such a setx € (| H*, there are only finitely
many superset® ** of AH* satisfying(2y) with respect to<,, and such thax €
M H**. Since, by(3y), | H*| < T < o, there are fewer tham finite sets?” satis-

fying (Lis1) — (3r1) With respect to<qh. O

Now we continue with the proof of the theorem. We have assumeathd. Thus,
IX| < oD whence| Jg s Hs| < o™V, Apply the preceding sublemma with
k = n— 1, getting a well-ordering ok of the networkN of all hyperplanes satis-
fying (xn_1). In particular, in(3,_1), k+1=(n—1)4+1=n. Now,VH € N, let
En = {xe X: H is the<-greatest element df includingx}. ThenEy C H, and
since < satisfies(x,_1) and 4 is z-fine to depthn, |Ex| < 0. Now, VS € S, let
Es = UHG_’]‘[S En. ThenVH € Hs, HN Es = En, so|HN Eg| < 0. Butthe Ey
and hence, sincgis nonempty, th&es decomposeX. Thus,(Es) s ¢ is ansS-indexed
decomposition oK that iso-fine in A . O

4 Cardinalitiesand decompositions  This section presents the main theorem of this
paper and proves it by combining the results of the previous two sections. Before
proceeding, it is convenient to introduce a special family of hyperspaces.
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Definition 4.1  Let X andn be sets and €6 C n. ThenH is anS-hyperplanein "X
ifand only if3f :n\ S— XsuchthatH ={xe"™X:Vien\ S x = f (i)}.

Definition 4.2 Let X be a nonempty set andandn be cardinals such that < n.
Then §, (X), that is, theSkorski hyper space of m-dimensional hyperplanes #X, is
the sequenc&[s)s‘e[n]m such thav'S e [n]™, # is the set ofS-hyperplanes ifX.

Clearly, §, (X) is an[n]™-indexed hyperspace &X. The main theorem of this paper
is as follows.

Theorem 4.3 (Main Theorem) Let X be an infinite set, o be an infinite cardinal,
and n € w. Then the following are equivalent.

1 |X| <ot

2. For every T < o and for every S-indexed hyperspace # on X such that Sis
nonempty and finite, if # is z-fine to depth n, then there is an S-indexed de-
composition of X that iso-finein % .

3. Thereisan S-indexed hyperspace #H on X for which there are an S-indexed
decomposition of X that iso-finein # and a sequence (S;); -1 Of subsets of
S such that

@ Uiznsa Si= S and

(b) Vi<n+1,
(i) Si IX|-translates over | J;_; Sjin #, and
(i) 1Sl < cf (o).

Proof: That (I} implies [2] is atrivial consequence of the Theordir?] That [2]
implies [3) may be seen as follows. Sineeis infinite, assume without loss of gen-
erality thatX = "1, Let # = SI*1(Y) and S = [n+1]*. Then# is anS-
indexed hyperspace aX, S is finite, and# is 1-fine to deptm. Next,Vi < n+ 1,
let Si = {{i}}. Now, leti < n+1andA C X such thaiA| < |Y|. Thenlet B =
{b e Y:3x e Asuch thats = b}andf : B:2Y\ B. Definet to be the function from
Ainto X such thatx € X, t (X) = the element of X such thaty; = f (x;) and such
thatVj < n, if j #i,theny; = xj. Thentis an<i Sj-invariant§; translation ofA
in H . Accordingly,Vi € n+ 1, S |Y|-translates oveLri<i Sj in A . Therefore, by
(2], there is ans-indexed decomposition of that iso-fine in . Since|X| = |Y|,
we are done. Thalg] implies {@) is a tivial consequence of the Theor§ll O

This theorem may be expressed in measure-theoretic terms by means of the second
theorem following, that is, Theorelda7]

Definition 4.4  Let A be a set of subsets of, o be a cardinal, and € X. Then
1. Aiso-null over # ifand only if YVH € #, |AN H| < o, and
2. Aiso-full over # if and only if X \ Aiis o-null over# .
Definition 45 Let # be ans-indexed hyperspace oX, o be a cardinal, anéd C
X. Then

1. Aiso-null in # if and only if 3S € § such thatA is o-null over #s, and
2. Aiso-full in A if and only if 3S € § such thatA is o-full over Hs.
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Theorem 4.6 Let X beaset, k beaninfinite cardinal, 4 beax-algebraon X, t be
an infinite cardinal no greater than «, and . be a t-additive measure on 4. Suppose
that M < P (X) such that

1L VM e [M]™, UM e M, and
2. VAe 4,ifIM € M suchthat A € M, then u (A) = 0.

Then thereis a unique measure v on the «-algebra generated by 4 U M that extends
w and issuch that YM e M, v (M) = 0. Moreover, this measure v is r-additive.

Proof: Let Al = {N:3M e M suchthatN € M}. Then\( satisfies[{) and
above, too; that is,

1LV e [AN]™ UN e A, and
2. VAe 4,if 3N € M such thatA € N, thenu (A) = 0.

We begin by showing that there is an extensioof i to thex-algebra generated by
AU N suchthawN e A/, o (N) =0.

Let B={AAN:AecA&N e N}. Weshow thatB is ax-algebra. To this
end, suppose first th& € B. Then there aréh € 4 andN € A such thatB = AA
N. Moreover,X\ B = (X\ A) A N, soX\ B e B. Accordingly,B is closed under
complements.

Suppose next that| < « and thatvi € I, B; € B. ThenVi € |, there areA;
A andN; € A such thatBi = Aj A Ni. LetC = (U, A) \ (Uic, Bi). andD =
(Uicr B)\ (Uier A)) - ThenUig, Bi = (Ui A) A (CUD).

Now, C, D < ., Ni, so, by [J (for ) and the fact that every subset of an
element ofA\ is an element of\(, CU D € A, whencel J;., Bi € B. Accordingly,
B is closed under unions of fewer tharsets, sdB is indeed ac-algebra.

Now, supposeB € B; A, Ao € 4; N, No e A; andAy AN =B= A A
N,. ThenA; A Ay = Ny A Ny € A, so,by @) (for A), i (A A Ay) = 0, whence
u (A1) = u (Az). Accordingly, defineir to be the unique function of# such that
VAe AVN e A,

p(AAN) =u(A).

Clearly, iz is an extension of.. We show that is T-additive. To this end, suppose
that|l| < = and that(B;);c, is a sequence of pairwise disjoint sets drawn frém
ThenVi e |, there areA; € 4 andN; € A\ such thatB; = Aj A N;. As above, let
C = (Uict A)\ (Uics B) andD = (Uic, Bi) \ (Uiey A)), sothatCU D e A and
Uicr Bl = (Uie) A) A (CUD). Thenii (Uig Bi) = 1 (Ui A). Now, let E =
Ui jerizj (AN Aj). Suppose, j € | andi # j. Then, sinceB; andB; are disjoint,

AiﬂAjgNiUNjEN,

whence
7 (Ai N Aj) =0.

Accordingly,u (E) = 0, whence

(4a) = ()
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M(U(Aa\E)>=ZM(Ai\E)

iel iel

= > u(A)=) i(B).

iel iel

Thus, it (Uier Bi) = Yic) & (Bi). Accordingly,x is t-additive.

Now letv be x restricted to th&-algebraC generated by U M. Thenvis, as
desired, a measure @hthat extendg. and is 0 orfM. To seethatv is unique, suppose
thaty' is also such a measure. @& C. ThenC € B, othere areA € 4 andN € N\
suchthaC = AA N, and there is aM € M suchthatN € M. Now, v’ (A) = u (A)
andv’ (M) = 0. Hencey' (A) =V (A\ M) <V (C) <V (AUM) =V (A). Thus,
V' (C) =V (A) = 1 (A) = v (C). Accordingly,v is unique, and, by construction, it
is r-additive. O

Theorem 4.7 Let #H be an S-indexed hyperspace on X and o be an infinite
cardinal. Let « be an infinite cardinal, A4 be a «-algebra on X, t be an infi-
nite cardinal no greater than «, and x be a r-additive measure on 4. Let M =
{USeS As:VSe S, Asiso-null over .7‘[5}. Suppose that « is no greater than cf (o)
andthat VA € M, if u (A) isdefined, then 1« (A) = 0. Then the following are equiv-
alent.

1. VAe A,if u(A) # 0, then there is no S-indexed decomposition of A that is
o-finein A .

2. Thereisa r-additive measure v defined on the «-algebra generated by 4 U M
that extends . and issuch that YM € M, v (M) = 0.

3. Thereisafinitely additive measure v on X that extends « andissuchthat VM €
M,v(M)=0.

Proof: We first show that[{J implies [2). To this end, assumE), Note thatM is
closed under unions of fewer than(ef) sets. LetA € A and suppose that there is
anM e M such thatA € M. We sek to show that (A) = 0. Assume otherwise.
SinceM € M, there is a sequends)s. g such thatv'S € S, Mg is o-null over Hs
and such thaM = | Jg. ; Ms. Butthen,(AN Ms) s s is anS-indexed decomposition
of Athat iso-fine in #, which contradictd). Accordingly, . (A) does equal zero.
By the immediately preceding theorem, it follows tHz} i true.

That [8) follows from [2) is trivial. To see that[l) follows from (3], let v be
as in B). Let A € 4 such thatu (A) # 0. Supposé Es)scg is ao-fine S-indexed
decomposition ofAin . Then i (A) = v (g Es) = 0, which is a contradiction.
Hence[[) holds. O

5 Applications In this section, we apply Main Theordm3to Sikorski's Theo-
rem[L.6] Davies’ TheorenfL.7]finite-dimensional vector spaces, and some of Freil-
ing’s principles. We begin by restating Sikorski’s Theoféiland proving it as an
immediate consequence of Main Theoférl

Proposition 5.1  Let n be an element of @ no lessthan 2, X be a set of sizen, m
be such that 0 < m < n, and < be any linear ordering of [ X]™. Then thereis a
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subset S of [X]™ of size n — msuch that VS € §, (N {S < S: =3S’ € S such that
S <S8 < S} =g.

Proof: By induction onn. If n = 2, then the result is trivial. Accordingly, as-
sume that the result is true for, we seek to show that it is true far+ 1. To
this end, letX be a set of sizen + 1 and < be any linear ordering ofX]™. If
m = n, then the result is again trivial, so assume tima& n. VS [X]™, let[9 .
stand for{S : S < S}. Now let S be thex-first element off X]™ such thatSn
N[S< =2, letS=[X]™\[9<, and finally, letx € (\[S<. Then[ X\ {x}]" C .
By the induction hypothesis, there is a subsebf [ X\ {x}]™ of sizen — m such
thatvS € 5/, {S e [X\{x}]": S" = S & —3S" € §' such thatS’ < S” < S}
= @. Then{S} U S is as desired. O

Theorem 5.2 (Sikorski’'s Theorem) Let X be a set, n be a nonzero element of w, m
be such that 0 < m < n, and o be an infinite cardinal. Then |X| < ot™™ if and
only if 3(Es) seqm such that

1. nX = U%[n]m ES, and
2. VSe [n]™, every Shyperplanein "X intersects Eg in fewer than o points.

Proof: If X is finite or if n = m, then the theorem is trivial, so assume tixais
infinite and thaim < n. Let # be §,(X). Let S € [n]™ such tha{") §$ = @. Then
V(Hs)ses € [1sesHs |Nses Hs| < 1. Accordingly, by the preceding proposition,
H is 1-fine to deptm — m.

Now,Vi e n—m+1, letSi = [m+i]"\ [m+ (i — D]™. Then{J;_p_my1 Si =
[n]Mand¥i < n—m+ 1, S |X|-translates ovel;_; S in #. Sikorski's Theorem
is now an easy consequence of Main Theolef} a

Next we restate Davies’ Theordinzland show that it, too, is an immediate conse-
quence of Main Theore.3] Before proceeding, it is convenient to introduce an-
other special family of hyperspaces.

Definition 5.3 Let V be a vector space andbe a subspace &. ThenH is an-
hyperplanein V if and only if 3v € V such thatH = v + =, that is, such thaH =
fv+w:wemn}

Definition 5.4 LetV be a vector space arid be a set of subspacessf Then H
is all-hyperplane of V if and only if 37 € IT such thatH is anz-hyperplane inv.

Definition 5.5 Let V be a vector space arid be a set of subspaces ¥f Then
B (V), that is, theBagemihl hyperspace®of IT hyperplanes o¥, is the sequence
(#), . such thatx € T1, #; is the set ofr-hyperplanes ifv.

Clearly, By (V) is all-indexed hyperspace oh.

Theorem 5.6 (Davies’ Theorem) Let n € w, o be an infinite cardinal, k be a
nonzero element of w, and (Li)icny1 be a sequence of linesin R, no two of which
areparallel. Then 2% < o™ if and only if 3(S);cn.1 Such that

1. R=Uicny1 S, and
2. Vi e n+1, every linein R¥ parallel to L; intersects § in fewer than o points.
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Proof: If n= 0, then the resultis trivial, so suppose that 0, in which casé > 1.

Vi € n+ 1, letrr; be a nonzero vector iRK parallel toL;; letIT={x:i < n+ 1}; and
finally, let = Bp (R¥). Then # is all-indexed hyperspace d®f which is 1-fine

to depthn. Now, Vi e n+ 1, let Sj = {m;}. ThenUknJrl Si=TITandVvi <n+1, .5
2%-translates ovelJ;_; §j in 7. Davies’ Theorem is now an easy consequence of
Main Theoren.3| O

Next we apply Main Theorefd.3lto vector spaces in general.

Definition 5.7 LetV be a nontrivial vector spacH, be a set of nontrivial subspaces
of V, andn € w. ThenII is n-good if and only if for every linear orderings of IT,
there is a subsef of IT of sizen such thawvr € S, [ {n/ < 7. —37” € §such that
7' <" < 7} is O-dimensional.

Lemmab.8 LetV beanontrivial vector space over an infinite field F, IT be a set
of nontrivial subspaces of V, and n € w. Suppose that IT is n-good, but not (n+ 1)-
good. Then 3 (I1;)j .41 Such that

1 = Jj_ne T and
2. VA [V]<IFlvi < n+13v e NI suchthat AN (v + A) = @.

Proof:  Sincell is not(n+ 1)-good, there is a linear orderingof IT for which there
is no subsess of IT of sizen+ 1 such thavx € S, (" {#' < 7 : =3n” € § such that
7 <a’ < n} is O-dimensional. On the other hand, siités n-good, there is a sub-
set§ of IT of sizen such thav'w € S, (N {#' = 7 : —3n” € Ssuch thatr’ < 7" < 7}
is O-dimensional.

Let (7i);cn €nUMerateSin < order. Ifn=0, letTly =TI1. If n > 0: letTTy =
{m:m<mg); VisuchthatO< i < n, letIlj = {7 :7i_1 X7 < m}; and letll, =
{7 : mhn_1 < 7}. By choice of<, wemay assume th&t < n, = is the<-first element
of Tnotin{xj:j <i}suchtha{r' < 7 : =3n” € S suchthatr’ < =" < xj} is
0-dimensional, in which casé < n, () IJ; is nontrivial. Moreover, by choice o%,
() I, is nontrivial.

Now, Vi < n+ 1, letv; be a nonzero element ¢ IT;. Let A e [V]=/Fl and
i <n+1. ThenletW = {w; — wy : wq, wy € A}. Since|F| is infinite, |W| < |F].
Accordingly, there is a scalar multipleof v; such thab ¢ W. ThenAandv + Aare
disjoint. O

Theorem 5.9 Let F be a field, V be a vector space over F, n € w, and o be an
infinite cardinal. Suppose that the dimension of V is at least 2 and that |V| = |F|
(which isthe case, for example, when F isinfinite and V isfinite dimensional). Then
the following are equivalent.
1 |V| <o™.
2. For every nontrivial finite set IT of nontrivial subspaces of V that is n-good,
thereisa sequence (E,) < Such that
(@ V = eq Exrand
(b) Ve ellVve V, |(v+7)NE;| <o.
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3. Thereisanontrivial finite set IT of nontrivial subspacesof V thatisnot (n+ 1)-
good for which there is a sequence (E,) ;e such that

(@ V=U,eq Exr and
(b) VieIVve V, |[(v+rm)NE;| <o.

Proof: Note first that since it is assumed thet = | F| and that the dimension &f
is at least 2F is automatically assumed to be infinite. We show first tihiroplies
(2. To this end, assumBYand suppose thd is a nontrivial finite set of nontrivial
subspaces of that isn-good. LetH = Bp (V). We show that# is 1-fine to depth
n. To this end, letv € V andVr € I1, let H,, be the unique element @f, such that
v € H,, thatis, letH, = v + 7.

Let < be any linear ordering diH,, : = € I1}. Since theH,, are distinct, this in-
duces a linear ordering’ onIl. Sincell is n-good, there is a subsgtof IT of sizen
suchthavr € S, {7’ =’ 7 : —=37" € Ssuch thatr’ <’ 7" <’ =} is 0-dimensional.
But thenVr € S, M {H' < Hy: =37” € Ssuch thatH’ < H,» < H.} = {v}. Ac-
cordingly, # is 1-fine to depttn, whence by Main Theoref#.3] (2} holds.

We show next thafZ) implies B). Assume[). Since the dimension of is at
least 2, there is a sequende); .., of pairwise distinct lines itv through the origin.
LetII = {L; : i € n+ 1}. ThenII is n-good, but notn + 1)-good. By ), there is a
sequenceéE,) . such that

1. V=U,en Erand
2. VrellYve V,|(v+m)NE,;| <o.

Thus B] holds. By the preceding lemma and Main Theokef) @) implies [[J. O

This is certainly not the most general theorem that can be proved about vector spaces
but it is, in the present context, probably the most interesting one. A question that
needs to be addressed is, Whidharen-good? Here we can make several observa-
tions.

First, suppose that@ m < n € w and thatv;); _, is a sequence oflinear inde-
pendent vectors drawn from. VS € [n]™, let s be them-dimensional subspace of
V spanned byv; : i € §}. Thenv§ C [n]™, Mg ssistrivial ifand only if( = @.

LetIl = {ns: Se [n]™}. By Propositior5.1]1T is (n — m)-good. Itis also easy to see
thatIT is not(n — m+ 1)-good—Iet< be any ordering of1 such thav'S, S € [n]™,

if max S < maxS, thenwg < wg. Since for every infinite cardinality, there is a field
of that cardinality, Sikorski’s TheoreB2Follows from the preceding theorem.

Next, letIT be a set of(n + 1) lines through the origin. Then, as noted in the
proof of the preceding theorer, is n-good, but notn + 1)-good. Thus, a general-
ized version of Davies’ Theorelflalso follows from the preceding theorem.

To see something new—something not involving hyperplanes all of the same
dimension—letV = R® and I consist of thex, y-plane and the-axis. ThenII is
1-good, but not 2-good. Hence, for example, CH if and only if there areEsedad
Exy such that

1. R® = E, U Eyy,
2. every line parallel to the-axis intersect$, in countably many points, and
3. every plane parallel to the y-plane intersect&,y in countably many points.
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To see something else new—something like Davies’ Thedeihbut for nontriv-
ial hyperplanes—IleV = R3: vg, v1, and v, be nonzero vectors in the, y-, and
z-directions; andi3 be a nonzero vector not in any of the coordinate planes, for ex-
ample, the vecto(l, 1, 1). DefineIl to be the set of six planes generated by pairs of
these vectors. Then it is easy to verify thais 2-good, but not 3-good. Hence, for
example, CH if and only if there is a decompositid#y, ) ,.; of R® such thav'z € 1T,
every plane parallel ta intersectsE,; in only finitely many points.

In principle, we can compute of a given a set of hyperplanes just how “good”
it is and see thereby just what kinds of Siégki-type theorems we can get for it. It
is particularly interesting to re-express these results for finite-dimensional Euclidean
space in terms of Lebesgue measure.

Notation 5.10

1. A is the Lebesgue measure Bn
2. Yk € w, AX is the Lebesgue measure BA.

Proposition 5.11  Let o be an infinite cardinal—such asXg or 8;—such that VA
[R]=7, A (A) =0; k = min{Xq, cf (0)}; and n € w. Let k € w such that k > 2. Then
the following are equivalent.
1. 280 > otN,
2. For every nontrivial finite set IT of nontrivial subspaces of R¥, if IT is n-good,
then there is a k-additive measure v such that

(@ v2 Ak and

(b) VA € RK, if 37 e IT such that every hyperplane in RK parallel to = in-
tersects A in fewer than o paints, then v (A) = 0.

3. There is a nontrivial finite set IT of nontrivial subspaces of RK that is not
(n+ 1)-good for which there is a a finitely-additive measure v such that

(@ v2 Ak and

(b) YA € R, if 3 e IT such that every hyperplane in R parallél to r in-
tersects A in fewer than o points, then v (A) = 0.

Proof: The result is immediate by Main Theordfs] its measure-theoretic refor-
mulation Theorerfi.7] and the Fubini Theorem for Lebesgue measure. O

Corollary 5.12  The following are equivalent.

1. =CH.

2. Thereisa countably-additive measure v that extends the Lebesgue measure for
the plane and that gives measure 0 to every subset of the plane all of whose
vertical or all of whose horizontal cross-sections are countable.

3. Thereisafinitely-additive measure v that extends the Lebesgue measurefor the
plane and that gives measure 0 to every subset of the plane all of whose vertical
or all of whose horizontal cross-sections are countable.

Let us conclude this section by turning to Freiling’s principles Bffreiling proved
the following theorems related to Sikorski’s Theorrfl
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Definition 513 A_, ifand only ifv f : 2% — [2**0]@<0 A1, Xp € 2% such that
bothx, ¢ T (X1) & X1 € T (X2).

Proposition 5.14  —A_,x,.

Definition 5.15  Let n be a nonzero element of. Then A if and only if Vf :
[2%]"" — [2%] "™ 3X € [2%]" such thatrx € X, x ¢ f (X \ {x}).

Proposition 5.16  Let n be an element of w not lessthan 2. Then AQO if and only if
2% > R,

Freiling [&] remarks, without proof, that the following proposition is true.
Definition 5.17  Letn be a nonzero element af. Then A}, ;.. if and only if V f :
[2%]" — [2%] ™M 3X e [2%]" such thatrx € X, x ¢ f (X\ {x}).

Proposition 5.18 Let n be an element of w no lessthan 2. Then A?—iﬁte if and only
if 2% > R,

We may generalize Freiling’s results as follows.

Definition 5.19 Let X be a set and, n, andm be cardinals. Then &X, o, n, m)
ifand only if v f : [X]" — [[X]m+1]<” JA e [X]™™1 such thatyB e [A]™1,
B¢ f(A\ B).

Clearly,
A_n, < F (ZNO, 2N 1, O), (1)
Ay, < F(2% R;,n-10),and )
Afie <= F(2%,R0,n—1,0). 3)

Proposition 5.20 Let X be an infinite set, o be an infinite cardinal, and n, m € w.
Then | X| > ot"if and only if F (X, o, n, m).

Proof: Note first that the proposition is trivial if = 0; hence, assume that> 0.
We begin with the left-to-right direction. To this end, assume thgt> o™". Let
H = S (X). By Sikorski's Theoren.2]there is ndn -+ m-+ 1]™-indexed
decomposition of*™1X that iso-fine in 4. Let

D = {xe™™IX:3i, j e n+ m+ 1 chthat # j & X = x;j}.

Now let 1 be the smallest probability measure O™ X that assigns 0 td®, that
is, letu be the function whose domainfs, D, "™1X \ D, "™1X}, that assigns
the value 0 toz and toD, and that assigns the value 1d™ X \ D and to™™1X.
Since there is nfn + m+ 1]™ L-indexed decomposition 8f ™ 1X that iso-fine in
H , there is ndn+ m+ 1]™-indexed decomposition 8f™1X \ D that iso-fine
in # . Hence, by Theorefd.7] there is a finitely-additive measupeon "*™1X that
extendsu and that assigns the value 0 to every subs&t®f1X that iso-null in ..
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We now show that EX, o, n, m) is true. To this end, suppose thiat [ X]" —
[[XI™1]~°. Now, VS e [n+m+ 1]™7, let

Fs={xe™™IX: {x:ieSef(x:ien+m+1)\ .

Let

F= |J Fs

Se[n4+m1)m™1

ThenF is a finite union of sets-null in #, sov (F) = 0. Hence,
v (MMHX\ (FUD)) =1,

so there is ax e "™ IX\ (FUD). Let A= {x :i <n+m+1}. ThenAis as
desired.

Next we prove the right-to-left direction. To this end, assume iXat<
ot". Let H be as before. Then, by Sikorski's Theor&®lagain, there is an
[n+ m+ 1]™1-indexed decompositiofEs) g my yyme2 O n+mtly that iso-fine in
H. Let

1-1

F={xe™™IX:3Sen+m+ ™3Iz n+m+1 on+m+1

onto

such that
m[n] = (n+m+1)\ S& (Xﬂ(i)>i<n+m+1 < ES} .

F is a finite union of sets-null over Hnm+1)\n. Moreover, sinceE is a decompo-
sition of "tM+1x,

VX e MMIXTr n4m+1l—n+m+1

onto

such that

<Xﬂ(i))i<n+m+1 ek

Let f : [X]" — [X]™! whose graph as a subsetBf**1X is F \ D, whereD is
defined as above. Thehis a counterexample to (X, o, n, m). O

Itis possible to prove the preceding proposition in one or more direct ways that avoid
using measure-theoretic techniques, but the proof given has the advantage of showing
that if F(X,o,n,m) and f : [X]" — [[X]™?]~, then there is not only one, but
measure one setsA e [ X]"™™ 1 such thavB e [A]™, B ¢ f (A\ B).

6 1s2% weakly inaccessible?  Freiling’s principle A;, is the special caseﬁg\ of
his principle A . The principle A, is then, the same as(2%, 8y, 1, 0) which we
have just seen, is equivalentt&CH.

The gist of Freiling’s philosophical argument fogAis as follows. Lel be the
closed unit interva]0, 1] of real numbers. Lef : | — [I]=™. Pickx andy at ran-
dom froml. Now,Vael, P(y e f (X) | Xx=a), thatis, the probability that € f (x)
given thatx = a, is 0. Hence—and here is the crux of the argumeftcy € f (X)),



ALEPHS AND HYPERSPACE 35

that is, the probability thay € f (x), is 0. By symmetry,P (x e f (y)) = 0, too.
Thus,

Plye f(xorxe f(y) =P(ye f(x)+P(xe f(y) =0,

whence
Piyg f(x) & x¢ f(y)=1

Accordingly,3x,y e | suchthaty ¢ f (x) & x¢ f (y).

For every nonzero elementof w, Freiling presents a similarly attractive argu-
ment for F(2%, Ry, n, 0): let f : [I]" — [1]=; pick Xo, X4, . . ., Xn—1, @andy at ran-
dom froml; and check to see whethge f ({Xo, X1, ..., Xn—1}). F(2%, R, n, 0) is,
as we know, equivalent to the proposition th&t 2 X, 1. Thus, Freiling has pre-
sented an attractive argument for believing tHat2 R,,.

Sikorski's Theorert.2lindicates how little the principles @, 84, n, 0) have
to do with the reals per se: if one is willing to believe th8t 2 R, then perhaps
one might as well believe that for every ordinal2® > R, .

In any case, if one believes that small subsets of the reals, that is, sets of car-
dinality less than that of the continuum, should hawasure 0, and if one believes
in Freiling’s argument for 2%, R4, 1, 0), then perhaps one ought to believe as well
that F(ZNO, 2% 1, 0). However, this proposition is simply false. On the other hand,
one might simply believe thato < 2%, F(2%, o+, 1,0). This has the interesting
consequence that'®> R, .

Proposition 6.1 Let « beaninfinite cardinal. Then « isalimit cardinal if and only
ifVo <k, F (K, ot,1, 0).
Proof:  Trivial. O

Corollary 6.2 Supposethat Vo < 2%, F (2%, ot 1,0). Then 2% > R, .

Moreover, if one believes that small unions of small sets should be of measure 0, then
2% should be regular, whenc&®2should be weakly inaccessible.

Corollary 6.3  Suppose that Vo < 2%, F (2%, 6%, 1,0), and that 2% is regular.
Then 2% jsweakly inaccessible.

For more on Freiling’s philosophical argument against CH, Bkarjd[2].*
Acknowledgments Dedicated to Michael Machtey—a teacher who gave too much, and re-
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NOTES

1. For more on the history of Siefski's Theorenfl.Z] see[B].

2. [4] actually contains a generalization of Davies’ Theofgnilin a direction other than
that taken here. | plan to generalize the results of this paper in that direction in a future
work.
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3. In [1J, Bagemihl obtained the first Siefki-type results concerning three or more lines
in the plane.

4. For more on decompositions of hyperspace, cf. &8P |
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