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A New Semantics for Positive
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Abstract The paper provides a new semanticsyasitive modal logic using
Kripke frames having a quasi orderirgon the set of possible worlds and an
accessibility relatiorR connected to the quasi ordering by the conditions (1)
that the composition of with Ris included in the composition & with < and

(2) the analogous for the inverse gfand R. This semantics has an advantage
over the one used by Dunn in “Positive modal logittidia Logica (1995) and
works fine for extensions of the minimal system of normal positive modal logic.

1 Introduction  In [4] Dunn begins the study gsitive modal logic, modal logic
without negation and without implication—that is, modal logic with the connectives
A, Vv, 0O, O, and also modal logic with the mentioned connectives plus the proposi-
tional constants” and L. The question addressed in the paper is which set of pos-
tulates characterizes the definition of these connectives (and propositional constants)
in the usual Kripke semantics: that is, the semantics where (1) frames are pairs con-
sisting of a set of possible worlds and a binary relation on that set, (2) valuations are
any function from the propositional functions to sets of possible worlds, and (3) the
semantical clauses in the definition of truth in a world are the usual classical ones
for the connectives involved[4] answers the question by introducing the systems
K+ (with the connectives, v, O, ©) and K[+ (with the connectives., v, O, < and

the propositional constants, 1) of positive minimal normal modal logic defined

by means of calculi on consequence pairs, that is, pairs of forngalag), written

¢ = i, that can be identified with sequents. Dunn’s systems have the following prop-
erty for the formulas in the languages involved:

@1 A Agnk gisdeducible iff ¢1,..., 90 Ek ¢,

wherek= is the local consequence associated to the minimal normal modal logic K,
that is, the one defined by

01,...,onEx @ ff 1A Apn— @isatheorem of K
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Hence, Dunn’s systems are essentially, and respectively, thed, O-fragment and
then, v, 0, <, T, L-fragment of the deductive system (on the sets of formulas with
all the connective) KP whose consequence relation is the relatisg just men-
tioned.

The semantics for postive modal logic considered by Dunn is, as we said, the
usual Kripke semantics. With this semantics, a consequence paiy is valid in
amodel if the set of worlds where is true is included in the set of worlds where
Y is true. Dunn not only studies thmsitive minimal normal modal logic, but also
several of its extensions by means of consequence pairfS¢ike OO¢p, Op - ¢ and
their dualsC O F O andg - Cg as well. His semantics has a shortcoming that,
for example, if one addS¢ = OOg to his basic system, one obtains a system that is
frame incomplete><C pE < pisvalid in all the frames wher@ p = OO pis valid but
is not deducible in the system. This is not a good feature. It seems that the semantics
must reflect the fact that without negation the consequence pair scketnes o
andOg - OO are no longer dependent on each other.

Two years ago, unaware of Dunn’s work, we began to study what turned out to
be the(a, v, O, ¢, T, 1L)-fragment of the modal deductive systeMK We started
our study by using a different semantics than Dunn’s in order to develop a duality
theory for bounded distributive lattices with modal operators by extending the well-
known Priestley duality between bounded distributive lattices and Priestley spaces.
This duality theory is mainly the subject of the Ph.D. dissertafiofthe first author
and will be the subject of another paper. In order to find the semantics, we looked at
the mentioned fragment as a fragment of a possible intuitionistic modal logic with the
axioms

OV y) — Opvoy and Op Ay — $(p AY).

In Kripke semantics for intuitionistic modal logic, frames are triples with a set of pos-
sible worlds, a quasi ordering on it, and an accessibility relatioR, and the valu-
ations used are the increasing ones. So we considered structures of this kind as our
frames and the increasing valuations as our valuations. Moreover, we used the clas-
sical semantic conditions fa» andC in the definition of truth in a world, as iff].
It turns out that (1) both axioms are intuitionistically valid in any frame and (2) any
increasing valuation extends to all formulas in such a way that the set of worlds where
aformula is true is an increasing set (relativetpif and only if the two conditions
on frames

(oRCS(Rox)

and
(<'ToRC(Ro<™h

hold. The first condition is the one used byZoand Daen in [[] (see alsd]) to

define the frames for their system of intuitionistic modal logic BKnd the second

one is the condition used by these authors to define the frames for their system of
intuitionistic modal logic HK>. We imposed these two conditions on our structures,

so our frames are the structures mentioned that satisfy both conditions. We introduced
a deductive system calleg, by means of a Gentzen calculus sound and complete
for this class of frames. This system is equivalent to Dunn’s systém lsut our
semantics has the advantage that it works well for extensions. For example, with our
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semantics the extensions by the sequeéntsy - < and byOg = OOg are both

frame complete. The purpose of this paper is to present the deductive s¥stdra
semantics just mentioned, and the completeness proof, as well as the study of some
canonical extensions.

One specific point should be stressed. Since a (finitary) deductive system can
be seen (as pointed out in Section 2) as a set of sequents, we will extend the usual
notions of truth in a world, validity in a model, and so on, for formulas to sequents.

In this way, even if we do not have a conditional we will be able to express properties
of the accessibility relation. We will not do this by means of formulas but by means
of sequents.

The paper is divided into seven sections, apart from this introduction. In the next
section, thePreliminaries, the basic notions of modal deductive system and Gentzen
system as well as related notions are introduced. In Section 3 the basic deductive
systemS$y, is introduced by means of a Gentzen calculus. Section 4 deals with the
Kripke semantics folsy, and extensions. In Section 5 several sequents are considered
and the properties on frames that correspond to them are studied. Section 6 is devoted
to the proof of the completeness theorems$giby using the canonical model built
by means of the prime theories. To conclude the paper, Section 7 is devoted to the
study of several canonical extensions%i

2 Preliminaries  We will deal with the modal propositional languagievith a de-
numerable set of propositional variables whose connectives are the elements of the
set{A, v, O, ¢} and that, in addition, has two propositional constantd.. Fmwiill
denote indistinctly the set of formulas and the algebra of formulas.

A deductive system is a pafr= (Fm, ) wherer is a finitary and structural
consequence relation dfm; that is, a relation that satisfies the following conditions.

1. If p e T, thenT 5 ¢.

2. fT'ggpandforevery e I' A g, thenA F .

3. For any homomorphism from Fminto itself (i.e., a substitution), iF s ¢,
theno[I'] F5 o (@).

4. If T k5 ¢ then there is a finite\ C I" such thatA Fs ¢.

From (1) and (2) it follows that
5. fI'ggpandl’ C AthenA g g.

Condition 3 is calledhe structurality condition.

A deductive systens’ is anextension of a deductive systersi if the relationt
is a subrelation of the relatidng.

A sequent of L is a pair(I", ¢) wherel is a finite set of formulas angis a for-
mula. As usual we will writd™ F ¢ for a sequent. The set of all the sequents ié
denoted bySeq. A Gentzen systemis a pairG = (Seq, f~g) where |~ is a finitary
consequence relation @eq, that is, a relation that satisfies the conditions analogous
to conditions 1, 2, and 4 but for sequents and sets of sequents instead of formulas and
sets of formulas, and such that it satisfies the following structurality condition: for
any family{T'; - ¢; 1 i € 1} U{I" I ¢} of sequents and any substitutien

{olli] Fo(gi) 11 € 1} g oIl F o(p)
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whenever,
Titgitiel}prglEo.

A sequent’” - g isderivablein G if @ 5 I' = ¢. Gentzen calculi with all the struc-
tural rules can be used to define Gentzen systems.

A substitution instance of a sequent I' I ¢ is any sequent[I'] - o (¢) whereo
is a substitution, andsubstitution instance of a formula ¢ is any formulas (¢) where
o is a substitution.

Given a deductive systef) asequent - ¢ is asequent of § or an S-sequent
if I' -5 ¢. The set of sequents of a deductive system is closed under substitution in-
stances and under the Gentzen rules of Reflexivity, Weakening, and Cut:

I N N
@ (Cut) % Loy

(Ref) —— (Weak) ————
o | I/ Ly

Any set of sequentE closed under substitution instances and Gentzen rules of Re-
flexivity, Weakening, and Cut can be used to define a deductive syssnfollows.

I'+s ¢ iff thereis afiniteA C I" such that the sequetd, ¢) € 2.

Because of these two facts we will identify deductive systems with sets of sequents
closed under substitution instances and the Gentzen rules of Reflexivity, Weakening,
and Cut. Therefore, a deductive system will be identified with its set of sequents.

To any Gentzen systerj we can associate the deductive system

Sg = (Fm, ;)
defined by
I' kg, iff there is a finite seth € T such thats ¢ T' - .

According to the identification proposed above, this deductive system is the set of
derivable sequents .
Given a deductive systethand a set of sequentE; - ¢ 1 i € I},

S+H{Tikgi:iel}

will denote the least deductive systéifthat extendss and is such that for eadte |
any substitution instance &% + ¢j is a sequent of’.

3 Thebasic deductivesystem  We will introduce the basic deductive system of the
paper as the deductive system associated to the Gentzen systgfined by means
of the Gentzen calculus whose rules are the following:

ok o [ OLF L
Tk o I+ L Tke T,okFy
| Y/ ) o 'y

T vka Ty ThHy

oAy Fa 'Fony
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NelFa INykFao ke 'y
Lovylka F'Fevy F'Fevy
NoEvv 'FovVv
(00] oY Va [o0] VY
ar, Cp - Sy v Ca Or'-Ogp v oy

where for any sel’ of formulasOI" = {Og : ¢ € I'}. The following rules are derived

rules.
I'-g Coo-9

Or + Oy ar, G - Oy
The following sequents are derivable sequents (the proofs are left to the reader):
1. O(eAy) EDOp A Oy
OoAnOy E=DleAy)
CleVv i) E OV Oy
CoVv Oyt OpVvy)
oTk+T
FOT
1EOL
OeVvy) EOev oy
9. Op AOY E (e AY)
The last two sequents are the sequents used by Dunn for his axiomatization of pos-
itive modal logic. The main difference between his presentation and ours is that he
only deals with sequents of the forg  (his consequence pairs) and his calculus
is, properly speaking, not a Gentzen calculus but an axiomatic calculus to deal with

sequents of that type.
A property of our calculus is the following: for any formulas, . . ., ¢n, ¢,

© N ORWDN

{1, ..., 0on} F @is derivable iffo; A - -+ A o F @ is derivable as well.

Using this property it can easily be seen that Dunn’s positive logic is essentially the
same as ours. Let us denote Bythe deductive system just defined. We study this
system and some of its extensions.

4 Kripke semanticsfor S,  The main difference between our Kripke style seman-
tics and the one used by Dunn lies in the fact that he uses classical Kripke frames, a set
of worlds plus a binary accessibility relation, and we use structures that in addition
have a quasi ordering relation with some special connections with the accessibility
relation. Moreover, for Dunn any valuation is admissible but for us only the increas-
ing valuations relative to the quasi ordering will be admissible. These differences
allow us to have completeness theorems for systems that are incomplete with Dunn’s
semantics: for instance, the deductive systgm+ {Op = OOp}. This is a strong
reason in favor of our semantics.

Definition 4.1 A frameis a triple ¥ = (M, <, R) where< is a quasi ordering on
M, that is, a binary reflexive and transitive relation gh R is a binary relation on
M, and the following two conditions hold:
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1. (£o0R) C (R o0x),and
2. (<To R C(Rox™,

whereo denotes the composition between binary relations.

Let ¥ = (M, <, R) be aframe. A subse&X of M isincreasing if for every x €
X and everyy € M such thatx < vy, it holds thaty € X. An increasing valuation
on the frame7 (a valuation from now on) is a functiov from the set of variables
into the set of all increasing subsetsMf Note that we do not consider arbitrary
valuations, only the increasing ones as in intuitionistic logic. A valua¥iazan be
extended recursively to the set of all formulas by means of the following clauses:

1. V(M) =M,
V(1) =g,
VipAy) =Vip) NV (),
VipVv ) =Vip) UV (),
V(Ogp) ={xe M:Vye M(XRy = y e V(p))},
6. V(Cop) ={xe M:3ye M(xRyandy € V(¢))}.
First of all we see that any valuation has the property that assigns an increasing set to
each formula.

AN SN

Lemmad.2 Let ¥ beaframeand V avaluationonit. Then for any formula ¢ the
set V() isincreasing.

Proof: By induction. We deal only with the modal connectives. Assume\iab
is increasing and that e V(Og) is such thak < y. In order to see thay € V(Ogp)
assume thayRz. Sincex < yandyRz, (x,z) € <o R Therefore, by condition 1 of
1] (x, 2 € Ro <. Letw be such thaxRw andw < z. Sincex € V(Og), w € V(¢).
Therefore, sinc® (¢) is increasingz € V(¢). Analogously one proves th&at(<o)
is increasing using condition 2 O

Now we introduce a notation that will be useful in the paper. Given a fré@me
(M, <, R), avaluationV on it and a set of formulaE,

VI = [ V).
yel

If T is empty,V (') = M.

A modedl is a pairM = ( F, V) where f is a frame and/ is a valuation on it. We
define the semantical notions of truth and validity in a model and validity in a frame
for formulas and extend them to sequents. Given a m@det ( F, V) and a point
X € M we say that a formula is true atx in M, in symbols M, x I- ¢, if X € V(p).
A formulag is validinamodel M, in symbolsM = g, if itistrue at every point in
M. A formulag is valid in aframe ¥, in symbols¥ = ¢, if for any valuationV on
F, ¢ isvalid in the model 7, V).

The previous notions extend to sequents as followsMet ( 7, V) be a model
andx € M. A sequent I~ g is true atxin M, insymbolsM, xI- T - ¢, if x g V(I)
orx e V(p), thatis, wherV (I") € V(¢). A sequent - ¢ isvalidinamodel 2, in
symbolsM =T + ¢, ifitistrue at every point iM, and it isvalid in a frame #, in
symbols¥ =T I g, ifitis valid in (F, V) for any valuationv on .
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Itis standard to show that if a formulais valid in a frame so are all its substitution
instances. In the same way as one shows this, one shows that if a sequent is valid in
a frame so are all its substitution instances.

With these notions we can define the notion of a Gentzen rule being sound for
model validity and for frame validity. Lefl’; - ¢; i € 1} U{T" I ¢} be a set of
sequents. We say that the Gentzen rule

Titgi:iel}
ko

is sound for model validity if for any modelM = ( F, V) such thatforall e |, M |=
i F ¢j, itholds also thafMl =T+ ¢, thatis, wherV (I") € V(¢) wheneveV (Tj) C
V(¢i),foralli e I. And we say that the Gentzen rulesgind for framevalidity when
forany framef,if F =T+ ¢ forallie |l thenT =T F .

Clearly, if the rules of a Gentzen calculus are sound for model validity then all the
derived rules and the derived sequents are valid in any model. Moreover, soundness
for model validity implies soundness for frame validity.

Theorem 4.3  All therules of the Gentzen calculus G, are sound for mode! validity
and for frame validity. Therefore any derivable sequent isvalid in any model and any
derived rule is also sound for model validity and frame validity.

Proof: It is straightforward to check that all the rules are sound. O

Let S be any deductive system that is an extension of the deductive systekive

will denote by Ft.S) the class of all frames where every sequens &f valid. Now

let F be a class of framesSq(F) denotes the class of all sequents that are valid in
every frame irF: that is,

F'-peSqF) iff forall FeF, FETE .

Sq(F) is a deductive system that extengis because it is closed under the Gentzen
rules of our Gentzen calculus and under substitution instances. It is calléetite
tive system of F.

If M is a class of modelsThg (M) is the class of all sequents that are valid in
every model in the clagd and is called theequential theory of M. There are classes
of models whose sequential theory is not a deductive system. The sequential theory
of a class of models is closed under the rules of our Gentzen calculus but it is not
necessarily closed under substitution instances.

A deductive systerg is characterized by a clasg$- of frames or iscomplete rel-
ative to a clas§ of frames,F-complete for short, if it is the deductive system of the
class of frameE. Moreover, itiframecompleteif the set ofS-sequents iSq(Fr($)).
The next lemma has an obvious proof.

Lemma4.4 Adeductivesystem Sisframecompleteif and onlyifitischaracterized
by some class of frames.

Given a framef = (M, <, R) we can define the relations
Ro=Ro< and Re=R o<1,

Then we have the following lemma.
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Lemma45 Let F = (M, <, R) beaframeandV avaluation onit. Then for any
formula ¢,

1. xeV(@@y)ifandonlyif Yy e M(xRoy = y € V(¢)),
2. xe V(Cg) ifandonly if 3ye M(XRoyand y € V(¢)).

Proof: We prove (1). Assume that € V(Og) and thatxRgy. Let ze€ M be such
thatxRzandz < y. Thenz € V(¢) and, sinceV (p) is increasingy € V(¢). Now,
assume that for ay € M such thaxRpy, y € V(¢), and assume thatRz. Since <
is reflexive, it holds thakRnz. Therefore, we conclude thate V(¢). Hence, we
obtain thatx € V(Og). The proof of (2) is analogous. O

If we use a semantics with Kripke frames with two relations, one to dealw#id
the other one to deal witf» but no quasi ordering, and we admit any valuation, then
in the frames where the rules of our Gentzen calculus are sound the two relations are
equal. In our situation we cannot conclude that in an arbitrary frame the rel&iopns
andR. are equal because we only consider increasing valuations. It is precisely this
that allows us to distinguish semantically between a sequent and its dual.

We will now prove a lemma that will be useful in the next section.

Lemma4.6 Givenaframe ¥ = (M, <, R) and a point x € M the functions
and V3 defined by

1. Vi(p)={ye M:xRay}and
2. VX(p) ={y € M :not xRsy}

for every propositional variable p, are valuations (i.e., are increasing).

Proof: We prove (2). Assume that < z, y € VX(p), andz ¢ VX(p). So,xRsz
Therefore, lew € M be such thakRw andz < w. Hence,y < w. Therefore xRy
which is absurd becausec VX (p). The proof for (1) is even easier. (]

5 Correspondenceresults In this section we introduce several sequents that will
be used to define sequential extensions of the deductive systamd we prove cor-
respondence results for them.

To Op k¢

To o O

4 O = OO
4. OOp = Op
B1 o OCe

B, OCOp k@

S Op - Op

= OO0
E, <>E|(p FOgp
D OOp - OCe

These sequents correspond to usual axioms considered in modal lqgicorie-
sponds to axiom T andJI'to its dual, and so forth. Since in our language there is
no negation we need to consider a sequent and its dual independently. (Note that S
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and D are their own duals.) When they are different, each one is independent of the
other.

The previous sequents correspond to properties of frames. We will state these
properties in terms of the relatiofi®; and Ro.

Theorem 5.1 Let ¥ = (M, <, R) beaframe. Then

1. Opt pisvalidin Fifand only if Ry isreflexive;
pk<pisvalidin 7 if and only if R isreflexive;
OpkOOpisvalidin # if and only if Ry istransitive;
OOpE Cpisvalidin Fifand only if Re istransitive;
pHOOpisvalidin Fif and only if Ry € R5Y;
oOpk pisvalidin Fif and only if R3! € Ry;

Opk <pisvalidin Fifandonly if Ro N Ry isserial.

No ok~ wd

Proof: The proofs of the implications from right to left are straightforward. The
proofs of the other implications are similar to the ones for the parallel classical cases.
For (1), (3), (6), and (7) one uses the valuations of the fefinfor (2), (4), and (5)

the valuations of the fornv. O

Theorem 5.2 Let ¥ = (M, <, R) beaframe. Then
1. OpkOCpisvalidin F if and only if the following condition holds:
if xRoy and xR¢ zthen yRy z
2. COpk Opisvalidin ¥ if and only if the following condition holds:
if XRoy and xRnzthen yRyz
3. COpk OCpisvalidin F if and only if the following condition holds:
if XRgy and xR zthen thereisu € M such that yRou and zRgu.
Proof: As in the previous theorem the proofs of the implications from right to left
are straightforward, and in order to prove only the implications from left to right one

needs to consider for (1) a valuation of the fou¥, for (2) and (3) valuations of the
form VX. O

6 Canonical framesand models In this section we introduce the canonical mod-
els and canonical frames for extensions of the deductive sy§teamd prove com-
pleteness theorems fgg,. Let us fix a deductive systegithat is an extension of the
deductive systens,. A set of formulas is ¢heory of S, or anS-theory, if it is closed
under the consequence relatieg A theory isconsistent if it is not the set of all for-
mulas, equivalently, if the formul&a does not belong to it. Arimetheory of S, or a
prime S-theory, is a consisterd-theoryI” with the following property:

if (pviy)el then peToryerl.

We will use the letters?, Q, D, and K with possible subscripts and superscripts to
refer to prime theories antih(S) to denote the set of alf-theories.
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Let us denote byM; the set of all primes-theories. We define in this set the
following relation Rs by

(P,Q eRs iff O }P)cQco (P,

whereO~1(P) = {¢ : Op € P} andO~Y(P) = {¢ : Op € P}. We will see that the
structure

Fs= (Mg, S, Rs)

is indeed a frame. It will be called thenonical frame for the deductive systers.
We need to establish some facts on prime theories. First of all we need the following
observation.

Observation 6.1  For any prime theoryp,

1. O~1(P) is ans$-theory and therefore is closed under conjunctions;
2. the complement o ~1(P) is closed under disjunctions.

Proof: (1) follows from the fact that i" -5 ¢ thenOT" ¢ Og. To prove (2) let
¢, v & O~1(P) and assume that v ¢) € ©~1(P). Then<(p v ) € P and since
Sl V) Fg (Op Vv Oy, wehave(Co v Oyr) € P. SinceP is prime, &g € P or
Oy e P. Henceyp € O~1(P) or v € O~1(P), which is absurd. O

The following proposition is the logical analogy of the prime filter theorem for
bounded distributive lattices.

Proposition 6.2 LetT" beaconsistent S-theoryandlet A beaset of formulasclosed
under digunctions (i.e., if ¢, ¥ € Atheng v ¢ € A)andsuchthat ' N A = @. Then
thereisaprimetheory PsuchthatI' C Pand PN A = @.

Proof: Let us consider the set
W= {T e Th(S) : Tisconsistentl € T andT N A = @}.

W is nonempty becaudeée T. Itis easy to see thaw/, ordered by inclusion, is closed
under unions of nonempty chains. Therefore by Zorn’s lemma there is a maximal ele-
ment. LetP be such a maximal element. We prove tRds a prime theory. Assume
thaty v ¥ € Pandg ¢ Pandy ¢ P. Let us consider thg-theoriesT andT’ gener-
ated, respectively, bi? U {¢} and P U {y/}. These theories are consistent. We prove
only thatT is consistent since the proof thitis consistent is analogous. Tfis not
consistent, ¢ 5 . ThereforeP, ¢ v ¢ ¢ . Hence,P ¢  because v € P.
Thereforeyr € P, which is absurd. Now andT’ being consistent, sinde is a max-
imal element inW we must havel N A # g andT' N A # @. Leta, 8 € A be such
thatP, ¢ Fsa andP, ¥ 5 B. ThenP, o v ¢ s a Vv B. Hence,P -5 a v B, which

is absurd becausev g e AandANP=g. O

Lemma6.3 If Pand Q are primetheories such that 0-1(P) € Q, thenthereisa
primetheory D such that (P, D) € Rgand D C Q.
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Proof: Assume thati—1(P) € Q. Itisnot difficult to see that the set of formulas
0-1(P) is anS-theory. LetS be the closure under disjunctions of the set

lp:pgQorpg O~ (P)).
SinceQ is consistenty is nonempty. We will prove that
o lP)NnT=0. 1)

From this follows thatl=1(P) is consistent. Thus we can apply Proposifioalto
obtain a prime theor such that

oYP)c DandDN T = o.
Therefore for this prime theory it holds that
O*(P)SDCc o (P) and DS Q,

and thug(P, D) € RsandD C Q.
In order to provel(J we assume the opposite. So lete O~1(P) N =. Since
1 ¢Q, L ¢ <o 1(P) and the complements @ and of &~1(P) are closed under
disjunctions we can assume without loss of generality that there &€ andg ¢
O~1(P) such thaty is (equivalent tolx v 8. Then, sinced(a v ) 5 Da v OB
andd(a Vv B) € P,
Oav<opeP.

If Ox € P, a € Q,whichis absurd. S& g € P becausd is prime. But this is absurd
too becausg ¢ ©~1(P). This concludes the proof. O

Lemma6.4 If Pand Q areprimetheories such that Q € ©~1(P), thenthereisa
primetheory D such that (P, D) € Rgand Q € D.

Proof: Assume thalQ € ©~1(P). Let us consider the theoi generated by the
set

lprpe0 M (P)NQL
We prove that
Tc o i(P). 2
Assume thatr € T. Sinced~1(P) and Q are closed under conjunctions, there are
¢ € 0-Y(P), ¥ € Q such that
oAV Fsa.
By the rule <] we obtain,

Op A OY g Oar.

Sincey € Q, Oy € P, and sincedg € P we obtain thaOp A Oy € P. Thus it
follows that®a € P anda € ©~1(P). Now from [0} it follows thatT is consistent,
because otherwiseé € ©~1(P) and this implies that. € P which is not the case. To
conclude the proof, since the complementoft(P) is closed under disjunctions, we
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can use Propositid&L2ko obtain a prime theor such thafl € D andD < ¢~1(P).
Then
o lPycDc o }(P) and Qc D.

Therefore(P, D) € RgandQ C D. O

Proposition 6.5 Therelation R has the following two properties,

1 (SoRg) S (Rsoc™), and
2. (€ toRy) S (RsoC™).

Therefore the structure Fs = (Mg, C, Rg) isaframe.

it )

Proof: (6.5.1): Assume thatP, Q) € C o Rs. Then letD be a prime theory such
thatP € D and(D, Q) € Rs. Thatis,

PcD and 0°4(D) < QC o (D). )

Therefored—1(P) € Q. Hence by Lemmk 3there is a prime theor’ such that
(P,D') € RgandD’ € Q. Thus,(P, Q) € Rs o C. (6.5.2) is proved analogously
using Lemmé.2] O

We now prove two propositions that will give us the proof of the canonical model
lemma.

Proposition 6.6 Let P be a prime theory. Then O € P if and only if thereis a
prime theory Q such that (P, Q) € Rsand ¢ € Q.

Proof: The implication from right to left is immediate. To prove the other implica-
tion suppose thaty € P. Consider the theor§ generated by the set 1 (P) U {¢}.

By a similar argument to the one used to prove (2) in the proof of Leififiave
obtain that

TC o™ (P). 4)

And from this follows thafT is consistent because ¢ <~1(P). Applying Proposi-
tion62ko obtain a prime theor{ such that

TCQ and QCO™H(P)
we obtain a prime theor® such that P, Q) € Rsandy € Q. O

Proposition 6.7 Let P be a prime theory. Then Ogp € P if and only if ¢ € Q for
every prime theory Q such that (P, Q) € Rg.

Proof: The implication from left to right is immediate. To prove the other implica-
tion supposely ¢ P. Consider the set

T={pVa agd O (P)

and the closur&’ of = under disjunctions. Since the complementof(P) is
closed under disjunctions, any formulail is equivalent to formula irk. Letus
show that

o YPNY =2 (5)
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If v € O~1(P) N X’ then there isx ¢ ©~1(P) such that
YvEsoVa.
By the rule O] we obtain,
Oy FgOp vV O,

and sincedy € PandOg ¢ Pwe haveCa € Pwhichis absurd. Therefore we obtain
(5). Now we can apply Propositid&2in order to obtain a prime theo!® such that

O YP)cQ and QNY =2.

Thus
otP)cQcoH(P) and ¢ ¢ Q.

Therefore(P, Q) € Rgandg ¢ Q. O

We can define theanonical model for S as the mode{¥s, V) on the canonical frame
whereV; is the valuation defined by

Vs(p) ={PeMs:pe P},

for any variablep. It isclear thatVs is a valuation since the setP € Ms: p € P}
are clearly increasing.

Lemma 6.8 (Canonical Model Lemma) In the canonical model it holds that for
any prime theory P, any formula ¢, and any sequent T" - ¢,

1 (%, Vs), PlFg ifandonlyif ¢ € P;
2. (¥5,Vs), PIFT ¢ ifandonlyif 'Z Porge P;
3. (¥, V) ET ¢ ifandonlyif T g e.

Proof:  (2) follows from (1). (1) is proved by induction using Propositiggland
Propositior6.7 (3) is proved as follows. If" 5 ¢, because of soundness it is clear
thatVs(T") € Vs(¢), and therefore Fs, Vs) = T+ ¢. Now, if T t/5 ¢, by Propo-
sition[6.2lthere is a prime theor such thatl" € P and¢ ¢ P. Hence, by (2),
(Fs,Vs) ET E . U

Theorem 6.9  Any deductive system S that isan extension of S, iscompleterelative
to itsmodels. that is, any sequent valid in all of its modelsis a sequent of .

Proof: Assume that a sequehtt ¢ is valid in every model ofS. So since by the
canonical model lemma, the canonical model is a modd, &f - ¢ is valid in the
canonical model of. Therefore by (3) of the canonical model lemma; s . [

A deductive systens that extendssy, is canonical if its canonical frame is a frame
of §: that s, if everyS-sequent is valid on it.

Observation 6.10 A deductive systens that extendssy, is canonical if and only
if the deductive system of its canonical frameSisTherefore, any canonical system
is frame complete.
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Proof: If Sis canonical any-sequentis valid in the canonical frame. Moreover, if a
sequentis valid in the canonical frame itis valid in the canonical model and then using
(3) of the canonical model lemma it must be $ssequent. The other implication is
clear. Now, if§is canonical it is characterized by the class of frafif83. Therefore,

it is frame complete. O

Theorem 6.11  The deductive system Sy, is canonical and hence frame compl ete.

Proof: TheSn-sequents are valid in any frame and if a sequentis valid in the canon-
ical frame it is valid in the canonical model. Therefore by (3) of the canonical model
lemma we obtain that it is ai,-sequent. O

To conclude this section we will prove tha, is indeed thev, A, T, L, O, ¢-
fragment of the modal deductive systeMK that is, the deductive system obtained
from the minimum classical normal modal logic K by considering the local conse-
guence relation that can be defined as in the introduction.

Theorem 6.12 The deductive system Sy isthe v, A, T, L, O, O-fragment of the
modal deductive system KMP,

Proof: Onthe one hand, itis easy to see thatkf 5, ¢, for a set of formulas’ U {¢}

of the languagé¢v, A, T, L, O, ¢}, thenlm Fyewe ¢ because any rule and axiom of the
Gentzen calculus is a sound axiom or rulekofOn the other hand, if” F¢we ¢, as-
sume without loss of generality thatis finite. Then ifl" s ¢, in the canonical
model(Mg,, <, Rs,. Vs,) there is a prime theorf such that every formula ifi is
true atP butg is false atP. Clearly (M., R, Vs, ) is a model forkK on which every
formulainT is true atP butg is false atP. Thereforel” t/«we ¢, against the assump-
tion. O

7 Some canonical deductive systems  In this section we will prove that any exten-
sion of $n by some subset of the the set of sequents

{TDa T<>7 4Da 4<>7 Bl’ BZ, 87 Elv EZ» D}

is canonical and therefore frame complete. This solves a problem which arises in
Dunn’s paper, as we said in the introduction. With his semantics the deductive sys-
tem Sm + 4o is not frame complete becauseg & valid in all frames of the system

but is not a sequent of it. With our semantics we obtain frame completeness for both
deductive systems$y, + 40 and Sy + 4¢. This is a desirable situation because in the
absence of negation the sequentsahd 4, are no longer dependent and this fact
must be reflected in the semantics.

To prove that the mentioned deductive systems are canonical we will use the
correspondence results by seeing that for each one of these sequents the Rlations
andR. of the canonical frame have the properties that characterize the frames where
they are valid.

Theorem 7.1  Let S be a deductive system that extends 5, and let Rg and R¢, be
the corresponding relations of its canonical frame. Then

1. if Tg isan S-sequent then Ry isreflexive;
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if To isan S-sequent then Ro isreflexive;

if 40 isan S-sequent then Ry istransitive;

if 4 isan S-sequent then R¢ istransitive;

if By isan S-sequent then Ry € R3Y;

if B, isan S-sequent then R € Ry;

if Sisan S-sequent then R isserial and so Ro N R isalso serial.

No asr®OD

Proof: (1) Suppose thatd is anS$-sequent. LeP be a primes-theory. It happens
thato—1(P) € Pbecause iflp € P, snceTg 5 ¢, ¢ € P. Therefore by LemmE.3]
there is a prime theorp such that P, D) € R¢andD < P. Therefore(P, P) € Rx.
The proof of (2) is similar by using Lemnia4linstead of Lemm&.2]

(3) Assume that4 is anS$-sequent and tha&, Q, D are prime theories such that
(P, Q) € R and(Q, D) € Rg. Sothere are prime theorid?’ and Q’ such that

(P,PYeRs,PPCQ,(Q, Q) e R, andQ C D.

Let us see thatl~%(P) € D. If Oy € PthenOOg € P because 4 is an S-sequent.
So, Op € O~1(P) and thereforedp € P’ € Q. Thus,¢ € 0°1(Q) € Q < D,
as desired. Now we can apply Lemiig]to obtain a prime theor’ such that
(P,D’y € RgandD’ € D. Therefore(P, D) € Rg, and this concludes the proof.
The proof of (4) can be dealt with similarly using Lemiaall

(5) Suppose that Bs anS-sequent and thaP, Q) € Ry. Then letK be a prime
theory such thatP, K) € RsandK < Q. We prove thatP € ©~1(Q). If ¢ € Pthen
O0O¢ e P because Bis ans-sequent. Thereforglg € K € Q. Hencep € 0~1(Q).
Now we use Lemmi&.4}o obtain a prime theori such thatQ, D) € RgandP < D.
Thus(Q, P) € Rs. (6) can be proved analogously using Lerifnd

(7) Suppose that S is afisequent. Let us see thRf is serial. LetP be a prime
theory. Thero—1(P) € ©~1(P) because ifig € P then, sincelg 5 ¢, O € P.
MoreoverO~1(P) is a theory and it is consistent because otherwisee P, which
is impossible. In addition, the complement®f1(P) is closed under disjunctions.
Therefore we can apply PropositiG2ko obtain a prime theor such that

0 Y(P)c D and D<o Y(P),
which implies that P, D) € Rg. O

Theorem 7.2 Let S be a deductive system that extends 5y, and let Rp and Re, be
the corresponding relations of its canonical frame. Then

1. if Episan S-sequent and (P, Q) € Ry and (P, D) € Ry, then (Q, D) € Rs.

2. if Episan S-sequent and (P, Q) € Ry and (P, D) € R, then (Q, D) € Rn.

3. if Disan S-sequent and (P, Q) € Rg and (P, D) € Ry, thenthereisa prime
theory K such that (Q, K) € Ry and (D, K) € Ra.

Proof: (1) Suppose thatHs anS-sequent and thgP, Q) € Ry and(P, D) € Ro.
Then letP’ and P” be two prime theories such that

(P,PYe R, PPCQ,(P,P") e Rg, andD C P".
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We prove thatD € ¢~1(Q). Assume thap € D. Theny € P” and sinceP” C
&~1(P), O¢ e P. Therefore, using E 0<¢¢ € P and hence, sinc8~1(P) € P’
Q, ¢ € Qandy € ©~1(Q). Now by Lemmdg.4lthere is a prime theor{’ such
that(Q, D’) € RgandD C D’. Therefore,(Q, D) € R,. Similarly one can prove
(2) using Lemm&.3]

(3) Suppose that D is astsequent{P, Q) € Ry and(P, D) € Ry. Thenlet P’
and P” be two prime theories such that

(P,PYe Rs,PPCQ,(P,P") e RgandD C P”".

We prove thato—1(D) € ¢~1(Q). Assume thatlp € D. ThenOg € P” and
sinceP” € ©~1(P), ©O¢ € P. Therefore, using DO<Ce € P and hence, since
O-1(P)C P C Q, ¢p e Qandy € ©1(Q). Now, 0~1(D) is a consistent theory
since otherwis®> L € P, whichisimpossible. Moreover, the complementof! (Q)
is closed under disjunctions. Thus, by Proposifigi) there is a prime theorl{ such
that

o0 3D)cK and K <o Q).

Then by Lemmd&._3lthere is a prime theor’ such that

(D,D'ye Ry and D' C K,
and by Lemmé&_4lthere is a prime theor)” such that

(Q,D"ye Rs and K< D”.
Therefore, we have a prime theory, thaths,such that Q, K) € R and(D, K) €
Ro. [l
The last two theorems allow us to prove the following frame completeness theorem.
Theorem 7.3  Any extension of $,, obtained by adding to the deductive system any
subset of the following set of sequents

{TD, T<>7 4D, 409 Blv BZ! Sv El9 EZ! D}

is canonical and therefore frame compl ete.

Proof: Let X be one of these subsets. Consider the properties that characterize its
frames stated in Theorefaslland5.2] Then Theoremg. TandZ Zlestablish that the
canonical frame has these properties. Therefore itis a frame of the deductive system,
that is, the deductive system is canonical. O

To conclude this section we will see that several deductive systems obtained by ex-
tendingSy, by pairs of dual sequents in the $&t, To, 40, 40, B1, B, S, E;, Ep, D}

are characterized by a class of frames that can be described by a property of the acces-
sibility relation. First of all we will state an interesting fact concerning the canonical
frames.

Lemma7.4 Let S beanextension of Sy. Then in the canonical frame 75 it holds
that
Rs=RaNRs.
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Proof: The inclusionRs € R N Re holds because in any frame the correspond-
ing inclusion holds due to the fact that the relatiors reflexive. To prove the other
inclusion suppose tha® and Q are prime theories such théP, Q) € Rp N Ro.
Then there are prime theori@and D’ such thal~*(P) € D € ¢~1(P), D € Q,
O-Y(P) € D' € ©o71(P),andQ C D’. HenceO~1(P) € Q < &~1(P). Therefore
(P, Q) € Rs. O

In general the following proposition holds.
Proposition 7.5  Let (M, <, R) beaframe. Then

1. if Risreflexivethen Ry and R¢ are reflexive;

2. if Ristransitivethen Rg and R¢ aretransitive;

3. if Rissymmetricthen Ry = R,

4. if Riseuclidean then the following conditions hold:

(@ if(x,y) € Roand (x,2 € Ry then (y, 2) € Ro,
(b) if (X,y) € Ro and (X, 2) € Rg then (y, 2) € Ro.

Proof: (1) is immediate becauseis reflexive. (2) Assume tha& is transitive and
thatxRoy andyRnz. Thenthere ara, w € M suchthakRu, u < y, yRw, andw < z
Therefore, sincel < yandyRw, (U, w) € (0o R) C (R o <). Sothereisv e M
such thauRv andv < w. SinceR s transitive,xRv, and since< is transitive too,
v < z. Therefore, xRgpz. Thus we conclude thaRs is transitive. In an analogous
way it can be proved thaR, is transitive.

(3) Assume thaR is symmetric and thatRpy. Then letz € M such thatxRz
andz <y. Therefore(y,x) € (<t c R) S (R o <™. ButR o <~ tis Re. Thus
Ro € R3L. The other inclusion is proved in a similar way.

(4) Assume thaR is euclidean. We prove the first condition, the other one is
proved analogously. Suppose thx®gy andxRsz. Then there arel, v € M such
thatxRu, u <y, XxRv, andz < v. SinceR s euclideanuRv. Therefore, sincel < y
anduRv, (y,v) € (<71 0 R)C (R o <™ 1). Letw € M be such thayRw andv < w.
Then, since < v, yRw, andz < w, and thereforg/R¢ z. O

Proposition 7.6 Let S be an extension of §;,, and consider the canonical frame
fgz (MS, C, RS)- Then
1. Rsisreflexiveif and only if R; and R arereflexive;

Rsistransitiveif and only if Rp and R, are transitive;
Rsissymmetricif and only if Ro = RGY;
Rs iseuclidean if and only if the following conditions hold:

(@) if (P, Q) € Rmand (P, D) € R, then (Q, D) € Ro,

(b) if (P, Q) € Ry and (P, D) € Ry then (Q, D) € Rg.

AW

Proof: The implications from right to left follow easily from LemnfiaZland the
implications from left to right from the previous proposition. O

From the previous propositions follows the next theorem.
Theorem 7.7
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1. Sn+{Ta, To} ischaracterized by the class of frames with a reflexive accessi-
bility relation.

2. S+ {40, 4o} ischaracterized by the class of frames with a transitive acces-
sibility relation.

3. Sm+ {B1, By} ischaracterized by the class of frames with a symmetric acces-
sibility relation.

4. Sn+ {E1, Eo} ischaracterized by the class of frames with a euclidean acces-
sibility relation.

5. Sm+ {S} is characterized by the class of frames with a serial accessibility re-
lation.

By using this theorem the reader can obtain similar characterization theorems by ex-
tending.$yw with pairs of dual sequents among the ones just considered.

Acknowledgments The work of the second author was partially supported by Spanish DG-
ICYT grant PB94-0920.

NOTE

1. After the paper was accepted we were informed by J. Jaspars of the close connections
between postive modal logic amartial modal logic as presented iff] and [E]. The
reader can compare the systelhsf Partial Modal Logic in[f] with the systems,,, of
the present paper as well as the respective completeness proofs. Moreover, as pointed
out to us by J. Jaspars, the proof of Theorem 5.Bjgiven in [E] can be easily adapted
to obtain the analogous result for Positive Modal Logic.
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