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Ways Things Can’t Be

GREG RESTALL

Abstract Paraconsistent logics are often semantically motivated by consider-
ing “impossible worlds.” Lewis, in “Logic for equivocators,” has shown how
we can understand paraconsistent logics by attributing equivocation of mean-
ings to inconsistent believers. In this paper I show that we can understand para-
consistent logics without attributing such equivocation. Impossible worlds are
simply sets of possible worlds, and inconsistent believers (inconsistently) be-
lieve that things are like each of the worlds in the set. I show that this ac-
count gives a sound and complete semantics for Priest’s paraconsistent logic
LP, which uses materials any modal logician has at hand.

1 Introduction Possible worlds semantics has been very useful in modeling not
only the intensionality of necessity and possibility, future and past. It has also
found its place in modeling theintentionality of propositional attitudes like belief
and knowledge. There is something fruitful in analyzing a belief as a set of possible
worlds. The belief is the set of possible worlds in which the belief is true. The belief
is true if and only if the actual world is in the corresponding set of propositions. The
possible worlds in the set corresponding to the belief representhow the agent per-
ceives the world to be. If the belief is false, then the world isn’t how the agent sees
the world to be, and so the actual world isn’t in the set of worlds corresponding to the
belief (see Lewis [4] and Stalnaker [9]).

The same can be said of whole belief states just as much as it can be said of
individual beliefs. My belief state is the set of worlds consistent with what I believe.
This view has been very fruitful, not least because the set-theoretic structure of sets of
possible worlds corresponds nicely with the logical structure of entailment relations
among propositions and the behavior of propositional connectives like conjunction,
disjunction, and negation.

However, the story does not deal well with inconsistent belief. Inconsistent be-
liefs are true in no possible worlds, so they are each modeled by the same set of
worlds—the empty set. My beliefs are often inconsistent, and so are those of many
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of you. For example, people have labored under the misconception that there are in-
tegersx, y, z andn > 2 such thatxn + yn = zn. As wenow know, this is impossible.
Frege thought for years that naı̈ve set theory was consistent. Russell showed us that
this theory is inconsistent. Lewis gives a more homely example.

I used to think that Nassau Street ran roughly east-west; that the railroad nearby
ran roughly north-south; and that the two were roughly parallel. (By ‘roughly’
I mean “to within 20◦.”) So each sentence in an inconsistent triple was true
according to my beliefs, but not everything was true according to my beliefs.
([3], p. 436)

In each of these cases, there areno possible worlds consistent with the agent’s explicit
beliefs. Clearly, the agent’s belief sets display adegree of logical coherence. There is
asense in which the agent’s beliefs form a corpus of information, closed undersome
sort of consequence relation, even if they are inconsistent. Lewis notes this and posits
four desiderata for an account of “truth according to a body of information.”

Wecan reasonably ask that [a conception of truth according to a corpus] satisfy
the following desiderata. (1) Anything that is explicitly affirmed in the corpus
is true according to it. (2) Truth according to the corpus is not limited to what
is explicitly there, but is to some extent closed under implication. . . (3) Never-
theless, an inconsistency does not—or does not always—make everything true
according to the corpus. Hence truth according to the corpus is closed not un-
der classical implication generally, but under some sort of restricted implication
capable of quarantining inconsistencies. Maybe not all inconsistencies can be
quarantined successfully, but many can be. (4) A sentence is false according to
the corpus if and only if its negation is true according to the corpus. ([3], p. 435)

Lewis goes on to develop an account which has these four properties. I’ll call it the
chunking account as it treats inconsistency by partitioning the agent’s beliefs into con-
sistent subsets [3], [4]. Take the case of Nassau Street and the railway. Lewis holds
A, that Nassau street runs east-west;B, that the railway runs north-south; andC, that
they run parallel. For Lewis, the way to understand this is to see the agent’s beliefs
as “chunked” into separate categories, to quarantine the inconsistency. The agent no
longer has one real belief set, but several. One, perhaps, in whichA ∧ C is true, and
one, perhaps, whereB ∧ C is true. But none in whichA ∧ B ∧ C is true. These con-
sistent belief sets are treated as before, as giving rise to sets of possible worlds, which
then are used to see thecontent of the beliefs. An agent’s beliefs are those which ap-
pear in at least one of the corresponding belief sets. The agent here believesA ∧ C,
andB ∧ C, but not A ∧ B ∧ C, as this appears inneither theory.

This “chunking” account clearly getssomething right.1 Not all beliefs are avail-
able to be compared and conjoined with all other beliefs at all times. However, it has
problems. I will consider just a few.

First, Lewis doesn’t give us a principled way of finding the relevant consistent
subsets of the agent’s explicit beliefs. There are many ways to generate such sets.
How many of the agent’s beliefs are we to add toA ∧ C? Second, the procedure of
finding consistent subsets of a set of propositions is not in general even decidable, so
even finding theinputs with which to perform our logical consequences (to find the
final belief set) is not computable. Third, not all inconsistent beliefs are formed by
conjoining two or more consistent beliefs. The straightforward ways of reading Fer-
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mat’s last theorem and of naı̈ve set theory seem to be examples of this. Theremay be
a way of analyzing these sorts of inconsistent beliefs under Lewis’s analysis. How-
ever, to do so would probably take us very far afield from the “surface grammar” of
the beliefs in question.

Finally, consider what the agent does when discovering that he or she holds in-
consistent beliefs. They perform the deduction, see that they’re committed toA ∧
B ∧ C and see that they must reject something if they are to remain consistent. What
can they do? One plausible way of describing the situation is as follows: they real-
ize thataccording to their beliefs A ∧ B ∧ C holds, but they know independently that
∼(A ∧ B ∧ C). They are holding obviously inconsistent beliefs. They know this is
impossible, and they see which one they ought to modify in order to resolve the in-
consistency. At this stage the beliefs arenot quarantined in separate compartments.
They are mingling, and it is only a result of this mingling that the agent realizes that
there is a problem. Lewis realizes this.

I need not quarrel with anyone who wishes to put forward a fifth desideratum
for a conception of truth according to a corpus: (5) the orthodox rules for∧
and∨ must apply without exception. . . What I doubt is that there is any useful
and intuitive conception that satisfies all five desiderata. When asked to respect
(1) – (4), I come up with a conception that violates (5). ([3], p. 438)

In what follows I will construct a notion of “truth according to a corpus” which re-
spectsall five conditions. One obvious way to do this is to start with a differentlogic.
A paraconsistent logic is one in which the inferenceA,∼A � B fails. If we choose
such a logic, we can construct “impossible worlds” on a par with possible worlds as
sets of propositions satisfying some maximality condition and closed under conse-
quence. A set can contain bothA and∼A without being the total set of all proposi-
tions. This technique is helpful for those who understand the logics used, but it is not
helpful for those who find the logic obscure.

In this paper I will proceed in the other direction. I will use the techniques read-
ily available to theorists like Lewis and Stalnaker—possible worlds and a first-order
language, related in the usual classical way—and out of this machinery we will see
how “impossible worlds” can be constructed in a well-motivated way. Then finally,
the logic is read off the semantics. It will turn out (in the end) to be a familiar para-
consistent logic. However, it will be motivated by our semantic considerations, not
imposed from the outset.

2 Propositional logic Let’s start with propositional logic to see how the technique
works in a simple context.

Definition 2.1 A propositional model is a setW of possible worlds, a setP of
atomic propositions, and an interpretation� relating atomic propositions to worlds.
The relation� is then extended to the entire vocabulary in the usual way.

1. x � A ∧ B iff x � A andx � B.

2. x � A ∨ B iff x � A or x � B.

3. x � ∼A iff x �� A.
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These models are standard fare. Given such a model, a propositionA is possible if and
only if there is some worldw wherew � A. It is impossible otherwise. Clearly, con-
tradictions of the formA ∧ ∼A are impossible. Other propositions might be impos-
sible too. It might be that in the model, there is no possible worldw such thatw � p,
for some atomic propositionp. This is allowed by the constraints of the model.

Now consider the case where there are three propositions,A, B, andC, which are
each pairwise consistent but their conjunctionA ∧ B ∧ C is inconsistent. So, there is
no possible worldw such thatw � A ∧ B ∧ C. What are we to say about a belief state
which includes all three beliefs? We have already seen the Lewis/Stalnaker account,
which is to “chunk” the belief set into consistent compartments. There are no worlds
at which the three-way conjunction is true, but there are worlds at which any pair
is true. Our belief set is quarantined into consistent subsets. SayX is the set of all
worlds in whichA ∧ B; Y is the set of all worlds in whichA ∧ C (we could addZ,
the set of worlds in whichB ∧ C if we wished, butX andY are enough to illustrate the
point). X andY are disjoint. They together somehow represent the belief state of the
inconsistent believer. How can we understand the belief set in a way which doesn’t
require it to be divided up?

ConsiderX. Any world in X is consistent with part of the belief set, but not the
whole. It is consistent withA ∧ B, but not withA ∧ C. If there were a worldboth in
X and inY , this would be enough to modelA ∧ B ∧ C. Of course, there are no such
worlds, asA ∧ B ∧ C is inconsistent. However, we can construct something to do
the job. If x ∈ X andy ∈ Y , consider “pasting together”x andy, like superimposing
together two maps which inconsistently describe the landscape, or concatenating two
stories which inconsistently describe the situation. How dox and y together describe
the world to be? There are many ways you could define this notion. I will choose a
general framework for defining the notion of ‘truth at aset of possible worlds’ which
agrees with the notion of truth at a possible world in the case where the set of pos-
sible worlds is a singleton. The idea is that something is true in the set of possible
worlds just when it’s true in some member of that set. It is false in the set of possible
worlds just when it is false in some member in that set. However, instead of leaving
the condition at that (which would simply be the “chunking” idea all over again) we
will allow overlap. A conjunction is true at a set just when both conjuncts are true at
that set. A conjunction is false at a set just when either conjunct is false. This leads
to the following generalization.

Definition 2.2 A world in a propositional model is a nonempty set of possible
worlds in that model. Truth and falsity (�+ and�−) are defined for worlds in propo-
sitional models as follows.

1. X �+ p iff x � p for somex ∈ X.

2. X �− p iff x �� p for somex ∈ X.

3. X �+ ∼A iff X �− A.

4. X �− ∼A iff X �+ A.

5. X �+ A ∧ B iff X �+ A andX �+ B.

6. X �− A ∧ B iff X �− A or X �− B.

7. X �+ A ∨ B iff X �+ A or X �+ B.

8. X �− A ∨ B iff X �− A andX �− B.
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So, we have an answer to our question “what is a way the world can’t be?” It is aset
of ways the world can be. The world could be likex and it could be likey for two
different possible worldsx andy. However, it can’t beboth like x and likey.

The definition of�+ is a simple way of defining “truth in a model” which (it will
turn out) satisfies Lewis’s five desiderata. The following results show that the notion
is well behaved.

Lemma 2.3 In any propositional model, {x} �+ A if and only if x � A, and {x} �−

A if and only if x �� A.

Proof: The proof is a simple induction on the complexity ofA. �

Lemma 2.4 If X �+ A and X ⊆ Y then Y �+ A. Similarly, if X �− A and X ⊆ Y
then Y �− A.

Proof: This too is a simple induction on the complexity ofA. �

Theorem 2.5 In any propositional model, if x � A then X �+ A for all x ∈ X.
However, the converse doesn’t hold.

Proof: The first part is yet another simple induction on the complexity ofA. The
second part is also simple. Ifx � A andy � ∼A, then{x, y} �+ A ∧ ∼A, but as both
x andy are consistent, neitherx � A ∧ ∼A nor y � A ∧ ∼A. �
These results go some way toward showing that the notion of truth and falsity at
a world (in our sense) is reasonably well behaved. Another way to understand the
‘logic’ of the semantics is to examine how propositions behave. As is well known,
on the ‘standard account’ propositions can be modeled as sets of possible worlds (the
set of worlds at which the proposition is true). Then the logical operations of con-
junction, disjunction, and negation are modeled by the set theoretic operations of in-
tersection, union, and negation.

How are propositions modeled once we consider impossible worlds as well as
possible worlds? Take a particular simple possible worlds model, and the relations
�+ and�− which arise from considering impossible worlds as well as possible ones.
Consider the set of worlds (that is, nonempty sets of possible worlds) at which a
proposition is true. What must this set be like? Well, Lemma 2 tells us that ifX is in
this set, so is any supersetY of X. That is, the set of worlds at which a proposition is
true must beclosed upwards. If X is in the set, so are all supersets ofX.

A proposition, however, is not uniquely defined by the set of worlds at which it is
true. Consider the following simple model with two possible worldsa andb, at which
a � p ∧∼q andb � ∼p ∧∼q. Clearly X �+ p ∨∼p andX �+ ∼q for any nonempty
setX of worlds. However, the propositionsp ∨∼p and∼q are importantly different.
The negation ofp ∨ ∼p is true at one impossible world,{a, b}, whereas the negation
of q is true nowhere—not even at{a, b}. So, propositions ought not be modeled just
at the set of worlds at which they are true, but also at the set of worlds at which they
arefalse. An appropriate model for propositions is as follows.

Definition 2.6 A proposition in a simple possible worlds model is apair 〈X +, X −〉
of sets of worlds, satsifying the following conditions.

1. BothX + andX − are closed upwards.
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2. For anyw ∈ W, {w} is in exactly one ofX + andX −.

In any proposition〈X +, X −〉, X + is the set of worlds at which the proposition is true,
andX − is the set of worlds at which it is false. As propositions are either true or false
(and not both) atpossible worlds, for eachw ∈ W, {w} must be in exactly one ofX +

andX −. It is simple to show that conjunction, disjunction, and negation work as you
would expect on these ‘propositions’.

Theorem 2.7 The conjunction of 〈X +, X −〉and 〈Y +, Y −〉 is 〈X + ∩ Y+, X − ∪ Y−〉.
The disjunction of 〈X +, X −〉 and 〈Y +, Y −〉 is 〈X + ∪ Y+, X − ∩ Y−〉. The negation
of 〈X +, X −〉 is 〈X −, X +〉.
Proof: This is a simple matter of taking the definitions of�+ and�− and the con-
nectives and translating them into our talk of propositions. �
This construction is not new—Dunn used this as a semantics for first-degree entail-
ment (see Anderson and Belnap [1] and Dunn [2]).

So propositions, in these models, have a richer structure than that in simple
possible worlds models. However, the connectives maintain their simple set theo-
retic interpretation—complicated only by the need to keep track of, not only where a
proposition is true, but also where it is also false. You might protest, and rightly so,
that it seems that negation is not interpreted by set theoretic negation or complement
but by a “swapping” operation. However, all is not lost—the two sets in the pair of
sets are already related by a negation. For any possible worldx, {x} is inX + orX − but
not both. So, the set theoretic analogue of negation is still recognizably “negative.”

In fact, if you modeled old-style propositions, not as sets of possible worlds but
as “cuts” of the set of all possible worlds into two sets—one in which the proposition
is true and the other in which it is false—this would be a merely notational differ-
ence. The logic would be the same. However, the definitions of conjunction, disjunc-
tion, and negation in such a modeling would beexactly the same as what we have for
our propositions. So, the definition is not “nonclassical” in the sense of changing the
meanings of the connectives.

The resulting “logic” is rather simple. Let’s say that� �P A (“ P” for paracon-
sistent) just when in each model, for each worldX, if X �+ B for eachB ∈ � then
X �+ A too. This is an extension of the standard definition of consequence to our
case in which we admit impossible worlds. It turns out that the consequence relation
�P so defined is the consequence relation of Priest’s paraconsistent logicLP [5]. An
LP-evaluation is a functionv from the language to the set

{{1}, {0}, {0,1}} of truth
values ‘true’, ‘false’, and ‘both’, satisfying the following conditions.

1. 1∈ v(∼A) iff 0 ∈ v(A).

2. 0∈ v(∼A) iff 1 ∈ v(A).

3. 1∈ v(A ∧ B) iff 1 ∈ v(A) and 1∈ v(B).

4. 0∈ v(A ∧ B) iff 0 ∈ v(A) or 0∈ v(B).

5. 1∈ v(A ∨ B) iff 1 ∈ v(A) or 1∈ v(B).

6. 0∈ v(A ∨ B) iff 0 ∈ v(A) and 0∈ v(B).

It is clear thatLP-evaluations mirror closely the definition of truth in a world. We
say that an argument from� to A is LP-valid (written ‘� �LP A’) if and only if for
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everyLP-evaluationv such that 1∈ v(B) for eachB ∈ �, wealso have 1∈ v(A). It
should come as no great surprise that the following result holds.

Theorem 2.8 � �P A if and only if � �LP A.

Proof: To show that if� �LP A then� �P A, consider any model and any worldX
in any model. Define anLP-valuationv as follows. 1∈ v(p) if and only if X �+ p,
and 0∈ v(p) if and only if X �− p. It is simple to show that 1∈ v(A) if and only if
X �+ A and 0∈ v(A) if and only if X �− A. So, by the definition ofLP-validity, if
� �LP A, then if X �+ B for eachB ∈ �, then since 1∈ v(B) for eachB ∈ �, we
have 1∈ v(A) and henceX �+ A as desired.

The converse is slightly more difficult to prove. Suppose that� ��LP A. We
wish to construct a model containing a worldX at which� is true butA is not. To
do this, consider anLP-valuationv for which each element of� is (at least) true, and
for which A is not. �′, the set of formulas which are true (at least) according tov,
is a superset of�, such that�′ ��LP A. We wish to find a world which makes each
element of�′ true but notA. This is reasonably straightforward. The mapv sends
each atomic proposition to one of{0}, {1}, and{0,1}. Given such a mapv, wewill call
amapv′ assigning either 0 or 1 to each atomic proposition aconsistent subevaluation
of v just when for eachp, if v′(p) = i theni ∈ v(p).

Now we construct our model. What are the possible worlds in our model? Any
set of worlds will do, provided that we have one world for each consistent subevalu-
ationv′ of v. Let the world corresponding tov′ bew(v′). Weset the evaluation� on
worlds to satisfy

w(v′) � p iff v′(p) = 1

let the usual inductive conditions do the work for the connectives. We don’t care how
� evaluates propositions at other worlds (if there are any) for they are irrelevant for
our purposes. We will take our worldX to be the set of all the worldsw(v′), where
v′ is a consistent subevaluation ofv. We need just show thatX �+ B for eachB ∈ �′

and thatX ��+ A. Wewill do more. We will prove Lemma2.9by induction onB.

Lemma 2.9 For each B, X �+ B if and only if B ∈ �′ and X �− B if and only if
∼B ∈ �′.

Proof: The proof is direct. For the base cases, considerp ∈ �′. If p ∈ �′ then
1 ∈ v(p). That means there is some consistent subevaluationv′ of v for which
v′(p) = 1, and so, thatw(v′) � p and hence, thatX �+ p. Conversely, ifX �+ p
thenw(v′) � p for somev′ and so, 1∈ v(p), giving p ∈ �′. Similarly, if ∼p ∈ �′

then 0∈ v(p). That means there is some consistent subevaluationv′ of v for which
v′(p) = 0, and so,w(v′) �� p and hence,X �− p. Conversely, ifX �− p then
w(v′) �� p for somev′ and so, 0∈ v(p), giving ∼p ∈ �′.

The connective rules are trivial. Consider conjunction:A ∧ B ∈ �′ is equivalent
to A ∈ �′ and B ∈ �′. This happens if and only ifX �+ A and X �+ B, which is
in turn equivalent toX �+ A ∧ B as desired. On the other hand,∼(A ∧ B) ∈ �′ if
and only if∼A ∈ �′ or ∼B ∈ �′, if and only if X �− A or X �− B if and only if
X �− A ∧ B. For disjunction, swap ‘and’ and ‘or’ in this reasoning.

Finally, for negation,∼A ∈ �′ if and only if X �− A, if and only if X �+ ∼A
as desired, and∼∼A ∈ �′ if and only if A ∈ �′ if and only if X �+ A if and only if
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X �− ∼A, completing the proof of the lemma. �
So, if � ��LP A, we can construct a simple possible worlds model giving us� ��P A
as follows. Take theLP-evaluationv which makes all of� true but notA. Consider
this evaluation and look at all of its consistent subevaluations. Take these to be the
worlds which are inconsistently combined to model�. A is not true at this incon-
sistent combination. So, you have a simple possible worlds model which invalidates
� �P A, as desired. �
What has this result shown? We can see that our definition of truth in a world (for
both possible and impossible worlds) agrees with a prior definition of a paraconsis-
tent logic. As a result, we can havetwo notions of truth according to a body of infor-
mation. First, you can chunk your belief set into consistent parts and consider those.
Second, you can allow interaction between those parts to get an inconsistent theory
that still has a degree of logical closure. The notion of logical consequence relevant to
these inconsistent theories is a preexisting paraconsistent logicLP. We did not start
out to motivateLP. We started out to consider a notion of ‘truth in theory’ which re-
spected Lewis’s five desiderata. It turns out that this kind of inconsistency tolerance
gives us a known logic. The result is important because it shows thatLP is adequate
not only as a logic of inconsistency, but as the logic of inconsistencygenerated by
preexisting consistency. For in our models the ‘ground’ for truth is still the possible
world. The impossible worlds are ‘epiphenomenal’. Truth at an impossible world is
determined completely by truth at the possible worlds in which it consists. There is
no more to inconsistency in these propositional models.

3 Quantifiers We have seen how to model inconsistent belief and other inconsis-
tent propositions in propositional languages. The result agrees with Priest’s logic of
paradox. However, beliefs have more logical structure than is exhibited by propo-
sitional logic. The predicate calculus is another degree of logical structure useful in
examining content of beliefs. The addition of predicates and quantifiers to the picture
makes things more complex for our project. Again we start with our classical models.

Definition 3.1 A predicate model for a language withn-ary predicatesFn andm-
ary function symbolsf m is a setW of possible worlds, and a setD of objects with
the following interpretations. Eachn-ary predicateFn is interpreted by a function
‖Fn‖ : W �→ P Dn which maps worlds to sets ofn-tuples ofD elements, and each
m-ary function symbolf m is interpreted by anm-ary function‖ f m‖ : Dm �→ D on
D. The relation� is defined between worlds and propositions as you would expect.
First you define for each assignmenta of variables the denotation of terms.

1. ‖x‖a = a(x).
2. ‖ f mt1 · · · tm‖a = ‖ f m‖ 〈‖t1‖a , . . . ,‖tm‖a〉.

Then you define truth of propositions at worlds.

1. a,w � Fnt1 · · · tn iff 〈‖t1‖a , . . . ,‖tm‖a〉 ∈ ‖Fn‖ (w).
2. a,w � A ∧ B iff a,w � A anda,w � B.
3. a,w � A ∨ B iff a,w � A or a,w � B.
4. a,w � ∼A iff a,w �� A.
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5. a,w � ∀xA iff a′,w � A for eachx-varianta′ of a.2

If identity is among the predicates, we fix the interpretation‖=‖ of identity to be the
function that returns the identity relation onD for each worldw. Note that we have
fixed our attention on constant domain models. This is a simplification but one chiefly
to simplify presentation. Note too that predicates can vary in extension from world
to world but functions cannot. The generalization to nonrigid functions is simple too.

Now, we could define truth and falsity at worlds (sets of possible worlds) just
as before. The generalization to predicates and quantifiers is immediate. However,
some inconsistencies will remain true at no worlds (possible or impossible worlds).
Consider two constants (zero-place functions)c andd, in amodel in whichc andd
have different denotations. The propositionc = d is true in no possible worldw, as
‖c‖ �= ‖d‖—the denotations differ in all worlds. This is simply the necessity of true
identity statements and the impossibility of false identity statements when the terms
involved are rigid designators. Simply “identifying worlds” is not going to introduce
the inconsistencyc = d.

It is clear that another sort of identification will do it. We can identifyc andd. If
we do that, then we can hold thatc andd are identical after all. We are motivated to
extend our definition of ways things can’t be to allow the identification of objects as
well as worlds. Not just any equivalence relation will do. Iff is a function, and ifc
andd are identified, then it makes sense to identifyf (c) and f (d) too, at least iff is
to act as a function in the impossible world under construction. We will assume that
our equivalence relations arecongruence relations under the functions in the origi-
nal model, so that the functions remain to act as functions on the impossible worlds.
Of course, this is a choice. We need not require this if we don’t wish to—however
considering the alternate possibility here is one we will leave for another time.

Definition 3.2 A world in a predicate model is a setX of possible worlds together
with a congruence relation≡ on the domainD.

Not only is it impossible thatw andv are both actual, but ifc andd are distinct objects,
then it cannot be thatc andd are identical. As before, we define the relations�+ and
�− on worlds.

Definition 3.3 Truth and falsity are defined for worlds (with assignmentsa as be-
fore) as follows:

1. a,≡, X �+ Fnt1, . . . , tn iff for some objectsdi ∈ D wheredi ≡ ‖ti‖a,
〈d1, . . . , dn〉 ∈ ‖Fn‖ (w) for somew ∈ X;

2. a,≡, X �− Fnt1, . . . , tn iff for some objectsdi ∈ D wheredi ≡ ‖ti‖a,
〈d1, . . . , dn〉 �∈ ‖Fn‖ (w) for somew ∈ X;

3. a,≡, X �+ ∼A iff a,≡, X �− A;
4. a,≡, X �− ∼A iff a,≡, X �+ A;
5. a,≡, X �+ A ∧ B iff a,≡, X �+ A anda,≡, X �+ B;
6. a,≡, X �− A ∧ B iff a,≡, X �− A or a,≡, X �− B;
7. a,≡, X �+ A ∨ B iff a,≡, X �+ A or a,≡, X �+ B;
8. a,≡, X �− A ∨ B iff a,≡, X �− A anda,≡, X �− B;
9. a,≡, X �+ ∀xA iff a′,≡, X �+ A for eachx-varianta′ of a;

10. a,≡, X �− ∀xA iff a′,≡, X �− A for somex-varianta′ of a;



592 GREG RESTALL

This construction is inspired by the “collapsing” construction of Priest, which con-
structs inconsistentLP models from consistent models [6].

The only clauses in this definition which need comment are the base clauses.
In our worlds, the domain is the same as the domain in the original predicate model.
However, a claim such asFxy is true, not only when the pair〈a, b〉 of objects denoted
by x andy is in the extension‖F‖ of F, but also whena andb are “identified” by≡
with other objectsc andd which are in the extension ofF.

As before, there is a corresponding notion of anLP-evaluation in predicate cal-
culus. Now, each predicateFn has an extension‖Fn‖+ and an anti-extension‖Fn‖−.
These extensions together cover (perhaps with some overlap) the productDn of n-
tuples from the domain. The constraint on identity is that its extension is the identity
relation on the domain. Its anti-extension may overlap with the extension. (So all
objects are self-identical and some might also be non-self-identical.) Valuations are
relative to assignments of variables, and we have the following straightforward con-
ditions to add to the usual clauses for the propositional connectives

1. 1∈ va(Fnt1, . . . , tn) iff
〈‖t1‖a , . . . ,‖tn‖a

〉 ∈ ‖Fn‖+ ;
2. 0∈ va(Fnt1, . . . , tn) iff

〈‖t1‖a , . . . ,‖tn‖a

〉 ∈ ‖Fn‖− ;
3. 1∈ va(∀xA) iff 1 ∈ va′ (A) for eachx-varianta′ of a;
4. 0∈ va(∀xA) iff 0 ∈ va′ (A) for somex-varianta′ of a.

LP-validity of arguments is defined just as before. We have the same result as before,
on the predicate level.

Theorem 3.4 � �P A if and only if � �LP A.

Proof overview: The proof is both tedious and (notationally) complex. However it
has the same structure as the propositional case. First, you can show that any possible
worlds model gives rise to anLP-model, which makes true exactly the same proposi-
tions. This ensures that if� �LP A then� �P A. This is rather straightforward. You
simply identify the objects ‘identified’ by the congruence relation≡, and proceed in
the natural way to get anLP-model.

For the other direction, we need to “unwrap” anLP-model into a consistent fam-
ily of possible worlds, with the one domain, with the one interpretation of function
symbols, and with extensions of predicates varying from world to world. For this, the
technique is surprisingly simple in concept but rather technical in detail. The idea is
to take the domainD′ of the extended model to be the objects in the domainD of
theLP-model plus a few more to deal with objects which are non-self-identical. For
any object taken to be non-self-identical by theLP-model, addone new object (its
shadow) to which it is related by≡. That is enough for≡. Functions are interpreted
just as they were in theLP-model, except for shadows. If a shadow is in the input of
a function, the function treats it as the object of which it is a shadow. In other words,
functions ignore the difference between shadow and substance, and they output only
substantial objects. Functions so defined respect≡-equivalence, so this definition is
permissible. For predicates, we let an extension of a predicateapproximate anLP-
extension/anti-extension pair, just when anything the classical extension takes to be
true, so does theLP-extension, and anything the classical extension takes to be false,
so does the anti-extension (taking shadows into account, of course, as they are in our
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domain). We have a classical possible world for any family of approximating exten-
sions. The whole set of these families of extensions, together with the equivalence
relation, is our impossible world. The beautiful thing is: this definition works! The
impossible world takes to be true exactly those propositions true in theLP-model.
The proof is an induction on the complexity of propositions. �
For those who prefer a more detailed proof, the detail is in the appendix to this paper.

4 Interpretation What have we achieved? Let’s start by considering what wehave
not achieved. The construction of this paper is not the final answer for a semantics
of belief. All worlds, whether possible or impossible, contain all logical truths, and
people certainly need not believe all logical truths. Perhaps this might be remedied
by considering incompleteness dually with inconsistency, in the manner of my [8].
Even with this possible modification, more needs to be said about the nature of belief
modeled in this way. It is integral to this account that beliefs are closed undersome
kind of logical consequence. This means that we are not considering explicit belief,
but something akin to the notion of commitment. Much more must be done to make
this a truly useful model.

Granting this weakness, we have achieved a number of things. First, we have
models forLP in which the primitive notions are consistent possible worlds. We used
the same raw machinery as is available to those who use classical possible worlds. We
have used this machinery to construct a notion of ‘truth in a world’ which allows in-
consistent worlds just as much as consistent ones. However, inconsistent worlds are
not mysterious entities nor merely theoretical devices constructed using some unintel-
ligible logic. Impossible worlds are just more than one possible world taken together.
If w andv are two different ways the world can be, then the worldcan’t be likew and
v taken together. That’s inconsistent. All we have done is constructed a way to un-
derstand how two worlds likew andv clash, in such a way as to show how the clash
betweenw andv is not the same as the clash between two different worlds,w′ andv′.
Both impossibilities exhibit contradictions but they exhibitdifferent contradictions.
They are different impossible worlds.

However, we noted that this kind of impossibility is but one kind of impossibil-
ity. Another is found by not superimposing different worlds. Another notion can be
found by superimposing different objects. In this way, other impossibilities can be
modeled.

Second, we have shown that these two different kinds of identification aresuffi-
cient to model the pre-existing logicLP. Wehave some grip, therefore, in whatkinds
of inconsistencies are allowed by the paraconsistent logicLP. In the event of adding
new connectives to the language ofLP, wemight find that different sorts of ‘identifi-
cation’ or other techniques again are required to model the arising inconsistency using
a classical base. One which comes to mind is the addition of intensional operators.
It may be that we might have to consider the identification of different accessibility
relations in order to treat inconsistent modal claims.

Third, Lewis, in his “Logic for equivocators” [3], shows how to interpret para-
consistent logics likeLP as logics for equivocation. On his intepretation, we achieve
inconsistency by allowing the extensions of our predicates to vary. In some part of
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our speech, the expression might mean one thing, in another, something else. It’s clear
how we might appear to contradict ourselves when we do this.

In our models forLP we get by without changing themeanings of our predicates
at all. They are just as fixed as they are in classical possible worlds models. True, the
extensions of predicates vary from world to world, but that’s simply the trivial fact
that objects have properties contingently. There is noequivocation on this analysis.
The extensions of predicates in our new models remain just as they were in the origi-
nal classical possible worlds models. The inconsistency arises by taking the world to
be in two inconsistent ways, or taking objects to be the same which are, as a matter
of fact, different.

Finally, we have seen a way we enjoy the fruits of both paraconsistent and clas-
sical logic. In our classical possible worlds models, classical first-order consequence
is available as it always was. The addition of impossible worlds—not as extra ontol-
ogy but rather as a new way of looking at what was always there—gives us a new,
paraconsistent notion of logical consequence. If this helps people understand the for-
malism of paraconsistent logic and some of the ideas underlying it, then this paper
will have served its purpose.

5 Appendix Here is the detailed proof of Theorem3.4.

Proof: To show that if� �LP A then� �P A, consider any model and any world
≡, X in any model. Define anLP-valuationv as follows. Its domain is the set of≡
congruence classes from the domainD of the predicate model. Take the extension
of the function symbols to be given by such an identification (this is possible, as the
extension of each function symbol respects≡-congruence). The extension of a pred-
icate||F||+ is just the union of the extensions||F||(w), and 1∈ v(p) if and only if
X �+ p, and 0∈ v(p) if and only if X �− p. It is simple to show that 1∈ v(A) if
and only if X �+ A and 0∈ v(A) if and only if X �− A. So, by the definition ofLP-
validity, if � �LP A, then if X �+ B for eachB ∈ �, then since 1∈ v(B) for each
B ∈ �, wehave 1∈ v(A) and henceX �+ A as desired.

Conversely, suppose� ��LP A. Wewish to construct a model containing a world
X at which� is true butA not. Consider anLP-model which makes� true andA
not. It will have a domainD, an extension and an anti-extension for each predicate
(including identity) and an interpretation for each function symbol.

How do we then construct a worldX in a possible worlds model to do the work of
theLP-model? First of all, we need to find the domain of the possible worlds model.
This cannot be simply the domainD of theLP-model, as we need some objects to
identify to get the inconsistent identities (if there are any). We do this by ‘unraveling
the domain’. We expand the domainD such that for each objectd ∈ D such that
〈d, d〉 ∈ || = ||− (that is, if theLP-model takesd to be nonidentical to itself) we add
a new objectd′ (d’s “shadow”) to the domain of our new model. So the extended
domainD′ is the setD ∪{d′ : d ∈ D where〈d, d〉 ∈ || = ||−}. The congruence relation
≡ relates eachd ∈ D′ to itself, and furthermore, relates eachd to its shadow (ifd has
a shadow) and the shadow ofd to d itself. This is a congruence relation onD′. For
anye ∈ D′, we lete ∈ D be the object inD to whiche is≡-related. For an assignment
a of variables to objects inD′ the correspondingD-assignmenta assignsx the object
e wherevera assignsx the objecte.
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Wethen take the extension of each function symbolf to be defined as follows:
|| f ||(e1, . . . , en) (whereei ∈ D′) is simply || f ||(e1, . . . , en), where the interpreta-
tion || f || here is that of theLP-model. In other words, the shadow objects are never
outputs of functions, and they function as inputs in just the same way as the objects
which they shadow. It is simple to see that for any termt in the language||t|| = ||t||,
where the left hand side is the interpretation in our classical model and the right hand
side is the interpretation from theLP-model.

That will do for the domain and the interpretations of function symbols. The
extensions of predicates are to vary from world to world, so we need to understand
what the worlds are to be. Here, a world will simply be an index for different possi-
ble classical extensions of predicates which somehow approximate the inconsistent
extensions of predicates from theLP-model. We will say that the extension||F|| of
F on the domainD′ approximates the extension||F||+ and the anti-extension||F||−
on the domainD just when if〈e1, . . . , en〉 ∈ ||F|| then〈e1, . . . , en〉 ∈ ||F||+, and if
〈e1, . . . , en〉 �∈ ||F|| then〈e1, . . . , en〉 ∈ ||F||−. In other words, any judgment that the
approximating extension makes is also made by theLP-extension or anti-extension
(keeping in mind the unraveling of the domain). Anapproximating extension family
is an extension ofD′ for each predicate in the language (other than identity) such that
each extension approximates the extension and anti-extension of theLP-model. The
worlds in our classical model are simply the approximating extension families. So,
adapting our notation somewhat, we have a setX of approximating extension fam-
ilies, such that for anyw ∈ X, and any predicateF, ||F||(w) is an extension onD′

approximating the extension and anti-extension ofF in D′. Wewill show that taking
this as our model, for any assignmenta of variables onD′ and for the congruence rela-
tion≡ defined above, that for every formulaA, a,≡, X �+ A if and only if 1∈ va(A)

anda,≡, X �− A if and only if 0 ∈ va(A). The proof is an induction on the com-
plexity of A as in the propositional case. The conjunction, disjunction, and negation
clauses are as before, so we need attend only to the atomic and the quantifier cases.

First, a,≡, X �+ Fnt1, . . . , tn if and only if for some objectsdi ∈ D, where
di ≡ ||ti||a, 〈d1, . . . , dn〉 ∈ ||Fn||(w) for somew ∈ X. Now since||Fn||(w) ap-
proximates theLP-extension and anti-extension ofF, so〈d1, . . . , dn〉 ∈ ||Fn||+, and
so, 〈||t1||a, . . . , ||tn||a〉 ∈ ||Fn||+, by the behavior of≡. Now ||ti||a = ||ti||a, so
〈||t1||a, . . . , ||tn||a〉 ∈ ||Fn||+, giving 1∈ va(Fnt1, . . . , tn) as desired. Conversely, if
1∈ va(Fnt1, . . . , tn), wehave〈||t1||a, . . . , ||tn||a〉 ∈ ||Fn||+. There is some extension
||Fn||(w) approximating theLP-extension and anti-extension for which〈||t1||a, . . . ,
||tn||a〉 ∈ ||Fn||(w). Select such an extension (i.e., such aw). It follows thata,≡, X
�+ Fnt1, . . . , tn, asw ∈ X. The case for the anti-extension is identical.

Weneed to treat identity separately, as it is interpreted as identity on the domain
D′ of the classical model. The only wrinkle is the congruence relation≡. Soa, ≡,

X �+ t1 = t2 if and only if there is an objecte ∈ D′ such that||t1||a ≡ e and||t2||a ≡ e,
that is, if and only if||t1||a ≡ ||t2||a. This obtains if and only if||t1||a = ||t2||a, which
in turn happens if and only if 1∈ va(t1 = t2). For the negative case,a,≡, X �−

t1 = t2 if and only if there aredistinct objectse1 ande2 in D′ where||t1||a ≡ e1 and
||t2||a ≡ e2. This obtains if and only if||t1||a = e1 and||t2||a = e2. Now e1 ande2 are
different if and only if〈e1, e2〉 ∈ || = ||− by the construction of the extended domain.
Why is this? Well, ife1 �= e2, then〈e1, e2〉 ∈ || = ||−, and we must havee1 �= e2 (as
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is a function). Ife1 = e2, thene1 ande2 can differ only if one is the shadow of the
other, which happens if and only if〈e1, e2〉 ∈ || = ||−. So,a,≡, X �− t1 = t2 if and
only if 0 ∈ va(t1 = t2), as desired.

Finally for quantifiers,a,≡, X �+ ∀xA if and only if a′,≡, X,�+ A for each
x-varianta′ of a. This holds if and only if 1∈ va′ (A) for eachx-varianta′ of a. These
x-variants arex-variants inD′. However, this doesn’t matter. Ifb is anx-variant (in
D) of a, thenb = a′ for somex-variant (inD′) a′ of a. Conversely, ifa′ is anx-variant
(in D′) of a, thena′ is anx-variant (inD) of a. So,1∈ va′ (A) for eachx-varianta′ of a
if and only if 1∈ vb(A) for eachx-variant (inD) b of a, if and only if 1∈ va(∀xA), as
desired. Similarly,a,≡, X �− ∀xA if and only if a′,≡, X,�− A for somex-variant
a′ of a. This holds if and only if 0∈ va′ (A) for somex-variant (in D′) a′ of a, if
and only if 0∈ vb(A) for eachx-variant (inD) b of a, if and only if 0∈ va(∀xA), as
desired. The case for the existential quantifier is dual, and this completes the proof.

�
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NOTES

1. Priest reminds me that the chunking account is not original with Lewis, but that Rescher
and Manor [7] used the account in their paper published in 1970.

2. An x-variant of an assignmenta is any assignmenta′ which agrees witha for every vari-
able in the language except possiblyx.
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