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Peeking at the Impossible

CHRIS MORTENSEN

Abstract The question of the interpretation of impossible pictures is taken up.
Penrose’s account is reviewed. It is argued that whereas this account makes sub-
stantial inroads into the problem, there needs to be a further ingredient. An in-
consistent account using heap models is proposed.

1 Introduction Given that the mathematics of the inconsistent has developed to the
point of self-subsistence, it becomes essential to look to applications. Anomalies in
physics and pure mathematics are an intriguing prospect. But one very obvious exam-
ple remains unaddressed: the impossible pictures such as are found in Escher’s works,
for example, the inconsistent triangle, ascending and descending, and the like. The
embarrassment for the paraconsistency program is that it took a thoroughly classical
mathematician, Roger Penrose, to make the first significant inroads on the problem.

Penrose applies the theory of cohomology groups to the problem. He shows nec-
essary and sufficient conditions for a two-dimensional picture to represent a consis-
tent three-dimensional object. This paper begins by setting out Penrose’s account in
Section2. In Section3 it is seen that there remains one ingredient to be added to Pen-
rose’s solution. A theory is described which extends Penrose’s account by means of
the theory of heaps. The inconsistent theory of heaps has been studied by Priest, Re-
stall, van Bendegem, and others. It proves necessary to modify that theory, though an
inconsistent version remains the most intuitive. The result provides a sense in which
looking at inconsistent drawings is peeking at the impossible. However, the existence
of a stable theory also tends to show that the inconsistent may not be so impossible
after all.

2 Penrose’s account Consider the inconsistent triangle.1 Penrose notes correctly
that it can be a picture of a three-dimensional structure, in fact many different struc-
tures. This could happen if the structure were in fact three disassembled parts lined
up behind one another so that the distances between them could not be seen.2 In-
deed, there is an infinite collection of such 3-D structures which “project down” onto
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a front screen, so that the projection forms the 2-D picture. These are readily obtained
by thinking of moving the three disassembled parts closer or farther from the picture
while allowing that their sizes can increase or decrease depending on whether they
are farther or closer from the 2-D image on the front screen, so as to make them have
that image as their projection. This requires that objects expand uniformly the farther
away they are, in such a way as to keep the same size and shape of the image.

The difference between this case and the case where the 2-D picture is an image
of a consistent 3-D object is thus: in the former case the parts cannot be assembled
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Figure 1: The inconsistent triangle and a 3-D disassembly (adapted from Penrose)
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into a consistent 3-D object (no bending permitted), whereas in the latter case the parts
can be so assembled. Note that disassembly and reassembly are required to be done in
such a way that the same 2-D projection is preserved in all motions of the 3-D parts.
This, in a nutshell, is Penrose’s suggestion: it is necessary and sufficient for a 2-D
picture to be a picture of a consistent 3-D object, that the collection of 3-D configu-
rations which project onto it has amongst it a consistent connected object which is a
reassembly of any of the 3-D structures. What is interesting, of course, is the possi-
ble failure of the necessary and sufficient condition. Then the 2-D image fails to be a
projection of any consistent connected 3-D object, though it remains a projection of
an infinite number of disassembled 3-D structures.

Penrose describes this in the language of cohomology groups. We begin with
the multiplicative group of positive real numbersR

+. Penrose calls this theambiguity
group of the structure. It represents the fact that a 2-D picture ambiguously represents
a class of 3-D structures because the (single) eye cannot distinguish points which are
in a direct line with one another from the eye. For any such pair of points, the distance
to one from the eye can be represented as a multiple of the distance to the other, where
the multiplier is fromR

+.
If the 3-D structure is in three parts, joining it up will require identifying (at least)

two points on each part with a point on each of the two other parts. (We ignore the
point that strictly surfaces, not points, will need to be identified, by taking the sin-
gle points as representative of the surfaces.) Let the parts be numbered 1, 2, 3 and
let the point on parti which is to be identified with a point on partj be calledAij.
Thus, Aij joins with A ji. Let the distance from the front screen toAij be calleddij

(see diagram).3 The requirement of assembly can thus be expressed by the condi-
tion dij = d ji, all i, j, (where thedij belong toR

+). There are an infinite number
of structures which satisfy this condition for any given 2-D picture. It is convenient
to reduce this condition to one involving equivalence classes. Introduce the ratios
rij defined bydij/d ji . (Note thatrij = 1/r ji). Then each triple (r12, r23, r13) deter-
mines an infinite equivalence class of structures having the same ratio of distances
between corresponding points on the three bodies. These triples are calledcocycles.
The condition of assembly, thatdij = d ji, is obviously equivalent to the condition
that the cocyle =(1,1,1). If this happens, the cocycle is called acoboundary. A
coboundary can obviously function as the unit of a group, where group multiplica-
tion is defined as pointwise multiplication of the three components of the cocycles,
that is,(a, b, c) ∗ (d, e, f ) = (ad, be, c f ). The group operation evidently has phys-
ical significance in that any pair of equivalence classes of configurations under the
operation produces a unique equivalence class of configurations. When the set of
cocycles contains a coboundary, the cocycles form acohomology group. Thus, the
cocycles fail to be a group just when they lack a coboundary, that is, just when they
cannot be assembled into a consistent connected 3-D structure.

3 Inconsistent heaps One question remains with this approach. Why is it that it
seems to the eye that the picture represents an impossible object, and not any one of
the possible disassembled objects which look the same? The nearest Penrose comes
to an answer seems to be the observation that the eye cannot distinguish between
points directly behind one another. Still, this applies as much to the consistent case
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as the inconsistent case. What is it for the eye topreferentially interpret what it sees
as inconsistent, and not any one of the possible structures? These questions are an-
swered in the next section, where it is proposed that the inconsistent interpretation is
represented by an inconsistent theory. But first we must do some preliminary work.

In point of fact, thereare assembled 3-D structures which project onto the in-
consistent triangle. First, it is plain that one canalmost assemble three parts. One
can identifytwo of the pairs of points, sayA12 with A21 and A23 with A32, leaving
the third pair separate. If the third pair of points were only “virtually separate,” but
identical becausethey were painted on aback screen, that would be enough to pro-
duce the image on the front screen. This suggests a general strategy for producing 3-
D objects which project to the desired image on the front screen. Suppose that space
is finite, with a backdrop or back boundary. Assemble as much as one can, put the
pieces against the backdrop, anddraw in the remainder of the lines on the backdrop.
All the world’s a stage (or a Hollywood set).

One can imagine an objection that the backdrop universe is not an acceptable 3-
D structure for projection onto the front screen because it fails to force separate points
in 3-D space to remain separate. Algebraically, this is the stipulation that the ambi-
guity group corresponds to, or maps one-one to, the set of possible distances from the
front screen. In the language of model theory, it is the condition that the theory de-
scribing the geometrical solution preserves all statements about the ambiguity group
which deny identity. This is a reasonable requirement, and it leads us thus to an in-
consistent theory, as we will see.

The theory ofheap models projects the positive integers with addition onto a
primitive concept of counting, for example, “1, 2, 3, Heap.” (The presence of zero
and negatives is optional, see below.) Thus we have that, in addition to all true equa-
tions of positive integer arithmetic, all of 4= 5 = · · · = Heap hold. If we think of the
positive integers as like the ambiguity group, and additionally impose the condition of
the previous paragraph that the map from the ambiguity group to the heap be 1-1, we
also have that 4�= 5 �= 6· · · all hold, which is inconsistent. That is, there is an incon-
sistent theory which satisfies this condition. HeapH functions as an indeterminate
upper limit to counting, a kind of infinity in thata + H = H + a = H holds (except
where the model also contains the additive inverse ofH, where H + (−H) = 0).
However,H can be reached by finite means: 1+ 3 = H. Obviously, there are an
infinite number of heap models, one for every maximal nonheap element.4

Adapting heap theory to the present case of the multiplicative group of positive
reals requires some modifications. The natural view of the “backdrop” universe de-
scribed earlier is to allow only the distances up to a certain distancedmax

ij , the distance
to the backdrop. This might be represented initially as a mapping of the ambiguity
groupR

+ to {x ∈ R
+ : x ≤ dmax

ij }, where the restriction of the domain tox ≤ dmax
ij

is the identity mapping. However, if we impose the condition that the mapping from
the ambiguity group to the set of distances be 1-1, we have an inconsistent theory.

To focus, letdmax
ij have a specific real number value, say 4.1. Then, for example

2 = 3 = 3.1 donot hold, but 4.1 = 4.2 = · · · all hold. Since these identicals are in-
tersubstitutable in all contexts, we can introduce the name ‘H’ to refer ambiguously
to all of them, that is, 4.1 = 4.2 = · · · = H. Since the mapping from the ambiguity
group is one-one, also 4.1 �= 4.2 �= · · · �= H. To multiply two numbersa, b in the
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heap: first determine whether either= H. If not, then multiplya ∗ b normally, de-
termine whether the result= H and if so identifya ∗ b in addition with all numbers
which = H. Otherwise, if one or both ofa, b = H, then the result= H and all its
identicals as well. For example, since 2∗ 4 = 8, then by substitution of identicals
2∗ 4 = H = 4.1 also: as with the integer models it is possible to reach the backdrop
by operation on items in front of the backdrop. But alsoa ∗ H = H ∗ b = H, for ex-
ample, 0.5∗ H = H ∗ 2 = H. Evidently,∗ is commutative. Also, the structure has a
unit: a ∗ 1 = 1∗ a = a.

But the heap is not a group for two reasons. First, it lacks natural inverses for
some elements, those which are greater than 4.1. Inverses can be produced by a fur-
ther inconsistent extension of the theory of the ambiguity group. Identify all members
of the class{x ∈ R

+ : x ≤ (4.1)−1} with one another and call themH−1. If two num-
bers strictly betweenH−1 andH are multiplied together, take their product inR

+ and
determine whether it is identical withH, H−1 or something in between, identifying
with all identicals in the former two cases. Otherwise,H−1 behaves like a zero, with
a ∗ H−1 = H−1 ∗ a = H−1; except for the case wherea = H, whereH−1 behaves
as the inverse ofH, with H ∗ H−1 = H−1 ∗ H = 1. ThusH−1 functions as a lower
limit on distances.

The second reason heaps are not groups is that multiplication fails to be associa-
tive. For example,(0.5∗ 2) ∗ 3 = 1∗ 3 = 3, but 0.5∗ (2∗ 3) = 0.5∗ H = H, while
3 = H does not hold. There are other multiplications which fail to be associative, for
example, vector cross product. Furthermore, the failure of associativity is well mo-
tivated by the intended interpretation in a space with a backdrop and a least size: if
you reach either of these limits you’re stuck there, unless you’re multiplied by your
inverse; so the order you associate matters. However, these heaps are almost groups:
commutative groupoids with a unit and inverses. Also, the subalgebra{H,1, H−1}
is plainly the limiting case of the heap where allx > 1 are identified withH and all
x < 1 with H−1.

It is clear that there are both consistent and inconsistent theories here. The dif-
ference between the two is the absence or presence of 4.1 �= 4.2 �= · · · H and their
inverses. The latter is the one-one condition, that distinct elements of the ambiguity
group correspond to distinct distances in any acceptable reassembly of the structure.
Now corresponding to cocycles as equivalence classes of triples of distances from
R

+, there are obviously classes of triples from heaps. These structures satisfy the
condition for a coboundary among cocycles, namely the existence of a unit. Clearly,
given any parts of the assembly which are done consistently, in front of the backdrop,
then for them certainlydij = d ji, that isrij = 1. But also for any pair of distances
which are identified at the backdrop, againdij = d ji = H, andrij = dij ∗ (d ji)

−1 =
H ∗ H−1 = 1. Thus the triple of ratios(r12, r23, r13) = (1,1,1), which is the unit.

For the purposes of describing formally an appropriate model in which the the-
ory of the inconsistent heap holds, closed set logic would seem to be the most nat-
ural, since it has the advantage of representing contradictions as holding on closed
sets and particularly their boundaries. Consider the topological space with a basis of
four closed sets:R+, {x ∈ R

+ : x ≤ (dmax
ij )−1}, {x ∈ R

+ : x ≥ dmax
ij }, {}. For con-

venience, we can rename the middle two of these asH−1 and H, respectively. The
closed sets serve as semantic values for closed set logic and theories thereof, since
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they are closed with respect to unions (disjunction) and intersections (conjunction).
Quantifiers are interpreted as respectively generalized union and intersection as usual.
For negation, one takes closed complement, that is, the least closed set containing the
Boolean complement. Thus the closed complement of bothH−1 andH is R

+ itself.
This means that ifx = y is stipulated to hold onH but nowhere else, (i.e.x = y takes
H as its semantic value) then its negationx �= y holds everywhere, that is,R+. In
particular, sinceH is a subset ofR+, the contradictionx = y & x �= y holds onH.
The inconsistent theory of the heap can then be generated by the condition:if x = y
is true in the classical theory ofR

+ then assignx = y to R
+, else if x andy belong to

at least one nonnull closed set,then assignx = y to the least closed set to which both
x andy belong,else assignx = y to {}. To also addH to the theory, if bothx andy
belong toH, assign x = H andy = H to H, and similarly forH−1. Then we define a
sentence to hold in the theory of the heap, if it is assigned to some nonnull closed set.
Then, for example, 4.1 = 4.2 = H �= 4.1 �= 4.2 all hold; but whereas 2�= 3 �= H and
4 = 2∗ 2 hold, they hold consistently, that is, neither 2= 3 = H nor 4 �= 2∗ 2 hold.
The interested reader is left to fill in further formal details. For further description of
theories of closed set logics, see Mortensen [2].

4 Inconsistent representations The question is, in looking at the inconsistent tri-
angle,what is one peeking at behind it? One answer could be that one is peeking at
a disassembled object, where the eyes fail to disidentify points directly behind one
another. Where this seems to fall short, is that it does not tell us the positive con-
sequences of implementing this failure to disidentify in such a way as to model the
inconsistency. The eye seems to be in a positive default mode: identify those things
which one fails to disidentify. But what are the mathematical consequences of liter-
ally identifying those points? Which connected structure is it that it seems to be? And
what is it for it to nonetheless seem inconsistent?

It would be even more unsatisfactory to say merely that one is not peeking at
anything at all. How does that differ from shutting the eyes for example? And how
does it destroy the overwhelming illusion that one is peeking at something? The ob-
vious third possibility is that one is peeking at an object in a backdrop universe, which
is a heap.

As we have already seen, there are consistent and inconsistent versions of these
models. The inconsistent theories satisfy the condition that the ambiguity group maps
1-1 to the set of distances of the heap: ifx �= y holds inR

+, thenx �= y holds for dis-
tancesdij, and for ratios/cocycle componentsrij. There are two ways to interpret the
inconsistent models: epistemologically and ontologically (weak and strong paracon-
sistency, respectively). Epistemologically, what we are seeking to describe is a cogni-
tive phenomenon: how is it that itseems, when it seems inconsistent? This concerns
the representation of inconsistent data. It is well known that this can arise wherever
there are at least two sources of data, or updates from a single source. In the present
case, one might suppose that 4.1 �= 5 represents thenorm, what oneknows or believes
about the space one is in; whereas 4.1 = 5 represents thedefault consequences of be-
ing unable to tell between these distances.

Ontologically on the other hand, one is required to regard the theories represent-
ing such cognitive states as at least possible. On an intuitive level, the standard strong
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paraconsistentist argument is that one is required to take seriously the thought that
one’s inconsistent cognitive state might really be the way things are.It really might
be like that. This is a general consequence of good theoretical practice, in any case:
one should believe in the results of one’s careful scientific investigations, which might
contain persistent anomalies. Thus, if the world really were inconsistent in this way,
thenthis is how it would look if you took a peek at it. Of course, there are other things
which would look the same, but that is the way of it with eyes.Credo ut intelligam.

5 Conclusion There is one less than complete feature of this discussion. We have
discussed heaps, and heaps can provide a unit for the cohomology group. But I doubt
that heaps are the only inconsistent way to understand the triangle, or even the best
way. The inconsistency we perceive is more cyclical and less brute force than that.
This indicates a more subtle inconsistentizing operation is in the offing, which hope-
fully will be the topic of a further paper. But the general method of constructing in-
consistent models remains the same.

Penrose also briefly indicates how to extend his discussion to cohomology
groups associated with other 2-D figures representing ambiguous or inconsistent 3-D
structures. His approach is undoubtedly rich with different applications. It is to be
presumed that the inconsistent approach will lend itself to a similar range of applica-
tions and it is also proposed to study these in more detail in later papers.5

NOTES

1. Penrose calls this the tribar. Whereas there is an excellent case for some such short name
(fewer keystrokes), the present author cannot bring himself to divorce this word from its
common use among logicians, to refer to the sign for material equivalence≡.

2. Penrose and Penrose in [5] built a (consistent) 3-D structure which photographs as stairs
ascending in a closed loop, but needless to say it is not as it seems. For the photograph,
see Penrose [4].

3. This represents a slight departure from Penrose’s symbolism, which reserves ‘dij’ for
what we call ‘rij’.

4. The term “heap model” seems to have been first used by Meyer. On heap theory, see,
e.g., Priest [6], p. 227 or van Bendegem [7].

5. For further inconsistent structures in the general area of projective geometry, wherein an
inconsistent theory of homogeneous coordinates is proposed, see Mortensen [1], Chap-
ter 9. On closed set logic, see Chapter 11 or [2].
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