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TWISTED PSEUDO-DIFFERENTIAL OPERATOR ON TYPE I
LOCALLY COMPACT GROUPS

H. BUSTOS AND M. MĂNTOIU

Abstract. Let G be a locally compact group satisfying some

technical requirements and Ĝ its unitary dual. Using the the-
ory of twisted crossed product C∗-algebras, we develop a twisted

global quantization for symbols defined on G× Ĝ and taking op-
erator values. The emphasis is on the representation-theoretic

aspect. For nilpotent Lie groups, the connection is made with

a scalar quantization of the cotangent bundle T ∗(G) and with

a Quantum Mechanical theory of observables in the presence of
variable magnetic fields.

1. Introduction

The aim of this article is to construct twisted pseudo-differential operators

for symbols acting on G × Ĝ, where G is a second countable type I locally

compact group and Ĝ is the unitary dual, formed of equivalence classes of
irreducible representations of G. Part of our motivation comes from the math-
ematical objects involved in the quantization of a physical systems placed in a
magnetic field. In [16], a quantization for global operator-valued symbols was
proposed and this type of calculus will be our model; we will generalize it to
twisted pseudo-differential operators. The principal structures that arise from
our constructions are the twisted crossed products of C∗-algebras and twisted
Weyl systems. Under some assumptions, both structures involve algebras of
symbols and these algebras can be seen as a functional calculus associated to
non-commutative observables.

Received July 18, 2016; received in final form August 31, 2016.
The authors have been supported by the Núcleo Milenio de F́ısica Matemática
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The usual Wely calculus on the phase space Rn×R
n is connected with the

crossed product C∗-algebra A�LR
n associated to the action L of the group Rn

by left translations over some C∗-algebra A composed of uniformly continuous
functions on R

n which is invariant under translations. This approach has
physical interpretation, modeling quantum observables suitably built from
positions and momenta of a particle moving in R

n.
To include a variable magnetic field, one must introduce a “twisted” form of

the Weyl calculus [13], [14], [15], obtaining a quantization of observables which
is invariant under gauge transformations. This realization is based on twisting
both the pseudo-differential calculus and the crossed products algebras by a
2-cocycle defined on the group R

n with values in the unitary elements of the
algebra A. The 2-cocycle, that we denote by γ, is given by the imaginary
exponential of the magnetic flux through suitable triangles. The C∗-algebraic
approach permits to understand the magnetic pseudo-differential operators
through a representation in L2(Rn) of a twisted crossed product. Indeed,
it corresponds to the Schrödinger representation of the twisted dynamical
system associated to the algebra A �

γ
L R

n; this Schrödinger representation
incorporates magnetic translations. Composing this representation with a
partial Fourier transform, one obtains pseudo-differential operators on R

n ×
R̂n.

The Fourier transform plays a principal role in the construction of such
quantizations. Harmonic Analysis tools can be used to generalize the con-

struction, for Abelian groups for instance [14], where the phase space Rn× R̂n

is replaced by the product of an Abelian group G with its unitary Pontryagin

dual Ĝ, which is also an Abelian locally compact group.
The present article generalizes the twisted pseudo-differential operators

from the Abelian case [14] to non-commutative phase space. The main ob-

stacle is the fact that, when G is not Abelian, the unitary dual Ĝ is no longer
a group. It still has a a natural (but complicated) measure theory with re-
spect to which a non-commutative version of Plancherel theorem holds. The
cohomological twisting will be shown to be possible in this context.

On the other hand, we also extend the highly non-commutative formalism
introduced in [16] to the presence of a group 2-cocycle. The constructions in
[16] have been predated by the intensive study of pseudo-differential operators
on particular types of non-commutative Lie groups, as compact or nilpotent.
We cite the articles [5], [6], [20], [21] and the books [7], [19]; they contain
many other relevant references.

The present setting of second countable unimodular type I groups is quite
general (besides compact and nilpotent, it contains the Abelian, exponentially
solvable or semisimple groups, motion groups and certain discrete groups). In
particular, some of them do not possess a Lie structure. Hopefully, in some
subsequent publication, we will restrict to smaller classes of groups allowing
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a deeper analytical investigation, involving more realistic spaces of functions.
For G=Rn and for magnetic-type cocycles this has been undertaken in [11],
[12] and spectral results for magnetic Hamiltonians are contained in [14].

Let us describe the content. We start exposing briefly the C∗-algebraic
formalism of twisted crossed products and its representation theory. The
standard version can be found in [1], [17]. Actually we present a modified
version, containing a parameter τ connected to ordering issues. Then we
recall some basics things about the cohomology of groups G with coefficients
in an Abelian Polish group U. The most interesting case is U= C(G,T), the
group of continuous functions on the locally compact group G with values
in the torus; it is related with the unitary multipliers of the C∗-algebras we
deal with. We describe 2-cocycles and their pseudo-trivializations which are
related, in the case of R

n, with vector potentials corresponding to a given
magnetic field.

We go on with concrete realizations of the crossed products. We consider
C∗-algebras composed of functions which are bounded and uniformly contin-
uous over G and invariant under translations. Compatible data are defined
as couples (A, γ) including a C∗-algebra A and a 2-cocycle γ of the group G
with values in the unitary of the multipliers of A such that the triple (A,G, γ)
is a twisted dynamical system. A map τ : G→ G is assumed given, leading to
the so called τ -quantizations. For τ ≡ e, one obtains the analog of the Kohn–
Nirenberg quantization and, for simplicity, the reader could only consider this
case. Symmetric Weyl forms are available on certain groups and for certain
type of cocycles. We also study the Schrödinger representations of the twisted
dynamical system, related to the pseudo-trivializations of the cocycle.

In the third section, we introduce the twisted pseudo-differential calcu-
lus. We begin with notions and results about the Fourier transform on type
I groups, referring mainly to [4]. With the Schrödinger representation in-
troduced previously and a partial Fourier transform, we define the twisted
pseudo-differential operators and examine their integral kernels. By suitable
particularizations, one gets multiplication as well as twisted convolution op-
erators. The formalism is based on a Fourier–Wigner transform and a twisted

Weyl system, involving unitary operators indexed by the points (x, ξ) ∈ G× Ĝ
but acting in different Hilbert spaces L2(G)⊗Hξ connected to the irreducible
representations. They are built out of two simpler non-commuting families
of unitary operators: one of them is associated to “position”, while the other
generalizes the magnetic translations. For Rn these families correspond to the
unitary groups defined by position and momentum operators. We finish this
section discussing products formulas and the existence of symmetric (Weyl)
twisted quantization, for which the symbol of the adjoint operator is very
simple.

In the final section, we focus on the case of connected simply connected
nilpotent Lie groups. Using the Lie algebra and properties of the exponential
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map, we show that the quantization can also be realized by scalar symbols
defined globally on the cotangent bundle T (G). We also study cocycles which
are defined by 2-forms on the Lie algebra, seen as magnetic fields on the Lie
group. Various previous results showing the independence of the calculus on
the chosen pseudo-trivialization of the 2-cocycle can be seen here as a gauge
invariance principle.

2. The twisted crossed product formalism

Let us fix some of our notations. For any (complex, separable) Hilbert
space H one denotes by B(H) the C∗-algebra of all linear bounded operators
in H, by B2(H) the ∗-ideal of all Hilbert–Schmidt operators and by K(H) the
closed bi-sided ∗-ideal of all the compact operators. The unitary operators
form a group U(H). Let G be a locally compact second countable unimod-
ular group with unit e, fixed left Haar measure m and associated Lebesgue
spaces Lp(G) ≡ Lp(G;m). For a C∗-algebra A, we denote by Aut(A) the
group of all its automorphisms with the strong topology. We also denote by
M(A) the multiplier algebra and by U[M(A)] ≡ U(A) its group of unitary
elements.

2.1. τ -twisted crossed products. For the general theory of twisted C∗-
dynamical systems and twisted crossed product algebras, we refer to [1], [17],
[18]. The untwisted case (γ(·, ·) = 1) is studied deeply in [23]. We will need
a modification of the usual definitions, to accommodate later τ -quantizations
related to ordering issues; τ : G→ G will always be a continuous map, which
does not need to be a group morphism or to commute with inversion. We shall
only consider Abelian C∗-algebras.

Definition 2.1. We call twisted C∗-dynamical system a quadruple
(A,a, γ,G) where a : G → Aut(A) is a strongly continuous action of G in A
and γ : G × G → U(A) is a strictly continuous map satisfying for x ∈ G the
normalization condition γ(x, e) = 1A = γ(e, x) and for every x, y, z ∈ G the
2-cocycle identity

(2.1) γ(x, y)γ(xy, z) = ax
[
γ(y, z)

]
γ(x, yz).

In the next definition, the case τ(·) = e is the one appearing in the lit-
erature; the untwisted case including the parameter τ can be found in [16,
Sestion 7.1]. The reader only interested in the Kohn–Nirenberg version of
pseudo-differential operators can stick to this situation; the formulas will look
simpler.

Definition 2.2. (i) To the twisted C∗-dynamical system (A,a, γ,G) we
associate the Banach ∗-algebra L1(G;A) (the space of Bochner integrable
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functions G→A with the obvious norm) with operations(
Φ �τγ Ψ

)
(x) :=

∫
G

aτ(x)−1τ(y)

[
Φ(y)

]
aτ(x)−1yτ(y−1x)

[
Ψ

(
y−1x

)]
× aτ(x)−1

[
γ
(
y, y−1x

)]
dm(y),

Φ�τ
γ (x) := aτ(x)−1

[
γ
(
x,x−1

)]∗
aτ(x)−1xτ(x−1)

[
Φ

(
x−1

)∗]
.

(ii) The crossed product C∗-algebra A �
τ
a,γ G := Env[L1(G;A)] is the en-

veloping C∗-algebra of this Banach ∗-algebra, i.e., its completion in the uni-
versal norm ‖Φ‖univ := supΠ ‖Π(Φ)‖B(H), where the supremum is taken over

all the ∗-representations Π : L1(G,A)→ B(H).

The Banach space L1(G;A) can be identified with the projective tensor
product A⊗ L1(G), and Cc(G;A), the space of all A-valued continuous com-
pactly supported function on G, is a dense ∗-subalgebra.

Definition 2.3. Let (A,a, γ,G) be a twisted C∗-dynamical system.

(i) A covariant representation is a triple (ρ,T,H) where H is a Hilbert
space, ρ :A→ B(H) is a ∗-representation, T : G→U(H) is strongly continuous
and satisfies

T (x)T (y) = ρ
[
γ(x, y)

]
T (xy), ∀x, y ∈ G,

T (x)ρ(a)T (x)∗ = ρ
[
ax(a)

]
, ∀a ∈A, x ∈ G.

(ii) The integrated form of the covariant representation (ρ,T,H) is the
unique continuous extension ρ�τ T :A�

τ
a,γ G→ B(H) of the map defined on

L1(G;A) by (
ρ�τ T

)
(Φ) :=

∫
G

ρ
[
aτ(x)

(
Φ(x)

)]
T (x)dm(x).

The covariant representations are in 1–1 correspondence with representa-
tions of the crossed product, one direction being given by the formula above
for ρ�τ T .

Remark 2.4. For different maps τ and τ ′ the algebras A�
τ ′

a,γ G and A�
τ
a,γ

G are isomorphic. The isomorphism at the level of L1(G,A) is given by[
Θτ,τ ′(Φ)

]
(x) := aτ(x)−1τ ′(x)

[
Φ(x)

]
and it satisfies ρ �

τ ′
T = (ρ �

τ T ) ◦ Θτ,τ ′ for any covariant representation
(ρ,T,H).

2.2. Group cohomology. We recall some definitions in group cohomology.
Let G be a locally compact group and U a Polish (metrizable separable and
complete) Abelian group. We suppose that there exists a continuous action a

of G by automorphism of U , thus U is a right G-module.
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For n ∈ N, the family of all continuous functions Gn → U is denoted by
Cn(G;U). It is an Abelian group with the pointwise multiplication. The
elements of Cn(G;U) are called n-cochains. Let us define the n-coboundary
map δn :Cn(G;U)→Cn+1(G;U) by(

δnν
)
(x1, . . . , xn+1)

:= ax1

[
ν(x2, . . . , xn+1)

]
·

n∏
j=1

ν(x1, . . . , xjxj+1, . . . , xn+1)
(−1)jν(x1, . . . , xn)

(−1)n+1

.

A straightforward computation shows that δn is a group morphism and one
has δn+1 ◦ δn = 0.

Definition 2.5. (i) Zn(G;U) := ker(δn) is the group of n-cocycles.
(ii) Bn(G;U) := im(δn−1) is called the group of n-coboundaries.
(iii) The quotient Hn(G;U) := Zn(G;U)/Bn(G;U) is called the nth coho-

mology group of G with coefficients in U and its elements are called classes of
cohomology.

We review the cases n= 0,1,2. For n= 0 one has C0(G;U) := U and[
δ0(a)

]
(x) = ax(a)a

−1, ∀a ∈ U , x ∈ G.

Thus Z0(G;U) = UG, the set of all fixed points of a. By convention B0(G;U) =
{1}.

The map δ1 :C1(G;U)→C2(G;U) corresponds to[
δ1(β)

]
(x, y) = ax

[
β(y)

]
β(x)β(xy)−1,

thus a 1-cochain is a 1-cocycle satisfying β(xy) = ax[β(y)]β(x) for any x, y ∈ G.
Then B1(G;U) consists of elements of the form ax(a)a

−1 for a ∈ U .
For n= 2 the coboundary map is[

δ2(γ)
]
(x, y, z) = ax

[
γ(y, z)

]
γ(xy, z)−1γ(x, yz)γ(x, y)−1.

Thus, the 2-cocycles are exactly the 2-cochains which satisfy the identity (2.1)
and B1(G;U) is the set of elements of the form ax[β(y)]β(x)β(xy)

−1 for some
1-cochain β.

Remark 2.6. For two C∗-dynamical systems (A,a, γ,G) and (A,a, γ′,G),
one can reinterpret γ, γ′ as elements of Z2(G;U(A)). If these cocycles are
cohomologous, i.e., γ′ = δ1(β)γ for some 1-cochain β, the C∗ -algebras A�

τ
a,γ

G and A�
τ
a,γ′ G are isomorphic. To show this, by Remark 2.4, is enough to

consider the case τ ≡ e; then one can define the isomorphism on L1(G,A) by[
Υβ(Φ)

]
(x) = Φ(x)β(x).



TWISTED PSEUDO-DIFFERENTIAL OPERATOR 371

Special attention deserves the case U = C(G;T). This group, with the
topology of uniform convergence on compact sets, is the unitary part of the
multiplier algebra of the C∗-algebra C0(G) and will play an important role in
the next subsection. The action consists of left translations by elements of G
in C(G,T).

Proposition 2.7. For n≥ 1, Hn(G;C(G,T)) = {1}.

Proof. Any νn ∈ Zn(G;C(G,T)) satisfies the identity

ax1

[
νn(x2, . . . , xn+1)

]
·

n∏
j=1

νn(x1, . . . , xjxj+1, . . . , xn+1)
(−1)jνn(x1, . . . , xn)

(−1)n+1

= 1

for all x1, . . . , xn+1 ∈ G, which can be transformed into

ax1

[
νn(x2, . . . , xn+1)

]
= νn(x1x2, . . . , xn+1)

·
n−1∏
j=1

νn(x1, . . . , xjxj+1, . . . , xn)
(−1)jνn(x1, . . . , xn)

(−1)n .

Changing x1 into x−1
1 and evaluating at x = e in both sides of the equality

one gets[
νn(x2, . . . , xn+1)

]
(x1) =

[
νn

(
x−1
1 x2, . . . , xn+1

)]
(e)

·
n−1∏
j=1

[
νn

(
x−1
1 , . . . , xj , xj+1, . . . , xn

)(−1)j ]
(e)

[
νn

(
x−1
1 , . . . , xn

)(−1)n]
(e),

since a consists of left translations. The previous equation means that νn =
δn−1(νn−1), where

(2.2)
[
νn−1(z1, . . . , zn−1)

]
(x) =

[
νn

(
x−1, z1, . . . , zn−1

)]
(e).

This shows that any cocycle is a coboundary algebraically.
We also need to prove that νn−1 ∈ Cn−1(G;C(G;T)). This follows easily

from the identification between Cn−1(G;C(G;T)) and C(G×Gn−1;T) and the
explicit definition of the map νn−1. �

The situation described in the next definition will be relevant below.

Definition 2.8. Let U be an Abelian Polish G-module with action a. An
element γ ∈ Z2(G;U) is said to be pseudo-trivializable if there is a G-module
U ′ with action a′ such that U is a subgroup of U ′, a′x|U = ax for every x ∈ G
and γ ∈B2(G;U ′).
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2.3. Concrete twisted crossed product C∗-algebras. Let G a locally
compact unimodular group. By Aut(G) we denote the group of all its (continu-
ous) automorphisms. Let us denote the left and right actions l, r : G→ Aut(G)
of G on itself by

(2.3) ly(x) := y−1x, ry(x) := xy.

They commute: lyrz= rz ly for every y, z ∈ G, and are transitive. In addi-
tion, they induce actions on the C∗-algebra Cb(G) of all bounded continuous
complex functions on G. To get pointwise continuous actions we restrict,
respectively, to bounded left or right uniformly continuous functions:

L : G→ Aut
[
LUC(G)

]
,

[
Ly(c)

]
(x) := (c ◦ ly)(x) = c

(
y−1x

)
,(2.4)

R : G→ Aut
[
RUC(G)

]
,

[
Ry(c)

]
(x) := (c ◦ ry)(x) = c(xy).(2.5)

A C∗-subalgebra A of LUC(G) is called left-invariant if LyA⊂A for every
y ∈ G; right-invariance is defined analogously for C∗-subalgebras of RUC(G).
Then C0(G), the C∗-algebra of continuous complex functions which decay
at infinity (arbitrarily small outside arbitrarily large compact subsets), is an
invariant ideal, both to the left and to the right. We also denote by Cc(G)
the *-algebra of complex continuous compactly supported functions.

Definition 2.9. We call basic data a pair (A, γ), where A is a left-invariant
C∗-subalgebra of LUC(G), γ : G× G× G→ T is a continuous map satisfying
for every x, q ∈ G the normalization condition

γ(q;x, e) = 1 = γ(q; e, x)

and for every x, y, z, q ∈ G the 2-cocycle identity

(2.6) γ(q;x, y)γ(q;xy, z) = γ
(
x−1q;y, z

)
γ(q;x, yz).

Note that C(G;T) is the unitary group of the C∗-algebra LUC(G). Thus,
one can regard γ as a function

(2.7) γ : G×G→C(G;T)≡U
[
LUC(G)

]
, γ(q;x, y) :=

[
γ(x, y)

]
(q).

We say that (A, γ) is a compatible basic data if γ(x, y) ∈U(A),∀x, y ∈ G. Then
(2.6) can be rewritten as δ2(γ) = 1 and (A,L, γ,G) will be called a concrete
twisted C∗-dynamical system.

For A-valued functions Φ defined on G and for elements x, q of the group,
we are going to use notations as [Φ(x)](q) = Φ(q;x), interpreting Φ as a func-
tion of two variables. We rewrite the general formulas defining the τ -twisted
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crossed product in a more concrete form:

‖Φ‖(1) =
∫
G

ess sup
q∈G

∣∣Φ(q;x)∣∣dm(x),

(
Φ �τγ Ψ

)
(q;x) =

∫
G

Φ
(
τ(y)−1τ(x)q;y

)
×Ψ

(
τ
(
y−1x

)−1
y−1τ(x)q;y−1x

)
γ
(
τ(x)q;y, y−1x

)
dm(y),

Φ�τ
γ (q;x) = γ

(
τ(x)q;x,x−1

)
Φ

(
τ
(
x−1

)−1
x−1τ(x)q;x−1

)
.

The space L1(G,A) is a Banach ∗-algebra; its enveloping C∗-algebra A�τ
L,γ G

will be denoted by Cτ (A, γ).
In our case, A is a left-invariant C∗-algebra of functions on G and this has

remarkable consequences.

Proposition 2.10. Let A be a left invariant C∗-algebra of left uniformly
continuous functions and U(A) the Abelian Polish G-module formed of all the
unitary elements of the multiplier C∗-algebra of A.

(i) Any 2-cocyle γ : G×G→U(A) is pseudo-trivializable.
(ii) If β1, β2 : G→ C(G;T) are two pseudo-trivializations of γ, there exists

a unique a ∈C(G;T) such that β2 = δ0(a)β1.

Proof. (i) It is a consequence of the case n = 2 of Proposition 2.7, using
the larger G-module U ′ = C(G;T), also with the left translation action of G.
Note that a pseudo-trivialization β can be defined by

(2.8) βγ : G×G→ T, βγ(q;x) := γ
(
e; q−1, x

)
.

(ii) Working with U ′ = C(G;T), one has δ1(β1) = δ1(β2) if and only if
δ1(β2β

−1
1 ) = 1 (pointwise operations). Thus, it is enough to show that δ1(β) =

1 if and only if β = δ0(a) for some a ∈C(G;T).
The “if” part is a direct verification relying on the definitions of δ0 and δ1.

The “only if” part is a direct consequence of Proposition 2.7: use (2.2) for
the case n= 1 to obtain

a(q) := β
(
e; q−1

)
, q ∈ G. �

Thus for a compatible basic data (A, γ), the cocycle is pseudo-trivial. How-
ever, in most cases βγ is not U(A)-valued, and in certain situations it is es-
sential to keep track of the A-behavior.

Let β be a pseudo-trivialization of the 2-cocycle γ, that is, β is a continuous
map from G×G to T satisfying

(2.9) γ(q;y, z) = β(q;y)β
(
y−1q; z

)
β(q;yz)−1, ∀q, y, z ∈ G.

Then we have a natural covariant representation (ρ,Tβ ,H), traditionally called
the Schrödinger representation defined by β, given in H := L2(G) by[

Tβ(y)u
]
(q) := β(q;y)u

(
y−1q

)
, ρ(a)u := au.
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Applying Definition 2.3, the integrated form Schτβ := ρ�τ Tβ is given for Φ ∈
L1(G;A), u ∈ L2(G) by[

Schτβ(Φ)u
]
(q)(2.10)

=

∫
G

β(q; z)Φ
(
τ(z)−1q; z

)
u
(
z−1q

)
dm(z)

=

∫
G

β
(
q; qy−1

)
Φ

(
τ
(
qy−1

)−1
q; qy−1

)
u(y)dm(y).

It is convenient to rewrite the previous formula as an integral operator. To
do this, we define [

Int(M)u
]
(x) :=

∫
G

M(x, y)u(y)dm(y)

and the maps (changes of variables) c, vτ : G×G→ G×G given by

(2.11) c(q, x) :=
(
q, qx−1

)
, vτ (q, x) :=

(
τ(x)−1q, x

)
.

With this one can rewrite

(2.12) Schτβ = Int ◦C ◦Mβ ◦ Vτ ,

where Mβ is the operation of multiplication with β, considering β as a map
acting in two variables. The operators C,Vτ are compositions with the maps
c and vτ , respectively. For different τ ’s one has

(2.13) Schτ
′

β = Schτβ ◦
(
Vτ

)−1 ◦ Vτ ′
.

Remark 2.11. If τ(·) = e, the operator Vτ is the identity. Also, if
β ≡ 1, (2.12) can be rewritten as Schτβ = Int ◦ C ◦ Vτ . The map C ◦ Vτ

can be seen in L2(G × G) as the composition with the change of variable
(q, x) �→ (τ(x)−1q, qx−1). Thus, C ◦ Vτ can be identified with the operator
CVτ of [16].

The following proposition can be seen as a sort of covariance under the
pseudo-trivialization choice.

Proposition 2.12. Let (A, γ) be a compatible basic data and β,β′ : G→
C(G;T) two pseudo-trivializations of γ, connected as in Proposition 2.10 by
β′ = δ0(a)β. Define the unitary operator Ma : L

2(G)→ L2(G) of multiplication
by a. For every Φ ∈ Cτ (A, γ), one has

(2.14) Schτβ′(Φ) =M∗
a Sch

τ
β(Φ)Ma.

Proof. Since Schτβ = ρ�τ Tβ , we first compute for u ∈ L2(G) and y ∈ G[
Tβ′(y)u

]
(q) =

[
δ0(a)β

]
(q;y)u

(
y−1q

)
= a(q)−1β(q;y)a

(
y−1q

)
u
(
y−1q

)
=

[
M∗

aTβ(y)Mau
]
(q).
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Clearly, Ma commutes with ρ(b) for every b ∈A. Then, by the explicit form
of Schτβ(Φ), (2.14) holds for Φ ∈ L1(G,A). By the universal property of the
enveloping procedure, it also holds for Φ ∈ Cτ (A, γ). �

3. Twisted pseudodifferential operators

3.1. The non-commutative Fourier transform. To switch to the set-
ting of pseudo-differential operators, we need more assumptions on the group
G, allowing a manageable Fourier transformation. We refer to [4], [9] for a
systematic presentation of the Harmonic Analysis concepts briefly outlined
below.

We set Ĝ := Irrep(G)/∼= for the unitary dual of G, composed of unitary
equivalence classes of strongly continuous irreducible Hilbert space represen-

tations π : G→ U(Hπ). There is a standard Borel structure on Ĝ, called the

Mackey Borel structure [4, Section 18.5]. The unitary dual Ĝ is also a separa-
ble locally quasi-compact topological space [4, Section 18.1]. If G is Abelian,

Ĝ is the Pontryagin dual group; if not, Ĝ is not a group. We denote by C∗(G)
the full (universal) C∗-algebra of G and by C∗

red(G)⊂ B[L2(G)] its reduced C∗-
algebra. Any representation π of G generates canonically a non-degenerate
representation Π of C∗(G).

Definition 3.1. The locally compact group G is type I if for every irre-
ducible representation π one has K(Hπ)⊂Π[C∗(G)]. It will be called admis-
sible if it is second countable, type I and unimodular.

For the concept of type I group and for example, we refer to [4], [9], [10] or
[16, Section 2]. The main consequence of this property is the existence of a

measure on the unitary dual Ĝ for which a Plancherel theorem holds. This is
the Plancherel measure associated to m, denoted by m̂ [4, Section 18.8].

It is known that there is a m̂-measurable field {Hξ | ξ ∈ Ĝ} of Hilbert spaces

and a measurable section Ĝ 
 ξ �→ πξ ∈ Irrep(G) such that each πξ : G→ B(Hξ)
is an irreducible representation belonging to the class ξ. By a systematic abuse
of notation, instead of πξ we will write ξ, identifying irreducible representa-

tions (corresponding to the measurable choice) with elements of Ĝ.
The Fourier transform [4, Section 18.2] of u ∈ L1(G) is defined as

(Fu)(ξ)≡ û(ξ) :=

∫
G

u(x)ξ(x)∗ dm(x) ∈ B(Hξ).

It defines an injective linear contraction F : L1(G)→ B(Ĝ), where B(Ĝ) :=∫ ⊕
Ĝ

B(Hξ)dm̂(ξ) is a direct integral von Neumann algebra. One also introduces
the direct integral Hilbert space

B2(Ĝ) :=

∫ ⊕

Ĝ

B
2(Hξ)dm̂(ξ)∼=

∫ ⊕

Ĝ

Hξ ⊗Hξ dm̂(ξ),
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with the scalar product

〈φ1, φ2〉B2(Ĝ) :=

∫
Ĝ

〈
φ1(ξ), φ2(ξ)

〉
B2(Hξ)

dm̂(ξ)

=

∫
Ĝ

Trξ
[
φ1(ξ)φ2(ξ)

∗]dm̂(ξ),

where Trξ is the usual trace in B(Hξ). A generalized form of Plancherel’s
Theorem [4], [8], [10] states that the Fourier transform F extends from

L1(G) ∩ L2(G) to a unitary isomorphism F : L2(G) → B2(Ĝ). The explicit
formula of the inverse of the Fourier transform is given by

(3.1)
(
F−1φ

)
(x) =

∫
Ĝ

Trξ
[
ξ(x)φ1(ξ)

]
dm̂(ξ)

for φ ∈ B2(Ĝ) ∩ B1(Ĝ), where B1(Ĝ) denotes the space of sections φ with∫
Ĝ
Trξ[|φ(ξ)|]dm̂(ξ)<∞.

Below we will also need the notations Γ := G× Ĝ and Γ̂ := Ĝ×G (in general
they are not dual to each other). We also introduce the Hilbert space tensor
products

(3.2) B2(Γ) := L2(G)⊗B2(Ĝ), B2(Γ̂) :=B2(Ĝ)⊗L2(G).

The notations are also justified by the fact that these spaces can be written

as direct integrals in an obvious way, over Γ or Γ̂, respectively.

3.2. The twisted τ -quantization. Assuming that G is an admissible group,
we reconsider a compatible data (A, γ) with a pseudo-trivialization β and the
associated Schrödinger representation Schτβ . We already mentioned that the

space L1(G;A) can be identified with the completed projective tensor product
A⊗L1(G). Then, by [22, Example 43.2], one gets a linear continuous injection

idA ⊗ F :A⊗ L1(G)→A⊗ B(Ĝ)

and endows the image space (idA⊗F )[A⊗ L1(G)] with the Banach ∗-algebra
structure transported from L1(G;A)∼=A⊗ L1(G) through idA ⊗ F . Explic-
itly one define on the space (idA ⊗ F )[A⊗ L1(G)]

(3.3) f #τ
γ g := (idA⊗F )

{(
[idA ⊗F ]−1f

)
�τγ

(
[idA ⊗ F ]−1g

)}
,

as well as the involution

(3.4) f#τ
γ := [idA⊗F ]

[(
[idA⊗F ]−1f

)�τ
γ
]
.

Then the space (idA ⊗ F )[A⊗ L1(G)] is a Banach *-algebra with the norm

‖f‖# :=
∥∥(idA ⊗ F )−1f

∥∥
Cτ (A,γ)

.
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We denote by Bτ (A, γ) the enveloping C∗-algebra of the Banach ∗-algebra
(idA ⊗ F )[A⊗ L1(G)]. Recall that we have denoted by Cτ (A, γ) the envelop-
ing C∗-algebra A �

τ
L,γ G of the Banach ∗-algebra L1(G;A). By the univer-

sal property of the enveloping functor, idA ⊗ F extends to an isomorphism
FA : Cτ (A, γ)→Bτ (A, γ).

Composing the representation Schτβ with the inverse partial Fourier trans-
form, we get a pseudo-differential realisation:

(3.5) Opτβ := Schτβ ◦ (id⊗F )−1 = Int ◦C ◦Mβ ◦ Vτ ◦
(
id⊗F−1

)
.

By extension Opτβ := Schτβ ◦ F
−1
A defines a ∗-representation of B

γ
A in the

Hilbert space L2(G). Explicitly

(3.6)

[
Opτβ(f)u

]
(q)

=

∫
G

∫
Ĝ

β
(
q; qy−1

)
Trξ

[
ξ
(
qy−1

)
f
(
τ
(
qy−1

)−1
q, ξ

)]
u(y)dm(y)dm̂(ξ).

The formula (3.6) is rigorously correct if, for instance, the symbol f belongs
to (id ⊗ F )[Cc(G × G)], since the explicit form (3.1) of the inverse Fourier

transform holds on F [Cc(G)]⊂ B1(Ĝ)∩B2(Ĝ). Such type of operators appear
in [16] only for the untwisted case β(·; ·) = 1.

The following consequence of the Proposition 2.12 describes the dependence
on the pseudo-trivialization.

Proposition 3.2. Let (A, γ) be a compatible basic data and β,β′ : G →
C(G;T) two pseudo-trivializations of γ such that β′ = δ0(a)β (cf. Proposi-
tion 2.10(ii)). If the group G is admissible, for each f ∈B

γ
A one has

Opτβ′(f) =M∗
a Op

τ
β(f)Ma,

where Ma is the operator multiplication by a (as in Proposition 2.12).

Remark 3.3. By Remark 2.4 and the enveloping procedure, one gets iso-

morphisms μτ,τ ′

β : Bτ (A, γ) → Bτ ′
(A, γ) for different maps τ and τ ′, which

satisfy Opτβ =Opτβ ◦ μτ,τ ′

β .

Remark 3.4. The involution and multiplication in the algebra Bτ (A, γ)
are defined to satisfy the relations

Opτβ
(
f #τ

γ g
)
=Opτβ(f)Op

τ
β(g) and Opτβ

(
f#τ

γ
)
=Opτβ(f)

∗.

3.3. Twisted convolution operators. Consider now a compatible basic
data (A, γ), its τ -Schrödinger representation Schτβ associated to a pseudo-
trivialization β of γ and its extension to the multiplier algebra M[Cτ (A, γ)].

For a ∈M(A) and w ∈ L1(G) we set a⊗w ∈ L1[G,M(A)], where

(a⊗w)(q;x) := a(q)w(x).
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If we denote by 1A the unit in A, that is, 1A(q) = 1 for all q ∈ G, one can check
[2] that M[Cτ (A, γ)] contains elements of the form 1A ⊗w for all w ∈ L1(G),
thus one can embed L1(G) in M[Cτ (A, γ)].

Setting Schβ = Schτβ if τ ≡ e, the twisted convolution operator Convβ :

L1(G)→ B[L2(G)] is[
Convβ(w)u

]
(q) :=

[
Schβ(1A ⊗w)u

]
(q)(3.7)

=

∫
G

β(q; z)w(z)u
(
z−1q

)
dm(z).

They are no longer invariant operators. We refer to Remark 3.12 for another
point of view. For v,w ∈ L1(G), one has

Convβ(v)Convβ(w) = Schβ
[
(1A ⊗ v)

]
Schβ

[
(1A ⊗w)

]
= Schβ

[
(1A ⊗ v) �eγ (1A ⊗w)

]
.

If γ is trivial the choice β = 1 is legitimate and Conv(w) is nothing but the
left convolution by w and one has Conv(v)Conv(w) = Conv(v ∗ w) [16]. For
general γ, a straightforward computation leads to[

Conv(v)Conv(w)u
]
(q)

=

∫
G

β(q;x)

[∫
G

γ
(
q;xy−1, y

)
v
(
xy−1

)
w(y)dm(y)

]
u
(
x−1q

)
dm(x)

and this no longer a twisted convolution operator, since the inner integral also
depends on q.

We now want to compute Opτβ(a ⊗ ŵ), where a is a bounded uniformly

continuous function and ŵ is the Fourier transform of a function in L1(G).
For general τ the formula is too complicated. But considering the case of a
constant map τ(·)≡ x0 for some x0 ∈ G, one obtains([

Opx0

β (a⊗ ŵ)
]
u
)
(q) = a

(
x−1
0 q

)∫
G

β
(
q; qy−1

)(
F−1ŵ

)(
qy−1

)
u(y)dm(y)

= a
(
x−1
0 q

)∫
G

β(q; z)w(z)u
(
z−1q

)
dm(z),

which can be rewritten as

(3.8) Opx0

β (a⊗ ŵ) =MLx0 (a)
◦Convβ(w),

where MLx0 (a)
is the multiplication operator by the function L(x0)a. If x0 = e,

in the quantization Opβ ≡ Opeβ the multiplication operators stay at the left
and twisted convolutions to the right. Analogously, for τ = id one gets([

Opidβ (a⊗ ŵ)
]
u
)
(q) =

∫
G

β
(
q; qy−1

)
w

(
qy−1

)
a(y)u(y)dm(y),

and thus, with an opposite ordering,

Opidβ (a⊗ ŵ) = Convβ(w) ◦Ma.
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3.4. From Opτβ to a twisted Weyl system. In this section, we will study

the quantization Opτβ for symbols f ∈ L2(G) ⊗ B2(Ĝ), recovering it by an
integration procedure from a twisted Weyl system, a generalization of phase-
space translations from the case G = R

n. We will keep the notations of the
previous sections and fix the algebra A = C0(G) for which it is known that
Cτ [C0(G), γ] =C0(G)�

τ
L,γ G is isomorphic to the compact operators on L2(G):

one has for any pseudo-trivialization β of the 2-cocycle γ

L2(G)⊗B2(Ĝ)∼= L2(G)⊗L2(G)

∼= B
2
[
L2(G)

]
⊂K

[
L2(G)

]
=Opτβ

[
Bτ

(
C0(G), γ

)]
.

We start examining the operator Opτβ(f) for f ∈ (id⊗F )[Cc(G×G)], given
by

(3.9) Opτβ(f) =
[
Int ◦Kerτβ

]
(f),

where, by (3.5), the integral kernel is [C ◦Mβ ◦ Vτ ◦ (id⊗F−1)](f) and given
formally by[

Kerτβ(f)
]
(x, y) =

∫
Ĝ

β
(
x;xy−1

)
Trξ

[
ξ
(
xy−1

)
f
(
τ
(
xy−1

)−1
x, ξ

)]
dm̂(ξ).

It is clear that the operators Mβ , C, Vτ are unitary in L2(G × G). Then
one has Kerτβ(f) ∈ L2(G× G) and thus Opτβ is a Hilbert–Schmidt operator in

L2(G). Also applying the non-commutative Plancherel theorem, one obtains
the unitary map

L2(G)⊗B2(Ĝ) 
 f �→Opτβ(f) ∈ B
2
[
L2(G)

]
.

Definition 3.5. For u, v ∈ L2(G), we call Vτ,β
u,v the unique element of

L2(G) ⊗ B2(Ĝ) wich corresponds via Opτβ to the rank one operator w �→
Λu,v(w) := 〈w,u〉v.

Proposition 3.6. For all u, v ∈ L2(G) one has

Vτ,β
u,v =

[
(id⊗F ) ◦

(
Vτ

)−1 ◦Mβ−1 ◦ C−1
]
(v⊗ u).

Proof. For f ∈ L2(G)⊗B2(Ĝ) we compute using the fact that Opτβ is uni-
tary〈

f,Vτ,β
u,v

〉
L2(G)⊗B2(Ĝ)

=
〈
Opτβ(f),Λu,v(w)

〉
B2[L2(G)]

= Tr
[
Opτβ(f)Λ

∗
u,v

]
= Tr[Λv,Opτβ(f)u

]

=
〈
Opτβ(f)u, v

〉
L2(G)

=
〈[(

Int ◦Kerτβ
)
(f)

]
u, v

〉
L2(G)
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=

∫
G

(∫
G

([
C ◦Mβ ◦ Vτ ◦

(
id⊗F−1

)]
f
)
(x, y)u(y)dm(y)

)
v(x)dm(x)

=

∫
G

∫
G

([
C ◦Mβ ◦ Vτ ◦

(
id⊗F−1

)]
f
)
(x, y)(v⊗ u)(x, y)dm(y)dm(x)

=
〈[
C ◦Mβ ◦ Vτ ◦

(
id⊗F−1

)]
f, v⊗ u

〉
L2(G)⊗L2(G)

=
〈[(

id⊗F−1
)]
f,

[(
Vτ

)−1 ◦Mβ−1 ◦C−1
]
(v⊗ u)

〉
L2(G)⊗L2(G)

=
〈
f,

[
(id⊗F ) ◦

(
Vτ

)−1 ◦Mβ−1 ◦ C−1
]
(v⊗ u)

〉
L2(G)⊗B2(Ĝ)

,

finishing the proof. �

One can write formally

(3.10) Vτ,β
u,v (x, ξ) =

∫
G

β
(
τ(y)x;y

)
v
(
τ(y)x

)
u
(
y−1τ(y)x

)
ξ(y)∗ dm(y).

This formula hods, for example, if u, v ∈Cc(G).

Proposition 3.7. The transformation f �→ Opτβ(f) maps unitarily the

space L2(G) ⊗ B2(Ĝ) in the Hilbert–Schmidt class on L2(G). Moreover,
Opτβ(f) is the unique bounded linear operator in L2(G) associated by the rela-
tion opτβ [f ](u, v) = 〈Opτβ(f)u, v〉L2(G) to the bounded sesquilinear form

(3.11) opτβ [f ] : L
2(G)×L2(G)→C, opτβ [f ](u, v) :=

〈
f,Vτ,β

u,v

〉
B2(Γ)

.

Proof. This is just a summary of results already obtained above. The
identity 〈

Opτβ(f)u, v
〉
L2(G)

=
〈
f,Vτ,β

u,v

〉
B2(Γ)

has been obtained during the proof of Proposition 3.6. �

We also introduce

(3.12) Wτ,β
u,v :=

(
F ⊗F−1

)
Vτ,β
u,v =

[
(F ⊗ id) ◦

(
Vτ

)−1 ◦Mβ−1 ◦ C−1
]
(v⊗ u),

for which, by the Plancherel theorem and using the notation f̂ := (F ⊗F−1)f ,
one has the identity〈

Opτβ(f)u, v
〉
L2(G)

=
〈
f̂ ,Wτ,β

u,v

〉
B2(Ĝ)⊗L2(G)

, u, v ∈ L2(G).

We note the orthogonality relations (recall (3.2))〈
Wτ,β

u,v ,Wτ,β
u′,v′

〉
B2(Γ̂)

=
〈
u′, u

〉
L2(G)

〈
v, v′

〉
L2(G)

= Tr[Λu,vΛv′,u′ ] =
〈
Vτ,β
u,v ,Vτ,β

u′,v′
〉

B2(Γ)
.
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Definition 3.8. For each x ∈ G and ξ ∈ Ĝ we define Wτ
β(ξ, x) to be the

unique bounded linear operator in L2(G,Hξ) := L2(G)⊗Hξ satisfying for all
u, v ∈ L2(G) and ϕξ, ψξ ∈Hξ〈

Wτ,β
u.v (ξ, x)ϕξ, ψξ

〉
Hξ

=
〈
Wτ

β(ξ, x)(u⊗ϕξ), v⊗ψξ

〉
L2(G,Hξ)

.

The family {Wτ
β(ξ, x)}(ξ,x)∈Ĝ×G will be called the τ -twisted Weyl system as-

sociated to the pseudo-trivialization β.

Remark 3.9. For an operator T in L2(G;Hξ)∼= L2(G)⊗Hξ and a pair of
vectors u, v ∈ L2(G), the action of 〈Tu, v〉L2(G) ∈ B(Hξ) on ϕξ ∈ Hξ is given
by

〈Tu, v〉L2(G)ϕξ :=

∫
G

[
T (u⊗ϕξ)

]
(y)v(y)dm(y) ∈Hξ.

With this interpretation one has the the equality

Wτ,β
u,v (ξ, x) =

〈
Wτ

β(ξ, x)u, v
〉
L2(G)

∈ B(Hξ),

so (u, v)→Wτ,β
u,v can be seen as a “Fourier–Wigner transform” [8] associated

to Wτ
β . Then one can interpret (u, v)→Vτ,β

u.v as a Wigner transform.

Using Remark 3.9 and the equation (3.12) one can give the explicit formula
for the twisted Weyl system.

Proposition 3.10. For Θ ∈ L2(G,Hξ) one has

(3.13)
[
Wτ

β(ξ, x)Θ
]
(y) = β(y;x)ξ(y)∗ξ

(
τ(x)

)[
Θ

(
x−1y

)]
.

Proof. One computes for u, v ∈Cc(G) and ϕξ, ψξ ∈Hξ〈
Wτ

β(ξ, x)(u⊗ϕξ), v⊗ψξ

〉
L2(G,Hξ)

=
〈
Wτ,β

u,v (ξ, x)ϕξ, ψξ

〉
Hξ

=
〈[
(F ⊗ id) ◦

(
Vτ

)−1 ◦Mβ−1 ◦ C−1
]
(v⊗ u)(ξ, x)ϕξ, ψξ

〉
Hξ

=

∫
G

〈[(
Vτ

)−1 ◦Mβ−1 ◦ C−1
]
(v⊗ u)(z,x)ξ(z)∗ϕξ, ψξ

〉
Hξ

dm(z)

=

∫
G

〈
β
(
τ(x)z;x

)
v
(
τ(x)z

)
u
(
x−1τ(x)z

)
ξ(z)∗ϕξ, ψξ

〉
Hξ

dm(z)

=

∫
G

〈
β(y;x)u

(
x−1y

)
ξ∗

(
τ(x)−1y

)
ϕξ, v(y)ψξ

〉
Hξ

dm(z)

=
〈
β(y;x)ξ

(
τ(x)−1y

)∗[
(u⊗ϕξ)

(
x−1y

)]
, v⊗ψξ

〉
L2(G,Hξ)

.

Thus, one has for decomposable vectors[
Wτ

β(ξ, x)(u⊗ϕξ)
]
(y) = β(y;x)ξ

(
τ(x)−1y

)∗[
(u⊗ϕξ)

(
x−1y

)]
.

Then the proof is easily finished by density. �
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Recall that 1 ∈ Ĝ denotes the trivial one dimensional representation. Thus
H1

∼=C and L2(G,H1)∼= L2(G). We assume for simplicity (and because there
are no interesting counter-examples) that τ(e) = e.

Definition 3.11. We define the unitary operators

Uβ(x) :=Wτ
β(x;1) ∈ B

[
L2(G)

]
, V(ξ) :=Wτ

β(e, ξ) ∈ B
[
L2(G,Hξ)

]
.

Explicitly, for u ∈ L2(G) and Θ ∈ L2(G,Hξ) one has[
Uβ(x)u

]
(y) = β(y,x)u

(
x−1y

)
,

[
V(ξ)Θ

]
(y) = ξ(y)∗Θ(y).

We get immediately that

Wτ
β(ξ, x) = V(ξ)

(
Uβ(x)⊗ ξ

[
τ(x)

])
.

It is also easy to prove the commutation relations (γ(x, y) is a multiplication
operator in L2(G))

Uβ(x)Uβ(y) = γ(x, y)Uβ(xy),(
V(ξ)⊗ idη

)(
idξ ⊗ V(η)

)
=

(
idξ ⊗ V(η)

)(
V(ξ)⊗ idη

)
,(

Uβ(x)⊗ idHξ

)
V(ξ) = V(ξ)

(
Uβ(x)⊗ idHξ

)(
id⊗ ξ(x)

)
.

The map x �→ Uβ(x) is a strongly continuous projective representation of the
group G on L2(G) with a vector valued 2-cocycle γ. If G is Abelian, the irre-
ducible representations are all one-dimensional, V is a unitary representation

of the dual group Ĝ and the tensor products are no longer needed.

Remark 3.12. The integrated form w(Uβ) :=
∫
G
w(x)Uβ(x)dm(x) defined

for w ∈ L1(G) leads to

(3.14)
[
w(Uβ)u

]
(q) =

∫
G

β(q, x)w(x)u
(
x−1q

)
dm(x) =

[
Convβ(w)u

]
(q),

so the twisted convolution operators of Section 3.3 are recovered in this way.

3.5. Involutive algebras of symbols. Since the pseudo-differential calcu-

lus for symbols in L2(G)⊗B2(Ĝ) is one-to-one, we can define a composition

law #τ
γ and an involution #τ

γ on B2(Γ) by

Opτβ
(
f#τ

γg
)
:=Opτβ(f)Op

τ
β(g), Opτβ

(
f#τ

γ
)
:=Opτβ(f)

∗.

Of course, if C0(G)⊂A, for symbols lying in (id⊗F )[A⊗ L1(G)] ∩ [L2(G)⊗
B2(Ĝ)] this algebraic structure coincides with the one defined in Section 3.2
in the algebra Bτ (A, γ); in particular, it does not depend on the choice of the
pseudo-trivialization β. Using the equation (3.9), the composition law can
be written in terms of integral kernels as Kerτβ(f #τ

γ g) = Kerτβ(f) • Kerτβ(g),
where

Kerτβ := C ◦Mβ ◦ Vτ ◦
(
id⊗F−1

)
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and • is the usual composition of kernels

(M •N)(x, y) :=

∫
G

M(x, z)N(z, y)dm(z),

corresponding to Int(M •N) = Int(M) Int(N). It follows that for f, g ∈ B2(Γ)

f #τ
γ g =

(
Kerτβ

)−1(
Kerτβ(f) •Kerτβ(g)

)
= (id⊗F )

(
CMVτ

β

)−1{[
CMVτ

β ◦
(
id⊗F−1

)]
f

•
[
CMVτ

β ◦
(
id⊗F−1

)]
g
}
,

where CMVτ
β := C ◦Mβ ◦ Vτ . Similarly, in terms of the natural kernel involu-

tion M•(x, y) :=M(y,x) (corresponding to Int(M)∗ = Int(M•)), one gets

f#τ
γ =

(
Kerτβ

)−1[(
Kerτβ(f)

)•]
= (id⊗F ) ◦

(
CMVτ

β

)−1{([
CMVτ

β ◦
(
id⊗F−1

)]
f
)•}

.

Let us give the simple algebraic rules satisfied by the twisted Wigner trans-
forms of Definition 3.5: For every u1, u2, v1, v2 ∈ L2(G) one can compute

Opτβ
(
Vτ,β
u1,v1#

τ
γVτ,β

u2,v2

)
=Opτβ

(
Vτ,β
u1,v1

)
Opτβ

(
Vτ,β
u2,v2

)
=Λu1,v1Λu2,v2

= 〈v2, u1〉Λu2,v1 = 〈v2, u1〉Opτβ
(
Vτ,β
u2,v1

)
.

We summarize this and the simpler computation for the adjoint as

Vτ,β
u1,v1#

τ
γVτ,β

u2,v2 = 〈v2, u1〉Vβ
u2,v1 and

(
Vτ,β
u,v

)#τ
γ = Vτ,β

v,u .

We recall that an involutive algebra (B,#,# ) is said to be a Hilbert algebra
if it possesses a scalar product 〈·, ·〉 : B × B → C such that for every g the
map g �→ g#f is continuous, B#B is total in B and〈

g#, f#
〉
= 〈f, g〉, 〈g#h, f〉=

〈
h, g##f

〉
, ∀f, g, h ∈ B.

A complete Hilbert algebra is called an H∗-algebra. Recall that B2(Γ) :=

L2(G)⊗B2(Ĝ) was introduced in (3.2).

Proposition 3.13. The space (B2(Γ),#τ
γ ,

#τ
γ , 〈·, ·〉B2(Γ)) is an H∗-algebra.

Proof. One can check this directly. In a simpler way, one can recall the
well-known fact B

2[L2(G)] is an H∗-algebra with the operator composition,
the adjoint and the scalar product 〈S,T 〉B2[L2(G)] = Tr[ST ∗]. Then one invokes

the unitary ∗-algebra isomorphism Opτβ : L2(G)⊗B2(Ĝ)→ B
2[L2(G)] justified

above. �
We now are interesting in the existence of a parameter τ and a cocycle γ

leading to a symmetric quantization. This means that f#τ
γ = f�, where � is the

pointwise involution f�(x, ξ) := f(x, ξ)∗ ∈ B(Hξ), or equivalently Opτβ(f
�) =

Opτβ(f)
∗ (independently of the chosen pseudo-trivialization β). This permits

to show that “real valued symbols” are sent to self-adjoint operators. The
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case γ ≡ 1 was discussed in [16], where it was shown that a necessary and
sufficient condition for symmetric quantization is the existence of a map τ
which satisfies the relation τ(x) = xτ(x−1) for all x ∈ G. If τ satisfies this
relation is called symmetric. The existence of such a map in general seems to
be rather obscure, but some examples are shown in [16].

If there exists a symmetric quantization with non-trivial cocycle, we will
say that G possesses a twisted symmetric quantization. The existence of this
kind of quantizations is unclear, but assuming the existence of a symmetric
map τ one gets the following result.

Proposition 3.14. Suppose that G admits a symmetric map τ . A neces-
sary and sufficient condition for the existence of a symmetric quantization is
γ(z, z−1) = 1A for all z ∈ G.

Proof. The equality f� = f#τ
γ can be examined at the level of the respective

kernels[
Kerτβ

(
f�

)]
(x, y) = β

(
x;xy−1

)([
id⊗F−1

]
f�

)(
τ
(
xy−1

)−1
x;xy−1

)
= β

(
x;xy−1

)([
id⊗F−1

]
f
)(
τ
(
xy−1

)−1
x;yx−1

)
and[

Kerτβ
(
f#τ

γ
)]
(x, y) =

[
Kerτβ(f)

•](x, y)
= β

(
y;yx−1

)−1([
id⊗F−1

]
f
)(
τ
(
yx−1

)−1
y;yx−1

)
.

Since the map τ satisfies the equality τ(z) = zτ(z−1) for all z ∈ G, the previous
expressions coincide for every f ∈ L2(G×G) if and only if β satisfies

(3.15) β
(
x;xy−1

)
β
(
y;yx−1

)
= 1, ∀x, y ∈ G.

By the pseudo-trivialization choice γ = δ1(β), and since β(·; e) = 1, one has

γ
(
x;xy−1, yx−1

)
= β

(
x;xy−1

)
β
([
xy−1

]−1
x;yx−1

)
β
(
x;

[
xy−1

][
yx−1

])
= β

(
x;xy−1

)
β
(
y;yx−1

)
and everything is clear. �

In the next section, we will see examples of 2-cocycles on nilpotent Lie
groups allowing twisted symmetric quantizations.

4. The case of nilpotent Lie groups

We suppose now that G is a nilpotent Lie group, also assumed connected
and simply connected. For theory of nilpotent Lie group we refer to [3].
These kind of groups are second countable unimodular and of type I, so all the
previous constructions and results apply. In this section, we are going to show
that, besides the “operator-valued twisted pseudo-differential calculus” Opτβ
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for symbols defined in G× Ĝ, there is also a “scalar-valued twisted pseudo-
differential calculus” Opτ

β which provides a quantization of the cotangent
bundle of G. We will also put into evidence 2-cocycles defined by variable
magnetic fields.

4.1. Quantization of scalar symbols on nilpotent Lie groups. Let
g be the Lie algebra of G and g∗ its dual. If X ∈ g and X ∈ g∗ we set
〈X | X 〉 :=X (X). We also denote by exp : g→ G the exponential map, which
is a diffeomorphism. Its inverse is denoted by log : G→ g. Under these diffeo-
morphisms the Haar measure on G corresponds to the Haar measure dX on g

(normalized accordingly). It then follows that Lp(G) is isomorphic to Lp(g):
one has a surjective isometry

Lp(G)
Exp→ Lp(g), Exp(u) := u ◦ exp

with inverse

Lp(g)
Log→ Lp(G), Log(u) := u ◦ log .

The Schwarz space S(G) is just defined by transport of structure through Log,
starting from S(g).

There is a Fourier transformation defined essentially by

(Fu)(X )≡ û(X ) :=

∫
g

e−i〈X|X〉u(expX)dX =

∫
G

e−i〈logx|X〉u(x)dm(x),

with inverse (
F−1u

)
(x)≡ ǔ(x) :=

∫
g∗

ei〈logx|X〉u(X )dX .

It can be seen as a unitary map F : L2(G)→ L2(g∗) or as a linear topological
isomorphism F : S(G)→ S(g∗). We used a good normalization of the Haar
measure on g∗.

Returning to pseudo-differential operators, let us consider a compatible
data (A, γ) as in Section 2.3 and a continuous map τ : G→ G. We compose
the Schrödinger representation (2.10) associated to a pseudo-trivialization β
of γ with the inverse of the partial Fourier transform

id⊗F :
(
L1 ∩L2

)
(G,A)→A⊗ L2

(
g∗

)
,

finding the pseudo-differential representation

Opτ
β := Schτβ ◦

(
id⊗F−1

)
,

which can be extended to the enveloping C∗-algebra. One gets more or less
formally[

Opτ
β(s)u

]
(x)

=

∫
G

∫
g∗

β
(
x;xy−1

)
ei〈log(xy

−1)|X〉s
(
τ
(
xy−1

)−1
x,X

)
u(y)dm(y)dX .
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Thus Opτ
β(s) is an operator with integral kernel Kerτβ [s] : G× G→ C given

by

Kerτβ [s] :=
[
C ◦Mβ ◦ Vτ ◦

(
id⊗F−1

)]
(s).

Examining this kernel, obtained by applying to s unitary transformations, one
gets the unitary mapping

Opτ
β : L2

(
G× g∗

)
→ B

2
[
L2(G)

]
.

Remark 4.1. One can also consider the composition law �τγ defined to sat-

isfy Opτ
β(r�

τ
γs) = Opτ

β(r)Opτ
β(s) and the involution defined as Opτ

β(s
	τγ ) =

Opτ
β(s)

∗. Then (L2(G × g∗), �τγ ,
	τγ ) is a ∗-algebra which is isomorphic to

(B2(G× Ĝ),#τ
γ ,

#τ
γ ) and one has the relation

(4.1) Opτ
β =Opτβ ◦ (id⊗ F ) ◦

(
id⊗F−1

)
.

Actually this is an isomorphism of H∗-algebras, in the sense of Proposi-
tion 3.13. The same Hilbert–Schmidt operators in L2(G) can be expressed

both by operator-valued symbols defined on G× Ĝ and by scalar symbols de-
fined on the cotangent space T ∗(G)∼= G×g∗. This is also true for other classes
of operators, as those connected with twisted crossed products.

The quantization Opτ
β is associated to a new type of twisted Weyl system,

indexed by the points of G× g∗, in terms of which one can write

Opτ
β(s) =

∫
G

∫
g∗

ŝ(X , x)Wτ
β(x,X )dm(x)dX ,

using the notation ŝ := (F⊗F−1)s. For this, one defines the unitary operator
Wτ

β(x,X ) in L2(G) by[
Wτ

β(x,X )u
]
(q) := β(q;x)ei〈log[τ(x)

−1q]|X〉u
(
x−1q

)
.

Assuming for simplicity that τ(e) = e, it is more enlightening to define
the unitary operators Uβ(x) := Wτ

β(x,0) and V(X ) := Wτ
β(e,X ) in L2(G),

explicitly given by[
Uβ(x)u

]
(q) = β(q;x)u

(
x−1q

)
,

[
V(X )u

]
(x) = ei〈log q|X〉u(q).

It is easy to show that for x, y ∈ G and X ,Y ∈ g∗

V(X )V(Y) =V(Y)V(X ) =V(X +Y),

Uβ(x)Uβ(y) = γ(x, y)Uβ(xy),

Uβ(x)V(X ) =Δ(x,X )V(X )Uβ(x),

where γ(x, y) is the operator of multiplication by [γ(x, y)](·) in L2(G), and
Δ(x,X ) is the operator of multiplication by

G 
 q→
[
Δ(x,X )

]
(q) := ei〈log(x

−1q)−log q|X〉.
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4.2. Magnetic fields and group cocycles. For x, y ∈ G one sets [x, y] :
R→ G by

[x, y]s := exp
[
(1− s) logx+ s log y

]
= exp

[
logx+ s(log y− logx)

]
.

The function [x, y] is smooth and satisfies

[y,x]s = [x, y]1−s, [x, y](0) = x and [x, y](1) = y.

In addition, [e, y] is a 1-parameter subgroup passing through y : one has

[e, y]s+t = [e, y]s[e, y]t, ∀y ∈ G, s, t ∈R.

The segment in G connecting x to y is [[x, y]] := {[x, y]s | s ∈ [0,1]}.
Let us also set Δ := {(t, s) ∈ [0,1]2 | s ≤ t}. For x, y, z one defines the

function 〈x, y, z〉 :R2 → G

〈x, y, z〉t,s := exp
[
logx+ t(log y− logx) + s(log z − log y)

]
and the set 〈〈x, y, z〉〉 := 〈x, y, z〉Δ ⊂ G. Note that

〈x, y, z〉0,0 = x, 〈x, y, z〉1,0 = y, 〈x, y, z〉1,1 = z,

〈x, y, z〉t,0 = [x, y]t, 〈x, y, z〉1,s = [y, z]s, 〈x, y, z〉t,t = [x, z]t,

so the boundary of 〈〈x, y, z〉〉 is composed of the three segments [[x, y]], [[y, z]]
and [[z,x]].

A 1-form A on G will be seen as a (smooth) map A : G→ g∗ and it gives
rise to a 1-form A ◦ exp : g→ g∗. Its circulation through the segment [[x, y]] is
the real number

ΓA[[x, y]]≡
∫
[[x,y]]

A :=

∫ 1

0

〈
log y− logx |A

(
[x, y]s

)〉
ds.

It is easy to check that

Γ0[[x, y]] = 0, ΓA[[x,x]] = 0, ΓA[[y,x]] =−ΓA[[x, y]].

Remark 4.2. Setting A := A ◦ exp : g→ g∗, one gets a 1-form on g. Our
definition is actually

ΓA[[x, y]] = ΓA[[logx, log y]],

using the obvious and well-accepted definition of the circulation in the Lie
algebra g (a vector space)

ΓA[[X,Y ]] :=

∫ 1

0

〈
Y −X | A

[
(1− s)X + sY

]〉
ds.

Let B be a 2-form on G, seen as a smooth map sending x ∈ G into the
skew-symmetric bilinear form B(x) : g× g→R. One defines

ΓB〈〈x, y, z〉〉 ≡
∫
〈〈x,y,z〉〉

B(4.2)

:=

∫ 1

0

dt

∫ t

0

dsB
(
〈x, y, z〉t,s

)
(logx− log y, logx− log z).
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Proposition 4.3. Let B be a magnetic field, that is, a closed 2-form on G.
Then

γB(q;x, y) := eiΓ
B〈〈q,x−1q,y−1x−1q〉〉

defines a 2-cocycle of G with values in C(G;T), satisfying the extra condition

(4.3) γB
(
x−1, x

)
= 1= γB

(
x,x−1

)
, ∀x ∈ G.

Proof. Since B has been supposed smooth, it is clear that γB is well-defined
and continuous.

By Stokes’ theorem, since B is a closed 2-form, one gets for a, b, c, d ∈ G

ΓB〈〈a, b, c〉〉+ΓB〈〈a, d, b〉〉+ΓB〈〈b, d, c〉〉+ΓB〈〈a, c, d〉〉= 0.

Setting

a := q, b= x−1q, c := y−1x−1q, d= z−1y−1x−1q,

one gets

ΓB
〈〈
q, x−1q, y−1x−1q

〉〉
+ΓB

〈〈
q, z−1y−1x−1q, x−1q

〉〉
+ΓB

〈〈
x−1q, z−1y−1x−1q, y−1x−1q

〉〉
+ΓB

〈〈
q, y−1x−1q, z−1y−1x−1q

〉〉
= 0.

Using the identity ΓB〈〈a, b, c〉〉 = −ΓB〈〈a, c, b〉〉 for the second and the third
terms and taking imaginary exponentials, one gets the 2-cocycle identity. Nor-
malization is easy, using (4.2) and the fact that every B(z) is anti-symmetric;
for example

γB(q;x, e) = eiΓ
B〈〈q,x−1q,x−1q〉〉 = 1.

The identity (4.3) reads eiΓ
B〈〈q,xq,q〉〉 = 1 = eiΓ

B〈〈q,x−1q,q〉〉, which is obvious
from (4.2) since for every z ∈ G and X ∈ g one has [B(z)](X,0) = 0. �

Corollary 4.4. G possesses a twisted symmetric quantization.

Proof. By [16, Proposition 4.3] a connected simply connected nilpotent Lie
group admits a symmetric map τ ; it is given by

x→ τ(x) :=

∫ 1

0

[e, x]s ds=

∫ 1

0

exp[s logx]ds.

Thus the result follows from Proposition 3.14 and Proposition 4.3. �

Being a closed 2-form, the magnetic field can be written as B = dA for some
1-form (vector potential). Any other vector potential Ã satisfying B = dÃ is

related to the first by Ã=A+ dψ, where ψ is a smooth function on G.

Proposition 4.5. Suppose that B = dA. The relation

βA(q;x) := eiΓ
A[[q;x−1q]], x, q ∈ G

defines a pseudo-trivialization of the 2-cocycle γB .
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Proof. The identity γB = δ1(βA) is reduced to

ΓB
〈〈
q, x−1q, y−1x−1q

〉〉
(4.4)

= ΓA
[[
q, x−1q

]]
+ΓA

[[
x−1q, y−1x−1q

]]
+ΓA

[[
q, (xy)−1q

]]
,

which follows from Stokes’ theorem. �
So we can write down all the formulas and results of the preceding subsec-

tions for the 2-cocycle γB and its pseudo-trivialization βA. For example, writ-
ing OpβA ≡OpA (a magnetic pseudo-differential operator) and UβA ≡UA

(magnetic translations), one has[
OpA(s)u

]
(x) =

∫
G

∫
g∗

ei
∫
[[x,y]]

Aei〈log(xy
−1)|X〉s(x,X )u(y)dm(y)dX ,

[
UA(x)u

]
(q) = ei

∫
[[q,x−1q]]

Au
(
x−1q

)
= ei

∫ 1
0
〈log(x−1q)−log q|A([q,x−1q]s)〉dsu

(
x−1q

)
.

If G=R
n, the dual group can be identified the vector space dual Rn. It is

also true that R
n is identified with its Lie algebra and (then) with its dual,

so in this case the maps exp and log simply disappear from the formulas. In
this case, if τ(x) = x/2, one get the symmetric (Weyl) twisted quantization.
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