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A STATE CALCULUS FOR GRAPH COLORING

LOUIS H. KAUFFMAN

Abstract. This paper discusses reformulations of the problem
of coloring plane maps with four colors. We give a number of

alternate ways to formulate the coloring problem including a tau-
tological expansion similar to the Penrose Bracket, and we give

a simple extension of the Penrose Bracket that counts colorings
of arbitrary cubic graphs presented as immersions in the plane.

1. Introduction

This work involves a rewriting of the coloring problem in terms of two-
colored systems of Jordan curves in the plane. These systems, called forma-
tions [15], are in one-to-one correspondence with cubic plane graphs that are
colored with three edge colors so that three distinct colors are incident to each
node of the graph. It has long been known that the four color problem can
be reformulated in terms of coloring such cubic graphs. The present paper is
an extension of [7], [10], [11], [8], [12] but is self-contained.

This paper is organized into five sections:

1. Introduction.
2. Cubic Graphs and Formations.
3. Cubic Graphs and the Four Color Problem.
4. Loops and States.
5. The Penrose Formula and a Generalization to All Cubic Graphs.

The second section on cubic graphs and formations shows how we can re-
formulate the coloring problem in terms of interactions of Jordan curves in
the plane. This section is based on previous papers [10], [11], [8], [12] of the
author. We use the fact that cubic graphs have perfect matchings to accom-
plish this aim. In Sections 3 and 4, we show how to create tautological state
sums for the colorings of arbitrary cubic maps. In working with these states,
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we find a simple example of a plane graph where only one state admits the
coloring. This example, being close to being uncolorable, is a good example to
modify. We find a natural non-planar modification of it that yields the Isaacs
graph J3 and hence provides a very neat motivation for the J -constructions
of Rufus Isaacs [6]. We give other examples showing how the tautological
state sum construction is related to the Petersen graph and other aspects of
uncolorability. In Section 5 we prove, using formations, the properties of the
well-known Penrose Bracket that counts the number of proper edge colorings
of a cubic plane graph. We give a very simple extension of the method for
the Penrose Bracket that allows it to compute the number of colorings for an
arbitrary cubic graph, presented as an immersed graph in the plane.

2. Cubic graphs and formations

A graph consists in a node set V and an edge set E such that every edge
has two nodes associated with it (they may be identical). If a node is in the
set of nodes associated with an edge, we say that this node belongs to that
edge. If two nodes form the node set for a given edge, we say that that edge
connects the two nodes (again the two may be identical). A loop in a graph
is an edge whose node set has cardinality one. In a multi-graph it is allowed
that there may be a multiplicity of edges connecting a given pair of nodes.
All graphs in this paper are multi-graphs, and we shall therefore not use the
prefix “multi” from here on.

A cubic graph is a graph in which every node either belongs to three distinct
edges, or there are two edges at the node with one of them a loop. A coloring
(proper coloring) of a cubic graph G is an assignment of the labels r (red), b
(blue), and p (purple) to the edges of the graph so that three distinct labels
occur at every node of the graph. This means that there are three distinct
edges belonging to each node and that it is possible to label the graph so that
three distinct colors occur at each node. Note that a graph with a loop is not
colorable.

The simplest uncolorable cubic graph is illustrated in Figure 4. For obvious
reasons, we refer to this graph as the dumbell. Note that the dumbell is planar.
Figure 4 also illustrates a more complex dumbell and the Petersen graph, a
non-planar uncolorable.

An edge in a connected plane graph is said to be an isthmus if the deletion
of that edge results in a disconnected graph. It is easy to see that a connected
plane cubic graph without isthmus is loop-free.

Heawood (see [13], [4], [5]) reformulated the four-color conjecture (which
we will henceforth refer to as the Map Theorem) for plane maps to a corre-
sponding statement about the colorability of plane cubic graphs. In this form
the theorem reads
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Map Theorem for Cubic Graphs. A connected plane cubic graph with-
out isthmus is properly edge-colorable with three colors.

We now introduce a diagrammatic representation for the coloring of a cubic
graph. Let G be a cubic graph and let C(G) be a coloring of G. Using the
colors r, b and p we will write purple as a formal product of red and blue:

p= rb.

One can follow single colored paths on the coloring C(G) in the colors red
and blue. Each red or blue path will eventually return to its starting point,
creating a circuit in that color. The red circuits are disjoint from one another,
and the blue circuits are disjoint from one another. Red circuits and blue
circuits may meet along edges in G that are colored purple (p= rb). In the
case of a plane graph G, a meeting of two circuits may take the form of one
circuit crossing the other in the plane, or one circuit may share an edge with
another circuit, and then leave on the same side of that other circuit. We call
these two planar configurations a cross and a bounce, respectively.

Definition. A formation [15] is a finite collection of simple closed curves
in the plane, with each curve colored either red or blue such that the red
curves are disjoint from one another, the blue curves are disjoint from one
another and red and blue curves can meet in a finite number of segments (as
described above for the circuits in a coloring of a cubic graph).

Associated with any formation F there is a well-defined cubic graph G(F ),
obtained by identifying the shared segments in the formation as edges in
the graph, and the endpoints of these segments as nodes. The remaining
(unshared) segments of each simple closed curve constitute the remaining
edges of G(F ). A formation F is said to be a formation for a cubic graph G
if G=G(F ). We also say that F formates G.

A plane formation is a formation such that each simple closed curve in
the formation is a Jordan curve in the plane. For a plane formation, each
shared segment between two curves of different colors is either a bounce or
a crossing (see above), that condition being determined by the embedding of
the formation in the plane.

Since the notion of a formation is abstracted from the circuit decomposition
of a colored cubic graph, we have the proposition.

Proposition. Let G be a cubic graph and Col(G) be the set of colorings
of G. Then Col(G) is in one-to-one correspondence with the set of formations
for G.

In particular, the Map Theorem is equivalent to the the following theorem.

Formation Theorem. Every connected plane cubic graph without isth-
mus has a formation.
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Figure 1. Coloring and formation.

Figure 2. Second example of coloring and formation.

This equivalent version of the Map Theorem is due to G. Spencer-Brown
[15]. The advantage of the Formation Theorem is that, just as one can enu-
merate graphs, one can enumerate formations. In particular, plane formations
are generated by drawing systems of Jordan curves in the plane that share
segments according to the rules explained above. This gives a new way to
view the evidence for the Map Theorem, since one can enumerate formations
and observe that all the plane cubic graphs are occurring in the course of
the enumeration. See Figures 1 and 2 for illustrations of the relationship of
formation with coloring.

Remark. In depicting formations, we have endeavored to keep the shared
segments slightly separated for clarity in the diagram. These separated seg-
ments are amalgamated in the graph that corresponds to the formation.
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3. Cubic graphs and the four color problem

In this section, we state results equivalent to the Map Theorem in terms
of perfect matchings in the graph. We shall use these concepts in conjunction
with the notion of formation from the previous section in the rest of the paper.

Recall that a cubic graph G is said to be properly colored with 3 colors if
the edges of G are colored from the 3 colors so that every node is incident
to an edge of every color, and recall that the Map Theorem states that an
isthmus-free planar cubic graph can be properly colored.

We shall first use this result to give yet another (well-known) equivalent
version of the Map Theorem. To this end, call a disjoint collection E of
edges of G that includes all the nodes of G a perfect matching of G. Then
C(E,G) =G− Interior(E) is a collection of cycles (graphs homeomorphic to
the circle, with two edges incident to each node). We say that E is an even
perfect matching of G if every cycle in C(E) has an even number of edges.

Theorem. The following statement is equivalent to the Map Theorem: Let
G be a plane cubic graph with no isthmus. There there exists an even perfect
matching of G.

Proof. Let G be a cubic plane graph with no isthmus. Suppose that G is
properly 3-colored from the set {a, b, c}. Let E denote all edges in G that
receive the color c. Then, by the definition of proper coloring, the edges in E
are disjoint. By the definition of proper 3-coloring every node of G is in some
edge of E. Thus, E is a perfect matching of G. Since each cycle in C(E,G) is
two-colored by the set {a, b}, each cycle is even. Hence, E is an even perfect
matching of G.

Conversely, suppose that E is an even perfect matching of G. Then we
may assign the color c to all the edges of E, and color the cycles in C(E)
using a and b (since each cycle is even). The result is a proper 3-coloring of
the graph G. This completes the proof of the theorem. �

Remark. See Figure 3 for an illustration of two perfect matchings of a
graph G. One perfect matching is not even. The other perfect matching
is even, and the corresponding coloring is shown. This theorem shows that
one could conceivably divide the proving of the FCT into two steps: First,
prove that every cubic plane isthmus-free graph has a perfect matching. Then
prove that it has an even perfect matching. In fact, the existence of a perfect
matching is hard, but available [5], while the existence of an even perfect
matching is really hard.

Proposition. Every cubic graph with no isthmus has a perfect matching.

Proof. See [5], Chapter 4. �
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Figure 3. Perfect matchings of a cubic plane graph.

Figure 4. Petersen and dumbells.

Remark. There are graphs that are uncolorable. Two famous such cul-

prits are indicated in Figure 4. These are examples of graphs with perfect

matchings, but no even perfect matching. The second example in Figure 4

is the “dumbell graph”. It is planar, but has an isthmus. The first example

is the Petersen Graph. This graph is non-planar. We have illustrated the

Petersen with one perfect matching that has two 5-cycles. No perfect match-

ing of the Petersen is even. The third “double dumbell” graph illustrated in

Figure 4 has no perfect matching.
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Figure 5. Graph, state, switch and formation.

4. Loops and states

In this section, we give a reformulation of the map theorem that is very
close in spirit to the diagrammatics of low-dimensional knot theory. Consider
a collection of disjoint Jordan curves drawn in the plane. Let there be a
collection of sites between distinct curves as indicated in Figures 5 and 6.
A site is a region in the plane containing two arcs, each from one of the
component curves, equipped with an indicator, marking and connecting the
two curves. A marked edge in a graph can be converted to a site by removing
the edge and its nodes and connecting the local arcs as shown at the top of
Figure 5. The indicator is to be interpreted as an instruction that the two
curves at the site are to be colored differently from a set of three distinct
colors {r, b, p}. In Figure 5, we illustrate a graph G with three edges marked
that form a perfect matching (as described in the previous section). Adjacent
to G on the right is a state S with three sites that correspond to the edges
in the perfect matching. Note that the two local arcs at a site may belong
to a single component or to distinct components of the state S. Below these
two parts of the figure, on the left, is a diagram of a state S′ obtained by
switching two sites of the state S so that S′ is colorable. The extra crossings
in the diagram for S′ show where the switching was applied. The coloring of
S′ is rewritten as a formation in the diagram on the lower right of the figure.

Note that each site corresponds, as shown in Figure 5, to an edge in a cubic
graph. In fact, given a cubic graph and a perfect matching of its nodes, we
can convert each pair of nodes in the matching to a site. See Figure 5 for
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Figure 6. Crossed and uncrossed sites and two examples of states.

an illustration of this remark. In the figure, we have marked two edges to
be so converted and, in this case, we obtain a single Jordan curve S from
the replacements. A collection of Jordan curves in the plane with a chosen
collection of sites will be called a planar state S. Given a planar state S, we can
attempt to color its curves according to the indicators. It may be uncolorable.
For example, the state S in Figure 5 is not colorable. We introduce the local
operation of site switching as shown in Figure 5. In switching a site, we
replace two locally parallel arcs with two arcs that cross one another. In
the resulting state, we are still interested in coloring its loops. Loops that
cross are allowed to have the same or different colors unless there is a state
indicator forcing them to be colored differently. When we switch a site, the
site indicator remains in place as shown in both Figure 5 and Figure 6. Note
that in Figure 5 we chose to switch two sites and arrive at a new state S′ that
is colorable. This gives a coloring of the original graph G, and a formation
F for that graph that corresponds directly to the coloring of the state S′.
Figure 5, when examined should be sufficient for the reader to understand the
relationships between graphs, formations, states and sites.

The examples shown in Figure 6 are of interest. At the bottom left of the
figure, we see a state that is uncolorable but can be converted to a colorable
state by switching. The state itself is not directly colorable since it consists
in four mutually touching planar loops. In fact there is only one way to color
this example. One must switch all of the sites as shown in Figure 7. One then
obtains a configuration of three loops and a coloring of the corresponding
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Figure 7. Coloring a planar state and its graph.

Figure 8. A nonplanar state corresponds to Isaac’s J3.

graph. It is remarkable how close this example comes to being uncolorable.
By some miracle, it just manages to be colorable when we switch all the sites.

The other example in Figure 6 is a non-planar variant of the example we just
discussed. This example was drawn in an attempt convert the first example
to an uncolorable and we succeeded in this attempt. In Figure 8, we show the
graph corresponding to this state. Remarkably, the graph is J3 the well-known
uncolorable graph constructed by Rufus Isaacs [6] as a circular composition
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of three copies of the special graphical element J shown in Figure 6. It is
not hard to see that an odd number of the J elements placed in a circular
configuration will always be uncolorable. These graphs are called J2n+1 for
n = 1,2, . . . . The pathway to rediscovering the Isaac’s construction that we
have given here is illuminating. It shows that graphs in the plane can be
precariously close to uncolorability, and that a seemingly slight modification
into non-planarity can produce uncolorables. Uncolorable, isthmus-free, cubic
graphs were named snarks by Martin Gardner [3] in association with the
elusive and mysterious creature in Lewis Carroll’s poem “The Hunting of the
Snark” [1]. Isaac’s snarks are certainly fundamental. In fact, the graph J3
can be collapsed to the minimal non-planar uncolorable, the Petersen graph.
We will return to this example and discuss the Petersen graph below.

We say that a planar site is an isthmus if there is a pathway from one side
of the site to the other that does not cross any of the Jordan curves. We can
now give a statement of our state-calculus reformulation of the map theorem.

Planar State Theorem. Let S be a planar state with no isthmus. Then,
after switching some subset of the sites of S to make a new (possibly non-
planar) state S′, the state S′ is colorable with three colors.

Proof. In order to prove this theorem, we show how a planar state corre-
sponds to a cubic planar map. This is illustrated in Figure 5 and Figure 6.
In these figures, we show how to associate a pair of cubic nodes to each site
of a planar state. We call this operation squeezing the site. As figures show,
we can squeeze a site or a switched site, obtaining the same local graphical
configuration. By applying this association to each site in the state, we obtain
a cubic planar map M(S), that is isthmus–free exactly when the state has no
isthmus as defined above. If S′ is a state obtained from S by switching some
site, then the same map M(S) results from squeezing all the sites. When the
state S′ is colored with three colors, then the map M(S′) =M(S) is colored
on its edges with three colors. Conversely, if we begin with a cubic planar map
G, then we can associate a planar state to G, by choosing perfect matching of
the nodes of G. Perfect matchings exist for planar cubic maps, as discussed
in the previous section. The perfect matching selects a special set of edges
in G so that every node is a unique end of one of these special nodes. By
resolving the special nodes (inverse of squeezing), we obtain a planar state
S(G) such that M(S(G)) =G. We are now in a position to see that G is edge
3–colorable if and only if S(G) is switch-colorable. Figure 7 illustrates how a
coloring of the state S induces a coloring of the map M(S). Note also that we
show how in squeezing a site we induce a coloring on the resulting double–Y
graph by taking the third color determined by the two distinct colors at the
site. This third color is assigned to the edge created in the squeeze. Starting
with a colored graph and a perfect matching, we can resolve the coloring to a
specific choice of switching of S(G) that yields a coloring of S(G). Thus, we



A STATE CALCULUS FOR GRAPH COLORING 261

Figure 9. A logical state expansion, K3,3 and Petersen
graph examples.

see that the problem of edge-coloring cubic maps in the plane is equivalent to
the problem of coloring planar sites by switching. This completes the proof
of the theorem. �

Now we will use the state calculus to give a (tautological) expansion formula
for colorings of arbitrary cubic maps. The formula is given below and in
Figure 9. { }

=

{ }
+

{ }
.

The meaning of this equation is as follows: {G} denotes the number of
proper three-colorings of the edges of a cubic graph G. The graph G is
not assumed to be planar or represented in the plane. The left-hand term
of the formula represents a graph G and one specific edge of G. The two
right-hand terms of the formula represent the graph G with the specific edge
replaced either by a parallel connection of edges as illustrated, or by a cross-
over connection of edges. In each case, we have added the site-symbol, used in
this section, to indicate that the two edges, in a coloring of the new graph, are
to be colored with different colors. Thus, the two graphs on the right-hand
side of the formula have acquired a local state site of the type discussed in
this section. The rest of the graphs may still have nodes. One can define {G}
directly as a summation over all states of the graph G, if we choose a perfect
matching for G and sum over all replacements of the edges in the perfect
matching by parallel and crossed local sites. Note that the crossed lines in the
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Figure 10. Expanding a general edge.

diagram for the formula are only an artifact of representation, and are not
new nodes in these graphs. The truth of the formula follows from our previous
discussion of the fact that a coloring of an edge will result in a double Y form
(as on the left-hand side of the formula) so that the two colors at the top of
the Y either match in parallel or match when crossed. If we are given the
pattern of matched colors that are different, then we can reconstruct an edge
and give it that color that is different from both of them. We shall refer to
this formula as the logical state expansion for three-coloring of cubic graphs.

In Figure 9, we give two examples of the use of this logical expansion.
In the first example, we expand the graph K3,3 and find that {K3,3} = 12.
Here we expand on one edge, utilize the symmetry of the situation to leave
only one graph to consider and then see by inspection that this graph has six
colorings. In the second example, we expand the Petersen graph (the reader
can check that the initial graph is a version of the Petersen graph). In this
case, symmetry reduces the calculation to one graph, but it is easy to see that
this graph is not colorable so that the marked edges are colored with different
colors. Hence, the Petersen graph is uncolorable.

In Figure 10, we use a “black box” B to illustrate the general case of
expanding one edge in a graph G. Here we depict the graph with one cross-
over. There is no loss of generality in this depiction, since the crossover could
be cancelled by another one inside the black box. Note that the edges entering
the black box meet the corners of the box – these are not cubic nodes. When
the graph is expanded on one edge in this configuration we see that the two
terms correspond to two ways to close the edges that emanate from the black
box. If both of these closures force the same color on the marked edges, then
the graph G is uncolorable. In this sense, the existence of an uncolorable
demands a black box that will force the transmission of a color in orthogonal
directions. The black box that produces the Petersen graph has this property
and it is very hard to imagine any black box with this property that does
not produce a non-planar graph. The simplest example of an uncolorable is
shown in Figure 11. Here the graph is planar. It is a dumbell as in Figure 4,
but in the form of black box and extra edge with crossing, the contents of the
black box is a pair of crossed lines. Certainly these give the simplest example
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Figure 11. Dumbell from crossover black box.

of a black box that forces the same colors on the external closure arcs for both
ways of making the external closure.

In the next section, we study the Penrose state summation for determining
the number of proper colorings of a cubic graph. The Penrose formula has
formal similarities with the tautological formulas of this section.

5. The Penrose formula and a generalization to all cubic graphs

Roger Penrose [14] gives a formula for computing the number of proper edge
3-colorings of a plane cubic graph G. In this formula, each node is associated
with the “epsilon” tensor (for our purposes a tensor is a multi-indexed matrix
that is for each particular choice of indices the tensor returns a value in the
complex numbers.)

Pijk =
√
−1εijk

as shown in Figure 12. Let (xyz) denote the ordered list of the indices x, y, z.
One takes the colors from the set {r, b, p} and the tensor εijk takes value 1
for (ijk) = (rbp), (bpr), (prb) and −1 for (ijk) = (rpb), (pbr), (brp). The tensor
is 0 when (ijk) is not a permutation of (rpb). Note that in Figure 12 that
(rbp) corresponds to clockwise order. Since cyclic permutations of the indices
do not change the value of the epsilon, the diagrammatic tensor with index
labels will return +

√
−1 for the clockwise order and −

√
−1 for anti-clockwise

order.
One then evaluates the graph G by taking the sum, over all possible color

assignments to its edges, of the products of the Pijk associated with its nodes.
Call this evaluation [G].

Remark. This evaluation, [G], is the tensor contraction of the labelling
of the nodes of G with the tensor Pijk. Any given color assignment to the
edges of G assigns a specific value of Pijk at each node of G (in this case

it is ±
√
−1). By definition, the tensor contraction is the summation of the

products of these evaluations at the nodes where the sum is taken over all
color assignments. Note that only proper colorings of the graph contribute to
this sum, since the epsilon tensor vanishes when any two colors at a node are
the same. If we had labeled the nodes of the graph with other tensors, then
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Figure 12. Node as epsilon tensor.

we would include their values in the product for a given coloring. Later in this
section, we will add such an extra tensor for a crossing induced by immersing
a non-planar graph in the plane.

Due to properties of the epsilon tensor, [G] satisfies the identity shown
below. We refer to this identity as the Penrose formula.[ ]

=

[ ]
−

[ ]
.

Along with this identity, the Penrose bracket satisfies the formula below

[OG] = 3[G]

and

[O] = 3,

where O denotes a Jordan curve disjoint from G in the plane.

Theorem (Penrose). If G is a planar cubic graph, then [G], as defined
above, is equal to the number of distinct proper colorings of the edges of G
with three colors (so that every node sees three colors at its edges).

Proof. It follows from the above description that only proper colorings of
G contribute to the summation [G], and that each such coloring contributes
a product of ±

√
−1 from the tensor evaluations at the nodes of the graph. In

order to see that [G] is equal to the number of colorings for a plane graph,
one must see that each such contribution is equal to +1. The proof of this
assertion is given in Figure 13 with reference to Figure 12 where we see that
in a formation for a coloring each bounce contributes +1 =−

√
−1

√
−1 while

each crossing contributes −1. Since there are an even number of crossings
among the curves in the formation, it follows that the total product is equal
to +1. This completes the proof of the Penrose theorem. �
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Figure 13. Bounce and cross contribute +1 and −1.

Figure 14. Penrose on K33 is zero.

The Penrose formula has a very interesting limitation in that, in the for-
mulation of it that we have given so far, it only counts colors correctly for
a plane graph, a graph that is given with an embedding in the plane. If we
take a diagram of a non-planar graph (with crossings) and expand the Pen-
rose bracket, it will not always count the number of colorings of the graph.
For example, view Figure 14 where we show that the Penrose bracket calcu-
lation of the K3,3 graph is zero. We know from the previous section that this
graph has 12 colorings. The reason for this discrepancy should be apparent
to a reader of the proof above. By using the properties of the epsilon tensor
and the properties of formations as described earlier in the paper, we showed
that each coloring contributed +1 to the state summation for a planar graph.
This sign of +1 depended on our use of the Jordan curve theorem in counting
colored Jordan curves that intersected one another an even number of times.
When we use a planar diagram with crossings the number of such intersections
can be odd.
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Figure 15. Crossing tensor for revised Penrose bracket.

The remarks in the previous paragraph point the way to a modification of

the Penrose bracket so that it will calculate the number of colorings of any

graph that is given as a diagram in the plane with crossings that are not

nodes of the graph, but artifacts of the way the diagram is drawn in the plane

(possibly necessary for non-planar graphs). Call these the virtual crossings.

Our solution to the problem is to add an extra tensor for each virtual

crossing in the original diagram. The new tensor is indicated by a circle

around that crossing. The circled flat crossing is a tensor depending on its

four endpoints. It is zero unless the labels at the ends of a given straight

segment in the crossed segments are the same. When these ends are the same

we can label the crossed segments with two colors x and y, as in Figure 15.

Then the value of the tensor is +1 if x = y and −1 if x �= y, as shown in

Figure 15. The Penrose bracket is computed just as before and it satisfies

the same formulas as before. The new crossings that occur in the expansion

formula are standard crossings. Only the initial crossings in the diagram are

circled. It is not hard to examine the proof above and see that now every

coloring will contribute +1 to the state sum. And thus we have the theorem

following the next remark.
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Figure 16. Crossing tensor formalism.

Remark. Another way to handle the circled crossing tensor is illustrated
in Figures 15 and 16. Here we write formally the equation[ ]

= 2

[ ]
−

[ ]
.

The dotted crossing is regarded as a coloring node that demands that all
four lines incident to this node have the same color. The ordinary crossing is
taken as usual to indicate that each crossing line has a color independent of
the other line. One can then expand the new bracket according to these rules
and make decisions on evaluations either at the end of the process or earlier
by logical considerations. For example, in Figure 16 we show how to evaluate
a simple theta graph with a circled self-crossing and we show an example of
one of many general formulas one can derive, in this case an extra circle with
one circled crossing changes the sign of the evaluation. This fact could have
been used in the next example that we compute directly in Figure 18.

Theorem (Extending Penrose bracket to all cubic graphs). Let G be any
cubic graph equipped with an immersion into the plane so that the transverse
crossings of interiors of edges of G are circled as described above. Interpret
the nodes of G as epsilon tensors and the circled crossings as sign tensors
as described above. Let [G] denote the tensor contraction of the immersed
graph G for the three color indices. Then [G] is equal to the number of proper
three-colorings of the cubic graph G. The new version of the Penrose bracket
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Figure 17. Topological tensor identities.

continues to satisfy the basic formulae[ ]
=

[ ]
−

[ ]
,

[OG] = 3[G],

[O] = 3.

The virtual crossings [9] resulting from the immersion of G are expanded by
the formula [ ]

= 2

[ ]
−

[ ]

as described above so that the dotted crossing is regarded as a coloring node
that demands that all four lines incident to this node have the same color.

Proof. The proof of this result follows from the discussion preceding the
statement of the Theorem. �

Examine Figure 18. In this figure, we have an immersion of G=K3,3 with
one crossing and this crossing is circled. We then expand the Penrose bracket
until we have collections of circles for the second term of the first expansion.
We keep the first term and rewrite it without a circled crossing because this
is a self-crossing and will always have equal colors and hence will contribute
a +1 in the evaluation. In the other part of the expansion to collections of
circles, each final diagram can be decided, using the rule for sign of a circled
crossing. Note that in the very last diagram we have two curves that cross
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Figure 18. Revised Penrose on K33 counts colorings.

Figure 19. A tensor identity.

once with a circled crossing and once with an uncircled crossing. When these
two curves are colored the same the circle gives +1 and when they are colored
unequally, the circle gives −1. Thus, these two circles contribute 3− 6 =−3.
The reader will note that the initial second term adds up to zero and the total
for [G] is 12, the number of colorings of this graph.

Now examine Figure 19. In this figure, we show formally that the circled
crossing placed as a twist at a cubic node does not change the evaluation of
the special Penrose bracket. In this figure and the figures to follow, we do not
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Figure 20. Basic expansion.

place brackets around the diagrams, but they are implicit in the calculations.
The point of this derivation is to show that the formal properties of the tensors
that we have added are sufficient to prove results that can also be directly
deduced from the state sum definition of the extended bracket. In Figure 17,
we list moveablity properties for the circled crossings. These can be proven
also either by direct appeal to the state summation, or by formal work with
the tensors. It is useful to keep these properties in mind when working with
graphical calculations.

Finally, in Figure 20 we give a derivation of a basic identity for a double Y
form of two cubic nodes in conjunction with a circled crossing. This expands
to two diagrams where we have used our earlier notation for a state site,
indicating color difference between the nearby arcs. This is the extended
Penrose bracket version of a corresponding identity for the logical expansion
of Section 4 shown in Figure 10 and using black box notation in that figure.
This brings us full circle to our original logical considerations and shows how
that logic is now part of the extended Penrose bracket.

We are happy to have a simple extension of the Penrose bracket that cal-
culates the number of colorings of any cubic graph. Our point of view can be
compared with [2] where a generalization of the Penrose bracket is made for
graphs embedded in surfaces. Our state sum and abstract tensor method will
be the subject of papers subsequent to the present work.
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