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FOUR COLOR THEOREM FROM THREE POINTS OF VIEW

YURI MATIYASEVICH

Abstract. The Four Color Conjecture, which in 1977 became
the Four Color Theorem of Kenneth Appel and Wolfgang Haken,

is famous for the number of its reformulations. Three of them
found by the author at different time are discussed in this paper.

The Four Color Conjecture (4CC) which in 1977 became the Four Color
Theorem (4CT) of Kenneth Appel and Wolfgang Haken [2], [3], [4] has many
equivalent reformulation. This property is characteristic to many outstanding
mathematical problems but the diversity of areas of mathematics that turn
out to be related to coloring maps on sphere is extraordinary.

In this paper, we deal with 3 reformulations of the 4CT. The reason for
considering the first two of them is the hope to discover some day a new proof
of the 4CC accessible to a human-being.

The reformulation from Section 1 is given in such a language that allows
us to state a property of maximal planar graphs which is a bit stronger than
what follows straightforwardly from the 4CT.

The reformulation given in Section 2 introduces plenty of formal parameters
which might be useful for a new inductive proof of the 4CT.

In contrast, the reformulation in terms of Diophantine equations given in
Section 3 leaves no hope to use it for a new proof of the 4CT. On the one hand,
such a reformulation gives a “psychological” explanation why Diophantine
equations are difficult to solve. On the other hand, it could serve as a bridge
for transporting ideas and methods of Graph Theory into Number Theory.

Actually, each of the above mentioned reformulations is obtained via a
chain of intermediate reformulation numbered separately inside each section.
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1. Fixed point

Thanks to a theorem of P. G. Tait [20], the 4CT can be restated as an
assertion about edge colorability.

The 4CT (version 1.1). Edges of every maximal planar graph can be
properly colored in 3 colors.

Let G be a maximal planar graph with 3n edges, e1, . . . , e3n. Being depicted
on a sphere, such a graph induces its triangulation. We assign to an edge ek
a formal variable xk and consider polynomials

PG(x1, . . . , x3n) =
∏

(xi − xj)(xj − xk)(xk − xi),(1.1)

QG(x1, . . . , x3n) = x1 · · ·x3nPG(x1, . . . , x3n),(1.2)

the product in (1.1) being taken over all 2n triples 〈i, j, k〉 such that edges
ei, ej , and ek go in clock-wise order on the boundary of one of the triangular
facets.

For the 3 colors, we select the three non-zero elements from F4, the finite
field with 4 elements. A mapping

(1.3) μ : {1, . . . ,3n}→ F4

is a proper edge coloring of graph G if and only if QG(μ(1), . . . , μ(3n)) �= 0.
Each element of F4 satisfies the equality x4 = x. Let Q′

G be the polyno-
mial resulting from polynomial QG after expanding the products in (1.2) and
replacing each monomial x4

k by xk and each monomial x5
k by x2

k.

The 4CT (version 1.2). For every maximal planar graph G, the polyno-
mial Q′

G has an odd coefficient.

This is indeed an equivalent reformulation by the following reasoning. Poly-
nomial QG is of degree at most 5 in each of the variables, so polynomial Q′

G

has degree at most 3 in each of the 3n variables and hence it is uniquely de-
termined by its values Q′

G(μ(1), . . . , μ(3n)) taken for all 43n mappings (1.3).
Thus if all of them were equal to zero, then the polynomial should be identical
to the zero polynomial from F4[x1, . . . , x3n].

Similar to Q′
G we define polynomial P ′

G as the result of expanding the
products in (1.1) and replacing each monomial x3

k by 1 and each monomial
x4
k by xk.

The 4CT (version 1.3). For every maximal planar graph G, the polyno-
mial P ′

G has an odd coefficient.

Each of the 2n factors in (1.1) can be expanded:

(xi − xj)(xj − xk)(xk − xi)(1.4)

= x2
ixk + x2

jxi + x2
kxj − xix

2
k − xjx

2
i − xkx

2
j .
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Let

RG(q, x1, . . . , x3n)(1.5)

= qn
∏(

x2
ixk + x2

jxi + x2
kxj +

(
xix

2
k + xjx

2
i + xkx

2
j

)
q
)
,

where the product is over the same 2n triples 〈i, j, k〉 as in (1.1), and let R′
G

be the result of expanding the products in (1.5), replacing each monomial x3
k

by 1, each monomial x4
k by xk, and each monomial qm by 1 or q corresponding

to the parity of m. Clearly, R′
G(−1, x1, . . . , x3n) = P ′(x1, . . . , x3n).

Polynomial R′
G is linear in q, that is, it can be written as

(1.6) R′
G(q, x1, . . . , x3n) =

2∑
i1=0

· · ·
2∑

i3n=0

(ai1,...,i3nq+ bi1,...,i3n)x
i1
1 · · ·xi3n

3n .

The 4CT (version 1.4). For every maximal planar graph G there are
indices i1, . . . , i3n such that numbers ai1,...,i3n and bi1,...,i3n from (1.6) are of
opposite parity.

It turns out that the 4CT, being stated in the above way, can be enhanced.

The 4CT (version 1.5). For every maximal planar graph G

(I) all numbers ai1,...,i3n from (1.6) are even,
(II) not all numbers bi1,...,i3n from (1.6) are even.

Part (II) is equivalent to the 4CT modulo part (I). The latter can be proved
by induction on n in a standard way. Namely, every maximal planar graph
has a vertex of degree 3, 4, or 5. We can remove such a vertex and fill in the
resulting hole by a smaller number of triangles, possibly, with gluing some
edges, and use the inductive assumption for such graphs with smaller number
of edges. It is rather tedious to perform such calculations by hand but they
can be easily done by any system of computer algebra.

Numbers ai1,...,i3n and bi1,...,i3n from (1.6) can be also defined in the fol-
lowing way. Let us assign numbers 0, 1, and 2 to edges inside each triangle
(this corresponds to the choice of one of summands in the right-hand side in
(1.4)). Such an assignment will be called an internal coloring of the edges.
In it two numbers are assigned to each edge, and their sum modulo 3 will be
called the weight of the edge. Two internal colorings will be called equivalent
if they produce the same weights for all edges. This relation splits all internal
colorings into classes of equivalent colorings.

An internal coloring will be called concurrent if the parity of the number
of triangles in which numbers 0, 1, and 2 follow in clock-wise order coincides
with the parity of n (this definition reflects the factor qn in (1.5)). Each
class of equivalent internal colorings splits into two subclasses of concurrent
and non-concurrent colorings respectively. Numbers ai1,...,i3n and bi1,...,i3n are
just the cardinalities of these subclasses.
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Part (I) of Version 1.5 of the 4CT tells us that on the subclass of concur-
rent internal colorings we can define an involution having no fixed point. Our
proof was computational, and it would be interesting to give a “natural” com-
binatorial definition of such an involution. Then we might hope to translate
this definition to similar subclasses of non-concurrent internal colorings. The
4CT tells us that we cannot avoid fixed points on these subclasses but we
might hope that for each such subclass a naturally defined convolution would
have at most one fixed point. In such a case, in order to give a new proof
of the 4CT it would remain to prove the existence of a fixed point for every
maximal planar graph.

2. Redundant axioms

The 4CT asserts that one property, “to be a planar graph”, is stronger than
another property, “to be 4-colorable”. We begin by introducing yet another
property also connected with planarity but equivalent (according to the 4CT)
to the 4-colorability.

Let G′ = 〈V ′,E′〉 and G′′ = 〈V ′′,E′′〉 be two graphs. A mapping L : V ′ →
V ′′ will be called embedding if xy ∈ E′ implies L(x)L(y) ∈ E′′ for every two
vertices x, y from V ′.

The 4CT (version 2.1). A graph G can be embedded into a Hamiltonian
planar graph if and only if it is 4-colorable.

Part “if” is trivial because every 4-colorable graph can be embedded into
the full graph K4. Part “only if” is equivalent to the 4CT due to a theorem
of H. Whitney [21].

A Hamiltonian cycle of a graph allows us to introduce a linear order on the
vertices: we fix one of them as the least vertex and order all other vertices by
walking along the Hamiltonian cycle in certain direction.

A Hamiltonian cycle of a graph allows us also to split its edges into internal
and external (the edges from the cycle itself can be classified as internal or
external in arbitrary way). Two edges will be called friends if they are either
both internal or both external.

An embedding of a graph G= 〈V,E〉 into a Hamiltonian planar graph in-
duces (non-strict) linear order x� y on the vertices of G and relation of friend-
ship on its edges. We will consider the latter as a relation F (x1, x2, x3, x4)
between four vertices x1, x2, x3, x4 such that x1x2 ∈ E and x3x4 ∈ E. In
order to slightly simplify certain formulas we will not distinguish notation
F (x1, x2, x3, x4), F (x2, x1, x3, x4), F (x3, x4, x1, x2), and so on.

Clearly, the two relations, � and F , should satisfy the following collections
of axioms.

A1. For all x1 and x2 from V ,

¬x1 � x2 ⇒ x2 � x1.
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A2. For all x1, x2 and x3 from V ,

x1 � x2 & x2 � x3 ⇒ x1 � x3.

A3. For all x1, x2 from V such that x1x2 ∈E,

¬x1 � x2 ∨¬x2 � x1.

A4. For all x1, . . . , x6 from V such that {x1x2, x3x4, x5x6} ⊆E,

F (x1, x2, x3, x4) & F (x3, x4, x5, x6) ⇒ F (x1, x2, x5, x6).

A5. For all x1, . . . , x6 from V such that {x1x2, x3x4, x5x6} ⊆E,

F (x1, x2, x3, x4)∨ F (x3, x4, x5, x6)∨ F (x1, x2, x5, x6).

A6. For all x1, . . . , x4 from V such that {x1x3, x2x4} ⊆E,

¬x1 � x2 & ¬x2 � x3 & ¬x3 � x4 ⇒ ¬F (x1, x3, x2, x4).

Vice versa, if for some graph G = 〈V,E〉 we were able to define a binary
relation � and a quaternary relation F satisfying axioms A1–A6, then graph G
can be embedded into a Hamiltonian planar graph.

If a graph G= 〈V,E〉 is 4-colorable, then we can embed it into K4 and thus
define relation � and F satisfying axioms A1–A6; in addition, these relations
would satisfy the following extra axioms.

A7. For all x1, . . . , x5 from V ,

x1 � x2 ∨ x2 � x3 ∨ x3 � x4 ∨ x4 � x5.

The 4CT (version 2.2). If for some graph the system of axioms A1–A7
is contradictory (that is, the graph is not 4-colorable), then the axioms A1–
A6 are contradictory (that is, the graph cannot be embedded into Hamiltonian
planar graph).

Why such a reformulation can be of interest? It gives a new parameter for
possible induction. Instead of eliminating all axioms A7 in a single jump, we
could try to do it step by step.

The 4CT (version 2.3). If for some graph the system consisting of all
axioms of types A1–A6 and a non-empty set S of axioms of type A7 is con-
tradictory, then, still keeping the contradiction, one can replace this set S by
another set S′ of axioms of type A7 having smaller cardinality than S.

Moreover, we can consider formal deduction of contradiction. Diverse for-
malism can be used to this goal, for example, the resolution rule. Namely, all
axioms A1–A7 can be rewritten as disjunctions of atomic formulas and their
negations. The resolution rule allows us to deduce from two disjunctions

(2.1) P1 ∨ · · · ∨ Pm ∨Q and ¬Q∨R1 ∨ · · · ∨Rn

their consequence

(2.2) [P1 ∨ · · · ∨ Pm ∨R1 ∨ · · · ∨Rn]
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(the square brackets denote that possible repeated disjunctive terms are glued
to single occurrences). A system of disjunctions is contradictory if and only
if, starting from them, one can deduce the empty disjunction (interpreted as
FALSE) by finitely many applications of the resolution rule.

If for some graph the system of axioms A1–A7 is contradictory, then we
can construct a tree of deduction of contradiction from these axioms by the
resolution rule. Such a tree has the empty disjunction at the root and the
axioms at leaves.

The same axiom might occur in this tree many times, and we could try
to find a method for reconstructing any such tree containing axioms of type
A7 into another tree with smaller number of leaves being the axioms of this
type. The 4CT implies that we can eliminate all occurrences of axioms A7,
but most likely this requires an exponential (or even greater) growth of the
size of the tree, and this is the “reason” why the proof of the 4CT is difficult.

3. Diophantine equations

In 1900, during the Second International Congress of Mathematicians held
in Paris, David Hilbert stated his famousMathematishe Probleme inherited by
the pending twentieth century from the passing nineteenth century. The Four
Color Conjecture was not included explicitly into this list of 23 problems;
however, as we shall see in this section, in a sense, implicitly Hilbert did
enquire after the 4CC.

This happened due to the 10th problem in which Hilbert asked “to devise
a process” for deciding whether a given Diophantine equation has a solution
or not. It took 70 years [23], [30] before it was established that there is no
algorithm required by Hilbert. The powerful technique developed for this
“negative result” also allows us to get many interesting “positive results”.
One of them is as follows: one can construct a Diophantine equation

(3.1) P (x1, . . . , xk) = 0

that has no solution if and only if the Four Color Conjecture is true.
Now that the 4CC has been proved, the above statement is trivial—one

can take for (3.1) any equation without solutions. The point is that such an
equation can be effectively constructed without the assumption of the valid-
ity of the 4CC. That implies that having applied the “process” that Hilbert
demanded to devise to (3.1) we would learn whether the 4CC is true or not.

Does the reformulation of the 4CC in terms of particular Diophantine equa-
tion open a way to produce a different proof the 4CT? Taking into account
the complexity of such an equation, this is implausible.

But we can change the order of things. The undecidability of Hilbert’s
tenth problem implies that we need to develop more and more new methods
to tackle more and more Diophantine equations, and the 4CT can be viewed
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as a sophisticated technique for proving that a particular class of Diophan-
tine equations has no solutions. One could try to “distill” the ideas of this
technique and apply them to other equations.

In this section, we outline a particular Diophantine equation unsolvability
of which is equivalent to the 4CC. Such an equation could be constructed from
a very general considerations. Namely, one could enumerate all maps, write a
computer program for determining whether the kth map is 4-colorable or not,
and, using the technique originally developed for tackling Hilbert’s problem,
transform this program into corresponding equation (3.1). However, in such a
case the specifics of the 4CC would be buried under the details of a particular
program. The construction presented here is much more straightforward.

3.1. From maps to integers. Our first goal is to restate the 4CC as a
property of non-negative integers; lower-case cursive Latin letters in formulas
will always range over such numbers.

3.1.1. Discrete maps. Originally, the 4CC was a prediction about the possibil-
ity to color abstract “geographical” maps. To make this notion more precise,
one has to deal with areas on the plane bounded by a Jordan curve. Instead
of this we can work with discrete maps.

Let Sm,n denote spiral graph with vertices numbered 1, . . . ,m, the ith and
jth vertices being adjacent in two cases:

• |i− j|= 1 (radial edges);
• |i− j|= n (spiral edges);

(see Figure 1). An arbitrary mapping

(3.2) μc : {1, . . . ,m}→ {0,1, . . . , c− 1}

can be viewed as an assignment of c colors to the vertices of Sm,n, the ith ver-
tex getting color μc(i). When all edges connecting vertices of different colors
are removed, the graph splits into connected components named countries.
Two countries are considered to be neighbours if one of the removed edges
had its ends in the both countries. Triple 〈m,n,μ〉 will be called discrete map.

In dual language, one could contract all edges connecting vertices of the
same color and glue resulting parallel edges; it is not difficult to understand
that any planar graph can be obtained in this way for sufficiently large values
of m and n and a suitable 6-color assignment (thanks to the trivial “Six color
theorem”).

Two discrete maps, 〈m,n,μ′
c′〉 and 〈m,n,μ′′

c′′〉, are equivalent if in both
cases the spiral graph splits into exactly the same connected components.

The 4CT (version 3.1). For every discrete map 〈m,n,μ6〉 there exists
an equivalent discrete map 〈m,n,μ4〉.
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Figure 1. Spiral graph S20,7.

3.1.2. Coding of tuples and maps. We need a method to represent a discrete
map by finitely many integers.

A sequence of non-negative integers dm, . . . , d1 can be packed into a single
number d having these numbers as digits in a certain positional notation:

d=
m∑

k=1

dkαa(k)(3.3)

= dm · · ·d1.(3.4)

For the weights of digits, we shall use elements of second order recurrent
sequence define for a≥ 4 by initial values

(3.5) αa(0) = 0, αa(1) = 1

and recurrent relation

(3.6) αa(k+ 1) = aαa(k)− αa(k− 1).

Because of the latter, the equality (3.3) by itself does not define numbers
dm, . . . , d1 in a unique way even under assumption that all these numbers are
strictly less than a. To avoid the ambiguity, we shall always suppose that
(3.3) is the greedy notation generated in the following way:

• if d= 0, put m= 0;
• if 0< d< a, put m= 1, d1 = d;
• if d≥ a, find the largest m such that αa(m)≤ d, put dm = �d/αa(m)
 and

define dm−1, . . . , d1 from the greedy notation of d− dmαa(m).
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Syntactically, the greedy notation can be characterized as the only repre-
sentation (3.3) such that dm > 0, dk < a for all k and (3.4) does not contain
the pattern

(a− 1)(a− 2) · · · (a− 2)(a− 1)

because

(a− 1)αa(n) +

n−1∑
k=l+1

(a− 2)αa(k) + (a− 1)αa(l)(3.7)

= αa(n+ 1) + αa(l− 1).

The jth digit in the greedy notation of d will be denoted δa,j(d).
Let M(m,n,d) be the discrete map 〈m,n,μ〉 where μ(k) = δ7,k(d).

The 4CT (version 3.2). There are no numbers m,n,d6 such that d6 <
α7(m+ 1) and for every number d4 such that d4 <α7(m+ 1)

• either δ7,k(d4)≥ 4 for some k such that k ≤m
• or discrete maps M(m,n,d6) and M(m,n,d4) are not equivalent.

The non-equivalence of two discrete maps can be expressed explicitly.

The 4CT (version 3.3). There are no numbers m,n,d6 such that d6 <
α7(m+1) and for every number d4 such that d4 <α7(m+1) there is a number
k such that

• either k ≤m and δ7,k(d4)≥ 4
• or at least one of the following conditions holds:

•• k+ 1≤m, δ7,k(d6) = δ7,k+1(d6) but δ7,k(d4) �= δ7,k+1(d4),
•• k+ 1≤m, δ7,k(d6) �= δ7,k+1(d6) but δ7,k(d4) = δ7,k+1(d4),
•• k+ n≤m, δ7,k(d6) = δ7,k+n(d6) but δ7,k(d4) �= δ7,k+n(d4),
•• k+ n≤m, δ7,k(d6) �= δ7,k+n(d6) but δ7,k(d4) = δ7,k+n(d4).

3.2. Pure arithmetic. Our next goal is to get rid of functions α and δ used
in Version 3.3 of the 4CT.

3.2.1. Properties of numbers αa(n). Besides recurrent definition (3.5)–(3.6)
these numbers can be defined directly:

(3.8) αa(k) =
ωk
a − ω−k

a√
a2 − 4

,

where

(3.9) ωa =
a+

√
a2 − 4

2
.

Respectively,

(3.10) ω−k
a = αa(k+ 1)− ωaαa(k).
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Using (3.8)–(3.9) (or induction) it is easy to prove that

αa(k+ l) = αa(k+ 1)αa(l)− aαa(k)αa(l) + αa(k)αa(l+ 1),(3.11)

αa(k+ 1)2 − aαa(k+ 1)αa(k) + αa(k)
2 = 1.(3.12)

The contrary to the last identity is also true.

Lemma A ([30, Section 2.1]). If x2
1 − ax1x0 + x2

0 = 1 and x0 < x1 then
x0 = αa(x) and x1 = αa(x+ 1) for some x.

Let

Δ(a, l0, l1, d, e) ⇐⇒(3.13)

a≥ 4 & ∃l
[
l > 0 & l0 = αa(l) & l1 = αa(l+ 1) & e= δa,l(d)

]
.

The 4CT (version 3.4). There are no numbers m1,m0, n1, n0, d6 such
that

m2
1 − 7m1m0 +m2

0 = 1, m0 <m1,(3.14)

n2
1 − 7n1n0 + n2

0 = 1, n0 < n1,(3.15)

d6 <m1(3.16)

and for every number d4 such that

(3.17) d4 <m1

there are numbers k0 and k1 such that

(3.18) k21 − 7k1k0 + k20 = 1, k0 < k1

and

• either k0 ≤m0 and there is number e such that

(3.19) Δ(7, k0, k1, d4, e), e≥ 4

• or there are numbers l1 and l0 such that
••

(3.20) l0 ≤m0

•• and
• • • either

(3.21) l0 = k1, l1 = 7k1 − k0

• • • or

(3.22) l0 = k1n0 − 7k0n0 + k0n1, l1 = k1n1 − k0n0

•• and there are numbers e′, e′′, e′′′, e′′′′ such that

Δ
(
7, k0, k1, d6, e

′), Δ
(
7, l0, l1, d6, e

′′),(3.23)

Δ
(
7, k0, k1, d4, e

′′′), Δ
(
7, l0, l1, d4, e

′′′′)(3.24)

and at least one of the following conditions holds:
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• • • e′ = e′′ but e′′′ �= e′′′′,
• • • e′ �= e′′ but e′′′ = e′′′′.

3.2.2. Diophantine definition of Δ. Our next goal is to define the relation Δ
via a Diophantine equation.

At first, we determine what is the fractional part of number −ωad for d
with greedy notation (3.3). According to (3.10),

−ωad+

m∑
k=1

dkαa(k+ 1) =

m∑
k=1

dkω
−k
a(3.25)

<
∞∑
k=2

(a− 2)ω−k
a + (a− 1)ω−1

a = 1.(3.26)

This implies that

(3.27) {−ωad}=
m∑

k=1

dkω
−k
a .

Suppose that greedy notation (3.3)–(3.4) was split into two parts:

d= dL + dR(3.28)

=

m∑
k=l+1

dkαa(k) +

l∑
k=1

dkαa(k)(3.29)

= dm · · ·dl+10 · · ·0 + dl · · ·d1.(3.30)

By the syntactical definition of greedy notation number dR satisfies the in-
equality

(3.31) dR ≤ (a− 1)αa(l) +

l−1∑
k=1

(a− 2)αa(k) = αa(l+ 1)− 1

and, according to (3.27), number dL satisfies the inequality

(3.32) {−ωadL}<
∞∑

k=l+2

(a− 2)ω−k
a + (a− 1)ω−l−1

a = ω−l
a .

At least one of the two inequalities, (3.31) or (3.32), can be improved.
Namely, due to notation (3.4) being greedy, at least one of the following
holds:

(L) dm · · ·dl+1 does not end by (a− 1)(a− 2) · · · (a− 2);

(R) dl · · ·d1 does not begin by (a− 2) · · · (a− 2)(a− 1).

Condition (R) is equivalent to the inequality

(3.33) dR ≤
l∑

k=1

(a− 2)αa(k) = αa(l+ 1)− αa(l)− 1
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and condition (L) is equivalent to the inequality

(3.34) {−ωadL}<
∞∑

k=l+1

(a− 2)ω−k
a = ω−l

a − ω−l−1
a .

Suppose now that we know about some number d only that it is the sum
(3.28) of two numbers dL and dR which satisfy inequalities dL > 0, (3.31)–
(3.32) and at least one of the inequalities (3.33) or (3.34) for certain number l.

Inequality (3.31) implies that the greedy notation of number dR has at
most l digits, in other words, it is of the form dl′ · · ·d1 for some l′ ≤ l.

Inequality (3.32) implies that the greedy notation of dL ends with (at least)
l zeros, in other words, it is of the form dm · · ·dl+10 · · ·0 for some m.

If inequality (3.33) holds, then either l′ < l or the greedy notation of dR
does not begin by (a− 2) · · · (a− 2)(a− 1). If inequality (3.34) holds, then the

greedy notation of dL does not end by (a− 1)(a− 2) · · · (a− 2). In both cases
dm · · ·dl+10 · · ·0dl′ · · ·d1 is the greedy notation of number d. This implies that
the lth digits of numbers d and dR coincide and are equal to �dR/αa(l)
.

The above considerations show that Δ(a, l0, l1, d, e) holds if and only if

a≥ 4, l0 > 0(3.35)

l21 − al1l0 + l20 = 1,(3.36)

and there are numbers dL, dL and f such that

d= dL + dR,(3.37)

el0 ≤ dR < (e+ 1)l0,(3.38)

dR ≤ l1 − 1,(3.39)

0≤ f − ωadL <ω−l
a(3.40)

and either

(3.41) dR ≤ l1 − l0 − 1

or

(3.42) f − ωadL <ω−l
a − ω−l−1

a .

Conditions (3.40) and (3.42) can be rewritten without the irrationality√
a2 − 4 on the basis of equivalence

χ> η
√
a2 − 4 ⇐⇒(3.43) (

η ≥ 0 & χ> 0 & χ2 >
(
a2 − 4

)
η2

)
∨

(
η < 0 &

(
χ≥ 0∨ χ2 <

(
a2 − 4

)
η2

))
.

Inequalities can be transformed into equalities at the cost of introduction
of new unknowns:

(3.44) x≤ y ⇐⇒ ∃z[x+ z = y], x < y ⇐⇒ ∃z[x+ z + 1= y].
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Disjunction or conjunction of two equalities can be combined into a single
equality:

x = 0∨ y = 0 ⇐⇒ xy = 0,
(3.45)

x = 0 & y = 0 ⇐⇒ x2 + y2 = 0.

Applying systematically equivalences (3.43)–(3.45) to conditions (3.35)–
(3.42) we can construct the desired polynomial D(a, l0, l1, d, e, x1, . . . , xJ) hav-
ing integer coefficients and such that

(3.46) Δ(a, l0, l1, d, e) ⇐⇒ ∃x1 · · ·xJ

[
D(a, l0, l1, d, e, x1, . . . , xJ) = 0

]
.

3.2.3. Final step. Now we can replace (3.19) and (3.23)–(3.24) by 5 copies
of the equation from (3.46) with proper substitutions for the parameters and
selecting fresh unknowns for each of the 5 equations. After that we once
again apply the equivalencies (3.44) and (3.45) and construct a particular
polynomial

(3.47) E(d4, d6,m0,m1, n0, n1, y1, . . . , yL),

which allows us to get the following reformulation of the 4CT.

The 4CT (version 3.5). There are no numbers m1,m0, n1, n0, d6 satis-
fying the following condition: for every number d4 such that

(3.48) d4 <m1

there are numbers y1, . . . , yL such that

(3.49) E(d4, d6,m0,m1, n0, n1, y1, . . . , yL) = 0.

3.3. Elimination of the universal quantifier. We have an arithmetical
reformulation of the 4CT, however one of the variables, d4, is bounded by
universal quantifier.

3.3.1. Fixed number of existential variables. Version 3.5 of the 4CT can be
rephrased as follows.

The 4CT (version 3.6). There are no numbers m0,m1, n0, n1, d6 and

(3.50) y
〈0〉
1 , . . . , y

〈0〉
L , . . . , y

〈m1−1〉
1 , . . . , y

〈m1−1〉
L

such that

E
(
0, d6,m0,m1, n0, n1, y

〈0〉
1 , . . . , y

〈0〉
L

)
= 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

E
(
d4, d6,m0,m1, n0, n1, y

〈d4〉
1 , . . . , y

〈d4〉
L

)
= 0,(3.51)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

E
(
m1 − 1, d6,m0,m1, n0, n1, y

〈m1−1〉
1 , . . . , y

〈m1−1〉
L

)
= 0.
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We cannot use (3.45) to compress system (3.51) into a single equation
because the numbers of variables and equation is indefinite, so we should use
a different technique to this goal.

Suppose that the 4CC is not valid, that is, there are numbers m0, m1, n0,
n1, d6, and numbers (3.50) satisfying (3.51). Let y be a number greater than
each of the numbers (3.50).

Let w be a (large) number such that

(3.52) w ≡−1
(
mod m1!

2y!
)

and let

(3.53) ρw(d4) =
w+ 1

d4 + 1
− 1.

It is easy to check that numbers ρ(0), . . . , ρ(m1 − 1) are relatively prime in-
tegers and hence by the Chinese Remainder theorem we can find numbers
z1, . . . , zL such that for k = 1, . . . ,L and d4 = 0, . . . ,m1 − 1

(3.54) zk ≡ y
〈d4〉
k

(
mod ρw(d4)

)
.

If w >m1y, then ρw(d4)> y
〈d4〉
k and hence congruence (3.54) uniquely deter-

mines y
〈d4〉
k . Our goal is to express all the equalities (3.51) directly in terms

of numbers z1, . . . , zL without preliminary decoding numbers (3.50).
To begin with, we replace equalities (3.51) by weaker conditions in the form

of congruences:

E
(
0, d6,m0,m1, n0, n1, y

〈0〉
1 , . . . , y

〈0〉
L

)
≡ 0

(
mod ρw(0)

)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

E
(
d4, d6,m0,m1, n0, n1, y

〈d4〉
1 , . . . , y

〈d4〉
L

)
≡ 0

(
mod ρw(d4)

)
,(3.55)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

E
(
m1 − 1, d6,m0,m1, n0, n1, y

〈m1−1〉
1 , . . . , y

〈m1−1〉
L

)
≡ 0(

mod ρw(m1 − 1)
)
.

We could deduce (3.51) from (3.55) if we were sure that

(3.56) ρw(d4)>
∣∣E(

d4, d6,m0,m1, n0, n1, y
〈d4〉
1 , . . . , y

〈d4〉
L

)∣∣.
The right-hand side in (3.56) can be easily bounded. Let Ẽ(d6,m0,m1, n0,
n1, y) be the polynomial resulting from E(d4, d6,m0,m1, n0, n1, y1, . . . , yL) af-
ter the following three operations:

• each coefficient is replaced by its absolute value;
• d4 is replaced by m1;
• y1, . . . , yL are replaced by y.



FOUR COLOR THEOREM FROM THREE POINTS OF VIEW 199

Clearly, if d4 <m1 and

(3.57) y
〈d4〉
1 < y, . . . , y

〈d4〉
L < y

then

(3.58)
∣∣E(

d4, d6,m0,m1, n0, n1, y
〈d4〉
1 , . . . , y

〈d4〉
L

)∣∣ ≤ Ẽ(d6,m0,m1, n0, n1, y).

The advantage of working with congruences instead of equalities is as fol-
lows: noting that

d4 ≡w
(
mod ρw(d4)

)
and that numbers ρw(0), . . . , ρw(m1 − 1) are relatively prime we can combine
all congruences (3.55) into a single congruence

(3.59) E(w,d6,m0,m1, n0, n1, z1, . . . , zL)≡ 0

(
mod

(
w

m1

))

because (
w

m1

)
=

m1−1∏
d4=0

ρw(d4).

In a similar way, we can combine inequalities (3.57). At first they can be
rewritten as

(3.60)

y−1∏
j=0

(
y
〈d4〉
1 − j

)
= · · ·=

y−1∏
j=0

(
y
〈d4〉
L − j

)
= 0

and, taking into account (3.54), we get

(3.61)

y−1∏
j=0

(z1 − j)≡ · · · ≡
y−1∏
j=0

(zL − j)≡ 0
(
mod ρw(d4)

)
.

Moreover, ρw(d4) and y! are relatively prime and hence we can divide by y!
getting stronger congruences

(3.62)

(
z1
y

)
≡ · · · ≡

(
zL
y

)
≡ 0

(
mod ρw(d4)

)

and then combine them into L congruences

(3.63)

(
z1
y

)
≡ · · · ≡

(
zL
y

)
≡ 0

(
mod

(
w

m1

))
.

Suppose now that some numbers d6, m0, m1, n0, n1, w, y, z1, . . . , zL
satisfy conditions (3.59) and (3.63). Let d4 be any number satisfying (3.48).
Congruences (3.63) imply (3.62), and hence (3.61) as well. Unfortunately, the
latter congruences do not imply equalities (3.60). To overcome this obstacle,
we can use the following principles.
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Multiplicative Dirichlet principle. If

(3.64) r|b1 · · · bn

then there are numbers q and j such that

(3.65) q|r, q ≥ rn
−1

, 1≤ j ≤ n, q|bj .

Multidimentional multiplicative Dirichlet principle. If

(3.66) r|b1,1 · · · b1,n, . . . , r|bm,1 · · · bm,n

then there are numbers q and j1, . . . , jm such that

(3.67) q|r, q ≥ rn
−m

, 1≤ jk ≤ n, q|bk,jk , k = 1, . . . ,m.

According to the latter principle there are numbers q and j1, . . . , jL such
that

q|ρw(d4),(3.68)

q ≥ ρw(d4)
y−L

,(3.69)

j1 < y, . . . , jL < y,(3.70)

q|z1 − j1, . . . , q|zL − jL.(3.71)

We define y
〈d4〉
1 = j1, . . . , y

〈d4〉
L = jL, so inequalities (3.57) are satisfied and

hence inequality (3.58) holds.
Instead of (3.55), now we have a weaker congruence

(3.72) E
(
d4, d6,m0,m1, n0, n1, y

〈d4〉
1 , . . . , y

〈d4〉
L

)
≡ 0 (mod q).

Nevertheless, we can deduce the desired equality (3.51) if we impose the fol-
lowing restriction on w:

(3.73) w >m1αẼ(d6,m0,m1,n0,n1,y)+4

(
αy+4(L+ 1) + 1

)
.

Indeed, together with (3.69), (3.53), (3.48), (3.8), (3.57), and (3.58) this in-
equality implies a counterpart of (3.56),

q >
∣∣E(

d4, d6,m0,m1, n0, n1, y
〈d4〉
1 , . . . , y

〈d4〉
L

)∣∣,
which together with (3.72) implies (3.51).

The 4CT (version 3.7). There are no numbers m0, m1, n0, n1, d6, w,
y, and z1, . . . , zL satisfying conditions (3.59), (3.63), and (3.73).
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3.3.2. Elimination of binomial coefficients. In order to eliminate binomial
coefficients encountered in (3.59) and (3.63), let us consider number

(3.74) p=

m∑
n=0

(
m

n

)
αa(n) = (ωa + 1)mσ,

where σ stands for (1− αa(m+ 1) + ωaαa(m))/
√
a2 − 4. If

(3.75) a > α4(m+ 1)

then the greedy notation of p consists of the binomial coefficients from (3.74),
so using (3.46) we can “extract” a required coefficient from p.

If a′, a′′, a′′′, and a′′′′ are such numbers that

(3.76)
ωa′

ωa′′
<ωa + 1<

ωa′′′

ωa′′′′

then

(3.77)
ωm
a′

ωm
a′′

σ < p <
ωm
a′′′

ωm
a′′′′

σ.

We can select numbers a′, . . . , a′′′′ in such a way that the two fractions in
(3.76) will be arbitrary close to ωa + 1, in particular, so close that

(3.78)
ωm
a′′′

ωm
a′′′′

σ− ωm
a′

ωm
a′′

σ <
1

2
.

Being an integer, number p is uniquely determined by inequalities (3.77) and
(3.78).

According to (3.10) powers ωm
a′ , . . . , ωm

a′′′′ in (3.77) and (3.78) can be
expressed via values of αa(k) for a= a′, a′′, a′′, a′′′ and k = 1,m,m+1. Using
(3.43), we can further eliminate all the irrationality.

3.3.3. Diophantine definition of αa and its application. Now we are able to
reformulate the 4CT as a statement about the non-existence of finitely many
numbers satisfying certain conditions expressed by formulas constructed with
operations of addition and multiplication and function αa(k). It remains
to express this function by Diophantine equations. Lemma A is no longer
sufficient for this goal because now we need explicit dependence on k, so we
have to use more involved system of Diophantine equations.

Lemma B ([30, Section 2.3]). Let a ≥ 4. Then b = αa(k) if and only if
there are numbers r, s, t, u, v,w,x, y such that

u2 − aut+ t2 = 1,

s2 − asr+ r2 = 1,

r < s,

u2|s,
v = as− 2r,
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v|w− a,

u|w− 2,

w > 2,

x2 −wxy+ y2 = 1,

2a < u,

v|x− b∨ v|x+ b,

2b≤ x,

u|x− k ∨ u|x+ k,

k < 2u.

Using Lemma B, we can at first construct a polynomial C(c,m,n, z1, . . . ,
zK) such that

(3.79) c=

(
m

n

)
⇐⇒ ∃z1, . . . , zK

[
C(c,m,n, z1, . . . , zK) = 0

]
.

Using L+ 1 copies of this polynomial we can replace conditions (3.59) and
(3.63) by a system of Diophantine equations. Lemma B also allows us to
replace the inequality (3.73) by a Diophantine equation. Final application of
(3.45) will produce the desired equation (3.1).

Bibliographical notes

Fixed point. Polynomial PG from (1.1) can be constructed as follows.

• Construct graph G′ planary dual to G, that it, vertices of G′ correspond
to the triangular facets generated by G and edges of G′ connect vertices
corresponding to neighbouring facets;

• construct G′′, the line graph of graph G′, that is, vertices of G′′ correspond
to the edges of G′ and edges of G′ connect vertices corresponding to edges
of G′ incident to the same vertex of G′;

• PG is so called graph polynomial of G′′; such polynomials were studied
already by J. Peteresen [16].

Polynomials similar to PG and QG from (1.1)–(1.2) were used by the author
in [27] for giving a criteria of vertex colorability in terms of edge orientations.
This criteria was later rediscovered by N. Alon and M. Tarsi [1].

The evenness of numbers ai1,...,i3n asserted in version 1 of the 4CT was
presented as an open problem in [29] and stated (without proof) as a theorem
in [14]; a proof (unfortunately, also computational) was given later by A. J.
Gooddal [10, Th. 4.6.3]. Several other distinctions between numbers ai1,...,i3n
and bi1,...,i3n , sufficient for establishing the colorability, were also stated in [14]
without proofs; proofs were given much later in [31]. Such results allow one
to reformulate the 4CC as statements about some conditional probabilities of
certain events involving planar graphs [12], [32], [13]. More general results of
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similar kind are presented in [10]. For yet another application of polynomials
PG see [8].

Redundant axioms. The idea of using formal logical proofs for establishing
theorems in discrete mathematics was put forth by the author in [25] where
this idea was demonstrated by a new proof of König’s theorem about the
existence of an odd cycle in a graph with chromatic number greater than 2.
In [26] a new proof was given to Vitaver’s theorem ([22], rediscovered in [19],
[9]): if the chromatic number of a graph is greater than k, then for every
orientation of its edges there is an oriented path of length n.

Yet another proof was of Vitaver’s theorem was given in [28] where this the-
orem and the 4CC were reformulated as statements about the redundancy of
certain axioms. It is interesting to note that for a suitable formalization of Vi-
taver’s theorem more axioms turn out to be redundant, and their elimination
would further give Minty’s theorem from [15]. It seems that this relationship
between Vitaver’s and Minty’s theorems was not noticed before.

The resolution rule is widely known due to J. A. Robinson [18] who gave an
efficient algorithm for its application in the predicate calculus. However, the
propositional version of this rule required for our purposes was known long
before, for example, in works of Russian logician P. S. Poretsky (1846–1907).

Diophatine equations. Version 3.1 of the 4CT is based on the rather evi-
dent fact that every “geographical” map is equivalent to some discrete map;
formal proofs can be found in [17] and [11, preliminary version].

If a in Lemma A is even, a = 2d, then we can change the variables by
putting y = x1− dx0 and get a special case of the so-called Pell equation y2−
(d2 − 1)x0 = 1; Lemma A just extends the well-known structure of solutions
of Pell equations to the case of an odd a.

Version 3.5 of the 4CT is just a very special case of a very general result
of M. Davis [5] who characterized the whole class of statements that can be
reformulated by arithmetical formulas with single bounded quantifier.

Davis and H. Putnam further showed how this bounded universal quantifier
can be eliminated at the cost of passing to exponential Diophantine equations.
Their proof was conditional–under the assumption that there are arbitrary
long arithmetical progressions consisting entirely of prime numbers. This fact
was proved B. Green and T. Tao [7] only in 2008. However, much earlier
J. Robinson was able to modify the Davis–Putnum construction and replace
such progressions by arithmetical progressions composed of pairwise relatively
prime numbers having arbitrary large prime factors; the unconditional proof
was published in [6].

The version of Davis–Putnam–Robinson techniques used in this paper
avoids working with primality completely thanks to the multiplicative Dirich-
let principle. It and its application for this goal were introduced in [24].
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Discrete maps and binomial coefficients were used in [11] for yet another
arithmetical reformulation of the 4CT but of a rather different nature. While
version 3.7 does not leave hope to use it for a new proof of the theorem, the
reformulation given in [11] might lead to a human-verifiable proof in the case
of further progress of powerful technique for proving binomial identities.
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