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TWISTED REIDEMEISTER TORSION AND THE THURSTON
NORM: GRAPH MANIFOLDS AND FINITE

REPRESENTATIONS

STEFAN FRIEDL AND MATTHIAS NAGEL

Abstract. We show that the Thurston norm of any irreducible
3-manifold can be detected using twisted Reidemeister torsions

corresponding to integral representations and also corresponding

to representations over finite fields. In particular, our result holds

for all graph manifolds, these are not covered by the earlier work
of the first author and Vidussi.

1. Introduction

Define for an oriented surface Σ with components Σi the complexity

χ−(Σ) :=
∑
i

max
(
−χ(Σi),0

)
.

For a 3-manifold N , Thurston [Thu86] introduced a semi-norm on H2(N,∂N ;
Z). This semi-norm, now called Thurston norm, is defined as

‖σ‖T := min
{
χ−(Σ) : Σ oriented, embedded surface with [Σ] = σ

}
,

where [Σ] denotes the fundamental class of an oriented surface Σ. By Poincaré
duality, we transfer this norm to H1(N ;Z) and henceforth consider it only as
a semi-norm on cohomology.

The cell complex C∗(Ñ ;Z) of a universal cover Ñ ofN inherits the structure
of a Z[π1(N)]-module from the deck transformations.

Fixing a field K, we can tensor this chain complex with a (K(t),Z[π1(N)])-

bimodule A, obtaining C∗(N ;A) := A ⊗Z[π1(N)] C∗(Ñ ;Z). For a g ∈ π1(N),
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692 S. FRIEDL AND M. NAGEL

the endomorphism gA : A→ A given by gA(v) := v · g is a linear map of the
K(t)-vector space A.

In Section 2, we recall the definition of the twisted Reidemeister torsion
τ(N,A) ∈K(t) where we assume the chain complex C∗(N ;A) to be acyclic.
The Reidemeister torsion τ(N,A) is a unit in K(t) and well-defined up to
multiplication with ±detgA for a g ∈ π1(N). Given an element p(t) ∈K[t] \
{0} in the polynomial ring with p(t) =

∑l
i=k ait

i and al, ak both non-zero, we
define widthp(t) := l−k. We extend this assignment to any-non zero element
in the quotient field K(t) by declaring

width
(
p(t)/q(t)

)
=widthp(t)−width q(t),

for non-zero q(t) ∈K[t].
If the chain complex C∗(N ;A) is not acyclic, we adopt the convention that

width τ(N,A) = 0. This differs from the convention in [Nag14].

Definition 1.1. (1) A representation V of a group G is a (K,Z[G])-
bimodule, i.e. a K-vector space with a linear right action by G.

(2) Let V be a representation of π1(N). For an element θ ∈ H1(N ;Z),
we denote by Vθ the (K(t),Z[π1(N)])-bimodule with underlying K(t)-vector
space Vθ :=K(t)⊗K V and right π1(N)-action given by

(z ⊗ v) · g := zt〈θ,g〉 ⊗ v · g,

where 〈θ, g〉 is the evaluation of θ ∈H1(N ;Z) = Hom(π1(N),Z) on g ∈ π1(N).

It has been known for a very long time that Reidemeister torsions, or
perhaps more precisely, its close cousin the Alexander polynomial, give a
lower bound on the genus of a knot. This inequality was generalised in [FK06,
Theorem 1.1] as follows.

Theorem 1.2. Let N be a 3-manifold. Let θ ∈H1(N ;Z) be a cohomology
class. For every representation V of π1(N) the Thurston norm ‖θ‖T satisfies
the inequality

(dimV ) · ‖θ‖T ≥width τ(N,Vθ).

In [FV15, Theorem 1.2] it was shown that for any irreducible 3-manifold
that is not a closed graph manifold there exists a unitary representation such
that the corresponding twisted Reidemeister torsions detect the Thurston
norm. The proof of that result relies on the fact, as it was put in [AD15], that
by the work of Agol [Ago13], Przytycki–Wise [PW12] and Wise [Wis12] such
3-manifolds are “full of cubulated goodness”.

By the above theorem, the integer width τ(N,Vθ) is a lower bound on
(dimV ) · ‖θ‖T . If we have equality (dimV ) · ‖θ‖T = width τ(N,Vθ), then we
say the representation V of π1(N) detects the Thurston norm of θ ∈H1(N ;Z).

The following theorem is the main result of this paper.
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Theorem 1.3. Let N be an irreducible 3-manifold which is not D2 × S1.
For every θ ∈H1(N ;Z) there is a representation V factoring through a finite
group which detects the Thurston norm of θ, that is, such that

(dimV ) · ‖θ‖T =width τ(N,Vθ).

Additionally, the representation V can be chosen to be either

(1) defined over the complex numbers and be integral, or
(2) defined over a finite field Fq for almost all primes q.

Note that a complex representation which factors through a finite group
can be made unitary.

Our main theorem extends [FV15, Theorem 1.2] in two ways: It extends
the statement over to closed graph manifolds, that were excluded in [FV15]
since these are in general “not full of cubulated goodness”, see [Liu13]. This
extension relies on recent work of the second author [Nag14, Theorem 2.15].

Secondly, our theorem gives a refined statement about which types of rep-
resentations can detect the Thurston norm. In particular, the result that
representations over finite fields can be used plays a critical role in the proof
in [BF15] that the profinite completion of the knot group determines the knot
genus.

We conclude this Introduction with an observation. By [FK06, Section 3],
the degrees of twisted Reidemeister torsions of a 3-manifold N only depend
on the fundamental group and on whether or not N has boundary. We thus
obtain the following corollary.

Corollary 1.4. The Thurston norm of an irreducible 3-manifold is an
invariant of its fundamental group.

For closed 3-manifolds that is of course also a consequence of the fact
that irreducible 3-manifolds that are not lens spaces are determined by their
fundamental groups, see [AFW15, Chapter 2.1] for detailed references. For 3-
manifolds with boundary the statement is slightly less obvious, since there are
non-homeomorphic irreducible 3-manifolds with non-trivial boundary which
have isomorphic fundamental groups. It should not be hard though to prove
Corollary 1.4 using the theory of Dehn flips introduced by Johannson, see
[Joh79, Section 29] and [AFW15, Chapter 2.2] for details.

Conventions. A 3-manifold is understood to be connected, smooth, com-
pact, orientable and having only toroidal boundary, which can be empty.
A vector space is also understood to be finite dimensional.

2. Preliminaries

For this section, we fix an irreducible 3-manifold N with a CW-structure.
Let K be a field.
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A universal cover π : Ñ →N inherits an induced CW-structure. The deck
transformations act on Ñ from the left. With this left action the cellular chain
complex of Ñ is a chain complex of left Z[π1(N)]-modules, which we denote by

C∗(Ñ). For a subcomplex Y ⊂N the preimage π−1(Y ) is a CW-subcomplex

of Ñ and invariant under deck transformations. We define C∗(Ỹ ⊂N) to be
the cellular complex of π−1(Y ). This is a complex of left Z[π1(N)]-modules.
A lift of the cells of the CW-structure on N is called a fundamental family

and determines a basis of each chain module Ck(Ñ).
We can tensor the complex above with a (K(t),Z[π1(N)])-bimodule A. We

abbreviate the resulting modules by

C∗(N ;A) :=A⊗Z[π1(N)] C∗(Ñ),

C∗(Y ⊂N ;A) :=A⊗Z[π1(N)] C∗(Ỹ ⊂N).

Here K(t) denotes the quotient field of the polynomial ring in one variable. If
the chain complex C∗(N ;A) is not acyclic, then we define τ(N,A) := 0. If the
chain complex is acyclic, then its Reidemeister torsion τ(N,A) ∈K(t) \ {0}
is defined, see [Tur01] for an introduction. We quickly recall its construction.
As the chain complex C∗(N ;A) is acyclic, we obtain exact sequences of the
form

0→ Im∂i+1 →Ci(N ;A)→ Im∂i → 0.

We fix a basis for each Im∂i. From the basis of Im∂i+1 and a lift of a basis
of Im∂i, we obtain a basis bi of Ci(N ;A), which we will compare with the
basis ci of Ci(N ;A) given by a fundamental family and a basis of A. We
denote the matrix expressing the basis bi in terms of ci by [bi/ci]. Define the
Reidemeister torsion of C(N ;A) to be

τ(N,A) :=
∏
i

(
det[bi/ci]

)(−1)i+1

∈K(t).

It is non-zero element in K(t) well-defined up to multiplication with ±detgA
for g ∈ π1(N).

For future reference, we mention the following elementary lemma.

Lemma 2.1. If A and B are two (K(t),Z[π1(N)])-bimodules, then

τ(N,A⊕B) = τ(N,A) · τ(N,B).

Definition 2.2. (1) A representation V of π1(N) detects the Thurston
norm of θ ∈H1(N ;Z) if

(dimV ) · ‖θ‖T =width τ(N,Vθ).
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(2) Let H ≤ π1(N) be a subgroup of finite index and V a representation of H .
The induced representation of π1(N) is

Ind
π1(N)
H V := V ⊗Z[H] Z

[
π1(N)

]
.

Analogously define the induced (K(t),Z[π1(N)])-bimodule Ind
π1(N)
H A of

a (K(t),Z[H])-bimodule A.
(3) Given two representations V,W of π1(N), we can take the tensor product

of the underlying vector spaces V ⊗K W and equip it with the diagonal
action

(v⊗w) · g := (v · g)⊗ (w · g).
This defines a (K,Z[π1(N)])-bimodule denoted with V ⊗̂W .

Lemma 2.3. Let H be a subgroup of G and U a representation of G and
V a representation of H . Then the map

IndGH(ResH U ⊗̂ V )→ U ⊗̂ IndGH V

induced by

(u⊗ v)⊗ g �→ u · g⊗ (v⊗ g)

is an isomorphism of representations of G.

Proof. It is an isomorphism of vector spaces and it is equivariant with
respect to the G-action. �

Gabai [Gab83, Corollary 6.13] proved that the Thurston norm is well-
behaved under finite covers. Therefore, we are free to consider simpler finite
covers. This is made precise in the lemma below.

Lemma 2.4. Let p : M →N be a connected finite cover and θ ∈H1(N ;Z)

a cohomology class. If V detects the Thurston norm of p∗θ, then Ind
π1(N)
π1(M) V

detects the Thurston norm of θ.

Proof. By a result of Gabai [Gab83, Corollary 6.13] the Thurston norm
fulfils the equality deg p‖θ‖T = ‖p∗θ‖T .

Note that Resπ1(M)Kθ = Kp∗θ. Recall that by definition Vθ := Kθ ⊗̂ V .
With Lemma 2.3, we obtain(

Ind
π1(N)
π1(M) V

)
θ
=Kθ ⊗̂ Ind

π1(N)
π1(M) V = Ind

π1(N)
π1(M)

(
(Resπ1(M)Kθ) ⊗̂ V

)
= Ind

π1(N)
π1(M)(Kp∗θ ⊗̂ V ) = Ind

π1(N)
π1(M) Vp∗θ

as (K(t),Z[π1(N)])-bimodules. Let us abbreviate Vp∗θ with A and Ind
π1(N)
π1(M)

with just Ind.
First, we prove that the chain complex C∗(M ;A) is acyclic if and only if

C∗(N ; IndA) is acyclic. Choose the CW-structure on M which is induced of
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N . Using that Ñ = M̃ , the following map is an isomorphism of chain complex
of K(t)-vector spaces

A⊗Z[π1(M)] Z
[
π1(N)

]
⊗Z[π1(N)] C∗(Ñ)→A⊗Z[π1(M)] C∗(M̃),

v⊗ g⊗ e �→ v⊗ g · e.
Therefore one is acyclic if and only if the other is.

So let V detect the Thurston norm of p∗θ ∈H1(M ;Z), i.e. we have

(dimV ) ·
∥∥p∗θ∥∥

T
=width τ(M,A).

Note that we have the equality deg p · dimV = dimIndV .
We claim that equality width τ(M,A) = width τ(N,A) holds. We pick rep-

resentatives gi of right cosets, so π1(N) =
∐

i π1(M) · gi. Then we equip IndA
with the basis {v ⊗ gi}, where {v} is a basis of A. Given a fundamental
family {ẽ} for N , we equip M with the fundamental family {gi · ẽ}. With
these choices made, the isomorphism above also preserves the basis used for
calculating the Reidemeister torsion. Thus, even τ(M,A) and τ(N, IndA)
agree.

Combining the results obtained so far, we get

(dimIndV ) · ‖θ‖T = (dimV )
∥∥p∗θ∥∥

T
=width τ(M,A)

= width τ(N, IndA)

= width τ
(
N, (IndV )θ

)
. �

Definition 2.5. (1) Given a representation W of the group H and a group
homomorphism α : G→H , we can let Z[G] act through Z[H] and obtain a
representation Resα V of G.

(2) If a representation V of a group G is isomorphic to the restriction of a
representation of a finite group, we say V factors through a finite group.

(3) A representation V of G over C is called integral if there is a (Z,Z[G])-
bimodule W such that V ∼=C⊗Z W .

Lemma 2.6. Let H ≤ π1(N) be a finite index subgroup and V be a repre-

sentation of H . If V is integral, then also Ind
π1(N)
H V is integral. If V factors

through a finite group, then also Ind
π1(N)
H V factors through a finite group.

Proof. Let W be a (Z,Z[π1(N)])-bimodule witnessing that V is an integral
representation. We have

Ind
π1(N)
H V = V ⊗Z[H] Z

[
π1(N)

]
=C⊗Z

(
W ⊗Z[H] Z

[
π1(N)

])

and therefore Ind
π1(N)
H V is integral as well.

Now we consider the second property. So suppose that the representation
H → Aut(V ) factors through a finite group. This means that there exists a
finite-index normal subgroup K of H such that the representation restricted
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to K is trivial. Note that K is a finite-index subgroup of π1(N). Since
π1(N) is finitely generated the core Γ :=

⋂
g∈π1(N) gKg−1 of K is a finite-

index normal subgroup of π1(N). It suffices to show that Γ acts trivially on
V ⊗Z[H] Z[π1(N)]. This is indeed the case, since for v ∈ V and g ∈ π1(N) and
γ ∈ Γ we have

(v⊗ g) · γ = v⊗ gγ = v⊗ gγg−1g = v · gγg−1 ⊗ g = v⊗ g.

Here in the last equality we used that gγg−1 ∈ Γ⊂K. �
Definition 2.7. For a character α : π1(N)→ Z/kZ define the representa-

tion Cα to be the representation with underlying C-vector space C and right
action given by

Cα × π1(N)→Cα,

(z, g) �→ zα(g),

where we consider Z/kZ embedded in C as the k roots of unity via n+ kZ �→
exp (2πink ).

Remark 2.8. The representation Cα factors through a finite group but is
integral only for k = 2.

3. Closed graph manifolds

In this section, we only consider closed irreducible graph manifolds. Graph
manifolds with boundary will be dealt with later in Theorem 4.1.

Recall that every irreducible 3-manifold N admits the JSJ-decomposition,
a minimal collection T of embedded incompressible tori such that every com-
ponent of N |T is either ateroidal or Seifert fibred, where N |T is the manifold
N split along the tori.

Definition 3.1. An irreducible 3-manifold N is called a graph manifold if
all the pieces of its JSJ-decomposition are Seifert fibred.

We give a list of examples of graph manifolds below. The list is comprehen-
sive in the sense that every graph manifold is finitely covered by a manifold
contained in the list, see, for example, [Nag14, Proposition 2.9].

Example 3.2. (1) The 3-sphere S3,

(2) torus bundles,
(3) circle bundles,
(4) pieces of the form Σ×S1 glued together along their boundary tori, where

the surface Σ always has negative Euler characteristic.

The Thurston norm in the first two examples vanishes. It also has a simple
description for circle bundles and so we are mainly interested in understanding
the last class of the list above. The manifolds in the last class have a finite
cover that admits a graph structure, defined below.
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Definition 3.3. (1) A graph structure for N consists of maps

φ+ :
∐
v∈I+

Σv × S1 →N,

φ− :
∐
v∈I−

Σv × S1 →N

such that N is the push-out of the following diagram

∐
v∈I+ Σv × S1 N

∐
Te

∐
v∈I− Σv × S1

φ+

i+

i−

φ−

where i± are identifications of
∐

Te with components of
∐

∂Σv × S1. We
denote by φv the composition

φv : Σv × S1 ↪→
∐

μ∈I±

Σμ × S1 →N.

(2) For a manifold N with a graph structure, we refer to the homology
classes sv := φv∗[∗v×S1] as the class of the Seifert fibre in the block v. Define
a character α : π1(N)→ Z/kZ to be Seifert non-vanishing if 〈α, sv〉 �= 0 for all
v ∈ I±. This is well-defined as Z/kZ is an Abelian group.

Remark 3.4. Here, in comparison with the article [Nag14], we are more
restrictive in what we consider to be a (composite) graph structure. Our
graph structures here automatically have no self-pastings and the push-out
diagram directly gives rise to a Mayer–Vietoris sequence, which we use below
for the torsion computations.

Lemma 3.5. Let N be a graph manifold which does not admit a Seifert
fibred structure and is not a torus bundle. Then there is a finite cover

Ñ of N with a graph structure and on Ñ there is for all but finitely

many prime numbers p a character α : π1(Ñ)→ Z/pZ which is Seifert non-
vanishing.

Proof. The manifold N admits a finite cover M with a collection T of
embedded incompressible tori such that each component of M |T is of the form
Σ× S1 with Σ of negative Euler characteristic, see [Nag14, Lemma 2.13]. To
such a decomposition is associated the Bass–Serre graph which has vertices
the components of M |T and edges the tori in T .

If M were admitting a graph structure, then its Bass–Serre graph would
be bipartite. We can achieve this using a further finite cover which is induced
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by the kernel of the map

π1(M)→ Z2,

γ �→
∑
T∈T

γ · [T ].

The existence of the character α in a further cover follows from [Nag14,
Theorem 2.15]. �

Now we construct representations V which will detect the Thurston norm
on a 3-manifold N with a graph structure and a Seifert non-vanishing char-
acter α : π1(N)→ Z/pZ.

Definition 3.6. (1) A representation V of Z/pZ is called good if the linear
map (1− g)V : V → V is invertible as an endomorphism of the K-vector space
V for all non-trivial g ∈ Z/pZ.

(2) A representation V of π1(N) is called good if V is isomorphic to ResαW
for a good representation W of Z/pZ and a Seifert non-vanishing character α.

We give some examples of good representations for π1(N) in the list below.
Recall that the representation Cα was defined in Definition 2.7.

Example 3.7. Let p, q be two different prime numbers with q > 2 and a
Seifert non-vanishing character α : π1(N)→ Z/pZ.

(1) The representation Cα is good.
(2) The augmentation ideal I(C) of C[Z/pZ] is the kernel of the map

C[Z/pZ]→C,∑
g∈Z/pZ

agg �→
∑

g∈Z/pZ

ag.

It is a good representation of Z/pZ. Thus Iα∞ := Resα I(C) is a good
representation of π1(N). Additionally, this representation is integral.

(3) The augmentation ideal I(Fq) of Fq[Z/pZ] is good and so is Iαq :=
Resα I(Fq).

The following theorem is the main reason for considering good representa-
tions.

Theorem 3.8. Let N be a graph manifold with a graph structure. Every
good representation V detects the Thurston norm of θ for every θ ∈H1(N ;Z).

Some of the calculations have already been discussed elsewhere. We only
sketch these and refer to them [Nag14, Lemma 4.17, Proposition 4.18].

Proof of Theorem 3.8. Pick CW-structures such that the maps φ± and i±
are inclusion of subcomplexes. Let {Te} be the collection of graph tori. The
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graph structure of N gives rise to a short exact sequence

0→
⊕
e

C∗(Te ⊂N ;Vθ)
i+−i−−−−−→

⊕
v∈I±

C∗
(
Σv × S1 ⊂N ;Vθ

)
→C∗(N ;Vθ)→ 0.

Note as the representation V is good, the action of a Seifert fibre s on V only
depends on its homology class. Therefore, we consider the endomorphism (1−
sv)V : V → V for a Seifert fibre class sv . As good representations come from
Seifert fibre non-vanishing characters, the endomorphism (1−sv)V : V → V is
invertible. We abbreviate with ev : K(t)→K the evaluation homomorphism
ev p(t) = p(1). We have the equality

ev
(
det(1− sv)Vθ

)
= det(1− sv)V .

Consequently, we deduce from det(1− sv)V �= 0 that det(1− sv)Vθ
�= 0 as

well. Therefore, the chain complex C∗(Σv × S1 ⊂ N,Vθ) is acyclic and its
Reidemeister torsion is

τ
(
Σv × S1 ⊂N,Vθ

)
= det

(
(1− sv)Vθ

)−χ(Σv)
.

This can be seen as follows. Because φv injects π1(Σv×S1) into π1(N), we can
identify the chain complexes C∗(Σv ×S1 ⊂N ;Vθ)∼= Vθ ⊗C[π1(N)]⊗C∗(Σv ×
S1). Now the Reidemeister torsion of the right-hand side can be calculated
explicitly [Tur02, VII.5.2].

Similarly, we prove that the chain complex C∗(Te ⊂N ;Vθ) is acyclic as well
and τ(Te ⊂N ;Vθ) = 1, see for example [KL99, Example 3.3]. For this, it is
essential that 1 is not an eigenvalue of the endomorphism (sv)V . We obtain by
the above short exact sequence and the multiplicativity of the torsion [Tur01,
Theorem 1.5] that

τ(N,Vθ) =
∏
v∈I±

det
(
(1− sv)Vθ

)−χ(Σv)
.

We calculate widthdetVθ
(1− sv) = dimV |〈θ, sv〉|. Thus taking width in the

equation above, we get the equalities

width τ(N,Vθ) = (dimV )
∑
v∈I±

−χ(Σv)
∣∣〈θ, sv〉∣∣

= (dimV )
∑
v∈I±

∥∥φ∗
vθ

∥∥
T
= (dimV )‖θ‖T .

The second equality is a calculation of the Thurston norm in Σv × S1, see,
for example, [Nag14, Proposition 3.4]. The last equality holds by a result of
Eisenbud–Neumann [EN85, Proposition 3.5]. �

Now we prove Theorem 1.3 for closed graph manifolds.
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Theorem 3.9. Let N be a closed graph manifold. For every θ ∈H1(N ;Z)
there is a representation V factoring through a finite group which detects the
Thurston norm of θ. Additionally, the representation V can be chosen to be
either

(1) defined over the complex numbers and be integral, or
(2) defined over a finite field Fq with q > 2 prime.

Proof. The statement is vacuous if ‖θ‖T = 0. We can thus restrict ourselves
to the case that ‖θ‖T > 0. In particular, we can assume that N is neither
covered by S3 nor is it covered by a torus bundle [McM02, 7. Examples].
Also, the following claim shows that we can assume that N is not covered by
a non-trivial circle bundle of a surface.

Claim. If N is covered by a non-trivial circle bundle f : E →B, then the
Thurston norm vanishes on N .

Since f : E →B is a non-trivial circle bundle, the Euler class is non-trivial.
Using the Gysin sequence, we see that

H1(B)
f∗

→H1(E)

is surjective. Thus, we can represent every class in H2(E) by a multiple of
the fundamental class of a torus. Therefore, the Thurston norm vanishes on
E and so by [Gab83, Corollary 6.13] also on N . This concludes the proof of
the claim.

If N is the trivial circle bundle, then the representation Cα, Iα∞ and Iαq
will detect the Thurston norm of θ for any character α : π1(Σ× S1)→ Z/pZ
with prime p different from q which is non-zero on π1(S

1)⊂ π1(Σ×S1). If N
is finitely covered by a trivial circle bundle, then the induced representations

Indπ1(N)Cα, Indπ1(N) Iα∞, and Indπ1(N) Iαq will detect the Thurston norm by
Lemma 2.4.

So we are in the case that N does not admit a Seifert fibred structure. By
Lemma 3.5 there is a finite cover M →N such that M admits a graph struc-
ture and a character α : π1(N)→ Z/pZ which is Seifert fibre non-vanishing
and with prime p being different from q. By Theorem 3.8, the representations
Cα, Iα∞ and Iαq detect the Thurston norm of p∗θ. By Lemma 2.4, the rep-

resentations Indπ1(N)Cα, Indπ1(N) Iα∞ and Indπ1(N) Iαq detect the Thurston
norm of θ on N .

The representation Indπ1(N) Iα∞ is integral and Indπ1(N) Iαq is defined
over Fq . �

4. The proof of Theorem 1.3 for virtually fibred 3-manifolds

The goal of this section is to prove Theorem 1.3 for 3-manifolds that are not
closed graph manifolds. More precisely, we will prove the following theorem.
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Theorem 4.1. Let N be an irreducible 3-manifold that is not a closed graph
manifold and let θ ∈H1(N ;Z). Then the following hold:

(1) there is an integral representation V factoring through a finite group which
detects the Thurston norm, and

(2) for almost all primes q there is a representation V over the finite field Fq

which detects the Thurston norm.

The proof of Theorem 4.1 is, perhaps not surprisingly, a modification of
the proof of the main theorem of [FV15]. In an attempt to keep the paper
concise, we will only indicate which steps of [FV15] need to be modified.

A 3-manifold N is called fibred if it can be given the structure of a surface
bundle over S1. We say it is virtually fibred if N admits a finite cover which
fibres.

Definition 4.2. A class θ ∈H1(N ;Q) is called fibred if there exists a map
ρ : N → S1 and a class τ ∈H1(S1;Q) such that ρ : N → S1 is a fibre bundle
and ρ∗τ = θ.

The following theorem is the key topological ingredient in the proof of
Theorem 4.1. This theorem is a combination of the results of Agol [Ago08],
[Ago13], Przytycki–Wise [PW12], [PW14] and Wise [Wis12]. We refer to
[AFW15, Theorem 5.4.10 and (H.4)] for precise references.

Theorem 4.3. Let N be an irreducible 3-manifold that is not a closed graph
manifold. Then given a class θ ∈H1(N ;Q) there exists a finite regular cover
p of N such that the class p∗θ is in the closure of fibred classes.

In the proof of Theorem 4.1 we will need the following lemma, which is a
slight generalisation of [FV15, Lemma 5.7].

Lemma 4.4. Let F be a free Abelian group and let p1, . . . , pl ∈ Z[F ] be non-
zero elements. Then there exists a prime q and a homomorphism α : F →
Z/qZ such that for any j ∈ {1, . . . , q− 1} the character

ρj : Z/qZ→ S1,

a �→ e2πiaj/q

has the property that (ρj ◦α)(p1), . . . , (ρj ◦α)(pl) are non-zero elements of C.

Proof. As in the proof of [FV15, Lemma 5.7] we first note that there exists
a homomorphism Ψ: F → Z= 〈s〉 such that Ψ(p1), . . . ,Ψ(pl) ∈ Z[Z] = Z[s±1]
are non-zero polynomials. Since the polynomials Ψ(p1), . . . ,Ψ(pl) have finitely
many zeros it follows that there exists a prime q such that no primitive q-
th root of unity is a zero of any Ψ(pi), i = 1, . . . , l. The homomorphism

F
Ψ−→ Z→ Z/qZ has the desired property. �
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A representation V of a group G over a ring R is a (R,Z[G])-bimodule such
that V is a finitely generated free R-module. Given a representation V of G
over Z we denote by V C =C⊗Z V the corresponding complex representation
of G and given a prime p we denote by V p = Fp ⊗Z V the corresponding
representation of G over the finite field Fp.

Lemma 4.5. Let N be 3-manifold, let θ ∈H1(N ;Z) be non-trivial and let V
be an integral representation of π1(N). Then for all but finitely many primes
p we have

width
(
τ
(
N,V p

θ

))
=width

(
τ
(
N,V C

θ

))
.

Proof. We provide the proof in the case that N is closed. The case that N
has non-empty boundary is proved completely analogously.

We write π = π1(N). It follows from [FV11, p. 49] that there exist g,h ∈ π
with θ(g) �= 0 and θ(h) �= 0 and a square matrix B over Z[π] such that for any
representation W of π over a commutative ring R we have

τ(N,Wθ) = detW (B) · detW (1− g)−1 · detW (1− h)−1.

Here, given a k × k-matrix C over Z[π] we denote by detW (C) the deter-
minant of the homomorphism

W ⊗Z[π] Z[π]
k →W ⊗Z[π] Z[π]

k

given by right multiplication by id⊗C.
Now let V be an integral representation of π1(N). Given a prime p

we denote by ρp : Z → Fp the projection map. This map induces a map
ρp : Z[t±1]→ Fp[t

±1] and also a map

ρp :

{
x(t)

y(t)

∣∣∣x(t), y(t) ∈ Z
[
t±1

]
with ρp

(
y(t)

)
�= 0

}
→ Fp(t).

We let x(t) = detV (B) and y(t) = detV (1− g) · detV (1− h). It follows easily
from the above formula for Reidemeister torsions and the fact that taking
determinants commutes with ring homomorphisms that

τ
(
N,V C

θ

)
= x(t)y(t)−1

and that for any prime p we have

τ
(
N,V p

θ

)
= ρp

(
x(t)

)
· ρp

(
y(t)

)−1
.

Thus, if p is coprime to the bottom and the top coefficients of x(t) and y(t)
we have

width
(
τ
(
N,V p

θ

))
=width

(
τ
(
N,V C

θ

))
. �

For the record, we recall the well-known elementary fact.
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Lemma 4.6. Given q ∈N the augmentation ideal I(C) of C[Z/qZ], viewed
as a representation of Z/qZ, is isomorphic to the direct sum of the represen-
tations

rclρj : Z/qZ→Aut(C),

a �→
(
e2πija/q

)
with j ∈ {1, . . . , q− 1}.

Now we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Let N be 3-manifold which is not a closed graph
manifold and let θ ∈H1(N ;Z).

By Theorem 4.3, there exists a finite k-fold regular cover p : M →N such
that the class p∗θ is in the closure of fibred classes.

If we follow the proofs of Proposition 5.8 and Theorem 5.9 in [FV15], if we
replace [FV15, Lemma 5.7] by Lemma 4.4, and if we apply Lemmas 2.1 and 4.6
then we see that there exists a prime q and a homomorphism α : π1(M)→
Z/qZ such that

width
(
τ
(
M,

(
Resα I(C)

)
p∗θ

))
= (q− 1)xM

(
p∗θ

)
.

Put differently, the (q − 1)-dimensional representation Resα I(C) detects the
Thurston norm of p∗θ. Now the first part of theorem is an immediate conse-
quence of Lemma 2.6 together with Lemma 2.4.

The second part is a consequence of the first part together with Lemma 4.5.
�
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