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THE COORDINATE RING OF A SIMPLE POLYOMINO

JÜRGEN HERZOG AND SARA SAEEDI MADANI

Abstract. In this paper, it is shown that a polyomino is bal-
anced if and only if it is simple. As a consequence, one obtains

that the coordinate ring of a simple polyomino is a normal Cohen–
Macaulay domain.

Introduction

The study of the algebraic properties of ideals of t-minors of an (m× n)-
matrix of indeterminates is a classical subject of research in Commutative
Algebra. The basic reference on this subject is [1]. Gröbner bases of determi-
nantal ideals are treated in [8] and ladder determinantal ideals are considered
in [2]. In these articles, the reader finds further references to other aspects
of determinantal ideals. Hochster and Eagon [9] showed that determinantal
ideals define normal Cohen–Macaulay domains. There are various general-
izations of this result which include a similar statement as that of Hochster
and Eagon for ideals of minors of ladders. Ladders may be viewed as special
classes of polyominoes, which roughly speaking are figures obtained by joining
squares of equal size edge to edge. The squares which establish a polyomino
are called its cells. The precise definitions are given in Section 1. Polyominoes
which originally were considered in recreational mathematics have been and
still are subject of intense research in connection with tiling problems of the
plane, see, for example, [5] and [6].

Let P be a polyomino. We fix a field K and consider in a suitable polyno-
mial ring S over K the ideal of all t-minors belonging to P . It is natural to
ask for which shape of the polyomino this ideal of t-minors defines a Cohen–
Macaulay domain as it is the case for a matrix or a ladder. Here we restrict
our attention to the ideal of all 2-minors of a polyomino. The 2-minors be-
longing to a polyomino P , are called the inner minors, and the ideal IP they
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generate is called the ideal of inner minors of P or the polyomino ideal at-
tached to P . The residue class ring K[P ] defined by the polyomino ideal is
called the coordinate ring of P .

Polyomino ideals attached to polyominoes have been introduced by Qureshi
in [11] where, among other results, she showed that the coordinate ring of a
convex polyomino is a normal Cohen–Macaulay domain and where for stack
polyominoes she computed the divisor class group and determined those stack
polyominoes which are Gorenstein. A classification of convex polyominoes
whose polyomino ideal is linearly related is given in [4]. In a subsequent
paper [7] of Qureshi with Shikama and the first author of this paper, balanced
polyominoes were introduced. To define a balanced polyomino, one labels the
vertices of a polyomino by integer numbers in a way that row and column
sums are zero along intervals that belong to the polyomino. Such a labeling
is called admissible. To each admissible labeling α, a binomial fα is naturally
associated. The ideal JP generated by the fα generates the lattice ideal of a
certain saturated lattice Λ ⊂ Z

q for a suitable q. Balanced polyominoes are
exactly those for which IP = JP . Since the lattice ideal of a saturated lattice
is always a prime ideal, it follows that K[P ] is a domain if P is balanced.
Actually in [7], it is even shown that K[P ] is a normal Cohen–Macaulay
domain if P is balanced.

In [7], it is conjectured that a polyomino is balanced if and only if it is
simple. A polyomino is called simple if it is hole-free. The main result of
this paper is Theorem 2.1 in which we prove the above conjecture. As a
consequence, we obtain that the coordinate ring of a simple polyomino is a
normal Cohen–Macaulay domain. This result covers the case of row or col-
umn convex polyominoes as well as of tree-like polyominoes which are treated
in [7]. We also would like to mention that there are some examples of poly-
ominoes with holes whose coordinate rings nevertheless are domains. Thus, it
remains an open problem to classify all polyominoes whose coordinate rings
are domains.

The proof of our main result requires some combinatorial geometric argu-
ments which by a lack of suitable references we included to this paper. The
first fact needed is that the border of a simple polyomino is a simple recti-
linear polygon, in other words, a polygon which does not self-intersect and
whose edges intersect orthogonally. This fact allows us to define an admissible
border labeling which is crucial in the proof of the main theorem. We call a
corner c of a rectilinear polygon “good” if the rectangle spanned by c and its
neighbor corners belongs to the interior of the polygon. The other fact needed
in the proof is that any rectilinear polygon has at least four good corners. In
Computational Geometry, the rectilinear polygons are studied in connection
to the so called art gallery problem. They are also used in computer aided
manufacturing processes.
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1. Preliminaries on polyominoes, rectilinear polygons and related
algebraic concepts

In this section, we introduce simple and balanced polyominoes and present
some of their properties and related facts which are needed in the next section.

Let R
2
+ = {(x, y) ∈ R

2 : x, y ≥ 0}. We consider (R2
+,≤) as a partially or-

dered set with (x, y)≤ (z,w) if x≤ z and y ≤w. Let a, b ∈N
2 (by N, we mean

the set of all nonnegative integers). Then the set [a, b] = {c ∈ N
2 : a≤ c≤ b}

is called an interval. In what follows, it is convenient also to define [a, b] to

be [b, a] if b≤ a. Furthermore, we set [a, b] = {x ∈R
2 : a≤ x≤ b}.

Let a= (i, j), b= (k, l) ∈N
2 with i < k and j < l. Then the elements a and

b are called diagonal corners, and the elements c = (i, l) and d = (k, j) are
called anti-diagonal corners of [a, b].

A cell C is an interval of the form [a, b], where b= a+(1,1). The elements
of C are called vertices of C. The intervals [a, a+(1,0)], [a+(1,0), a+(1,1)],
[a+ (0,1), a+ (1,1)] and [a, a+ (0,1)] are called edges of C.

Let P be a finite collection of cells of N2. Then two cells C and D are called
connected if there exists a sequence C : C = C1,C2, . . . ,Ct =D of cells of P
such that for all i= 1, . . . , t− 1 the cells Ci and Ci+1 intersect in an edge. If
the cells in C are pairwise distinct, then C is called a path between C and D.
A finite collection of cells P is called a polyomino if every two cells of P are
connected. The vertex set of P , denoted V (P), is defined to be

⋃
C∈P C. The

area P covered by P is given by
⋃

C∈P C. Figure 1 shows a polyomino whose
cells are marked by gray color.

A rectangular polyomino is defined to be the collection of all cells inside an
interval.

Let Q be an arbitrary collection of cells. Then each connected component
of Q is a polyomino.

An interval [a, b] with a = (i, j) and b = (k, j) is called a horizontal edge
interval of P if the intervals [(t, j), (t+ 1, j)] for t= i, . . . , k − 1 are edges of
cells of P . Similarly, a vertical edge interval of P is defined to be an interval

Figure 1. A polyomino.



984 J. HERZOG AND S. SAEEDI MADANI

[a, b] with a = (i, j) and b = (i, l) such that the intervals [(i, t), (i, t+ 1)] for
t= j, . . . , l− 1 are edges of cells of P .

We call an edge of a cell C of P a border edge if it is not an edge of any
other cell, and define the border of P to be the union of all border edges
of P . A horizontal border edge interval of P is defined to be a horizontal edge
interval of P whose edges are border edges. Similarly, we define a vertical
border edge interval of P .

Let P be a polyomino and I a rectangular polyomino such that P ⊂ I.
Then the polyomino P is called simple, if each cell C which does not be-
long to P satisfies the following condition (∗): there exists a path C : C =
C1,C2, . . . ,Ct =D with Ci /∈ P for all i= 1, . . . , t and such that D is not a cell
of I. For example, the polyomino which is shown in Figure 1 is not simple,
while Figure 2 shows a simple polyomino.

Let P be a polyomino and let H be the collection of cells C /∈ P which do
not satisfy condition (∗). The connected components of H are called the holes
of P . For example, the polyomino which is shown in Figure 1 has exactly one
hole consisting of just one cell. Note that P is simple if and only if it is
hole-free. Each hole of P is a polyomino. In fact, even one has the following.

Lemma 1.1. Each hole of a polyomino is a simple polyomino.

Proof. Let P ′ be a hole of the simple polyomino P , and assume that P ′ is
not simple. Let P ′′ be a hole of P ′. Then P ′′ is again a polyomino. Let C be
a cell of P ′′ which has a border edge of P ′′. Then C shares an edge with a cell
D ∈ P ′. Since P ′ is a connected component of the set H of cells not belonging
to P which do not satisfy condition (∗) and since C has a common edge with
D it follows that C ∈ P . However, since P is connected there exists a path
of cells which all belong to P and which connect C with a cell of P \ P ′′,
contradicting the fact that P ′′ is a hole. �

The polyomino in Figure 1 has two cells intersecting in only one vertex
which does not belong to any other cell. This cannot happen if the polyomino
is simple.

Figure 2. A simple polyomino.
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Lemma 1.2. Let P be a simple polyomino. Then there does not exist any
vertex v which belongs to exactly two cells C and C ′ of P such that C ∩C ′ =
{v}.

Proof. Suppose on the contrary that there exists such a vertex v. According
to Figure 3, the only cells of P which contain v could be the four cells C, C ′,
D and D′. By our assumption, we may assume that C and C ′ belong to P
and D and D′ do not belong to P . Since P is a polyomino, there exists a
path of cells of P connecting C and C ′. Thus, either D or D′ is contained in
a hole of P . It contradicts the fact that P is a simple polyomino. �

Corollary 1.3. Let P be a simple polyomino and let I and I ′ be two
distinct maximal border edge intervals of P with I ∩ I ′ �= ∅. Then their inter-
section is a common endpoint of I and I ′. Furthermore, at most two maximal
border edge intervals of P have a nontrivial intersection.

Proof. Let I = [a, b] and I ′ = [c, d]. The edge intervals I and I ′ are not
both horizontal or vertical edge intervals, since otherwise their maximality
implies that they are disjoint. Suppose that I is a horizontal edge interval
and I ′ is a vertical edge interval. So, obviously, they intersect in one vertex,
say v. Suppose that v is not an endpoint of I or I ′. If v is an endpoint of
just one of them, then without loss of generality, we may assume that we are
in the case which is shown on the left hand side of Figure 4. Thus, since
I and I ′ are maximal border edge intervals, it follows that among the four
possible cells of N2 which contain v, exactly one of them belongs to P , which

C ′

C

D

D′
v

•

Figure 3. Two cells C and C ′ belong to P .

a b

d

v = c
•• •

•

a b

d

v

c

•• •

•

•

Figure 4. The vertex v is not a common endpoint of I and I ′.
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is a contradiction. If v is not an endpoint of any of I and I ′, then we are in
the case which is displayed on the right-hand side of Figure 4. Among four
possible cells of N2 which contain v, only a pair of them, say C and C ′, with
C ∩ C ′ = {v}, belong to P , since the edges of I and I ′ are all border edges.
But, by Lemma 1.2, this is impossible, since P is simple. Thus, v has to be a
common endpoint of I and I ′.

Now, suppose more than two maximal border edge intervals have a non-
trivial intersection. Then this intersection is a common endpoint of these
intervals. Thus, at least two of these intervals are either horizontal or verti-
cal, contradicting the fact that they are all maximal. �

Now, we present some concepts and facts about rectilinear polygons which
are used in the course of the proof of the main result of this paper.

A rectilinear polygon is a polygon whose edges meet orthogonally. It is
easily seen that the number of edges of a rectilinear polygon is even. Note
that rectilinear polygons are also known as orthogonal polygons. A rectilinear
polygon is shown in Figure 5.

A rectilinear polygon is called simple if it does not self-intersect. The
rectilinear polygon in Figure 5 is a simple rectilinear polygon.

Let R be a simple rectilinear polygon. The bounded area whose border is
R is called the interior of R. By the open interior of R, we mean the interior
of R without its boundary.

A simple rectilinear polygon has two types of corners: the corners in which
the smaller angle (90 degrees) is interior to the polygon are called convex
corners, and the corners in which the larger angle (270 degrees) is interior to
the polygon are called concave corners.

Let E1, . . . ,Em be the border edges of P . Then we set B(P) =
⋃m

i=1Ei.
Observe that the border of P as defined before is the set of lattice points
which belong to B(P).

Figure 5. A rectilinear polygon.



THE COORDINATE RING OF A SIMPLE POLYOMINO 987

Lemma 1.4. Let P be a simple polyomino. Then B(P) is a simple recti-
linear polygon.

Proof. First, we show that for each maximal horizontal (resp. vertical)
border edge interval I = [a, b] of P , there exists a unique maximal vertical
(resp. horizontal) border edge interval I ′ such that a is an endpoint of it. By
Corollary 1.3 the vertex a is then the endpoint of precisely I and I ′. Without
loss of generality, let I = [a, b] be a horizontal maximal border edge interval
of P . Let C be the only cell of P for which a is a vertex, and which has a
border edge contained in I . First, we assume that a is a diagonal corner of C
which implies that C is upside of I , see Figure 6. The argument of the other
case in which a is an anti-diagonal corner of C, and hence C is downside of
I , is similar.

Referring to Figure 6, we distinguish two cases: either the unique cell D,
different from C sharing the edge [a, d] with C, belongs to P or not.

Let us first assume that D /∈ P . Then [a, d] is a border edge of P , and
hence it is contained in a maximal vertical border edge interval I ′ of P such
that by Corollary 1.3, a is an endpoint of I ′. Hence, I ′ is the unique maximal
vertical border edge interval of P for which a is an endpoint.

Next, assume that D ∈ P . Then the cell C ′ belongs to P (see Figure 7),
because [a, b] is a maximal horizontal border edge interval, so that [e, a] can-
not be a border edge. The edge [f, a] is a border edge, since otherwise there
is a cell containing both of the edges [f, a] and [a, c], contradicting the fact
that [a, c] is a border edge. Therefore, there exists the unique maximal ver-
tical border edge interval I ′ which contains [f, a] such that a is an endpoint
of I ′.

a bc

d

C
• • •

•

Figure 6. The interval [a, b] and a cell C.

C

C ′

D

a bc

d

f

e • • •

•

•

•

Figure 7. Intervals [a, c] and [f, a] are two border edges.
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The same argument can be applied for b to show that b is also just
the endpoint of I and of a unique maximal vertical border edge interval I ′

of P .
Now, let I1 be a maximal horizontal border edge interval of P . By what

we have shown before, there exists a unique sequence of maximal border edge
intervals I1, I2, . . . of P with Ii = [ai, ai+1] such that they are alternatively
horizontal and vertical. Since V (P) is finite, there exists a smallest integer r
such that for some i < r− 1, Ii ∩ Ir �= ∅. Since Ii and Ir are distinct maximal
border edge intervals of P , they intersect in one of their endpoints, by Corol-
lary 1.3. Thus, Ii ∩ Ir = {ai}, since r �= i and by Corollary 1.3, ai+1 cannot
be a common vertex between three maximal border edge intervals Ii, Ii+1

and Ir. It follows that i= 1, since otherwise ai also belong to Ii−1 which is a
contradiction, by Corollary 1.3.

Our discussion shows that R =
⋃r

j=1 Īj is a simple rectilinear polygon.

Suppose that R �=B(P). Then there exists a maximal border edge interval I ′1
which is different from the intervals Ij . As we did for I1 we may start with I ′1
to construct a sequence of border edge intervals I ′j to obtain a simple rectilin-
ear polygon R′ whose edges are formed by some maximal border edge intervals
of P . We claim that R∩R′ = ∅. Suppose this is not the case, then Ij ∩ I ′k �= ∅
for some j and k, and hence by Corollary 1.3 these two intervals meet at a
common endpoint. Thus it follows that I ′k also has a common intersection
with one of the neighbor intervals It of Ij , contradicting the fact that no three
maximal border edge intervals intersect nontrivially, see Corollary 1.3. Hence
R ∩R′ = ∅, as we claimed.

All the cells of the interior of R must belong to P , because otherwise P
is not simple. It follows that R′ does not belong to the interior of R, and
vice versa. Thus the interior cells of R and R′ form two disjoint sets of
cells of P . Since P is a polyomino, there exists a path of cells connecting
the interior cells of R with those of R′. The edges where this path meets
R and R′ cannot be border edges, a contradiction. Thus, we conclude that
R=B(P). �

For a polyomino P , a function α : V (P)→ Z is called an admissible labeling
of P (see [11]), if for all maximal horizontal and vertical edge intervals I of
P , we have ∑

a∈I

α(a) = 0.

In Figure 8, an admissible labeling of a polyomino is shown.
An inner interval I of a polyomino P is an interval with the property that

all cells inside I belong to P .
Let I be an inner interval of a polyomino P . Then we introduce the ad-

missible labeling αI : V (P)→ Z of P , which will be used in the proof of our
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Figure 8. An admissible labeling.

1

−1 0

−1

1

−1

1

−1

1
−1

0

1

−1

1

−1

1

Figure 9. A border labeling.

main theorem, as follows:

αI(a) =

⎧⎪⎨
⎪⎩
−1, if a is a diagonal corner of I,

1, if a is an anti-diagonal corner of I,

0, otherwise.

Now, we introduce a special labeling of a simple polyomino P , called a
border labeling. By Lemma 1.4, B(P) is a rectilinear polygon. While walking
counter clockwise around B(P), we label the corners alternatively by +1 and
−1 and label all the other vertices of P by 0. Since B(P) has even number of
vertices, this labeling is always possible for P . Also, it is obvious that every
simple polyomino has exactly two border labelings. Figure 9 shows a border
labeling of the polyomino which was displayed in Figure 8.

Lemma 1.5. A border labeling of a simple polyomino is admissible.

Proof. Let P be a simple polyomino, and let α be a border labeling
of P . Let I be a maximal horizontal edge interval of P . We show that∑

a∈I α(a) = 0. Let I1, . . . , It be all maximal horizontal border edge inter-
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vals of P which are contained in I . Note that the intervals Ij are pairwise
disjoint. Then

∑
a∈I α(a) =

∑
a∈Ii

1≤ i≤ t

α(a), since the only elements of I for

which α(a) �= 0 are the corners of the rectilinear polygon B(P), and since the
endpoints of I1, . . . , It are corners of B(P). But,

∑
a∈Ii

1≤ i≤ t

α(a) = 0, since by

definition of a border labeling, we have
∑

a∈Ii
α(a) = 0, for each i= 1, . . . , t.

Similarly, for a maximal vertical edge interval I of P , we have
∑

a∈I α(a) = 0.
Hence, α is admissible. �

Now, we present the algebraic concepts and facts which are the main sub-

ject of this paper.
Let P be a polyomino and S = K[xa : a ∈ V (P)] be the polynomial ring

with the indeterminates xa over the field K. The 2-minor xaxb − xcxd ∈ S is
called an inner minor of P if [a, b] is an inner interval of P with anti-diagonal

corners c and d. Associated to P is the binomial ideal IP in S, generated by
all inner minors of P . This ideal is called the polyomino ideal of P , and the
K-algebra K[P ] = S/IP is called the coordinate ring of P .

In the sequel, we use the following notation. Let v ∈ N
m for some m.

Then we set xv =
∏m

i=1 xi
vi in the polynomial ring K[x1, . . . , xm]. Note that

a vector v ∈ Z
m can be written uniquely as v = v+ − v− with v+, v− ∈ N

m

and such that the inner product of v+ and v− is equal to zero.

Let α be an admissible labeling of a polyomino P . We may view α as a
vector α ∈ Z

n, where n is the number of vertices of P . By using this notation,

we associate to α the binomial fα = xα+ − xα−
(see [7]). Let JP be the ideal

in S which is generated by the binomials fα, where α is an admissible labeling
of P . It is known by [7, Proposition 1.2] that JP is the lattice ideal of a certain

saturated lattice, and hence by [10, Theorem 7.4], JP is a prime ideal. By
definition, it is clear that IP ⊂ JP . Following [7], a polyomino P is called

balanced if fα ∈ IP for every admissible labeling α of P .
To better understand the significance of the notion balanced, we recall some

concepts from [3]. Let B ⊂ Z
m for some m. Let GB be the graph with the

vertex set Nm such that two vertices a and c are adjacent in GB if a−c ∈±B.
The vectors a and c are said to be connected via B if they belong to the same
connected component of GB. The binomial ideal I(B) in the polynomial ring

K[x1, . . . , xm] is defined to be the ideal

I(B) =
(
xb+ − xb−

: b ∈ B
)
.

Now, let P be a polyomino contained in the rectangular polyomino I with

V (I) = [(1,1), (m,n)] for some positive integers m and n. Let I be an inner
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interval of P , and set uI = (u
(i,j)
I ) 1≤i≤m

1≤ j ≤ n

∈ Z
m×n where

u
(i,j)
I =

⎧⎪⎨
⎪⎩
−1, if (i, j) is a diagonal corner of I,

1, if (i, j) is an anti-diagonal corner of I,

0, otherwise.

Note that if I is just a cell C of P , then with the notation of [7], uI = bC .
It is known that the elements bC with C ∈ I are linearly independent over Z
(see [7, Lemma 1.1]).

We set

M(P) = {u : u=±uI for some inner interval I of P}.
We need the following proposition to prove the main result of this paper.

Proposition 1.6. Let P be a polyomino. Then the following conditions
are equivalent:

(a) P is balanced;
(b) IP = JP ;
(c) For each admissible labeling α of P , α+ and α− are connected via M(P);
(d) For each admissible labeling α of P , there exist u1, . . . ,ut ∈M(P) such

that α−+u1+ · · ·+ui ∈N
n for all i= 1, . . . , t, and α+ = α−+u1+ · · ·+ut.

Proof. The conditions (a) and (b) are obviously equivalent. Also, (c) and
(d) are equivalent by definition of GM(P) (see also the proof of [3, Theo-
rem 6.53]). We show that (a) and (c) are equivalent. Let α be an admissible

labeling of P . By [3, Theorem 6.53], fα = xα+ − xα− ∈ I(M(P)) if and only
if α+ and α− are connected via M(P). But note that IP = I(M(P)). So,
fα ∈ IP if and only if α+ and α− are connected via M(P). Hence, we have
P is balanced if and only if α+ and α− are connected via M(P) for every
admissible labeling α of P . �

2. Simple polyominoes

The following theorem which was conjectured in [7] is the main theorem of
this paper.

Theorem 2.1. A polyomino is simple if and only if it is balanced.

Proof. Let P be a polyomino. First, suppose P is simple. We have to show
that for any admissible labeling α of P we have that fα ∈ IP , and we show
this by induction on deg fα. Suppose deg fα = 2. Then α = ±αI for some
inner interval I , because P is simple. Thus by definition fα ∈ IP .

Now suppose that deg fα > 2. We choose a0 ∈ V (P) with α(a0) > 0.
Since α is admissible there exists a horizontal edge interval [a0, a1] of P with
α(a1)< 0. By using again that α is admissible, there exists a vertical edge
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interval [a1, a2] of P with α(a2) > 0. Proceeding in this way, we obtain a
sequence of edge intervals of P ,

[a0, a1], [a1, a2], [a2, a3], . . .

which are alternatively horizontal and vertical and such that sign(α(ai)) =
(−1)i for all i.

Since V (P) is a finite set, there exists a smallest integer r such that
[ar, ar+1] intersects [aj , aj+1] for some j < r− 1. We may assume that j = 0.
If [ar, ar+1] is a vertical interval, then [ar, ar+1] and [a0, a1] intersect in pre-
cisely one vertex, which we call a. If [ar, ar+1] is horizontal, then we let a= a1.
In this way, we obtain a simple rectilinear polygon R whose edges are edge
intervals of P with corner sequence a, a1, a2, . . . , ar−1, a if [ar, ar+1] is vertical
and corner sequence a, a2, a3, . . . , ar−1, a if [ar, ar+1] is horizontal. Moreover,
we have sign(α(ai)) = (−1)i for all i. The cells in the interior of R all belong
to P because P is simple. We may assume that the orientation of R given
by the order of the corner sequence is counterclockwise. Then with respect to
this orientation the interior of R meets R on the left hand side, see Figure 5.

We call a convex corner c of R good if the rectangle which is spanned by
c and its neighbor corners is in the interior of R. We claim that R has at
least four good corners. We will prove the claim later and first discuss its
consequences. Since R has at least four good corners, there is at least one
good corner c such that c and its neighbor corners are all different from a. Let
I be the rectangle in the interior of R spanned by c and its neighbor corners.
Without loss of generality, we may assume that this corner looks like the one
displayed in Figure 10 with c= ai.

Since all cells in the interior of I belong to the interior of R and since all
those cells belong to P , it follows that fαI

∈ IP . Without loss of generality,
we may assume that α(ai) < 0, and hence α(ai−1), α(ai+1) > 0. Then the

homogeneous binomial g = fα − (xα+

/xai−1xai+1)fαI
has the same degree as

fα and belongs to JP , since fα and fαI
belong to JP . Furthermore, g = xaih,

where h= xb(x
α+

/xai−1xai+1)− xα−
/xai . It follows that h ∈ JP , since xai /∈

JP and since JP is a prime ideal. Since JP is generated by the binomials
fβ with β an admissible labeling of P , there exist fβl

∈ JP such that h =∑s
l=1 rlfβl

, where deg fβl
≤ degh and rl ∈ S for all l. Since degh < deg fα we

ai−1

aiai+1

b •

••

I

Figure 10. A good corner and its rectangle.
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also have deg fβl
< deg fα for all l. Thus, our induction hypothesis implies that

fβl
∈ IP for all l. It follows that h ∈ IP , and hence fα ∈ IP , since fαI

∈ IP .
In order to complete the proof that P is balanced it remains to prove that

indeed any rectilinear polygon R has at least four good convex corners. We
prove this by defining an injective map γ which assigns to each convex corner
of R which is not good a concave corner of R. Since, as is well known and
easily seen, for any simple rectilinear polygon the number of convex corners
is four more than the number of concave corners, it will follow that there are
at least four good corners.

The map γ is defined as follows: let c be a convex corner of R which is not
good. Then the polygon R crosses the open interior of the rectangle which
is spanned by c and the neighbor corners of c. The gray area in Figure 11
belongs to the interior of R.

Now we let L be the angle bisector of the 90 degrees angle centered in c.
Next we consider the set Lc of all lines perpendicular to L. The unique line
in Lc which intersects L in the point p and such that the distance from c
to p is t, will be denoted by Lt. There is a smallest number t0 such that
Lt0 has a nontrivial intersection with R in the open interior of the rectangle.
This intersection with Lt0 consists of at least one and at most finitely many
concave corners of R, see Figure 12.

We define γ to assign to c one of these concave corners. The map γ is
injective. Indeed, if d is another convex corner of R with γ(d) = γ(c), then
the line in Ld which hits γ(c) must be identical with Lt0 , and this implies that

•

•c•

Figure 11. R intersects the rectangle.

•

•c•

Lt

Lt0

Figure 12. Lt0 defines γ(c).
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d lies in the intersection of the rectangle with the linear half space defined by
Lt0 containing c. But in this area, there is no other corner of R which is not
good. Hence, d= c.

Conversely, suppose now that P is balanced and assume that P is not
simple. Let P ′ be a hole of P . Then by Lemma 1.1, P ′ is a simple polyomino.
Let α be a border labeling of P ′. We consider the labeling β of P which for
each a ∈ V (P) is defined as follows:

β(a) =

{
α(a) if a ∈ V (P ′),

0 if a /∈ V (P ′).

Then β is an admissible labeling of P , by a similar argument as in the proof
of Lemma 1.5. Indeed, let I be a maximal horizontal (vertical) edge interval
of P and let S be the set of all horizontal (vertical) border edge intervals of
P ′ such that Ij ∩ I �= ∅. If S = ∅, then β(a) = 0 for all a ∈ I . If S �= ∅ and
Ij ∈ S , then Ij ⊂ I . Since the intervals Ij are disjoint, we have

∑
a∈I β(a) =∑

a∈Ij
Ij ∈ S

β(a) =
∑

a∈Ij
Ij ∈ S

α(a). Hence
∑

a∈I β(a) = 0, because by definition of

α, we have
∑

a∈Ij
α(a) = 0 for all Ij ∈ S .

Note that we may consider α and β as vectors in Z
m×n where m and n are

positive integers with V (P)⊂ [(1,1), (m,n)]. Since P is a balanced polyomino,
it follows that there exist u1, . . . ,ut ∈M(P) such that β+ = β−+u1+ · · ·+ut,
by Proposition 1.6. On the other hand, since P ′ is a simple polyomino, it
follows from the first part of the proof that P ′ is also balanced. Thus by
Proposition 1.6, there exist u′

1, . . . ,u
′
l ∈M(P ′) such that α+ = α−+u′

1+ · · ·+
u′
l, since α is admissible by Lemma 1.5. Note that by the construction of the

labeling β, it is clear that β+ = α+ and β− = α− as vectors in Z
m×n. So we

have u1+ · · ·+ut = u′
1+ · · ·+u′

l. For each i= 1, . . . , t, we have ui =±uIi , and
for each j = 1, . . . , l, we have u′

j =±uI′
j
, where Ii and I ′j are inner intervals

of P and P ′, respectively. So, it follows that for each i, j, ui and u′
j are

linear combination of the bC ’s and bC′ ’s, respectively, where C stands for
cells of P and C ′ stands for cells of P ′. But the bC ’s and bC′ ’s are linearly
independent, so that u1+ · · ·+ut = u′

1+ · · ·+u′
l = 0, which is a contradiction,

since obviously we have β+ �= β−. Therefore, P is a simple polyomino. �

By the above theorem together with [7, Corollary 2.3], we get the following.

Corollary 2.2. Let P be a simple polyomino. Then K[P ] is a toric ring
which is a Cohen–Macaulay normal domain.

After having submitted this paper, the authors were informed by Ayesha
Asloob Qureshi that she together with Takafumi Shibuta and Akihiro Shikama
found a toric parametrization of the coordinate ring of a simple polyomino.
They also showed by different means that K[P ] is a Cohen–Macaulay normal
domain for any simple polyomino P (see [12]).
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