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A NOTE ON UNITAL FULL AMALGAMATED FREE
PRODUCTS OF RFD C*-ALGEBRAS

QIHUI LI AND JUNHAO SHEN

ABSTRACT. In the paper, we consider the question whether a uni-
tal full amalgamated free product of RFD (residually finite di-
mensional) C*-algebras is RFD again. One example shows that
the answer to the general case is no. We give a necessary and suf-
ficient condition such that a unital full amalgamated free product
of RFD C*-algebras with amalgamation over a finite dimensional
C*_algebra is RFD. Applying this result, we conclude that a uni-
tal full free product of two same RFD C*-algebras with amalga-
mation over a finite-dimensional C*-algebra is always RFD.

1. Introduction

A C*-algebra is said to be residually finite-dimensional (RFD) if it has a
separating family of finite-dimensional representations. Also this property is
inherited by subalgebras. Choi [6] showed that the full C*-algebra of the free
group on two generators is RFD. Later Exel and Loring showed that the uni-
tal full free product of two unital RFD C*-algebras is RED [8]. In the same
paper, they gave several equivalent conditions for the RFD property. Arm-
strong, Dykema, Exel and Li [1] characterized the RFD property of unital full
amalgamated free products of finite dimensional C*-algebras, which extends
an earlier result by Brown and Dykema [4].

In this paper, we are interested in the question whether a unital full free
product of two RFD C*-algebras with amalgamation over a common C*-
algebra is, again, an RFD C*-algebra. One example (see Example 2.1) is
given to show that the answer to this general question is no. But an affirmative
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answer was given by Exel and Loring [8] when the common C*-subalgebra in a
unital full amalgamated free product of RFD algebras is *-isomorphic to a full
matrix algebra. In fact, a similar result holds when we consider MF algebras
and quasidiagonal C*-algebras (for more information about MF algebras and
quasidiagonal C*-algebras, we refer the reader to [2], [5]).

When the common C*-subalgebra is a finite-dimensional C*-algebra, we
are able to provide a necessary and sufficient condition such that a unital full
amalgamated free product of RFD C*-algebras is RFD again. More specifi-
cally, we conclude that a unital full free product of two same RFD C*-algebras
with amalgamation over a finite-dimensional C*-algebra is always RFD.

A brief overview of this paper is as follows. In Section 2, we recall the
definition of unital full amalgamated free product of unital C*-algebas. We
show that a unital full amalgamated free product of unital RFD (or MF,
quasidiagonal) C*-algebras is RFD (or MF, quasidiagonal) when the overlap
C*-algebra is *-isomorphic to a full matrix algebra. One example is given at
the end of the section to show that a unital full amalgamated free product of
RFD (or MF, quasidiagonal) C*-algebras may not be RFD (or MF, quasidi-
agonal) again. Section 3 is devoted to results on unital full free products of
RFD C*-algebras with amalgamation over finite-dimensional C*-algebras.

2. Definitions and preliminaries

Recall the definition of full amalgamated free product of unital C*-algebras
as follows.

DEFINITION 1. Given C*-algebras A, B and D with unital embeddings
(injective *-homomorphisms) ¢ 4 : D — A and ¢ : D — B, the corresponding
full amalgamated free product C*-algebra is the C*-algebra C, equipped with
unital embeddings o4 : A— C and op: B— C such that o4 094 =opo¥g,
such that C is generated by o.4(A) Uog(B) and satisfying the universal prop-
erty that whenever £ is a C*-algebra and m4: A— &€ and ng: B— & are
x-homomorphisms satisfying w4 o ¥4 = mg o 15, there is a x-homomorphism
7w : C— &€ such that moo 4 =74 and woop =mg. The full amalgamated free
product C*-algebra C is commonly denoted by A ot B.

When D = CI, the above definition is the unital full free product A % B of

A and B. The following result can be found in [11]. But we offer a new proof,
which is perhaps more elementary.

THEOREM 1. Suppose that A, B and D are unital C*-algebras. Then

(-A O max D) g (B ®max D) = (AEB) Omax D.
Proof. Let I4 and Ig be the identity in A and B, respectively. From the
definition of unital full free product, we can get two natural unital embeddings

m e A®maxD—>(AéB) Qmax D
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and
72 B@max D — (AFEB) Omax D

from AQ@max D and B®mumax D into (AEB) ®max D, respectively. It is clear

that the restrictions of 73 on I4 ® D and 72 on Ig ® D agree, i.e., |1 ,0p =
Ta|1sep. Suppose K is a C*-algebra acting on a Hilbert space H such that
there are two *-homomorphisms ¢; : A®muaxD — K and gz : BRuax D — K
satisfying ¢1|7,eD = ¢2|159p- Then ¢1(A® Ip) commutes with ¢; (14 ® D) in
K and ¢2(B® Ip) commutes with g2(Ip ® D) in K. Let
M=KN(q(Ia® D)) =K (g5 2D))".
Since ¢1(A® Ip) and ¢2(B® Ip) are both subalgebras of C*-algebra M, there
is a *-homomorphism ¢ : ‘Afé B — M by the definition of unital full free prod-
uct. Moreover, the image (A x B) of A % B under ¢ commutes with ¢ (14 ®D)
in K. From the definition of maximal C*-norm on tensor product of two C*-
algebras, there is a *-homomorphism
: B) Qmax D — K.
q (Aé ) @max D —

such that gom; = ¢, and goms = go. The desired conclusion now follows from
the definition of full amalgamated free products of unital C*-algebras. O

Combining the following lemma and preceding result, we are able to obtain
a result about unital full amalgamated free products of RFD C*-algebras,
which can be also found in [8].

LEMMA 1 (Theorem 3.2, [8]). Suppose Ay and Az are unital C*-algebras.
Then the unital full free product A= A, % As is RFD if and only if A1 and
As are both RFD.

PropoOSITION 1 (Corollary 3.3, [8]). Let A and B be unital C*-algebras. If
D can be embedded as a unital C*-subalgebra of A and B respectively, and D

is *~isomorphic to a full matriz algebra M, (C) for some integer n, then the
unital full amalgamated free product A;;B is RFD if and only if A and B are

both RFD.
Proof. If A hd B is a unital RFD algebra, then it is easy to see that A and

B are both RFD. On the other hand, since D is *-isomorphic to a full matrix
algebra, from Lemma 6.6.3 in [10], it follows that A~ A’ ® D and B= B @ D
where A’ and B’ are C*-subalgebras of A and B, respectively. Therefore, A’
and B’ are RFD as well. Then the desired conclusion follows from Theorem 1
and Lemma 1. O

If a separable C*-algebra A can be embedded into C*-algebra

[TM0(©) /3 M (©)
k k
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for a sequence of positive integers {n;}7° ;, then A is called an MF algebra.
This concept was first introduced by Blackadar and Kirchberg in [2]. The
class of MF algebras contains all separable RFD C*-algebras and separable
quasidiagonal C*-algebras. Note that a separable C*-algebra is RFD if and
only if it can be embedded into [, M, (C) for a sequence of positive integers
{rtey

REMARK 1. Since a unital full free product of quasidiagonal C*-algebras
(or MF algebras) is quasidiagonal (or MF) (see [3], [9]), Proposition 1 can be
stated and proved when we consider unital MF algebras or unital quasidiag-
onal C*-algebras.

REMARK 2. Armstrong, Dykema, Exel and Li [1] showed that, for unital
inclusions of C*-algebras A2 D C B with A and B finite dimensional, A ;5 B

is RFD if and only if there are faithful tracial states 74 on .4 and 753 on B
whose restrictions on D agree. Combining this result and the fact that each
RFD C*-algebra has a faithful tracial state, it is not hard to see that A;SB

is RFD if and only if A x B has a faithful tracial state in this case.

The following example shows that a full amalgamated free product of two
RFD (or MF, quasidiagonal) algebras may not be RFD (or MF, quasidiagonal)
again, even for a unital full free product of two full matrix algebras with
amalgamation over a two dimensional C*-algebra which is *-isomorphic to
CeC.

ExAMPLE 1. Let C*-algebra D =C & C. Suppose that o1 : D — My(C)
and ¢y : D — M3(C) are unital embeddings such that

10 1 00
p1(180)= <0 0> and ¢2(1®0)=(0 0 O
0 0 O
Then MQ(C);;Mg(C) is not MF algebra (therefore it is not RFD or qua-
sidiagonal). Actually, if we assume that My (C) 4 M3(C) is an MF algebra,
then there exists a tracial state 7 on Ms(C) %Mg(@). So the restrictions of

7 on M3(C) and Mj3(C) are the unique tracial states on My(C) and M3(C)
;respectively. It follows that 7(p1(1®0)) =1 # 7 (p2(1®0)) = & which con-
tradicts to the fact that ¢1(1@0) = p2(0® 1) in My (C) ;M;»,((C). Therefore,

./\/lg((C);;./\/lg((C) is not MF.

3. Full amalgamated free products of RFD C*-algebras

Throughout this section, we will only be concerned with separable C*-
algebras and representations on separable Hilbert spaces. First, we will give
the following well-known lemma. For completeness, we include the proof.
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LEMMA 2. Given 0 <e <1 and n € N. For any two families of n pairwise

orthogonal projections {P1,..., Py} and {Q1,...,Qn} in n-dimensional unital
abelian C*-subalgebras A and B in B(H) with ||P; — Qi < 55 (i=1,...,n),

there is a unitary U € B(H) with ||U — I|| < e such that UR,U* = Q; for
1< <n.

Proof. Define X =371 |Q;P;. Let § = ;55. Tt is clear that

Y P=> Q=1
i=1 i=1

Since |P; — Q;|| < ¢ and P; — Q; is self-adjoint for each i, we have that Q; —
P;+ 6> 0. It follows that Q; > P; — 6 and

XX = iPiQiPi > ipi(Pi —0)P;
i=1 i=1

:zn:a_zn}spl:a—a)bo.
=1 =1

Therefore, X is invertible and || X*X|| > 1 — 4. Assume that X = U|X]| is the
polar decomposition of X where |X|= (X*X)2 and U is a partial isometry.
Since X is invertible, U is a unitary. So it is not hard to see that

|1Xx|t =1 < L 1/2—1
—\1-4 '

Meanwhile, we have || X*X]| <1 from the construction of X and the fact
that {P1,..., P,} and {Q1,...,Q,} are two families of n pairwise orthogonal
projections, respectively. Therefore, we have that

U1 <[IU=X[[+ X -1

n

> (Qi—P)P..

i=1

< ((1—101/2—1) +né<(n+1)d=e.

Since X =1 ,Q; P, it is easy to see Q; X = X P, for 1 <i<n, then P;|X| =
| X|P; as well. So

UP,=X|X|7'Pi= XP|X|™ = Q:X|X[™' = QU.
Therefore, UP,U* = Q; for 1 <i <n as desired. O

< XX = 1] +

The following lemma is a useful result concerning the representations of
separable C*-algebras. First, we need to recall that the rank of an operator
T € B(H), denoted by rank(T'), is the dimension of the closure of the range
of T.
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LEMMA 3 (Theorem I1.5.8, [7]). Let A be a separable unital C*-algebra
and m; : A— B(H;) be unital *-representations for i =1,2. Then there exists
a sequence of unitaries Uy, : Hy — Ha such that ||r2(a) — Upmi(a)U}|| —
0(m — o0) for all a € A if and only if rank(rm(a)) = rank(me(a)) for all a € A.

DEFINITION 2. Suppose H is a separable Hilbert space and F' C H. For
given € > 0, we say that
{$1,...,$n} gg F
for {z1,...,2,} CH if there are y1,...,y, € F such that

max [l — i <e.

The following lemma is a technical result.

LEMMA 4. Let AD D C B be unital inclusions of separable C*-algebras and
D be a unital finite-dimensional Abelian C*-algebra. Suppose pa: A— B(H)
and pg: B— B(H) are representations of A and B with pa|lp = pslp on
a separable Hilbert space H, respectively. If there are two finite-dimensional
subspaces F', G of H satisfying F is p4(A) invariant and G is pp(B) invariant
as well as dim F'=dim G, then there are a finite-dimensional subspace H of
H and representations pa, pg of A and B on H such that the restriction of
pa on subspace I equals the restriction of pa on F, the restriction of pg on
subspace G equals the restriction of pp on G, that is,

palr =palr,  pBle=rpslc
and the restrictions of pao and pg on D agree, that is, palp = pa|p-

Proof. Suppose that D= C*(py,...,p:) where p1,...,p; are orthogonal pro-
jections with Z§:1pi =1. Let E=F + G. Note that E is p4(D) (= pp(D))
invariant. Let d = dim(F), P, = pa(pi)|g and r; = rank(P;). Let E’ be any
finite dimensional subspace of H that is orthogonal to E and has dimension
d' =dim(E}) so that d+d’' =1 -dim F = - dim G and *25£4E0le) (44 @') =
rank(pa(pi)|r) -1 > r; for i € {1,...,t}, 1 € N. Then we can find projec-
tions Q1,...,Q¢ € B(E},) such that Q1 +---+Q,=I1¢€ B(E’'), and r; + 7| =
rank(pa(p;)|F) - 1 where v} =rank(Q;). Assume that H = E + E’. Since

dim(H & F)=(—1)-dimF
and
rank((ﬁi + éi)|ﬁ@p> =1 +7; —rank(pa(pi)|r)
= rank(pa(pi)|r) (I —1).
We can construct a representation p/y : A — B(H & F) with Plapi) = (P +

@1) | 710 Such that p/, is unitarily equivalent to the direct sum of [ —1 copies of
the restriction of p4 on F, that is, pa|r. Putting pa(x) = pa(z)|r+p/4(z) €
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B(ﬁ) Then pa(p;) = P + Q. Similarly, we can construct a representation
pg by the same way such that pg(p;) = P; + Q;. This implies that there are
*_representations p4 and pp satisfying

pAlF = palr, pBla = pslc
and palp = ps|p- O

We need one more technical result for showing our main result. Recall that
a faithful representation m : A — B(H) is called essential if 7(A) contains no
nonzero finite rank operators.

LEMMA 5. Let A and B be unital separable C*-algebras in [], -, My, (C)
and D be a common unital C*-subalgebra of A and B in [, My, (C) which
is finite-dimensional and Abelian. Suppose ® : A%B%B('H) is a faithful

essential representation on a separable Hilbert space H. Then there are se-
quences {pA}ee 1 and {pB15S_, of representations of A and B on H such
that pB|p = pA|p and

oo (@) — @ala)|| =0 forallae A as m — oo,

||p§n(b) —®p(b)|| =0 for allbe B asm— oco.

Moreover, for each m € N, we can find chains of finite-dimensional subspaces
FrCFMC--- and GT* CGY C -+ of H with dim F{* =dim G}* such that
each F" is pir(A) invariant, each G is pB(B) invariant and \Jp—, Fi™,
Uiz, m are both dense in H.

Proof. Suppose D =C*(p1,...,p:) where p1,...,p; are orthogonal projec-
tions with >.'_,p; = I.  There are natural *-homomorphisms m74: A —
My, (C) and 78 : B— My, (C) for each n € N such that the direct sums
of {7r“4} and {758} are faithful, respectively. We may assume that each 7!
and 78 appear infinitely often in the lists {m{',73',...} and {7% 75,...}, re-
spectively SO that we have an increasing sequence NO =0< N < N2 <-
such that 7! and 78 appear at Ny, position in {m{*,73!,...} and {78, 75,. .},
respectively. It is clear that direct sums of them are falthful essential repre-
sentations, respectively. Then there are representations w4 : A — B(H) and
75 B— B(H) with a projection Py, for each k € N such that Py, reduces
74 and 7, the restrictions of T4 and 75 to (Py, — Pn,_,)(#) are unitarily
equivalent to 7r,“€4 and ﬂf respectively, and Py, — I in SOT as k — oo. Since
w4, ™5, P are all essential representations, we have

rankm4(a) =rank® 4(a) and rankmp(b) =rank Pz(b)

for each a € A and b € B, where ® 4 and ®5 are the restriction of ® on A
and B, respectively. Hence, we can find sequences {U,,,}5°_; and {W,,,}5°_,
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of unitaries in B(H) by Lemma 3 such that, for every a € A and b € B, we
have

|Unmma(a)Us, — ®@a(a)|| =0 as m— oo,

W (0)Wp, — @5(b)|| = 0 as m — oo.
By the fact that ® 4(p;) = ®p(p;) for every i € {1,...,t}, it follows that

HUmﬂ'.A(pi)U;l - meB(pi)W;;H —0 asm— oo.
From Lemma 2, there is My € N such that for every m > My, there is a unitary
Vi and e, satisfying ||Vi, — I|| < €m, €m — 0 (m — 00) and
VnthWB(pﬂW:sz: mT"A(pi)U;z

for each i € {1,...,t}. Without loss of generality we can assume that, for each
m € N, there is a V},, and ¢, such that ||V, — I|| <e&,, and

VoW (pi) Wi Vin = Unma(pi ) U,

Meanwhile, we still have
|V W (D)W, Vi, — @5(b)[| = 0 as m — oo.

Let p (a) = Upma(a)Uf and pB (b) = VEW,,75(b)W; V,, for each m € N. Tt
is clear that p5|p = pA|p and

Hpé(a) — @A(a)H —0 asm— oo,

Hpg(b) —®p(b)|| =0 as m — oo.

Putting F{" = U,, Py, U} (H) and G7* =V, W,,,Pn WiV, (H). Note that
dim F" = dimGJ'. We also have F|" C Fj* C--- and GT" C G5* C --- are
chains of finite dimensional subspaces of H, and each F}" is pg(A) invariant,

each GJ* is pB (B) invariant. Since Py, — I in SOT as k — oo, we have
Ure Ff™ and ;- G5 are both dense in H. This completes the proof. [

From Lemmas 4 and 5, we are able to obtain a proposition below which is
a key for giving our main result.

PROPOSITION 2. Let A and B be wunital separable C*-algebras in
[I,- Mk, (C) and D be a common unital C*-subalgebra of A and B in
[1,2- Mg, (C) which is finite-dimensional and abelian. Then A;;B is RFD.

Proof. Suppose that D =C*(py,...,p:) where p1,...,p; are orthogonal pro-
jections with S>_ p; = 1. Let @ A;;B — B(H) be a faithful essential rep-

resentation on a separable Hilbert space H. Then by Lemma 5, there are
sequences {pA} and {pB} of representations of A and B on H such that
Pl = piylp and

Hpﬁ(a) —Py(a)|]| =0 asm— oo,

prl(b) —®p(b)|| =0 asm— oo,
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Moreover, for each m € N, we can find chains of finite-dimensional subspaces
FPCFMC--- and GT' C G5 C--- of H with dim F}" = dim G} such that
each Fj" is pA(A) invariant, each G* is pB(B) invariant, and (J; F}",
U Gy are both dense in H. Then, for each m € N, there are sequences of
representations {ﬁﬁbk}z‘;l and {ﬁfi s152, of A and B on a finite-dimensional
Hilbert space H, r by Lemma 4, such that

~A ~B B
Pkl = PmlEps Pilop = pmlap
and ﬁﬁl’k‘p = ﬁi’k‘p for each k € N. We first take representations ﬁfl, ﬁfl
of A and B on Hi , respectively. Then 5§, (p;) = p1', (p:) and
~A A ~B B
Pialer=p1 e, praler =p7ler-
Using the notation in Definition 2 and the fact that (Jpo, F{", Us—, G are
both dense in H for each m, we can find Fi and Gi such that
1 1 2
{771’"'777,‘,1} <y Gl25
{éj}avgtll} < F‘l22,

where {&1,...,&, } and {n{,...,n;, } are linear bases of F' and G{ respectively.
Moreover, we have representations ﬁélwﬁglz of A and B on 7—[122 such that

P51, (pi) = Pay, (pi) and
5?12\@22 = p§4|Fl227 5g,l2|0,22 = Pg\c;fz-
Sequentially, we can find Fl?; and Gf’g satisfying
{e....¢.&...8 i K,

2
1 1,2 2 3
(s omismis- oy} o Gl
where {£7,...,&,} and {n7,...,n{,} are linear bases of F2 and G}, , respec-
tively. Meanwhile, representations 53413 , ﬁ? 1, of A and B are both on H?s with
~B _~
P31 lp= Pézg |p and

~A A ~B B

03,13\1?,2 =P3 |F1337 P3,13|G§>3 =P3 \G?S-
So from the above construction, we can find a sequence {ﬁfn 1, Jme—1 of repre-
sentations and a sequence {ﬁﬁl 129 of representations satisfying ,'ovffl 1, (pi) =
Pim 1., (pi) for each m € N. We still have that (Jy_, F/", Up._,G}" are both
dense in H. Let pmy, @ A 4 B — B(H]" ) be the *-representation such that
P | A = ﬁé’lm and P 1, |B = 551,1,,; We want to show that, for a given
x € A%B and any € > 0, there is k € N such that

5.1 ()] =[] — e
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This will suffice to show that Al*)B is RFD. Write x = w; + - -+ + w)s as the
sum of finitely many words w; in A and B. Assume £ € H is a unit vector such
that ||®(x)E|| > ||€]| — 5. We will show that for every i € {1,..., M}, there is
k(i) such that if k > k(4), then
Hﬁka (w;)€ — CID(wl-)EH <e/2M.
Taking k > maxi<;<a k(7), this will imply ||pgi, ()€ — ()| < /2, which
will yield what we want. To show it, write
Wi = apaj—1 -+ G201
for some [ € N and aq,...,a; € AUB. Let § =¢§, & =P(a;)&-1 (1 <4 <)
and N =maxi<;<; |la;||. Choose k large enough to ensure that
max (dist (&;_1, F)"), dist (&;_1,G}.)) <e/(8IMN'7)
and .
or
€ .
||<I>(aj)—pf(a])|| <W if (ZjGB
for any j e {1,...,l}. Let neH. If a; € A, let :PFLIZ (n) € F/Z, then

||‘I’(aj)77 _ﬁk,lk(aj)nH
< ||®(a;)n = P, (a)ne|| + || Pr.u. (ai) e — P, (as)n]|
< || @(a;)n — ®(az)m + ®(a;)m — Pr, (a;)nx|
+ || Bk, 15, (@) — P (az)m|
< 2|[a; || dist (n, FY) + || (az)m — pi ()|

. 13
< 2|/ dist (n, F}Y) + WH%H'

Similarly, if a; € B, then let n, = ngk (n) € Gfk, then
|9 (a;)n = P (a)n] < 2liay | dist(n. GF,) + T il
Therefore,
H@(wi)f = Dkl (wz)fH
=||®(arai-1 - az)®(a1)€o — P, (war—1 -~ az)pr(a1)ol|
<||®(aai—1 -+ az)®(a1)&o — Pr, (mar—1 -+ - az)®(a1)&o
+ pr(aai—y -+ a2)®(a1)€o — pry, (@ai—1 - az)pr(ar)éo||
< || ®@(war—1 - a2)ér — pr, (@rar—1 -+ a)é1 ||
+ ||t (rai—1 - - a2) ||| @(a1)€o = P, (a1)o|
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-1
< NPk (@ az) || @(a)€5 1 = Py (a5) 1|
j=1

-1
<) NN

j=1
x (max(dist(gj_l,F/Z),dist(gj_l,Gfk)) T Nj‘1||§0>
. g
-
It follows that A d B is RFD. O

The following lemma can be found in [4]. Combining previous lemmas and
proposition as well as the lemma below, we will be ready to state and prove
our main result.

LEMMA 6 (Lemma 2.2, [4]). Let A and B be unital C*-algebras having D
embedded as a unital C*-subalgebra of each of them. Let

C=AxB
D

be the full amalgamated free product of A and B over D. If there is a projection
p € D and there are partial isometries vy,...,v, € D such that viv; <p and
Yo v =1—p, then

pCp= (pAp) % (pBp).
pLp

THEOREM 2. Let A, B be separable unital C*-algebras and D be a finite-
dimensional C*-algebra. Suppose 4: D— A and g : D— B are unital
embeddings. Then A;;B is RED if and only if there are unital embeddings
g A=T12 My, (C) and g2 : B—=T]7—; My, (C) for a sequence {k,}2,
of integers such that the following diagram commutes

YA

D < A
¥B 1 ifll
B q2

H My, (C).
m=1

Proof. If A 4 B is RFD, then there is a unital embedding

oo
®:AxB— I Ms.(C)
n=1
for a sequence {k,}22; of integers. Let ¢ and g2 be the restrictions of ®
on A and B respectively. Then the above diagram is commutative. Con-
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versely, we may assume that A, B are unital subalgebras of [[ -, My, (C)
for a sequence {k,}52; of integers and A O D C B are unital inclusions of
C*-algebras. Since D is a finite-dimensional C*-subalgebra, we can find a
projection p € D and partial isometries vy, ..., v, € D such that vjv; <p and
i viv; =1—p. Therefore, for showing A;B is RFD, it is sufficient to show

that PAP .3 PBP is RFD by Lemma 6 and Lemma 2.1 in [4]. Since PDP is

a finite-dimensional abelian C*-algebra. Then the desired result follows from
Proposition 2. ([

COROLLARY 1. Let AD D C B be unital C*-inclusions of C*-algebras in the
C*-algebra ], My, (C) and D is a unital finite-dimensional C*-subalgebra.
Then A;B is RFD.

COROLLARY 2. Suppose that A is a separable unital RFD C*-algebra and
D is a unital finite-dimensional C*-subalgebra of A. Then A;SA is RFD.

COROLLARY 3. For unital C*-inclusions DCBCA and DCCCA, if A
is a separable unital RFD algebra and D is finite-dimensional, then B%C is

RFD.

ExXAMPLE 2. Let M (C) DD C M,;(C) be unital inclusions of unital C*-
algebras. If try|p = tr;|p where try and tr; are tracial states on My (C)
and M;(C) respectively, then there exists an integer n and there are two
unital embeddings ¢; : M (C) — M, (C) and g2 : M;(C) = M,,(C) such that
¢1]p = @2|p. It implies that there is a commutative diagram which is same as
the one in Theorem 2. Therefore, My (C) Z>|;./\/ll((C) is RFD. In fact, this result

has been proved in [4].

REMARK 3. From the previous example and the fact that every MF algebra
has a tracial state, it is not hard to see that Mk((C)%./\/ll((C) is RFD if and

only if M (C) ;k)/\/ll((C) is an MF algebra.
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