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EXPONENTIAL INTEGRABILITY OF RIESZ POTENTIALS
OF ORLICZ FUNCTIONS

YOSHIHIRO MIZUTA AND TETSU SHIMOMURA

Abstract. In this paper, we are concerned with exponential
integrability for Riesz potentials of functions in Orlicz spaces

Φp,ϕ(L,R
n). As an application, we study exponential integra-

bility for BLD (Beppo Levi and Deny) functions.

1. Introduction and statement of results

A famous Trudinger inequality ([20]) insists that Sobolev functions in W 1,n

satisfy finite exponential integrability (see also [1], [3], [19], [21]). Great
progress has been made for Riesz potentials of order α in the limiting case
αp= n (see, e.g., [6], [7], [8], [9], [16], [18]). Let Rn denote the n-dimensional
Euclidean space. In this paper, we aim to show exponential integrability for
Riesz potentials of functions in Orlicz spaces Φp,ϕ(L,R

n), and consequently
establish exponential integrability for Sobolev functions, as an improvement
of the result by Edmunds, Gurka and Opic [6, Theorem 4.6], [7, Theorems 3.1
and 3.2] and the authors [16, Theorems A and B] and [18].

We denote by B(x, r) the open ball with center x and of radius r > 0,
and by |B(x, r)| its Lebesgue measure; in particular B denotes the unit ball
B(0,1).

For 0 < α < n and a locally integrable function f on Rn, we define the
Riesz potential Uαf of order α by

Uαf(x) =

∫
Rn

|x− y|α−nf(y)dy.

If f ∈ Lp(Rn) and αp= n, then we modify the potential by

Uα,0f(x) =

∫
Rn

{
|x− y|α−n − |y|α−nχRn\B(y)

}
f(y)dy,
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where χE denotes the characteristic function of E; note here that∫
Rn

∣∣|x− y|α−n − |y|α−nχRn\B(y)
∣∣∣∣f(y)∣∣dy �≡ ∞.

In the present paper, we treat functions f satisfying an Orlicz condition:

(1.1)

∫
Rn

Φp,ϕ

(∣∣f(y)∣∣)dy <∞.

Here ϕ(r) = r−pΦp,ϕ(r) is a positive monotone function on the interval (0,∞),
which is of logarithmic type; that is, there exists c1 > 0 such that

c−1
1 ϕ(r)≤ ϕ

(
r2
)
≤ c1ϕ(r) whenever r > 0.(ϕ1)

We set
Φp,ϕ(0) = 0,

because we will see from (ϕ4) below that

lim
r→0+

Φp,ϕ(r) = 0 = Φp,ϕ(0).

We denote by Φp,ϕ(L,R
n) the family of all locally integrable functions g on

Rn such that ∫
Rn

Φp,ϕ

(∣∣g(x)∣∣)dx <∞,

and define a quasi-norm

‖g‖Φp,ϕ(L,Rn) = inf

{
λ > 0 :

∫
Rn

Φp,ϕ

(∣∣g(x)∣∣/λ)dx≤ 1

}
.

This defines a norm in Φp,ϕ(L,R
n) when Φp,ϕ is convex.

Our first aim in the present paper is to establish integral inequalities for
Riesz potentials of functions in Φp,ϕ in the limiting case αp = n. For this
purpose, we set

ϕ∗
p(r) =

[∫ r

1

{
ϕ(t)

}−p′/p
t−1 dt

]1/p′

for r ≥ r0,

and extend it to be a (strictly) increasing continuous function on [0,∞) such
that ϕ∗

p(t) = (t/r0)ϕ
∗
p(r0) for t ∈ [0, r0), where 1/p+ 1/p′ = 1; here r0 > 1 is

taken so that ϕ∗
p is concave on [0,∞). We denote by (ϕ∗

p)
−1 the inverse of the

function ϕ∗
p. Note here that (ϕ∗

p)
−1 is convex on [0,∞).

Let us begin with the following result due to [18, Theorem A].

Theorem A. Let αp= n and G be a bounded open set in Rn. Then there
exists c0 > 0 such that ∫

G

(
ϕ∗
n/α

)−1(
c0
∣∣Uαf(x)

∣∣)dx≤ 1

whenever f is a locally integrable function on Rn such that ‖f‖Φn/α,ϕ(L,Rn) ≤
1 and f = 0 outside G.
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This is an extension of Cianchi [4, Theorem 2], Edmunds, Gurka and Opic
[6, Theorem 4.6], [7, Theorems 3.1 and 3.2], Alberico and Cianchi [2, Theo-
rem 2.3] and the authors [16, Theorems A and B]. For the case when αp < n,
see [18, Theorem A and Corollary 1.4]. Further Edmunds and Evans [5,
Theorems 3.6.10, 3.6.16] discussed the boundedness of Bessel potentials in
Lorenz–Karamata space setting.

To extend Theorem A to the whole space Rn, we consider the modified
version of Uαf by setting

Ũαf(x) =

∫
Rn

∣∣|x− y|α−n − |y|α−nχRn\B
∣∣∣∣f(y)∣∣dy.

Our main results are now stated as follows.

Theorem 1.1. Suppose ϕ is nondecreasing and

ϕ(0) = inf
r>0

ϕ(r)> 0.

Then for ε > 0 there exists c0 > 0 (depending on ε, α and ϕ) such that∫
Rn

(
1 + |x|

)−n−ε(
ϕ∗
n/α

)−1(
c0ϕ

(
1 + |x|

)−α/n
Ũαf(x)

)
dx≤ 1

whenever f is a nonnegative measurable function on Rn such that
‖f‖Φn/α,ϕ(L,Rn) ≤ 1.

Theorem 1.2. Suppose ϕ is nonincreasing. If ε > 0, then there exists
c0 > 0 (depending on ε, α and ϕ) such that∫

Rn

(
1 + |x|

)−n−ε(
ϕ∗
n/α

)−1(
c0Ũαf(x)

)
dx≤ 1

whenever f is a nonnegative measurable function on Rn such that
‖f‖Φn/α,ϕ(L,Rn) ≤ 1.

Our proof is based on the boundedness of maximal functions, by use of
the methods in the paper by Hedberg [10]. The sharpness of Theorems 1.1
and 1.2 will be discussed in Sections 2 and 3 (see Remarks 2.7, 2.8 and 3.2
below).

Example 1.3. Consider Φp,q(r) = rp(log r)q for large r > 0, where p =
n/α > 1 and q ≤ p− 1. If q < p− 1, then(

ϕ∗
p

)−1
(r)≥C exp

(
rp/(p−1−q)

)
and if q = p− 1, then (

ϕ∗
p

)−1
(r)≥C exp

(
exp

(
rp

′))
for r > 1. Hence we have the following exponential integrability, as an exten-
sion of Edmunds, Gurka and Opic [6, Theorem 4.6], [7, Theorems 3.1 and 3.2]
and the authors [16, Theorems A and B].
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Corollary 1.4. Let Φn/α,q(r) = rn/α(log r)q for large r > 0. For a real
number q < n/α − 1, set β = n/{n− (1 + q)α}. Then for ε > 0 there exists
c0 > 0 such that

(1) if 0≤ q < n/α− 1, then∫
Rn\B(0,2)

|x|−n−ε
[
exp

(
c0
(
log |x|

)−qβα/n(
Ũαf(x)

)β)− 1
]
dx≤ 1;

(2) if q = n/α− 1, then∫
Rn\B(0,2)

|x|−n−ε
[
exp

(
exp

(
c0
(
log |x|

)−1(
Ũαf(x)

)n/(n−α)))− e
]
dx≤ 1;

(3) if q < 0, then∫
Rn\B(0,2)

|x|−n−ε
[
exp

(
c0
(
Ũαf(x)

)β)− 1
]
dx≤ 1; and

(4) if q > n/α− 1, then Uαf is continuous on Rn,

whenever f is a nonnegative measurable function on Rn such that
‖f‖Φn/α,q(L,Rn) ≤ 1.

Example 1.5. Consider Φp,q(r) = rp(log(e+ r−1))q for large r > 0, where
p= n/α > 1 and q > 0. Then(

ϕ∗
p

)−1
(r)≥C exp

(
rp/(p−1)

)
for r > 1.

Corollary 1.6. Let Φn/α,q(r) = rn/α(log(e+r−1))q for large r > 0, where
q > 0. Then for ε > 0 there exists c0 > 0 such that∫

Rn\B(0,2)

|x|−n−ε
[
exp

(
c0
(
Ũαf(x)

)n/(n−α))− 1
]
dx≤ 1

whenever f is a nonnegative measurable function on Rn such that
‖f‖Φn/α,q(L,Rn) ≤ 1.

As applications of Theorems 1.1 and 1.2, in Section 4, we are concerned
with exponential integrability for BLD functions u on Rn such that
‖|∇u|‖Φn,ϕ(L,Rn) ≤ 1, where ∇ denotes the gradient.

Throughout this paper, let C, C1, C2, . . . denote various constants inde-
pendent of the variables in question.

2. Proof of Theorem 1.1

First, we collect properties which follow from condition (ϕ1) (see [13] and
[17]).

(ϕ2) ϕ satisfies the doubling condition, that is, there exists c > 1 such that

c−1ϕ(r)≤ ϕ(2r)≤ cϕ(r) whenever r > 0.
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(ϕ3) For each γ > 0, there exists c= c(γ)≥ 1 such that

c−1ϕ(r)≤ ϕ
(
rγ
)
≤ cϕ(r) whenever r > 0.

(ϕ4) If γ > 0, then there exists c= c(γ)≥ 1 such that

sγϕ(s)≤ ctγϕ(t) whenever 0< s< t.

(ϕ5) If γ > 0, then there exists c= c(γ)≥ 1 such that

t−γϕ(t)≤ cs−γϕ(s) whenever 0< s< t.

Lemma 2.1. (1) For every c1 > 0, there exists c2 > 0 such that

c2ϕ
∗
p(r) ≤ ϕ∗

p(c1r) when r > 0, or
(2.1) (

ϕ∗
p

)−1
(c2t) ≤ c1

(
ϕ∗
p

)−1
(t) when t > 0;

(2) ϕ∗
p(r

2)≤Cϕ∗
p(r) when r > 0.

Set

ϕ̃p,1(r) =

∫ r

1

{
ϕ
(
t−1

)}−p′/p
t−1 dt for r ≥ 1.

Lemma 2.2. Let αp= n. Then

U1(x) ≡
∫
B(0,|x|)\B

|y|α−nf(y)dy

≤ Cϕ̃p,1

(
|x|

)1/p′

for all x ∈ Rn \ B and nonnegative measurable functions f on Rn with
‖f‖Φp,ϕ(L,Rn) ≤ 1 such that f = 0 on B.

Proof. Let f be a nonnegative measurable function on Rn such that
‖f‖Φp,ϕ(L,Rn) ≤ 1 and f = 0 on B. Let k(y) = |y|−αϕ̃p,1(|y|)1/p

′−1 ×
{ϕ(|y|−1)}−p′/p. For x ∈Rn \B, write

U1(x) =

∫
{y∈B(0,|x|)\B:f(y)≤k(y)}

|y|α−nf(y)dy

+

∫
{y∈B(0,|x|)\B:f(y)>k(y)}

|y|α−nf(y)dy

= U11(x) +U12(x).

First, we have

U11(x) ≤
∫
B(0,|x|)\B

|y|α−nk(y)dy

≤ C

∫ |x|

1

ϕ̃p,1(t)
1/p′−1

{
ϕ
(
t−1

)}−p′/p
t−1 dt

≤ Cϕ̃p,1

(
|x|

)1/p′
.
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In view of (ϕ4), we obtain

U12(x) ≤ C

∫
B(0,|x|)\B

|y|α−nf(y)
f(y)−1Φp,ϕ(f(y))

k(y)−1Φp,ϕ(k(y))
dy

≤ C

∫
B(0,|x|)\B

Φp,ϕ

(
f(y)

)
ϕ̃p,1

(
|y|

)1/p′
dy

≤ Cϕ̃p,1

(
|x|

)1/p′
.

Hence

U1(x)≤Cϕ̃p,1

(
|x|

)1/p′
,

as required. �
Lemma 2.3. Let αp= n. Then

U2(x) ≡ |x|
∫
Rn\B(0,2|x|)

|y|α−n−1f(y)dy

≤ Cϕ
(
|x|−1

)−1/p

for all x ∈ Rn \ B and nonnegative measurable functions f on Rn with
‖f‖Φp,ϕ(L,Rn) ≤ 1 such that f = 0 on B.

Proof. Let f be a nonnegative measurable function on Rn such that
‖f‖Φp,ϕ(L,Rn) ≤ 1 and f = 0 on B. Let k(y) = |y|−α{ϕ(|y|−1)}−1/p. Then

U2(x) = |x|
∫
{y∈Rn\B(0,2|x|):f(y)≤k(y)}

|y|α−n−1f(y)dy

+ |x|
∫
{y∈Rn\B(0,2|x|):f(y)>k(y)}

|y|α−n−1f(y)dy

= U21(x) +U22(x).

First, we have by (ϕ5)

U21(x) ≤ |x|
∫
Rn\B(0,2|x|)

|y|α−n−1k(y)dy

≤ C|x|
∫ ∞

2|x|
ϕ
(
t−1

)−1/p
t−2 dt

≤ Cϕ
(
|x|−1

)−1/p
.

In view of (ϕ4), we obtain

U22(x) ≤ C|x|
∫
Rn\B(0,2|x|)

|y|α−n−1f(y)
f(y)−1Φp,ϕ(f(y))

k(y)−1Φp,ϕ(k(y))
dy

≤ C|x|
∫
Rn\B(0,2|x|)

Φp,ϕ

(
f(y)

)
|y|−1ϕ

(
|y|−1

)−1/p
dy

≤ Cϕ
(
|x|−1

)−1/p
.
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Hence

U2(x)≤Cϕ
(
|x|−1

)−1/p
,

as required. �

Set

ϕ̃p,2(s, r) =

∫ r

s

{
ϕ
(
t−1

)}−p′/p
t−1 dt for 0≤ s≤ r.

The following lemma can be proved in the same way as Lemma 2.2.

Lemma 2.4 (cf. [17, Lemma 2.5]). Let αp= n. Then

U(x) ≡
∫
B(x,|x|/2)\B(x,δ)

|x− y|α−nf(y)dy

≤ Cϕ̃p,2

(
δ, |x|/2

)1/p′

for all x ∈Rn, 0< δ < |x|/2 and nonnegative measurable functions f on Rn

with ‖f‖Φp,ϕ(L,Rn) ≤ 1.

Lemma 2.5. ([15, Lemma 2.2]) Let ϕ be nondecreasing and ϕ(0) > 0. If
r > 0 and t > 0, then

ϕ(rt)≤ c1ϕ(r)ϕ(t),

where c1 is the constant appearing in (ϕ1).

We find from Lemma 2.5 that

ϕ̃p,1

(
|x|

)
=

∫ 1

|x|−1

{
ϕ
(
|x|−1s−1

)}−p′/p
s−1 ds(2.2)

≤ C
{
ϕ
(
|x|

)}p′/p{
ϕ∗
p

(
|x|

)}p′

and

ϕ̃p,2

(
r, |x|

)
=

{
ϕ∗
p

(
r−1

)}p′
+ ϕ̃p,1

(
|x|

)
(2.3)

≤
{
ϕ∗
p

(
r−1

)}p′
+C

{
ϕ
(
|x|

)}p′/p{
ϕ∗
p

(
|x|

)}p′

when 0< 2r < 1< |x| and ϕ is nondecreasing.
For a locally integrable function f on Rn, define the maximal function by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

∣∣f(y)∣∣dy,
where |B(x, r)| denotes the n-dimensional Lebesgue measure of the ball B(x, r)
centered at x of radius r > 0.

Set

U3(x) =

∫
B(x,|x|/2)

|x− y|α−nf(y)dy.



514 Y. MIZUTA AND T. SHIMOMURA

Lemma 2.6. Let αp= n and ϕ be nondecreasing. Then

U3(x)≤Cϕ∗
p

(
Mf(x)

)
+C

{
ϕ
(
|x|

)}1/p
ϕ∗
p

(
|x|

)
for all x ∈ Rn \ B and nonnegative measurable functions f on Rn with
‖f‖Φp,ϕ(L,Rn) ≤ 1.

Proof. Let f be a nonnegative measurable function on Rn such that
‖f‖Φp,ϕ(L,Rn) ≤ 1. For 0< δ < |x|/2 and |x| ≥ 1, write

U3(x) =

∫
B(x,δ)

|x− y|α−nf(y)dy+

∫
B(x,|x|/2)\B(x,δ)

|x− y|α−nf(y)dy

= U31(x) +U32(x).

First, note that

U31(x) ≤ CδαMf(x).

By Lemma 2.4, we obtain

U32(x)≤Cϕ̃p,2

(
δ, |x|/2

)1/p′
.

Hence, it follows from (2.3) that

U3(x) ≤ CδαMf(x) +Cϕ̃p,2

(
δ, |x|/2

)1/p′

≤ CδαMf(x) +Cϕ∗
p

(
δ−1

)
+C

{
ϕ
(
|x|

)}1/p
ϕ∗
p

(
|x|

)
.

If (Mf(x))−1/αϕ∗
p(Mf(x))1/α < 1/2, or Mf(x) ≥ C, then, letting δ =

(Mf(x))−1/αϕ∗
p(Mf(x))1/α, we find

U3(x) ≤ Cϕ∗
p

(
Mf(x)

)
+C

{
ϕ
(
|x|

)}1/p
ϕ∗
p

(
|x|

)
.

If (Mf(x))−1/αϕ∗
p(Mf(x))1/α ≥ 1/2, then, letting δ = 1/2, we find

U3(x)≤C
{
ϕ
(
|x|

)}1/p
ϕ∗
p

(
|x|

)
,

as required. �
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let f be a nonnegative measurable function on Rn

satisfying ‖f‖Φp,ϕ(L,Rn) ≤ 1. If x ∈Rn \B(0,2), then

Ũαf1(x)≤C|x|α−n

∫
B

f(y)dy ≤C

for f1 = fχB.
Next, we are concerned with f2 = f − f1. For x ∈Rn \B(0,2), we have

Ũαf2(x) =

∫
B(0,2|x|)\B(x,|x|/2)

∣∣|x− y|α−n − |y|α−n
∣∣f2(y)dy

+

∫
Rn\B(0,2|x|)

∣∣|x− y|α−n − |y|α−n
∣∣f2(y)dy
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+

∫
B(x,|x|/2)

∣∣|x− y|α−n − |y|α−n
∣∣f2(y)dy

≤ C

∫
B(0,2|x|)\B(x,|x|/2)

|y|α−nf2(y)dy

+C|x|
∫
Rn\B(0,2|x|)

|y|α−n−1f2(y)dy

+C

∫
B(x,|x|/2)

|x− y|α−nf2(y)dy

≤ C
{
U1(x) +U2(x) +U3(x)

}
,

where U1(x),U2(x) and U3(x) are given as in Lemmas 2.2, 2.3 and 2.6. Note
from (ϕ2) and (2.2) that

ϕ
(
|x|−1

)−1/p ≤Cϕ̃p,1

(
2|x|

)1/p′
≤Cϕ

(
|x|

)1/p
ϕ∗
p

(
|x|

)
.

With the aid of Lemmas 2.2, 2.3 and 2.6, we see that

Ũαf(x) = Ũαf1(x) + Ũαf2(x)

≤ C +Cϕ̃p,1

(
2|x|

)1/p′
+Cϕ

(
|x|−1

)−1/p

+Cϕ∗
p

(
Mf2(x)

)
+Cϕ

(
|x|

)1/p
ϕ∗
p

(
|x|

)
≤ Cϕ∗

p

(
Mf(x)

)
+Cϕ

(
|x|

)1/p
ϕ∗
p

(
|x|

)
≤ Cϕ

(
|x|

)1/p
ϕ∗
p

(
max

{
|x|,Mf(x)

})
≤ C(a)ϕ

(
|x|

)1/p
ϕ∗
p

([
max

{
|x|,Mf(x)

}]a)
for 0< a<min{ε,1}, so that(

ϕ∗
p

)−1(
C(a)−1ϕ

(
|x|

)−1/p
Ũαf(x)

)
≤
[
max

{
|x|,Mf(x)

}]a
.

Hence, ∫
Rn\B(0,2)

|x|−n−ε
(
ϕ∗
p

)−1(
C(a)−1ϕ

(
|x|

)−1/p
Ũαf(x)

)
dx

≤
∫
Rn\B(0,2)

|x|−n−ε
[
|x|a +

(
Mf(x)

)p]
dx.

Now it follows from the boundedness of maximal functions in Lp that∫
Rn\B(0,2)

|x|−n−ε
(
ϕ∗
p

)−1(
C(a)−1ϕ

(
|x|

)−1/p
Ũαf(x)

)
dx≤C.

Thus, the proof is completed by (2.1). �

Remark 2.7. Let αp= n. One can find f ∈ Lp(Rn) such that∫
Rn\B(0,2)

|x|−n exp
(
c0
(
Ũαf(x)

)β)
dx=∞
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with β = p/(p− 1) and c0 > 0, so that we cannot take ε= 0 in Theorem 1.1.
To show this, consider

f(y) =
(
e+ |y|

)−n/p(
log

(
e+ |y|

))−1/p(
log

(
log

(
ee + |y|

)))−γ

with γ > 1/p for y ∈Rn. Then∫
f(y)p dy <∞

since γ > 1/p. Further,

Ũαf(x) ≥ C

∫
B(0,|x|/3)

|y|α−nf(y)dy

= C

∫
B(0,|x|/3)

(
e+ |y|

)−n(
log

(
e+ |y|

))−1/p(
log

(
log

(
ee + |y|

)))−γ
dy

≥ C
(
log

(
e+ |x|

))1−1/p(
log

(
log

(
ee + |x|

)))−γ

for x ∈Rn \B(0,2). Hence, it follows that∫
Rn\B(0,2)

|x|−n exp
(
c0
(
Ũαf(x)

)β)
dx

≥
∫
Rn\B(0,2)

|x|−n exp
(
c0C

(
log

(
e+ |x|

))(
log

(
log

(
ee + |x|

)))−γβ)
dx

=∞
for c0 > 0.

Remark 2.8. Let αp = n. Let Φp,q(r) = rp(log r)q for large r > 1 and
0< q < p− 1. For 0< δ < 1, one can find f ∈Φp,q(L,R

n) such that∫
Rn\B(0,2)

|x|−n−ε exp
(
c0
(
log

(
2 + |x|

))−qβδ/p(
Ũαf(x)

)β)
dx=∞

with β = p/(p − 1− q) and c0 > 0, so that the exponent −qβ/p is sharp in
Corollary 1.4.

To show this, consider

f(y) =
(
e+ |y|

)−n/p(
log

(
e+ |y|

))−γ

with 1/p < γ < {1 + q(1− δ)}/p(< 1) for y ∈Rn. Then∫
f(y)p

(
log

(
e+ f(y)

))q
dy <∞

since γ > 1/p. Further,

Ũαf(x) ≥ C

∫
B(0,|x|/3)

|y|α−nf(y)dy

= C

∫
B(0,|x|/3)

|y|−n
(
log

(
e+ |y|

))−γ
dy

≥ C
(
log

(
e+ |x|

))−γ+1
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for x ∈Rn \B(0,2). Since −qβδ/p+ (−γ + 1)β > 1, we have∫
Rn\B(0,2)

|x|−N exp
(
c0
(
log |x|

)−qβδ/p(
Ũαf(x)

)β)
dx

≥
∫
Rn\B(0,2)

|x|−N exp
(
c0C

(
log |x|

)−qβδ/p+(−γ+1)β)
dx

=∞
for c0 > 0 and N > n.

3. Proof of Theorem 1.2

We find that

(3.1) ϕ̃p,1

(
|x|

)
=

∫ 1

|x|−1

{
ϕ
(
|x|−1s−1

)}−p′/p
s−1 ds≤

{
ϕ∗
p

(
|x|

)}p′

and

(3.2) ϕ̃p,2

(
r, |x|

)
=
{
ϕ∗
p

(
r−1

)}p′
+ ϕ̃p,1

(
|x|

)
≤
{
ϕ∗
p

(
r−1

)}p′
+
{
ϕ∗
p

(
|x|

)}p′

when 0< 2r < 1< |x| and ϕ is nonincreasing.
Using (3.2) instead of (2.3), we can prove the following as in the proof of

Lemma 2.6.

Lemma 3.1. Let αp= n and ϕ be nonincreasing. Then

U3(x)≤Cϕ∗
p

(
Mf(x)

)
+Cϕ∗

p

(
|x|

)
for all x ∈ Rn and nonnegative measurable functions f on Rn with
‖f‖Φp,ϕ(L,Rn) ≤ 1.

Proof of Theorem 1.2. Using Lemma 3.1 instead of Lemma 2.6, we can
prove Theorem 1.2 as in the proof of Theorem 1.1. �

Remark 3.2. Let αp = n and a > 0. Let Φp,q(r) = rp(log(e+ r−1))q for
r > 1 and 0 < q < min{p − 1, ap}. Then one can find f ∈ Φp,q(L,R

n) such
that ∫

Rn\B(0,2)

|x|−n−ε exp
(
c0
((
log

(
2 + |x|

))a
Ũαf(x)

)β)
dx=∞

with β = p/(p − 1) and c0 > 0; this implies that Theorem 1.2 is sharp in a
certain sense.

To show this, consider

f(y) = |y|−n/p
(
log

(
e+ |y|

))−γ

with (q + 1)/p < γ < min{1, a + 1/p} for y ∈ Rn \ B, and f = 0 for y ∈ B.
Then ∫

f(y)p
(
log

(
e+ f(y)−1

))q
dy <∞,
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since γ > (q+ 1)/p. Further,

Ũαf(x) ≥ C

∫
B(0,|x|/3)

|y|α−nf(y)dy

= C

∫
B(0,|x|/3)

|y|−n
(
log

(
e+ |y|

))−γ
dy

≥ C
(
log

(
e+ |x|

))−γ+1

for x ∈Rn \B(0,2). Since (a− γ + 1)β > 1, we have∫
Rn\B(0,2)

|x|−N exp
(
c0
((
log

(
2 + |x|

))a
Ũαf(x)

)β)
dx

≥
∫
Rn\B(0,2)

|x|−N exp
(
c0C

(
log |x|

)(a−γ+1)β)
dx

=∞
for c0 > 0 and N > n.

4. BLD functions

As applications of our theorems, we study exponential integrability for BLD
(Beppo Levi and Deny) functions. We say that u is a BLD function on Rn if
its partial derivatives belong to Lq(Rn) (q > 1) (see [11], [12], [13], [14]). To
give an integral representation, we need the kernel functions

k̃j(x, y) =

{
kj(x− y) when |y|< 1,
kj(x− y)− kj(−y) when |y| ≥ 1

with kj(x) = xj |x|−n. For simplicity, set

k̃(x, y) =
(
k̃1(x, y), . . . , k̃n(x, y)

)
.

We see that

(4.1) u(x) = ω−1
n

∫
k̃(x, y) · ∇u(y)dy+Au

for almost every x ∈Rn, where ωn denotes the surface measure of the bound-
ary ∂B and Au is a number. Here note from Hölder’s inequality that

(4.2)

∫
Rn

(
1 + |y|

)−n∣∣∇u(y)
∣∣dy <∞.

Theorem 4.1. Suppose ϕ is nondecreasing and ϕ(0)> 0. Then for ε > 0
there exists c0 > 0 such that∫

Rn\B(0,2)

|x|−n−ε
(
ϕ∗
n

)−1(
c0ϕ

(
|x|

)−1/n∣∣u(x)−Au

∣∣)dx≤ 1

whenever u is a BLD function on Rn such that ‖|∇u|‖Φn,ϕ(L,Rn) ≤ 1.
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Proof. In view of (4.1), we have

∣∣u(x)−Au

∣∣≤C

∫ ∣∣k̃(x, y)∣∣∣∣∇u(y)
∣∣dy.

Therefore, in view of Theorem 1.1, we establish∫
Rn\B(0,2)

|x|−n−ε
(
ϕ∗
n

)−1(
c0ϕ

(
|x|

)−1/n∣∣u(x)−Au

∣∣)dx≤ 1. �
Remark 4.2. If ϕ(r) = (log(e+ r))q with 0< q < n− 1, then (ϕ∗

n)
−1(r)≥

C exp(rn/(n−(1+q))) by Example 1.3. Consider

u(x) =
(
log

(
e+ |x|

))1−1/n(
log log

(
e2 + |x|

))−γ
.

If γn > 1, then ∥∥|∇u|
∥∥
Φn,ϕ(L,Rn)

<∞
and ∫

Rn\B(0,2)

|x|−n exp
(
c0
∣∣ϕ(|x|)−1/n(

u(x)−A
)∣∣n/(n−(1+q)))

dx=∞

for every c0 > 0 and A≥ 0.

Theorem 4.3. Suppose ϕ is nonincreasing. Then for ε > 0 there exists
c0 > 0 such that∫

Rn\B(0,2)

|x|−n−ε
(
ϕ∗
n

)−1(
c0
∣∣u(x)−Au

∣∣)dx≤ 1

whenever u is a BLD function on Rn such that ‖|∇u|‖Φn,ϕ(L,Rn) ≤ 1.
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