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THE CURVATURE OPERATOR AT THE SOUL

LUIS GUIJARRO AND GERARD WALSCHAP

Abstract. We prove two splitting theorems, one topological,
the other metric, for open manifolds with nonnegative sectional
curvature.

In this note, we study the behavior of the curvature operator ρ : Λ2(TM)→
Λ2(TM) along the soul of an open manifold M with nonnegative sectional
curvature K. We adopt the convention that the curvature tensor R is given by
〈R(x, y)y,x〉=K(x, y) for orthonormal vectors x and y. Thus, our curvature
tensor agrees with that of [2], but differs from [4] as to sign. Recall that the
curvature operator is the self-adjoint endomorphism given on decomposable
elements by〈

ρ(x∧ y), z ∧w
〉
=
〈
R(x, y)w,z

〉
, x, y, z,w ∈Mp, p ∈M.

Given a positive integer n, the curvature operator is said to be n-nonnegative
(resp. n-positive) on U ⊂M if the sum of any n eigenvalues of ρ is nonnega-
tive (resp. positive) at every point of U . 1-nonnegative is synonymous with
nonnegative.

Compact manifolds with 2-positive and those with 2-nonnegative curva-
ture operator were classified in [1] and [5], respectively. Open (i.e., complete,
noncompact) spaces M with nonnegative curvature operator also have non-
negative sectional curvature, and therefore admit a soul Σ in the sense of
Cheeger and Gromoll. In [6], it was shown that the universal cover M̃ splits

as an isometric product of Σ̃ with a manifold diffeomorphic to Euclidean
space. Here, we generalize this result to spaces with 3-nonnegative curvature
operator. Of course, one must also assume nonnegative sectional curvature in
this case, since otherwise there is no soul. On the other hand, the argument
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only requires the condition regarding the curvature operator to hold along the
soul.

As yet another indication that the structure of these spaces is determined
at the soul, we show that if the scalar curvature of M is small enough and Σ is
simply connected, then M is diffeomorphic to a product of Σ with Euclidean
space.

1. Curvature relations

We begin by collecting a few facts about the curvature tensor R; these
are not essentially new, but proofs are included for convenience of the reader.
First of all, observe that in spaces of nonnegative curvature, compact or not,
R(x, y)y = 0 whenever K(x, y) = 0. To see this, consider the function

t �→ f(t) =
〈
R(x, y+ tu)(y+ tu), x

〉
.

Expanding this formula for f and using f ′(0) = 0 then yields the result.
In what follows, we restrict ourselves to the curvature at the soul Σ of an

open manifold with K ≥ 0. Recall from [3] that any plane spanned by a vector
tangent to Σ and one orthogonal to it has zero curvature.

Given p ∈Σ, let x, y ∈Σp, and u, v ⊥Σp. Then

(1) R(x, y)u= 2R(x,u)y, R(u, v)x= 2R(u,x)v.

Indeed, R(x + y,u)(x + y) = 0 since the plane spanned by x + y and u is
flat. Expanding this expression and using again R(x,u)x = R(y,u)y = 0
yields R(y,u)x=−R(x,u)y. Substituting in the Bianchi identity R(x, y)u+
R(y,u)x + R(u,x)y = 0 then implies the first assertion. The proof of the
second one is similar.

The other relation we will need is the following:

(2)
〈
R(x, y)y,x

〉〈
R(u, v)v,u

〉
≥ 9

4

〈
R(x, y)u, v

〉2
.

For the proof, let α,β, γ, δ ∈ R, e = αx + βu, f = γy + δv, and expand
〈R(e, f)f, e〉 to obtain〈

R(e, f)f, e
〉
= (αγ)2

〈
R(x, y)y,x

〉
+ 3αβγδ

〈
R(x, y)v,u

〉
+ (βδ)2

〈
R(u, v)v,u

〉
.

The right side may be written as Q(x), with x= (αγ,βδ) ∈R
2, and Q a qua-

dratic form on the plane. But Q is nonnegative definite, which is exactly (2).

2. A metric splitting theorem

The main result of this section will use the following fact from linear alge-
bra.
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Proposition 1. Let ρ : E →E denote a self-adjoint endomorphism of an
n-dimensional inner product space E. Then ρ is k-nonnegative if and only if

k∑
i=1

〈ρvi, vi〉 ≥ 0

for any k orthonormal vectors vi ∈E.

Proof. Let λ1 ≤ · · · ≤ λn denote the eigenvalues of ρ, and {ei} a corre-
sponding orthonormal basis of eigenvectors. The only if part is clear since

k∑
i=1

λi =
k∑

i=1

〈ρei, ei〉 ≥ 0.

For the converse, let v1, . . . , vk ∈E be orthonormal, and write

vi = αi1e1 + · · ·+ αinen, αij ∈R.

We then have
k∑

i=1

〈ρvi, vi〉 =
k∑

i=1

(
n∑

j=1

λjα
2
ij

)
=

k−1∑
j=1

(
λj

k∑
i=1

α2
ij

)
+

n∑
j=k

(
λj

k∑
i=1

α2
ij

)

≥
k−1∑
j=1

(
λj

k∑
i=1

α2
ij

)
+ λk

n∑
j=k

k∑
i=1

α2
ij .

Rewriting the last summation as

n∑
j=k

k∑
i=1

α2
ij =

n∑
j=1

k∑
i=1

α2
ij −

k−1∑
j=1

k∑
i=1

α2
ij = k−

k−1∑
j=1

k∑
i=1

α2
ij ,

we conclude that
k∑

i=1

〈ρvi, vi〉 ≥
k−1∑
j=1

(
λj

k∑
i=1

α2
ij

)
+ λk

(
k−

k−1∑
j=1

k∑
i=1

α2
ij

)
(3)

= kλk +

k−1∑
j=1

(
(λj − λk)

k∑
i=1

α2
ij

)
.

Next, observe that
∑k

i=1α
2
ij ≤ 1 for any j. Indeed, extending v1, . . . , vk to an

orthonormal basis v1, . . . , vn of E, we have

1 = 〈ej , ej〉=
n∑

i=1

〈ej , vi〉2 ≥
k∑

i=1

〈ej , vi〉2 =
k∑

i=1

α2
ij .

Substituting this inequality in (3) yields

k∑
i=1

〈ρvi, vi〉 ≥ kλk +
k∑

j=1

(λj − λk) = λ1 + · · ·+ λk
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which is nonnegative by assumption. This establishes the claim. �
Theorem 1. Let M be an open manifold with nonnegative sectional cur-

vature. If the curvature operator of M is 3-nonnegative when restricted to a
soul Σ, then M splits locally isometrically over Σ.

Proof. Denote by n and k the dimension and codimension of the soul,
respectively. Suppose the normal bundle of Σ is not flat, so that there exist
p ∈ Σ, x, y ∈ Σp, u ⊥ Σp such that R(x, y)u �= 0. If v is a unit vector in
direction R(x, y)u, and α= |R(x, y)u|> 0, then〈

R(x, y)u, v
〉
= α > 0.

If ρ denotes the curvature operator of M , then by (1),〈
ρ(x∧ u+ y ∧ v), x∧ u+ y ∧ v

〉
= 2

〈
ρ(x∧ u), y ∧ v

〉
= 2

〈
R(x,u)v, y

〉
= −2

〈
R(x,u)y, v

〉
=−

〈
R(x, y)u, v

〉
= −α,

and similarly, 〈
ρ(x∧ v− y ∧ u), x∧ v− y ∧ u

〉
=−α.

Furthermore, 〈
ρ(x∧ v+ y ∧ u), x∧ v+ y ∧ u

〉
= α.

Notice that the three bivectors above are mutually orthogonal of length
√
2.

Normalizing them, we obtain three orthonormal bivectors ξ1, ξ2, ξ3 satisfying

3∑
i=1

〈
ρ(ξi), ξi

〉
=

1

2
(−α− α+ α)< 0,

which contradicts Proposition 1 in the case k = 3.
Summarizing, if ρ is 3-nonnegative along the soul, then the normal bundle

of the soul must be flat. The main result in [7] now implies that M is locally
a metric product with Σ as one of the factors. �

It is worth noting that it is essential for the curvature operator condition to
hold along the soul. One can construct examples where the curvature operator
is nonnegative everywhere outside a compact set, but where M does not split:
consider the Hopf action of S1 on S3, and let g denote a nonnegatively curved
rotationally symmetric metric on R

2 that is isometric to S1 × [1,∞) outside
a compact set. Construct the quotient M = S3 ×S1 R

2. Since the diagonal
action of S1 on the metric product S3 × (R2, g) is by isometries, we may
endow M with the unique metric for which the projection S3 × (R2, g)→M
is a Riemannian submersion. M is then a nonnegatively curved manifold with
soul S = S3×S1 {0}. Away from a tubular neighbourhood of S, M is isometric
to (S3 ×S1 S1)× [1,∞) and on that set with nonnegative sectional curvature,
the curvature operator is also nonnegatively curved: indeed, S3 ×S1 S1 has
dimension 3, so that every bivector is decomposable. M is, however, the total



THE CURVATURE OPERATOR AT THE SOUL 305

space of a nontrivial bundle over S2 (its Euler class is not trivial), so that its
curvature operator cannot be nonnegative everywhere.

3. A differentiable splitting theorem

Theorem 2. Let M be an open nonnegatively curved manifold with simply
connected soul Σ, and choose some r > (dimΣ)/2. There exists some ε0 =
ε0(Σ, r) such that if the scalar curvature sM of M along Σ satisfies(∫

Σ

srM dv

)1/r

< ε0

then M is diffeomorphic to Σ×R
k.

Proof. We begin with the determinant inequality (2). For any p ∈Σ, take
the trace of this inequality over an orthonormal basis {xi} of Σp and {vj} of
its orthogonal complement to obtain

(4)
∑
i,...,l

〈
R(xi, xj)uk, ul

〉2 ≤ 4

9

∑
i,j

K(xi, xj) ·
∑
k.l

K(uk, ul).

Since planes spanned by one vector tangent, and another vector orthogonal
to Σ are flat, we obtain

(5)
∣∣R∇∣∣2 ≤ c · sM 2.

Here R∇ denotes the curvature tensor of the normal bundle of Σ (which is
just the restriction of the curvature tensor of M since Σ is totally geodesic).
The term c is due to the constants appearing in the definition of the scalar
curvature, and may, without affecting the remainder of the argument, be
assumed to equal 1; raising to the r/2-th power and integrating over Σ yields

(6)
∥∥R∇∥∥

r
=

(∫ ∣∣R∇∣∣r)1/r

≤
(∫

|sM |r
)1/r

= ‖sM‖r.

Assume now the statement is false; then M is not diffeomorphic to the to-
tal space of a flat bundle, but there exists a sequence {gi} of metrics over
it having nonnegative curvature and scalar curvature with soulwise norm

‖s(i)M ‖r < 1/i. Thus, the corresponding curvature tensors on the normal bun-
dle satisfy ‖R∇i‖r < 1/i, and a result of Uhlenbeck [8] implies the existence
of a sequence of gauge transformations gi on the normal bundle E of the soul
such that gi

−1 ◦ ∇i ◦ gi converges to the flat connection on E, contradicting
the assumption that the bundle is not flat. �
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