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OKA’S LEMMA, CONVEXITY, AND INTERMEDIATE
POSITIVITY CONDITIONS

A.-K. HERBIG AND J. D. MCNEAL

Dedicated to J. P. D’Angelo, whose work celebrates positivity in many forms

Abstract. A new proof of Oka’s lemma is given for smoothly
bounded, pseudoconvex domains Ω⊂⊂C

n. The method of proof

is then also applied to other convexity-like hypotheses on the
boundary of Ω.

1. Introduction

If Ω is a domain of holomorphy in C
n, Oka’s lemma states that φ(z) =

− logdbΩ(z) is plurisubharmonic for z in Ω, where dbΩ(z) denotes the Eu-
clidean distance from z to Ωc = C

n \Ω. This is a foundational result in sev-
eral complex variables, with φ serving as the initial building block in various
constructions of holomorphic functions on Ω, for example, Theorems 4.2.2,
4.4.3, and 4.4.4 in [9], Theorem 3.18 in [13], Theorems 3.4.5 and 5.4.2 in [11],
and Theorem D.4 in Chapter IX of [7], among others, hinge on Oka’s lemma.

The aim of this paper is to give a new proof of Oka’s lemma when Ω
has smooth boundary bΩ, and to examine the result as an instance where
positivity conditions on the Hessian of a function f are “spread” to a wider
set of points and vectors by taking functional combinations of f of the form
χ ◦ f , for χ : R→R.

This point of view is easiest to describe via the signed distance-to-the-
boundary function δ = δbΩ; see (3.1) below. If Ω is a smoothly bounded
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domain of holomorphy, then Ω is Levi pseudoconvex, see, for example, Theo-
rem 2.6.12 in [9]. Since δ is a defining function for Ω, it follows that

(1.1)
n∑

j,k=1

∂2δ

∂zj ∂z̄k
(p)VjV k ≥ 0, if p ∈ bΩ, V ∈CTp(bΩ).

Oka’s lemma says that (1.1) implies φ=− log(−δ) is plurisubharmonic on Ω,
that is,

(1.2)

n∑
j,k=1

∂2δ

∂zj ∂z̄k
(z)WjW k +

1

d(z)

∣∣∣∣∣
n∑

j=1

∂δ

∂zj
(z)Wj

∣∣∣∣∣
2

≥ 0, if z ∈Ω,W ∈C
n.

Notice that the quadratic form in (1.1) is only nonnegative-definite at a small
set of points in Ω (namely, p ∈ bΩ) and in certain directions (namely, V ∈
CTp(bΩ)), while the form in (1.2) is nonnegative-definite at all points in Ω
and in all directions. Thus, Oka’s lemma asserts that the positivity (on its
complex Hessian) φ inherits from δ is more widespread than condition (1.1)
implies at first glance.

This paper grew out of our desire to find a direct proof of Oka’s lemma.
The standard proof, see Theorems 2.6.12 in [9], Theorem 3.3.5 in [11], E.5.11
in [13], is by contradiction: assuming (1.2) is violated at some z ∈ Ω and in
some direction W , a boundary point p and a direction V ∈CTp(bΩ) are found
where (1.1) cannot hold. The advantage of the canonical approach is the
usual one: negation of the nonstrict inequalities result in strict inequalities
and these are easier to deal with than (1.1) and (1.2) themselves.

Our proof deals with the semi-definite inequalities (1.1) and (1.2) directly
which, we believe, has intrinsic interest. The proof given here re-casts the
semi-definite conclusion (1.2) as another nonstrict inequality on the square
of the distance function, see (4.1), then uses simple Taylor analysis to show
that (1.1) implies (4.1). Variational arguments often fail when one tries to
pass from one nonstrict inequality to another, so their success in this instance
merits mention. The local constancy of ‖∇δ‖ plays a key role in our approach
to this issue.

Once Oka’s lemma (Theorem 4.1) is proved in this way, it is illuminating to
apply this method to other convexity-like hypotheses on bΩ besides pseudo-
convexity. The most natural hypotheses of this kind are: (i) the real Hessian
of δ nonnegative on the real tangent space to bΩ (convexity), (ii) the real
Hessian of δ nonnegative on the complex tangent space to bΩ (C-convexity),
and (iii) the complex Hessian of δ nonnegative on the real tangent space to bΩ
(δ plurisubharmonic “on the boundary”). We examine how these hypotheses
yield widespread nonnegativity on the Hessians of δ or − log(−δ) in Sections 5
and 6. We follow the method used to prove Theorem 4.1 quite closely in these
sections, in order to identify how the different hypotheses lead to different
conclusions. After our paper was written, we learned that [1] earlier gave



OKA’S LEMMA AND POSITIVITY CONDITIONS 197

a proof of the C-convex case along these lines, so our proof of Theorem 6.1
merely reprises their proof.

In the final part of Section 6, we examine nonnegativity of the complex
Hessian of δ on cones of vectors containing the complex tangent space and
lying in the real tangent space. Under this hypothesis, we show (Theorem 6.3)
how the size of the Diederich–Fornæss exponent ([12])—but only for the fixed
defining function δ—is determined by the angle of the cone of nonnegativity.
Theorem 6.3 gives a spectrum of results that naturally interpolate between the
conclusion given in Theorem 4.1 and that given in Theorem 6.2. This result
explains an example given in [2], where no η > 0 exists such that −(−δ)η is
plurisubharmonic, and is also related to results in [4], [5] which deals with
situations where η can be chosen close to 1 (but for defining functions other
than δ).

2. Tangent spaces and Hessians

Succinct notation for Hessians (real and complex) of smooth functions and
tangent spaces (real and complex) will make the arguments in Sections 4–6
transparent. We present these objects using global coordinates for brevity,
mentioning only the invariance needed in the subsequent proofs.

Let Ω⊂ Cn denote a domain with smooth boundary bΩ. A local defining
function for Ω in a neighborhood U of p ∈ bΩ, is a real-valued function r ∈
C∞(U) satisfying U ∩Ω= {z ∈ U : r(z)< 0} and ∇r(z) 
= 0 for z ∈ U .

Let (z1, . . . , zn) denote the standard coordinates on C
n, with zk = x2k−1 +

ix2k for k = 1, . . . , n. The usual Cauchy–Riemann vector fields are written

∂

∂zk
=

1

2

(
∂

∂x2k−1
− i

∂

∂x2k

)
and

∂

∂z̄k
=

1

2

(
∂

∂x2k−1
+ i

∂

∂x2k

)
and differentiation of a smooth function will be denoted with subscripts, e.g.,
fzj =

∂f
∂zj

. The real tangent space to bΩ at q ∈ bΩ, RTq(bΩ), is

(2.1) RTq(bΩ) =

{
W ∈R

2n :

2n∑
k=1

rxk
(q)Wk = 0

}
,

where W =
∑

Wk
∂

∂xk
. Note that if (y1, . . . , y2n) is another, smooth coor-

dinate system in a neighborhood of q, then
∑

rxk
(q)Wk =

∑
ryk

(q)W̃k if

W =
∑

Wk
∂

∂xk
=

∑
W̃k

∂
∂yk

, so (2.1) is invariant of coordinate change. The

complex tangent space to bΩ at q ∈ bΩ, CTq(bΩ), is

(2.2) CTq(bΩ) =

{
V ∈C

n :

n∑
k=1

rzk(q)Vk = 0

}
,

where V =
∑

Vk
∂

∂zk
. If (w1, . . . ,wn) is an arbitrary local holomorphic coor-

dinate system near q, the vector fields ∂
∂wk

are given by the chain rule, and
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V =
∑

Ṽk
∂

∂wk
is decomposed with respect to the frame {∂/∂w1, . . . , ∂/∂wn},

it is easy to see (2.2) is an invariant definition. Both (2.1) and (2.2) are
independent of the choice of local defining function for Ω.

The Hessian of a smooth function f : Cn −→C can be viewed as a bilinear
form on vectors in R

2n or on vectors in C
n. We invert the usual presentation

by considering its action on complex vectors first. The real Hessian of f at a
point p acting on the pair of vectors (A,B) ∈C

n ⊕C
n is

(2.3) Hf(p)(A,B) = 2Re

(
n∑

k,�=1

fzkz�(p)AkB�

)
+ 2

n∑
k,�=1

fzk z̄�(p)AkB�.

Checking that (2.3) agrees with the more familiar definition of the Hessian us-
ing the underlying real coordinates requires a small computation. We first fix
a specific identification of Cn and R

2n; if A= (a1 + ia2, . . . , a2n−1 + ia2n) and
B = (b1 + ib2, . . . , b2n−1 + ib2n) are in C

n, then the corresponding vectors in
R

2n, (a1, a2, . . . , a2n−1, a2n) and (b1, b2, . . . , b2n−1, b2n), will also be denoted by
the symbols A and B. The definition of the operators ∂

∂zk
, ∂
∂z̄k

and straight-
forward linear algebra shows

Hf(p)(A,B) =

2n∑
k,�=1

∂2f

∂xk ∂x�
(p)akb�.

The complex Hessian of f at p is (one-half of) the second term on the right-
hand side of (2.3):

(2.4) Lf(p)(A,B) =

n∑
k,�=1

fzk z̄�(p)AkB�.

One-half the first term on the right-hand side of (2.3)—henceforth, the com-
plement of the Levi form—will be denoted

(2.5) Qf(p)(A,B) = Re

(
n∑

k,�=1

fzkz�(p)AkB�

)
.

The forms L and Q transform differently under multiplication of their argu-
ments by i =

√
−1. Indeed, (2.4) immediately yields Lf(p)(A,B) =

Lf(p)(iA, iB), while (2.5) shows Qf(p)(A,B) =−Qf(p)(iA, iB). Consequently,
for all pairs (A,B) ∈C

n ⊕C
n

Hf(p)(A,B) +Hf(p)(iA, iB) = 4Lf(p)(A,B).

It is also convenient to have notation for first-derivative expressions of f .
The complex gradient of f acting on a vector in CT (Cn) will be denoted

(2.6)
〈
∂f(p), V

〉
=

n∑
k=1

fzk(p)Vk,
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when V =
∑

Vk
∂

∂zk
. The symbol 〈∂̄f(p), V 〉 is defined analogously. The real

gradient of f acting on a vector W ∈R
2n will be denoted

(2.7)
〈
∇f(p),W

〉
=

2n∑
k=1

fxk
Wk,

if W =
∑2n

k=1Wk
∂

∂xk
.

If f ∈C3(U), U open in Cn, and p= (p1 + ip2, . . . , p2n−1 + ip2n), q = (q1 +
iq2, . . . , q2n−1 + iq2n) are two points in U , Taylor’s theorem to second-order
in real notation says

f(q) = f(p) +
〈
∇f(p), V

〉
+

1

2
Hf(p)(V,V ) +O

(
‖V ‖3

)
,

where V = (p1−q1, . . . , p2n−q2n) ∈R
2n. In complex notation, the same result

is expressed

f(q) = f(p) + 2Re
〈
∂f(p),W

〉
+Qf(p)(W,W ) +Lf(p)(W,W )(2.8)

+O
(
‖W‖3

)
,

where W = p− q ∈C
n.

Basic convexity notions, on both functions and domains, are easily ex-
pressed using the above notation.

Definition 2.1. Let U ⊂C
n be an open set and f ∈C2(U). Then

(a) f is convex at p ∈ U if

Hf(q)(W,W )≥ 0 ∀q ∈ U ′,W ∈C
n

for some neighborhood U ′ ⊂ U containing p.
(b) f is plurisubharmonic at p ∈ U if

Lf(q)(W,W )≥ 0 ∀q ∈ U ′,W ∈C
n

for some neighborhood U ′ ⊂ U containing p.

If f is convex at p, then so is f ◦L for any R-affine coordinate change of the
standard coordinates. This follows easily from the chain rule. Plurisubhar-
monicity is not invariant under a general R-affine coordinate change. But it
is invariant under an arbitrary, local biholomorphic map (again, by the chain
rule), in particular under a C-affine coordinate change.

Definition 2.2. Let Ω ⊂ C
n be a smoothly bounded open set, p0 ∈ bΩ,

and r is a local defining function for Ω in a neighborhood of p0. Then

(a) Ω is convex near p0 if

Hr(p)(V,V )≥ 0 ∀p ∈ U ∩ bΩ, V ∈RTp(bΩ)

for some neighborhood U containing p0.
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(b) Ω is pseudoconvex near p0 if

Lr(p)(V,V )≥ 0 ∀p ∈ U ∩ bΩ, V ∈CTp(bΩ)

for some neighborhood U containing p0.

Both conditions in Definition 2.2 are independent of the choice of local
defining function. The conditions are also invariant under a C-affine coordi-
nate change, as mentioned above.

3. Distance to the boundary

The other ingredient in Oka’s lemma is the distance-to-the-boundary func-
tion, which we denote by d= dbΩ:

d(z) = inf
q∈bΩ

‖z − q‖.

The signed distance to bΩ will be denoted by δ = δbΩ:

δ(z) =

{
−d(z), z ∈Ω,
d(z), z ∈Ωc.

(3.1)

We collect some basic facts about δ on a smoothly bounded domain in C
n.

Proposition 3.1. If Ω ⊂ C
n is a smoothly bounded domain, then there

exists a neighborhood U of bΩ such that:

(a) The map bbΩ : U −→ bΩ satisfying ‖bbΩ(z)− z‖= |δbΩ(z)| is well-defined.
(b) The functions bbΩ and δbΩ are smooth on U .
(c) For each p ∈ bΩ, let νp be the real outward unit normal to bΩ at p.

Then there exists a coordinate system (w1, . . . ,wn), wk = y2k−1+ iy2k, k =
1, . . . , n, which is a C-affine coordinate change of the standard coordinates
on C

n, such that for all q = tνp ∈ U ∩Ω, t ∈R,

δyj (q) =

{
0, j 
= 2n− 1,

1, j = 2n− 1.
(3.2)

For a proof of (a) see, for example, [3], Lemma 4.1.1 on pp. 444–445. Proofs
of (b) and (c) follow from Corollary 5.2 in [8] after using Lemma 1, p. 382,
in [6].

4. A proof of Oka’s lemma

The significant content of Oka’s lemma is that − logdbΩ is plurisubharmonic
near bΩ, if Ω is pseudoconvex. Since the new feature in our proof also occurs
near bΩ, we shall focus on proving the following theorem.

Theorem 4.1 (Version of Oka’s lemma). Let Ω be a smoothly bounded,
pseudoconvex domain in C

n. There exists a neighborhood U of bΩ such that
− log(−δ(z)) is plurisubharmonic for z ∈ U ∩Ω.



OKA’S LEMMA AND POSITIVITY CONDITIONS 201

Proof. For the expansion of a normed expression below (see (4.4)), it is
convenient to consider the square of the function d rather than d (or δ) itself;
let

D(z) = d2bΩ(z) = inf
{
‖z − q‖2 : q ∈ bΩ

}
.

Obviously, − log(−δ(z)) is plurisubharmonic iff −2 log(−δ(z)) is plurisubhar-
monic, and −2 log(−δ(z)) =− logD(z) if z ∈Ω. Thus, it suffices to show there
exists a neighborhood U of bΩ such that

LD(z)(V,V )≤ |〈∂D(z), V 〉|2
D(z)

(4.1)

for all z ∈ U ∩Ω and all V ∈C
n.

Let U be a small enough neighborhood of bΩ so that the projection map b is
well-defined and smooth. For a given q ∈ U ∩Ω, make the C-affine coordinate
change in Proposition 3.1 to achieve

(i) b(q) = 0 (= (0, . . . ,0) = (0′,0) ∈C
n−1 ×C)),

(ii) q = (0′, a), a < 0,
(iii) RT0(bΩ) = {Re zn = 0}.
We shall continue to denote the changed coordinates as (z1, . . . , zn), with
zk = x2k−1 + ix2k, and do all subsequent computations with respect to these
coordinates.

In a neighborhood Uq of 0, the Implicit Function theorem says that bΩ can
be viewed as a smooth graph over RT0(bΩ). Explicitly, we can find a defining
function, r(z), of the form

r(z) = Rezn + h
(
z′, Imzn

)
,(4.2)

where h ∈C2(Uq), h(0) = 0 and ∇h(0) = (0, . . . ,0).
Clearly, D(q) = a2. It follows from Proposition 3.1 that Dx2n−1(q) = 2a and

that all the other real partial derivatives of D vanish at q. This translates to
the following information on the complex partials of D:

Dzk(q) =

{
0, if k 
= n,
a, if k = n.

(4.3)

Let V = (V ′, Vn) denote an arbitrary direction in C
n, with ‖V ‖ small

enough so that q + V lies in Uq . Decompose Vn into its real and imaginary
parts, Vn = s+ it, and note

q+ V =
(
V ′, a+ s+ it

)
.

The form of the defining function r suggests a suitable point on bΩ with which
to estimate D(q+V ): (4.2) says that (V ′,−h(V ′,0)) ∈ bΩ for any (V ′,0) ∈ Uq .
Consequently,

D(q+ V ) ≤
∥∥(

V ′, a+ Vn

)
−

(
V ′,−h

(
V ′,0

))∥∥2
(4.4)

=
∥∥a+ Vn + h

(
V ′,0

)∥∥2
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= a2 + 2(a+ s) · h
(
V ′,0

)
+ 2as+ |Vn|2 + h2

(
V ′,0

)
= a2 + 2a · h

(
V ′,0

)
+ 2as+ |Vn|2 +O

(
‖V ‖3

)
.

The last equality follows since h vanishes to second order at 0.

Set Ṽ = (V ′,0) and notice that h(Ṽ ) = r(Ṽ ). Since Ṽ ∈RT0(bΩ), Taylor’s
theorem gives

h(Ṽ ) =
1

2
Hr(0)(Ṽ , Ṽ ) +O

(
‖Ṽ ‖3

)
.(4.5)

However, Ṽ actually belongs to CT0(bΩ), so Lr(0)(Ṽ , Ṽ ) ≥ 0 by pseudocon-
vexity. Since a < 0, it follows that the second-order part of 2a · h(V ′,0) in
(4.4) corresponding to the complex Hessian is negligible, that is, that

aHr(0)(Ṽ , Ṽ )≤ a2Qr(0)(Ṽ , Ṽ ).

Returning to (4.4), we obtain the estimate

D(q+ V ) ≤ a2 + 2a · Qr(0)(Ṽ , Ṽ ) + 2as+ |Vn|2 +O
(
‖V ‖3

)
=D(q) + 2a · Qr(0)(Ṽ , Ṽ ) + 2Re

(〈
∂D(q), V

〉)
+

|〈∂D(q), V 〉|2
D(q)

+O
(
‖V ‖3

)
,

where (4.3) and the fact that D(q) = a2 are used to obtain the last equality.
A similar estimate holds in the direction iV , the only changes occurring in
the second and third terms:

D(q+ iV )

≤D(q)− 2a · Qr(0)(Ṽ , Ṽ )− 2 Im
(〈
∂D(q), V

〉)
+

|〈∂D(q), V 〉|2
D(q)

+O
(
‖V ‖3

)
.

Adding these two estimates yields, for S =D(q + V ) +D(q + iV ),

S ≤ 2D(q) + F (q,V ) + 2
|〈∂D(q), V 〉|2

D(q)
+O

(
‖V ‖3

)
,(4.6)

where F (q,V ) = 2Re(〈∂D(q), V 〉)− 2 Im(〈∂D(q), V 〉).
On the other hand, expanding D(q+V ) and D(q+ iV ) about q by Taylor’s

theorem gives

D(q+ V )

=D(q) + 2Re
(〈
∂D(q), V

〉)
+QD(q)(V,V ) +LD(q)(V,V ) +O

(
‖V ‖3

)
and

D(q+ iV )

=D(q)− 2 Im
(〈
∂D(q), V

〉)
−QD(q)(V,V ) +LD(q)(V,V ) +O

(
‖V ‖3

)
.

Adding these two equations yields

S = 2D(q) + F (q,V ) + 2LD(q)(V,V ) +O
(
‖V ‖3

)
.(4.7)
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Estimating (4.7) from above by (4.6) and making the obvious cancellations
yields

2LD(q)(V,V )≤ 2
|〈∂D(q), V 〉|2

D(q)
+O

(
‖V ‖3

)
.

Homogeneity considerations in V then show (4.1) holds for q ∈ Uq ∩Ω. Since
the argument above can be given for every q ∈ U∩Ω, the proof is complete. �

5. Convex domains

If Ω⊂ C
n is convex, it is not necessary to compose δ with a function like

χ(x) =− log(−x) in order to get a conclusion related to Theorem 4.1. Indeed,
if Hδ(p) ≥ 0 on RTp(bΩ) for p ∈ bΩ, then δ itself inherits widespread positivity
on its real Hessian.

Theorem 5.1. Let Ω be a smoothly bounded, convex domain in C
n. There

exists a neighborhood U of bΩ such that δ(z) is a convex function for z ∈ U ∩Ω.

Different proofs of Theorem 5.1 are known, see pp. 354–357 in [6], pp.
57–60 in [10] and Corollaries 5.7 and 5.12 in [8]. In fact, δ is convex on a full
neighborhood of bΩ, not just on U ∩Ω; see Remark 5.1 below. As mentioned
in the Introduction, the proof below is parallel to the proof of Theorem 4.1,
to trace how the stronger hypothesis in Theorem 5.1 leads to its stronger
conclusion.

Proof of Theorem 5.1. As before, consider the function D(z) = (δ(z))2.
A straightforward computation gives

HD(z)(V,V ) =
|〈∇D(z), V 〉|2

2D(z)
+ 2δ(z)Hδ(z)(V,V )(5.1)

for all z near bΩ and V ∈ C
n. To prove Theorem 5.1, it therefore suffices to

show that there is a neighborhood U of bΩ such that

HD(z)(V,V )≤ |〈∇D(z), V 〉|2
2D(z)

∀z ∈ U ∩Ω, V ∈C
n.(5.2)

Let U be a small enough neighborhood of bΩ so that the projection map
b is well-defined and smooth. Fix q ∈ U ∩ Ω, make the C-affine coordinate
change in Proposition 3.1 and obtain

(i) b(q) = 0 (= (0, . . . ,0) = (0′,0) ∈Cn−1 ×C)),
(ii) q = (0′, a), a < 0,
(iii) RT0(bΩ) = {Re zn = 0}.
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Continue to denote the changed coordinates as (z1, . . . , zn), with zk = x2k−1+
ix2k, as in the proof of Theorem 4.1.

Apply the Implicit Function theorem as before: there exists a neighborhood
Uq of the origin, a function h ∈C∞(Uq) with h(0) = 0 and ∇h(0) = (0, . . . ,0),
such that

r(z) = Rezn + h
(
z′, Imzn

)
(5.3)

is a local defining function for Ω in Uq .
Clearly D(q) = a2, while Dx2n−1(q) = 2a and all the other partial deriva-

tives of D vanish at q, by Proposition 3.1. Let V = (V ′, Vn) ∈ C
n be given,

write Vn = s+ it, and consider q + V as a small perturbation of q. We have
that (V ′,−h(V ′, c) + ic) lies in bΩ, for any c ∈R. Thus,

D(q+ V ) ≤
∥∥(

V ′, a+ Vn

)
−

(
V ′,−h

(
V ′, c

)
+ ic

)∥∥2

=
∥∥a+ s+ h

(
V ′, c

)
+ i(t− c)

∥∥2

=
(
a+ s+ h

(
V ′, t

))2
,

if c is chosen equal to t. Expanding this square yields

D(q + V ) ≤ a2 + 2as+ s2 + 2(a+ s) · h
(
V ′, t

)
+ h2

(
V ′, t

)
(5.4)

= a2 + 2as+ (ReVn)
2 + 2a · h

(
V ′, t

)
+O

(
‖V ‖3

)
,

since h vanishes to second order at 0.
Now set Ṽ = (V ′, it). Note that h(V ′, t) = r(Ṽ ) and that Ṽ ∈ RT0(bΩ)

(though not in CT0(bΩ), unless t= 0). Taylor’s theorem gives

h
(
V ′, t

)
=

1

2
Hr(0)(Ṽ , Ṽ ) +O

(
‖Ṽ ‖3

)
.(5.5)

Convexity of Ω implies Hr(0)(Ṽ , Ṽ ) is nonnegative, so we have h(V ′, t) ≥
−C‖Ṽ ‖3 for some constant C > 0. Because a < 0, it follows from (5.4) that

D(q + V ) ≤ a2 + 2as+ (ReVn)
2 +O

(
‖V ‖3

)
(5.6)

=D(q) +
〈
∇D(q), V

〉
+

|〈∇D(q), V 〉|2
4D(q)

+O
(
‖V ‖3

)
.

However, expanding D(q+ V ) about q by Taylor’s theorem gives

D(q+ V ) =D(q) +
〈
∇D(q), V

〉
+

1

2
HD(q)(V,V ) +O

(
‖V ‖3

)
.(5.7)

Estimating (5.7) from above by (5.6) leads to

1

2
HD(q)(V,V )≤ |〈∇D(q), V 〉|2

4D(q)
+O

(
‖V ‖3

)
.

The homogeneity in V then implies that (5.2) holds. �
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Remark 5.1. Under the hypothesis of Theorem 5.1, δ(z) is also convex for
z ∈ U ∩Ωc. The same initial part of the proof above is used; however a > 0
when q ∈ U ∩ Ωc. Notice that the conclusion above (5.6) can be improved:
Taylor’s theorem actually yields

h
(
V ′, t

)
= r(0) +

〈
∇r(0), Ṽ

〉
+

1

2
Hr(α)(Ṽ , Ṽ )

for some point α on the line segment connecting the origin and the point

Ṽ . It follows from the proof of Proposition 4.1 in [8] that Hr(α)(Ṽ , Ṽ ) ≥ 0.
Therefore, h(V ′, t) is nonnegative, and the distance of the point q + V to bΩ
is larger or equal to its distance to the hyperplane {x ∈R

n : xn = 0}. But the
latter is attained at the point Ṽ . It follows that

D(q+ V ) ≥
∥∥(

V ′, a+ Vn

)
− Ṽ

∥∥2
= ‖a+ s‖2

=D(q) +
〈
∇D(q), V

〉
+

|〈∇D(q), V 〉|2
4D(q)

.

This yields, by repeating the arguments in the proof of Theorem 5.1, that δ
is convex on Ωc ∩U .

6. Intermediate positivity conditions

In the previous two sections, hypotheses on the Hessians and tangent spaces
were “matched” with respect to the real or complex structure: Hδ ≥ 0 on
RT (bΩ) in Theorem 5.1 and Lδ ≥ 0 on CT (bΩ) in Theorem 4.1. In this
section, we study “mixed” situations.

Nonnegativity of Hδ(p) on CTp(bΩ).

Definition 6.1. Let Ω ⊂ C
n be a smoothly bounded open set, p0 ∈ bΩ,

and r a local defining function for Ω in a neighborhood of p0. Then Ω is
C-convex near p0 if

Hr(p)(V,V )≥ 0 ∀p ∈ U ∩ bΩ, V ∈CTp(bΩ)

for some neighborhood U containing p0.

As with the conditions in Definition 2.2, C-convexity is independent of the
choice of local defining function as well as invariant under a C-affine coordinate
change.

A convex domain is clearly C-convex, since CT (bΩ)⊂ RT (bΩ). Also, the
displayed equation below (2.5) shows that a C-convex domain is pseudocon-
vex. Not surprisingly, a result intermediate to Theorems 4.1 and 5.1 holds for
C-convex domains.
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Theorem 6.1. Let Ω be a smoothly bounded, C-convex domain in C
n.

There exists a neighborhood U of bΩ such that

Hδ(z)(V,V )≥ |〈∇δ(z), iV 〉|2
δ(z)

∀z ∈ U ∩Ω, V ∈C
n.(6.1)

As mentioned in the introduction, Theorem 6.1 is proved in [1], see the im-
plication (ii) to (iii) of Theorem 2.5.18 therein (there is a notational difference
between our paper and [1]—compare (2.3) and the first displayed equation on
p. 60 in [1]).

Proof of Theorem 6.1. As in the proofs of Theorems 4.1 and 5.1 work with
the function D(z) = (δ(z))2. Note first that for any vector V ∈C

n

∣∣〈∇δ(z), V
〉∣∣2 = |〈∇D(z), V 〉|2

4D(z)
.

It then follows from (5.1) that (6.1) is equivalent to

HD(z)(V,V )≤ |〈∇D(z), V 〉|2
2D(z)

+
|〈∇D(z), iV 〉|2

2D(z)
∀z ∈ U ∩Ω, V ∈C

n.(6.2)

To prove (6.2), proceed as in the proof of Theorem 4.1, starting below (4.1).
Take q = (0′, a) for a < 0 and V = (V ′, Vn) with Vn = s+ it. Choose again the
boundary point (V ′,−h(V ′,0)) to obtain an upper bound on D(q + V ):

D(q + V )≤ a2 + 2a · h
(
V ′,0

)
+ 2as+ s2 + t2 +O

(
‖V ‖3

)
.

Since (V ′,0) is in CT0(bΩ), it follows from (4.5) and the hypothesis of C-
convexity that h(V ′,0)≥−C‖V ‖3 for some C > 0. Therefore

D(q + V )

≤ a2 + 2as+ s2 + t2 +O
(
‖V ‖3

)
=D(q) +

〈
∇D(q), V

〉
+

|〈∇D(z), V 〉|2
4D(z)

+
|〈∇D(z), iV 〉|2

4D(z)
+O

(
‖V ‖3

)
.

Using (5.7), it then follows that

1

2
HD(q)(V,V )≤ |〈∇D(z), V 〉|2

4D(z)
+

|〈∇D(z), iV 〉|2
4D(z)

+O
(
‖V ‖3

)
,

which implies (6.2). �

Nonnegativity of Lδ(p) on RTp(bΩ). Finally, we turn to the case of non-
negativity of the complex Hessian of a defining function on the real tangent
space. Unlike the previous conditions, this condition is not independent of
the choice of defining function. We shall only consider this condition on δ as
our method of proof is fine-tuned to this defining function.

It is elementary that this positivity spreads to arbitrary directions:
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Remark 6.1. If Lδ(z)(V,V ) ≥ 0 for all z ∈ bΩ and V ∈ RTz(bΩ), then
Lδ(z)(W,W ) ≥ 0 for all z ∈ bΩ and W ∈ C

n. This can be seen if, e.g., the
coordinates in the proof of Theorem 5.1 are used. Then, for W ∈C

n, choose
θ ∈ [0,2π) such that Re(eiθWn) = 0. The complex Hessian of δ is invariant
under such rotations and V := eiθW ∈RT0(bΩ).

Moreover, this positivity spreads off bΩ.

Theorem 6.2. Let Ω be a smoothly bounded domain in C
n. Suppose that

Lδ(z)(V,V )≥ 0 for all z ∈ bΩ and V ∈RTz(bΩ). Then there exists a neighbor-
hood U of bΩ such that δ is plurisubharmonic on U ∩Ω, i.e., Lδ(z)(V,V )≥ 0
for all z ∈ U ∩Ω and V ∈C

n.

Proof. Again, use the function D(z) = (δ(z))2, and note that

LD(z)(W,W ) =
|〈∂D(z),W 〉|2

2D(z)
+ 2δ(z)Lδ(z)(W,W )(6.3)

for z near bΩ and W ∈ Cn. Thus, to prove Theorem 6.2 it suffices to show
that there exists a neighborhood U of bΩ such that

LD(z)(W,W )≤ |〈∂D(z),W 〉|2
2D(z)

∀z ∈ U ∩Ω,W ∈C
n.(6.4)

Proceed as in the proof of Theorem 5.1, starting below (5.2). By Re-
mark 6.1, it suffices to prove (6.4) for vectors that are of the form V = (V ′, it)
for V ′ ∈C

n−1 and t ∈R. As in the proof of Theorem 5.1, take q = (0′, a) for
a < 0, and choose the boundary point (V ′,−h(V ′, t) + it) to obtain an upper
bound for D(q+ V ):

D(q + V ) ≤
∥∥(

V ′, a+ Vn

)
−

(
V ′,−h

(
V ′, t

)
+ it

)∥∥2
(6.5)

=D(q) + 2a · h
(
V ′, t

)
+O

(
‖V ‖3

)
.

Next, choose the boundary point (iV ′,−h(iV ′,0)) to obtain an upper bound
for D(q + iV ):

D(q+ iV ) ≤
∥∥(

iV ′, a+ iVn

)
−

(
iV ′,−h

(
iV ′,0

))∥∥2
(6.6)

=D(q)− 2 Im
(〈
∂D(q), V

〉)
+ 2a · h

(
iV ′,0

)
+

|〈∂D(q), V 〉|2
D(q)

+O
(
‖V ‖3

)
.

Suppose (temporarily) that there exists some constant C > 0 such that

h
(
V ′, t

)
+ h

(
iV ′,0

)
≥−C‖V ‖3.(6.7)

Then, adding (6.6) to (6.5) would yield

S =D(q+ V ) +D(q + iV )

≤ 2D(q)− 2 Im
(〈
∂D(q), V

〉)
+

|〈∂D(q), V 〉|2
D(q)

+O
(
‖V ‖3

)
.
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Using (4.7) for S and the fact that Re(〈∂D(q), V 〉) = 0, it then would follow
that

2LD(q)(V,V )≤ |〈∂D(q), V 〉|2
D(q)

+O
(
‖V ‖3

)
,

which implies (6.4).

Thus it remains to show that (6.7) holds. For that write V̂ = (iV ′,0), so

that h(iV ′,0) = r(V̂ ) (and h(V ′, t) = r(V )). Then Taylor’s theorem gives

h
(
V ′, t

)
+ h

(
iV ′,0

)
=

1

2

(
Hr(0)(V,V ) +Hr(0)(V̂ , V̂ )

)
+O

(
‖V ‖3

)
.

Since δxjxk
(0) = rxjxk

(0) (see for instance part (i) of Remark 4.2 in [8] with
r = δ there), it suffices to show that

Hδ(0)(V,V ) +Hδ(0)(V̂ , V̂ )≥ 0.

As V̂ = iV + (0′, t), the bilinearity of H yields

Hδ(0)(V̂ , V̂ ) =Hδ(0)(iV, iV ) + 2Hδ(0)

(
iV,

(
0′, t

))
+Hδ(0)

((
0′, t

)
,
(
0′, t

))
.

However, the fact that
∑2n

j=1 |δxj |2 = 1 holds in a neighborhood of bΩ implies
that

Hδ(0)

(
·,

(
0′,1

))
= 0,

see, e.g., (5.5) in [8] for details. Thus Hδ(0)(V̂ , V̂ ) =Hδ(0)(iV, iV ), so that by
(2.3)

Hδ(0)(V,V ) +Hδ(0)(V̂ , V̂ ) = 4Lδ(0)(V,V )≥ 0,

since the complex Hessian of δ on the boundary is nonnegative definite on the
real tangent space. �

Nonnegativity of Lδ(p) on cones in RTp(bΩ). One may also consider non-
negativity of the real or complex Hessian of δ on cones of vectors, contained
in the real tangent space, whose axes are the complex tangent space. We
shall only consider the nonnegativity of Lδ on such cones here, but mention
Hδ ≥ 0 could be considered as well and a result analogous to Theorem 6.3
below obtained for that hypothesis.

Definition 6.2. Let Ω⊂C
n be a smoothly bounded open set, p ∈ bΩ. Let

r be a defining function for Ω in a neighborhood of p and γ ∈ [0,∞). Then

RT γ
p (bΩ) :=

{
V ∈RTp(bΩ) :

|〈i∇r(p), V 〉|
‖∇r(p)‖ ≤ γ

∥∥∥∥V − 〈i∇r(p), V 〉i∇r(p)

‖∇r(p)‖2

∥∥∥∥}
.

Note that the definition of the cone RT γ
p (bΩ) is independent of the choice

of defining function. Also, RT γ
p (bΩ) is invariant under C-affine coordinate

changes that are compositions of translations and rotations. Furthermore,

(i) RT 0
p (bΩ) equals CTp(bΩ),
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(ii) limγ→∞RT γ
p (bΩ) equals RTp(bΩ).

Definition 6.3. Let Ω ⊂ C
n be a smoothly bounded open set, p0 ∈ bΩ,

and U a neighborhood of p0. Then δ is γ-plurisubharmonic on U ∩ bΩ if

Lδ(p)(V,V )≥ 0 ∀p ∈ U ∩ bΩ, V ∈RT γ
p (bΩ).

Note that the condition of γ-plurisubharmonicity of δ is a condition inter-
mediate to pseudoconvexity of Ω (γ = 0) and plurisubharmonicity of δ on bΩ
(γ = ∞). The following theorem establishes that the complex Hessian of δ
then inherits nonnegativity intermediate to the results of Theorem 4.1 and
Theorem 6.2.

Theorem 6.3. Let Ω ⊂ C
n be a smoothly bounded domain. Suppose δ is

γ-plurisubharmonic on bΩ for some γ > 0. Let η = 1− 2/(2+γ2). Then there
exists a neighborhood U of bΩ such that

L−(−δ)η(z)(V,V )≥ 0 ∀z ∈ U ∩Ω, V ∈C
n.

Proof. Use the function D(z) = (δ(z))2. First note

L−(−δ)η(z)(V,V )

= η
(
−δ(z)

)η−2((−δ(z)
)
Lδ(z)(V,V ) + (1− η)

∣∣〈∂δ(z), V 〉∣∣2)
= η

(
−δ(z)

)η−2
((

−δ(z)
)
Lδ(z)(V,V ) + (1− η)

|〈∂D(z), V 〉|2
4D(z)

)
.

It follows from (6.3) that it suffices to show that there exists a neighborhood
U of bΩ such that

LD(z)(V,V ) ≤ (2− η)
|〈∂D(z), V 〉|2

2D(z)
(6.8)

=

(
1 +

2

2+ γ2

)
|〈∂D(z), V 〉|2

2D(z)

for all z ∈ U ∩Ω and V ∈C
n.

Proceed as in the proof of Theorem 5.1, starting below (5.2). In particular,
let q = (0′, a) for a < 0. By the arguments in Remark 6.1, it suffices to prove
(6.8) at z = q for vectors V = (V ′, Vn) with Vn = it for t ∈R

+
0 .

Let us first suppose that V ∈RT γ
0 (bΩ). Then, since δ is γ-plurisubharmonic

on bΩ, the proof of Theorem 6.2 is applicable so that (6.4) holds (which implies
(6.8) for any γ ≥ 0).

Next, suppose that V /∈RT γ
0 (bΩ), i.e., |t|> γ‖V ′‖. Since (W ′,−h(W ′, c)+

ic) is a boundary point for any point (W ′, ic) sufficiently close to the origin,
it follows that

D(q+ V ) ≤
∥∥(

V ′, a+ Vn

)
−

(
W ′,−h

(
W ′, c

)
+ ic

)∥∥2
(6.9)

=
(
a+ h

(
W ′, c

))2
+

∥∥V ′ −W ′∥∥2
+ (t− c)2.
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Similarly, since (iW ′,−h(iW ′,0)) is a boundary point, it follows that

D(q+ iV ) ≤
∥∥(

iV ′, a+ iVn

)
−

(
iW ′,−h

(
iW ′,0

))∥∥2
(6.10)

=
(
a− t+ h

(
iW ′,0

))2
+ ‖V ′ −W ′‖2.

Adding (6.10) to (6.9) gives

S =D(q + V ) +D(q+ iV )

≤
(
a+ h

(
W ′, c

))2
+

(
a− t+ h

(
iW ′,0

))2
+ 2

∥∥V ′ −W ′∥∥2
+ (t− c)2.

Minimizing the function f(W ′, c) = 2‖V ′ − W ′‖2 + (t − c)2 subject to the
constraint |c|= γ‖W ′‖ (so that (W ′, ic) ∈RT γ

0 (bΩ) holds), yields the minimal
value

f
(
W ′

0, c0
)
=

2t2

2 + γ2

(
1− ‖V ′‖γ

t

)2

,

where c0 = γ(tγ+2‖V ′‖)/(2+γ2) andW ′
0 = c0V

′/(γ‖V ′‖) if V ′ 
= 0. If V ′ = 0,
we take W0 = 0. Since V /∈RT γ

0 (bΩ) it follows that f(W
′
0, c0)≤ 2t2/(2 + γ2),

and hence

S ≤ 2D(q)− 2 Im
(〈
∂D(q), V

〉)
+ 2a

(
h
(
W ′

0, c0
)
+ h

(
iW ′

0,0
))

(6.11)

+

(
1 +

2

2+ γ2

)
|〈∂D(q), V 〉|2

D(q)
+O

(
‖V ‖3

)
,

where it was used that ‖(W ′
0, c0)‖=O(‖V ‖).

Suppose (temporarily) that there exists a constant C > 0 such that

h
(
W ′

0, c0
)
+ h

(
iW ′

0,0
)
≥−C

∥∥(
W ′

0, c0
)∥∥3

.(6.12)

Then using (4.7) for S in (6.11) and the fact that Re(〈∂D(q), V 〉) = 0, would
yield

2LD(q)(V,V )≤
(
1 +

2

2+ γ2

)
|〈∂D(q), V 〉|2

D(q)
+O

(
‖V ‖3

)
,

which would imply (6.8).
That (6.12) is indeed true may be shown by arguments analogous to the

ones in the proof of (6.7), using the facts that δ is γ-plurisubharmonic on bΩ
and that (W ′

0, ic0) was chosen to be in RT γ
0 (bΩ), the cone of nonnegativity of

the complex Hessian of δ. �

Remark 6.2. (a) In [2], pp. 134–137, an example of a pseudoconvex do-
main is given such that −(−δ)η is not plurisubharmonic for any η > 0. It is
straightforward to check for this example, using the computations in [2], that
Lδ(0)(V,V )< 0 for any V ∈RT0\CT0, that is, that δ is not γ-plurisubharmonic
for any γ > 0.

(b) The condition of γ-plurisubharmonicity, γ > 0, is less interesting when
one tries to find the “best” positivity condition satisfied by some defining
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function. In fact, a careful analysis reveals: whenever δ is γ-plurisubharmonic
near some boundary point for some positive γ, then there is a defining function
which is plurisubharmonic on the boundary near that boundary point.
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