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ON THE MODULI SPACES OF SEMI-STABLE PLANE
SHEAVES OF DIMENSION ONE AND MULTIPLICITY FIVE

MARIO MAICAN

Abstract. We find locally free resolutions of length one for all
semi-stable sheaves supported on curves of multiplicity five in the

complex projective plane. In some cases, we also find geometric

descriptions of these sheaves by means of extensions. We give

natural stratifications for their moduli spaces and we describe

the strata as certain quotients modulo linear algebraic groups.

In most cases, we give concrete descriptions of these quotients as
fibre bundles.

1. Introduction

Let MP2(r,χ) denote the moduli space of semi-stable sheaves F on the
complex projective plane P2 with support of dimension 1, multiplicity r and
Euler characteristic χ. The Hilbert polynomial of F is PF (t) = rt + χ and
the ratio p(F ) = χ/r is the slope of F . We recall that F is semi-stable, re-
spectively stable, if F is pure (meaning that there are no proper subsheaves
with support of dimension zero) and any proper subsheaf F ′ ⊂ F satisfies
p(F ′) ≤ p(F ), respectively p(F ′) < p(F ). The spaces MP2(r,χ) for r ≤ 3 are
completely understood from the work of Le Potier [8], and others. In [4],
Drézet and the author studied the spaces MP2(4, χ). This paper is concerned
with the geometry of the spaces MP2(5, χ). In view of the obvious isomor-
phism, MP2(r,χ) � MP2(r,χ+r) sending the stable-equivalence class of a sheaf
F to the stable-equivalence class of the twisted sheaf F ⊗ O(1), it is enough to
assume that 0 ≤ χ ≤ 4. According to [8], the spaces MP2(5, χ) are projective,
irreducible, locally factorial, of dimension 26 and smooth at all points given
by stable sheaves. In particular, MP2(5, χ), 1 ≤ χ ≤ 4, are smooth.

In this paper, we shall carry out the same program as in [4]. We shall
decompose each moduli space into locally closed subvarieties, called strata, by
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means of cohomological conditions. Given a stratum X ⊂ MP2(5, χ), we shall
find locally free sheaves A and B on P2 such that each sheaf F giving a point
in X admits a presentation

0 −→ A ϕ−→ B −→ F −→ 0.

The linear algebraic group G = (Aut(A) × Aut(B))/C∗ acts by conjugation on
the finite dimensional vector space W = Hom(A, B). Here, C∗ is embedded
as the subgroup of homotheties. The set of morphisms ϕ appearing above
is a locally closed subset W ⊂ W, which is invariant under the action of G.
We shall prove that a good or a categorical quotient of W by G exists and
is isomorphic to X . The existence of the good quotient does not follow from
the geometric invariant theory if G is non-reductive, which, most of the time,
will be our case. In some cases, we shall describe the sheaves in the strata by
means of extensions.

Throughout this paper, we keep the notations and conventions from [4]. We
work over the complex numbers. We fix a vector space V over C of dimension
3 and we identify P2 with the space P(V ) of lines in V . We fix a basis {X,Y,Z}
of V ∗. If A and B are direct sums of line bundles on P2, we identify Hom(A, B)
with the space of matrices with entries in appropriate symmetric powers of
V ∗, that is, matrices with entries homogeneous polynomials in X,Y,Z. We
especially refer to the section of preliminaries in [4], which contains most of
the techniques that we shall use.

According to [10], there is a duality isomorphism MP2(r,χ) � MP2(r, −χ)
sending the stable-equivalence class of a sheaf F to the stable-equivalence
class of the dual sheaf F D = E xt1(F , ωP2). This allows us to study the spaces
MP2(5, χ) in pairs. Thus MP2(5,3) and MP2(5,2) are isomorphic and will be
studied in Section 2. The spaces MP2(5,1) and MP2(5,4) are, likewise, isomor-
phic and will be treated in Section 3. The last section deals with MP2(5,0). In
the remaining part of this introduction, we shall make a summary of results.

1.1. The moduli spaces MP2(5,3) and MP2(5,2). We shall decompose
the moduli space MP2(5,3) into four strata: an open stratum X0, two lo-
cally closed strata X1,X2 and a closed stratum X3. The stratum X1 is
a proper open subset inside a fibre bundle over P2 × N(3,2,3) with fibre
P16. Here N(3,2,3) is the moduli space of semi-stable Kronecker modules
τ : C2 ⊗ V → C3. Also, X2 is a proper open subset inside a fibre bundle over
N(3,3,2) with fibre P17. The closed stratum X3 is isomorphic to the Hilbert
flag scheme of quintic curves in P2 containing zero-dimensional subschemes of
length 2.

A sheaf F from MP2(5,3) gives a point in X0 if and only if the following
cohomological conditions are satisfied:

h0
(

F (−1)
)

= 0, h1(F ) = 0, h0
(

F ⊗ Ω1(1)
)

= 1.
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Each semi-stable sheaf whose stable-equivalence class is in X0 has a resolution
of the form

0 −→ 2O(−2) ⊕ O(−1)
ϕ−→ 3O −→ F −→ 0.

We consider the vector space W = Hom(2O(−2) ⊕ O(−1),3O) and the linear
algebraic group

G =
(
Aut

(
2O(−2) ⊕ O(−1)

)
× Aut(3O)

)
/C∗

acting on W by conjugation. Here, C∗ is embedded as the subgroup of homo-
theties. The set of morphisms ϕ occurring above forms an open G-invariant
subset W ⊂ W given by the following conditions: ϕ is injective and ϕ is not
in the orbit of a morphism represented by a matrix of the form⎡

⎣� � �
� � 0
� � 0

⎤
⎦ or

⎡
⎣� � �

� � �
� 0 0

⎤
⎦ .

The set W admits a geometric quotient W/G modulo G and W/G � X0. The
information about X0 is summarised in the second row of Table 1. The other
rows of Table 1 contain the analogous information about the remaining strata
of MP2(5,3). The last column gives the codimension of each stratum. For
each W, there is a geometric quotient W/G modulo the canonical group G
acting by conjugation on the ambient vector space W of homomorphisms of
sheaves and W/G is isomorphic to the corresponding stratum of MP2(5,3).

Applying to Xi the duality isomorphism MP2(5,3) → MP2(5,2) of [10] de-
fined by

F −→ F D(1) = E xt1(F , ωP2) ⊗ O(1),

we get a dual stratum XD
i ⊂ MP2(5,2) given by the cohomological conditions

derived from Serre duality (see Proposition 2.1.2 in [4]). For instance, XD
0

consists of those sheaves G in MP2(5,2) satisfying the conditions

h1(G) = 0, h0
(

G(−1)
)

= 0, h1
(

G ⊗ Ω1(1)
)

= 1.

According to [10], Lemma 3, taking the dual of each term in a locally free
resolution of length 1 for F gives a resolution for F D. Thus, every sheaf G in
XD

0 has a resolution of the form

0 −→ 3O(−2)
ψ−→ O(−1) ⊕ 2O −→ G −→ 0.

The conditions on ψ are the transposed conditions on the morphism ϕ from
above. In this fashion, we get a “dual table” for MP2(5,2). We omit the
details.

Inside X0 there is an open dense subset of sheaves that have a presentation
of the form

0 −→ 2O(−2) −→ Ω1(2) −→ F −→ 0.
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Table 1. Summary for MP2(5,3)

Cohomological
Stratum conditions Subset W ⊂ W of morphisms ϕ Codim.
X0 h0(F (−1)) = 0 2O(−2) ⊕ O(−1)

ϕ−→ 3O 0
h1(F ) = 0 ϕ is injective

h0(F ⊗ Ω1(1)) = 1 ϕ is not equivalent to⎡
⎣� � �

� � 0
� � 0

⎤
⎦ or

⎡
⎣� � �

� � �
� 0 0

⎤
⎦

X1 h0(F (−1)) = 0 2O(−2) ⊕ 2O(−1)
ϕ−→ O(−1) ⊕ 3O 2

h1(F ) = 0 ϕ is injective
h0(F ⊗ Ω1(1)) = 2 ϕ12 = 0

ϕ11 has linearly independent
entries
ϕ22 has linearly independent
maximal minors

X2 h0(F (−1)) = 1 3O(−2)
ϕ−→ 2O(−1) ⊕ O(1) 3

h1(F ) = 0 ϕ is injective
h0(F ⊗ Ω1(1)) = 3 ϕ11 has linearly independent

maximal minors

X3 h0(F (−1)) = 1 O(−3) ⊕ O(−1)
ϕ−→ O ⊕ O(1) 4

h1(F ) = 1 ϕ is injective
h0(F ⊗ Ω1(1)) = 4 ϕ12 �= 0

ϕ12 � ϕ22

The complement in X0 of this subset, denoted X01, has codimension 1. The
generic sheaves giving points in X01 have the form

OC(1)(P1 + P2 + P3 + P4 − P5),

where C ⊂ P2 is a smooth quintic curve, P1, . . . , P5 are distinct points on C
and P1, P2, P3, P4 are in general linear position.

The sheaves giving points in X1 are precisely the non-split extension sheaves
of the form

0 −→ G −→ F −→ Cx −→ 0,

satisfying H1(F ) = 0, where G varies in XD
2 and Cx is the structure sheaf of a

closed point in the support of G.
The sheaves G in XD

2 are either of the form JZ(2), where JZ ⊂ OC is the
ideal sheaf of a zero-dimensional subscheme of length 3 contained in a quintic
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curve C, Z not contained in a line, or they are extension sheaves of the form
0 −→ OL(−1) −→ G −→ OD(1) −→ 0,

where L is a line and D is a quartic curve, that are not in the kernel of the
canonical map

Ext1
(

OD(1), OL(−1)
)

−→ Ext1
(

O(1), OL(−1)
)
.

The sheaves in X3 are the twisted ideal sheaves JZ(2) ⊂ OC(2) of zero-
dimensional subschemes Z of length 2 contained in quintic curves C.

1.2. The moduli spaces MP2(5,1) and MP2(5,4). We shall decompose
the moduli space MP2(5,1) into four strata: an open stratum X0, two locally
closed strata X1,X2 and a closed stratum X3. The stratum X0 is a proper
open subset inside a fibre bundle with base N(3,4,3) and fibre P14. The
stratum X1 is a proper open subset inside a fibre bundle with base Grass(2,C6)
and fibre P16. Also, X2 is a proper open subset inside a fibre bundle with
fibre P17 and base Y × P2, where Y is the Hilbert scheme of zero-dimensional
subschemes of P2 of length 2. The stratum X3 is the universal quintic in
P2 × P(S5V ∗).

The information about the cohomological conditions defining each stratum
in MP2(5,1) and resolutions for semi-stable sheaves can be found in Table 2
below. This is organised as Table 1, so we refer to the previous subsection
for the meaning of the different items. Again, each Xi is isomorphic to the
corresponding geometric quotient W/G. By duality, from Table 2 can be
obtained a table for MP2(5,4), which we do not include here.

Inside X0 there is an open dense subset consisting of sheaves of the form
JZ(2)D, where Z ⊂ P2 is a zero-dimensional scheme of length 6 not contained
in a conic curve, contained in a quintic curve C, and JZ ⊂ OC is its ideal
sheaf. The complement in X0 of this open subset is the disjoint union of two
sets X01 and X02. The sheaves in X01 occur as non-split extensions of one of
the following three kinds:

0 −→ G −→ F −→ OL −→ 0,

0 −→ E −→ F −→ OY −→ 0,

0 −→ OL(−1) −→ F −→ JZ(1)D −→ 0.

Here L ⊂ P2 is a line, G is in the exceptional divisor of MP2(4,0), E is the twist
by −1 of a sheaf in the stratum X3 ⊂ MP2(5,3), Y ⊂ P2 is a zero-dimensional
scheme of length 3 not contained in a line, contained in the support of E , Z ⊂
P2 is a zero-dimensional scheme of length 3 not contained in a line, contained
in a quartic curve C, and JZ ⊂ OC is its ideal sheaf. Not all of the above
extension sheaves are in X01, namely there are certain conditions that must
be satisfied for which we refer to Section 3.3. For X02 we can be more specific.
A sheaf F gives a point in X02 precisely if it is an extension of the form

0 −→ OC′ −→ F −→ OC −→ 0
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Table 2. Summary for MP2(5,1)

Cohomological

Stratum conditions Subset W ⊂ W of morphisms ϕ Codim.

X0 h0(F (−1)) = 0 4O(−2)
ϕ−→ 3O(−1) ⊕ O 0

h1(F ) = 0 ϕ is injective

h0(F ⊗ Ω1(1)) = 0 ϕ11 is not equivalent

to

⎡
⎣� � � 0

� � � 0

� � � 0

⎤
⎦ or

⎡
⎣� � 0 0

� � 0 0

� � � �

⎤
⎦ or

⎡
⎣� 0 0 0

� � � �
� � � �

⎤
⎦

X1 h0(F (−1)) = 0 O(−3) ⊕ O(−2)
ϕ−→ 2O 2

h1(F ) = 1 ϕ is injective

h0(F ⊗ Ω1(1)) = 0 ϕ12 and ϕ22 are linearly independent

two-forms

X2 h0(F (−1)) = 0 O(−3) ⊕ O(−2) ⊕ O(−1)
ϕ−→ O(−1) ⊕ 2O 3

h1(F ) = 1 ϕ is injective

h0(F ⊗ Ω1(1)) = 1 ϕ13 = 0

ϕ12 �= 0, ϕ12 � ϕ11

ϕ23 has linearly independent entries

X3 h0(F (−1)) = 1 2O(−3)
ϕ−→ O(−2) ⊕ O(1) 5

h1(F ) = 2 ϕ is injective

h0(F ⊗ Ω1(1)) = 3 ϕ11 has linearly independent entries

and satisfies H1(F ) = 0. Here C ′ is a cubic curve, C is a conic curve in P2.
The sheaves F in X1 are either of the form JZ(2), where Z ⊂ P2 is the

intersection of two conic curves without common component, Z is contained
in a quintic curve C and JZ ⊂ OC is its ideal sheaf, or they are extension
sheaves of the form

0 −→ OL(−1) −→ F −→ Jx(1) −→ 0,

satisfying the condition H0(F ⊗ Ω1(1)) = 0. Here L ⊂ P2 is a line and Jx ⊂
OC′ is the ideal sheaf of a closed point x on a quartic curve C ′ ⊂ P2.

The generic sheaves from X2 are of the form OC(1)(−P1 +P2 +P3), where
C ⊂ P2 is a smooth quintic curve and P1, P2, P3 are distinct points on C.

The sheaves giving points in X3 are precisely the non-split extension sheaves
of the form

0 −→ OC(1) −→ F −→ Cx −→ 0.
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Here C ⊂ P2 is a quintic curve and Cx is the structure sheaf of a closed point.

1.3. The moduli space MP2(5,0). This moduli space can be decomposed
into four strata: an open stratum X0, two locally closed strata X1,X2 and a
closed stratum X3. The stratum X0 is a proper open subset inside N(3,5,5).
Also, X2 is a proper open subset inside a fibre bundle over P2 × P2 with
fibre P18. The closed stratum X3 consists of sheaves of the form OC(1),
where C ⊂ P2 is a quintic curve, and is isomorphic to P(S5V ∗). All strata are
invariant under the duality isomorphism.

The information about the cohomological conditions defining each stratum
and resolutions for semi-stable sheaves can be found in Table 3 below, which
is organised as Table 1. We will show that X0 is a good quotient, X1 is a
categorical quotient and X2 is a geometric quotient of W by G.

The generic sheaves in X0 are of the form JZ(3), where Z ⊂ P2 is a zero-
dimensional scheme of length 10 not contained in a cubic curve, contained in
a quintic curve C, and JZ ⊂ OC is its ideal sheaf.

The sheaves giving points in X2 are precisely the non-split extension sheaves
of the form

0 −→ Jx(1) −→ F −→ Cz −→ 0,

where Jx ⊂ OC is the ideal sheaf of a closed point x on a quintic curve C ⊂ P2

and Cz is the structure sheaf of a closed point z ∈ C. When x = z we exclude
the possibility F � OC(1).

Table 3. Summary for MP2(5,0)

Cohomological
Stratum conditions Subset W ⊂ W of morphisms ϕ Codim.
X0 h0(F (−1)) = 0 5O(−2)

ϕ−→ 5O(−1) 0
h1(F ) = 0 ϕ is injective

h0(F ⊗ Ω1(1)) = 0

X1 h0(F (−1)) = 0 O(−3) ⊕ 2O(−2)
ϕ−→ 2O(−1) ⊕ O 1

h1(F ) = 1 ϕ is injective
h0(F ⊗ Ω1(1)) = 0 ϕ12 is injective

X2 h0(F (−1)) = 0 2O(−3) ⊕ O(−1)
ϕ−→ O(−2) ⊕ 2O 4

h1(F ) = 2 ϕ is injective
h0(F ⊗ Ω1(1)) = 1 ϕ11 has linearly independent entries

ϕ22 has linearly independent entries

X3 h0(F (−1)) = 1 O(−4)
ϕ−→ O(1) 6

h1(F ) = 3 ϕ �= 0
h0(F ⊗ Ω1(1)) = 3
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2. Euler characteristic two or three

2.1. Locally free resolutions for semi-stable sheaves.

Proposition 2.1.1. There are no sheaves F giving points in MP2(5,3) and
satisfying the conditions h0(F (−1)) = 0 and h1(F ) �= 0.

Proof. According to Claim 6.4 in [9], there are no sheaves G in MP2(5,2)
satisfying the conditions h0(G(−1)) �= 0 and h1(G) = 0. The result follows by
duality. �

From this and from Claim 4.3 in [9] we obtain the following.

Proposition 2.1.2. Let F be a sheaf in MP2(5,3) satisfying the condition
h0(F (−1)) = 0. Then h1(F ) = 0 and h0(F ⊗ Ω1(1)) = 1 or 2. The sheaves
from the first case are precisely the sheaves that have a resolution of the form

(i) 0 −→ 2O(−2) ⊕ O(−1)
ϕ−→ 3O −→ F −→ 0

with ϕ not equivalent, modulo the action of the natural group of automor-
phisms, to a morphism represented by a matrix of the form⎡

⎣� � �
� � 0
� � 0

⎤
⎦ or

⎡
⎣� � �

� � �
� 0 0

⎤
⎦ .

The sheaves in the second case are precisely the sheaves that have a resolution
of the form

(ii) 0 −→ 2O(−2) ⊕ 2O(−1)
ϕ−→ O(−1) ⊕ 3O −→ F −→ 0,

ϕ =
[
ϕ11 0
ϕ21 ϕ22

]
, ϕ11 =

[
�1 �2

]
,

where �1, �2 are linearly independent one-forms and the maximal minors of
ϕ22 are linearly independent two-forms.

Proposition 2.1.3. Let F be a sheaf giving a point in MP2(5,3) and sat-
isfying the conditions h1(F ) = 0 and h0(F (−1)) �= 0. Then h0(F (−1)) = 1.
These sheaves are precisely the sheaves with resolution of the form

0 −→ 3O(−2)
ϕ−→ 2O(−1) ⊕ O(1) −→ F −→ 0,

where ϕ11 has linearly independent maximal minors.

Proof. The first conclusion follows from Claim 6.6 in [9]. According to
Claim 5.3 in [9], every sheaf G in MP2(5,2) satisfying h0(G(−1)) = 0 and
h1(G) = 1 has a resolution

0 −→ O(−3) ⊕ 2O(−1)
ψ−→ 3O −→ G −→ 0

in which ψ12 has linearly independent maximal minors. The second conclusion
follows by duality. �
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Proposition 2.1.4. Let F be a sheaf giving a point in MP2(5,3) and sat-
isfying the conditions h0(F (−1)) = 1 and h1(F ) = 1. Then h0(F ⊗ Ω1(1)) = 4
and F has a resolution of the form

0 −→ O(−3) ⊕ O(−1)
ϕ−→ O ⊕ O(1) −→ F −→ 0

with ϕ12 �= 0 and ϕ22 not divisible by ϕ12. Conversely, every F having such a
resolution is semi-stable.

Proof. Let F give a point in MP2(5,3) and satisfy the cohomological con-
ditions from the claim. Write m = h0(F ⊗ Ω1(1)). The Beilinson free monad
(2.2.1) in [4] for F reads

0 −→ O(−2) −→ 3O(−2) ⊕ mO(−1) −→ (m − 1)O(−1) ⊕ 4O −→ O −→ 0

and gives the resolution

0 −→ O(−2) −→ 3O(−2) ⊕ mO(−1) −→ Ω1 ⊕ (m − 4)O(−1) ⊕ 4O −→ F −→ 0.

We see from the above that m ≥ 4. Combining with the Euler sequence, we
obtain the resolution

0 −→ O(−2)
ψ−→ O(−3) ⊕ 3O(−2) ⊕ mO(−1)

ϕ−→ 3O(−2) ⊕ (m − 4)O(−1) ⊕ 4O −→ F −→ 0,

ψ =

⎡
⎣ 0

0
ψ31

⎤
⎦ , ϕ =

⎡
⎣η ϕ12 0

0 ϕ22 0
0 ϕ32 ϕ33

⎤
⎦ .

Here

η =

⎡
⎣X

Y
Z

⎤
⎦ .

We have a commutative diagram in which the vertical maps are projections
onto direct summands:

O(−3) ⊕ 3O(−2) ⊕ mO(−1)
ϕ

3O(−2) ⊕ (m − 4)O(−1) ⊕ 4O

O(−3) ⊕ 3O(−2) α 3O(−2)

α =
[
η ϕ12

]
.

Thus, F maps surjectively to Coker(α). If rank(ϕ12) = 0, then Coker(α) � Ω1.
If rank(ϕ12) = 1, then Coker(α) � Ix(−1), where Ix ⊂ O is the ideal sheaf
of a point x ∈ P2. These two cases are unfeasible because F has support of
dimension 1 so it cannot map surjectively onto a sheaf supported on the entire
plane. If rank(ϕ12) = 2, then Coker(α) would be isomorphic to OL(−2) for a
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line L ⊂ P2, so it would destabilise F . We conclude that rank(ϕ12) = 3. We
may cancel 3O(−2) to get the resolution

0 −→ O(−2)
ψ−→ O(−3) ⊕ mO(−1)

ϕ−→ (m − 4)O(−1) ⊕ 4O −→ F −→ 0,

ψ =
[

0
ψ21

]
, ϕ =

[
ϕ11 0
ϕ21 ϕ22

]
.

Note that F maps surjectively onto Coker(ϕ11), so the latter has rank zero,
forcing m ≤ 5. If m = 5, then Coker(ϕ11) would be isomorphic to OC(−1) for
a conic curve C ⊂ P2, so it would destabilise F . We deduce that m = 4 and
we get the resolution

0 −→ O(−2)
ψ−→ O(−3) ⊕ 4O(−1)

ϕ−→ 4O −→ F −→ 0.

Let ψ̄ : V → C4 be the linear map induced by ψ21. Let H be the image of
ψ̄ and let K ⊂ C4 be a linear subspace such that H ⊕ K = C4. We have an
exact sequence

0 −→ O(−2)
ψ−→ O(−3) ⊕

(
K ⊗ O(−1)

)
⊕

(
H ⊗ O(−1)

) ϕ−→ 4O −→ F −→ 0,

in which ψ11 = 0, ψ21 = 0. If dim(H) = 1, then ψ31 is generically surjective.
As ϕ vanishes on Im(ψ31), it must vanish on H ⊗ O(−1), hence H ⊗ O(−1)
is a subsheaf of O(−2). This is absurd. If dim(H) = 2, then Coker(ψ31) is
isomorphic to the ideal sheaf Ix of a point x ∈ P2. We get a resolution

0 −→ O(−3) ⊕ 2O(−1) ⊕ Ix −→ 4O −→ F −→ 0.

The image of Ix is included into a factor O of 4O because Hom(Ix, O) � C.
We obtain a commutative diagram

0 Ix O Cx 0

0 O(−3) ⊕ 2O(−1) ⊕ Ix 4O F 0

in which the first two vertical maps are injective. The induced map Cx → F
is zero because F has no zero-dimensional torsion. It follows that O is a
subsheaf of O(−3) ⊕ 2O(−1) ⊕ Ix, which is absurd. We deduce that H has
dimension 3, so Coker(ψ31) � Ω1(1) and we get the resolution

0 −→ O(−3) ⊕ O(−1) ⊕ Ω1(1)
ϕ−→ 4O −→ F −→ 0.

Consider the canonical morphism i : Ω1(1) → Hom(Ω1(1), O)∗ ⊗ O � 3O.
There is a morphism β : 3O → 4O such that β ◦ i = ϕ13. If β were not injec-
tive, then ϕ would be equivalent to a morphism represented by a matrix of
the form [

γ11 0
γ21 γ22

]
,
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where γ11 ∈ Hom(O(−3) ⊕ O(−1),2O). But then Coker(γ11) would be a
destabilising quotient sheaf of F . Thus β is injective, from which we deduce
that Coker(ϕ13) � O ⊕ O(1). We obtain the resolution

0 −→ O(−3) ⊕ O(−1)
ϕ−→ O ⊕ O(1) −→ F −→ 0.

If ϕ12 = 0, then F would have a destabilising subsheaf of the form OC(1), for
a conic curve C ⊂ P2. If ϕ12 divided ϕ22, then F would have a destabilising
subsheaf of the form OL for a line L ⊂ P2.

Conversely, assume that F has a resolution as in the claim. Then F has no
zero-dimensional torsion because it has projective dimension 1 at every point
in its support. Thus, it is enough to show that F cannot have a destabilising
subsheaf. Let F ′ ⊂ F be a non-zero subsheaf of multiplicity at most 4. Ac-
cording to Proposition 2.3.5, F is isomorphic to JZ(2), where JZ ⊂ OC is the
ideal sheaf of a zero-dimensional scheme Z of length 2 inside a quintic curve C.
According to [9], Lemma 6.7, there is a sheaf A ⊂ OC(2) containing F ′ such
that A/F ′ is supported on finitely many points and OC(2)/A � OS(2) for a
curve S ⊂ C of degree d ≤ 4. The slope of F ′ can be estimated as follows:

PF ′ (t) = PA(t) − h0
(

A/F ′)
= POC

(t + 2) − POS
(t + 2) − h0

(
A/F ′)

= (5 − d)t +
(d − 5)(d − 2)

2
− h0

(
A/F ′),

p
(

F ′) =
2 − d

2
− h0(A/F ′)

5 − d
≤ 1

2
<

3
5

= p(F ).

We conclude that F is semi-stable. �

Proposition 2.1.5. Any sheaf G giving a point in MP2(5,2) satisfies the
condition h0(G(−1)) ≤ 1.

Proof. Let G be in MP2(5,2) and assume that h0(G(−1)) > 0. As in the
proof of Proposition 2.1.3 in [4], there is an injective morphism OC → G(−1)
for a curve C ⊂ P2. From the semi-stability of G(−1), we see that C must be a
quintic curve. The quotient sheaf G(−1)/OC is a sheaf of dimension zero and
length 2; it maps surjectively onto the structure sheaf Cx of a point x. Let G ′

be the kernel of the composed morphism G → Cx. If G ′ is semi-stable, then,
from Proposition 3.1.5, we have h0(G ′(−1)) ≤ 1. It follows that h0(G(−1)) ≤ 1
unless h0(G ′(−1)) = 1 and the morphism G(−1) → Cx is surjective on global
sections. In this case, we can apply the horseshoe lemma to the extension

0 −→ G ′(−1) −→ G(−1) −→ Cx −→ 0,

to the standard resolution of Cx and to resolution in Proposition 3.1.5 for G ′

tensored with O(−1), which reads:

0 −→ 2O(−4) −→ O(−3) ⊕ O −→ G ′(−1) −→ 0.
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We get a resolution of the form

0 −→ 2O(−4) ⊕ Ix −→ O(−3) ⊕ 2O −→ G(−1) −→ 0.

We now arrive at a contradiction as in the proof of Proposition 2.1.4. The
image of Ix is included in a factor O of 2O. As G(−1) has no zero-dimensional
torsion, this factor O maps to zero in G(−1), which is absurd.

Assume now that G ′ is not semi-stable and let G ′ ′ ⊂ G ′ be a destabilising
subsheaf. We may assume that G ′ ′ itself is semi-stable, say it gives a point in
MP2(r,χ). We have the inequalities

1
5

= p
(

G ′) <
χ

r
< p(G) =

2
5

leaving only the possibilities (r,χ) = (4,1) or (3,1). Denote C = G/G ′ ′. If G ′ ′

is in MP2(4,1), then PC (t) = t + 1. Moreover, the zero-dimensional torsion
of C vanishes, otherwise its pull-back in G would be a destabilising subsheaf.
We deduce that C = OL for a line L ⊂ P2. But h0(OL(−1)) = 0 and, accord-
ing to Proposition 2.1.3 in [4], also h0(G ′ ′(−1)) = 0. We get h0(G(−1)) = 0,
contradicting our hypothesis on G.

The last case to examine is when G ′ ′ is in MP2(3,1). We have PC (t) = 2t+1.
As before, C has no zero-dimensional torsion. Moreover, any quotient sheaf
destabilising C must also destabilise G. We conclude that C is semi-stable,
i.e. C = OC for a conic curve C ⊂ P2. But h0(OC(−1)) = 0 and, according to
Proposition 2.1.3 in [4], also h0(G ′ ′(−1)) = 0. We conclude that h0(G(−1)) =
0, contrary to our hypothesis on G. �

Proposition 2.1.6. There are no sheaves G giving points in MP2(5,2) and
satisfying the conditions h0(G(−1)) = 1 and h1(G) ≥ 2.

Proof. Fix an integer m ≥ 0 and let X be the set of sheaves G in MP2(5,2)
satisfying h0(G(−1)) = 1 and h0(G ⊗ Ω1) = m. Let Y ⊂ X be the subset of
sheaves satisfying the additional condition h1(G) = 1. According to Proposi-
tion 2.1.3 in [4], for every sheaf in X we have H0(G(−2)) = 0. The Beilinson
free monad (2.2.1) in [4] for G(−1) reads

0 −→ 8O(−2) ⊕ mO(−1) −→ (m + 11)O(−1) ⊕ O −→ 4O −→ 0.

Thus, X is parametrised by an open subset M inside the space of monads of
the form

0 −→ 8O(−1) ⊕ mO A−→ (m + 11)O ⊕ O(1) B−→ 4O(1) −→ 0,

where A12 = 0, B12 = 0. Let Γ be the space of pairs (A,B) of morphisms

A ∈ Hom
(
8O(−1) ⊕ mO, (m + 11)O ⊕ O(1)

)
,

B ∈ Hom
(
(m + 11)O ⊕ O(1),4O(1)

)
,

such that A is injective, B is surjective, A12 = 0, B12 = 0. Consider the
algebraic map γ : Γ → Hom(8O(−1),4O(1)) given by γ(A,B) = B11 ◦ A11.
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Note that M is an open subset inside γ−1(0). We claim that M is smooth.
For this, it is sufficient to show that γ has surjective differential at every point
of M . The tangent space of Γ at an arbitrary point (A,B) is the space of
pairs (α,β) of morphisms

α ∈ Hom
(
8O(−1) ⊕ mO, (m + 11)O ⊕ O(1)

)
,

β ∈ Hom
(
(m + 11)O ⊕ O(1),4O(1)

)
,

such that α12 = 0, β12 = 0. We have dγ(A,B)(α,β) = B11 ◦ α11 + β11 ◦ A11.
It is enough to prove that the map α11 → B11 ◦ α11 is surjective at a point
(A,B) ∈ M . For this, we apply the long Ext(8O(−1), )-sequence to the exact
sequence

0 −→ Ker(B11) −→ (m + 11)O B11−→ 4O(1) −→ 0

and we use the vanishing of Ext1(8O(−1), Ker(B11)). This vanishing follows
from the exact sequence

0 −→ 8O(−1) ⊕ mO −→ Ker(B11) ⊕ O(1) −→ G −→ 0

and the vanishing of H1(G(1)), which is a consequence of Proposition 2.1.3
in [4].

Let υ : M → X be the surjective morphism which sends a monad to the
isomorphism class of its cohomology. The tangent space to M at an arbitrary
point (A,B) is

T(A,B)M =
{
(α,β) | α12 = 0, β12 = 0, β ◦ A + B ◦ α = 0

}
.

Consider the map Φ : M → Hom((m + 11)O,4O(1)), Φ(A,B) = B11. It has
surjective differential at every point. Indeed, dΦ(A,B)(α,β) = β11, so we need
to show that, given β11, there is α satisfying the equation β ◦ A + B ◦ α = 0,
that is −β11 ◦ A11 = B11 ◦ α11. This already follows from the surjectivity of
the map α11 → B11 ◦ α11, which we proved above.

We have h0(G) = 14 − rank(H0(B11)). The subset N ⊂ M of monads with
cohomology G satisfying h1(G) ≥ 2 is the preimage under Φ of the set of
morphisms of rank at most 10. Since any matrix of rank at most 10 is the
limit of a sequence of matrices of rank 11, and since the derivative of Φ is
surjective at every point, we deduce that N is included in υ−1(Y ) \ υ−1(Y ).
But, according to Proposition 2.1.4, Y is empty for m �= 0. For m = 0, we
shall prove at Proposition 2.2.6 below that Y is closed. We conclude that N
is empty. �

2.2. Description of the strata as quotients. In Section 2.1, we found
that the moduli space MP2(5,3) can be decomposed into four strata:

− an open stratum X0 given by the conditions

h0
(

F (−1)
)

= 0, h0
(

F ⊗ Ω1(1)
)

= 1;
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− a locally closed stratum X1 of codimension 2 given by the conditions

h0
(

F (−1)
)

= 0, h0
(

F ⊗ Ω1(1)
)

= 2;

− a locally closed stratum X2 of codimension 3 given by the conditions

h0
(

F (−1)
)

= 1, h1(F ) = 0;

− the stratum X3 of codimension 4 given by the conditions

h0
(

F (−1)
)

= 1, h1(F ) = 1.

We shall see below at Proposition 2.2.6 that X3 is closed.
In the sequel, Xi will be equipped with the canonical induced reduced struc-
ture. Let W0, W1, W2, W3 be the sets of morphisms ϕ from Propositions
2.1.2(i), 2.1.2(ii), 2.1.3, respectively Proposition 2.1.4. Each sheaf F giving
a point in Xi is the cokernel of a morphism ϕ ∈ Wi. Let Wi = Hom(Ai, Bi)
denote the ambient vector space containing Wi. Here Ai, Bi are locally free
sheaves on P2, for instance A0 = 2O(−2) ⊕ O(−1), B0 = 3O. The natural
group of automorphisms Gi = (Aut(Ai) × Aut(Bi))/C∗ acts on Wi by conju-
gation, leaving Wi invariant (here C∗ is embedded as the subgroup of homoth-
eties). In this subsection, we shall prove that there exist geometric quotients
Wi/Gi, which are smooth quasiprojective varieties (W3/G3 is even projective),
such that Wi/Gi � Xi. Whenever possible, we shall give concrete descriptions
of these quotients.

Proposition 2.2.1. There exists a geometric quotient W0/G0, which is a
smooth quasiprojective variety. Moreover, W0/G0 is isomorphic to X0.

Proof. Let Λ = (λ1, λ2, μ1) be a polarisation for the action of G0 on W0

satisfying 1/6 < λ1 < 1/3 (see [5] for the notions of polarisation and of semi-
stable morphism). According to Claim 4.3 in [9], W0 is the open invariant
subset of injective morphisms inside the set Wss

0 (Λ) of semi-stable morphisms
with respect to Λ. According to Theorem 6.4 in [3], if λ1 < 1/5, then there
is a geometric quotient Wss

0 (Λ)/G0, which is a projective variety (see also
Corollary 7.11 in [9]). We fix Λ satisfying 1/6 < λ1 < 1/5. It is now clear that
a geometric quotient W0/G0 exists and is an open subset of Wss

0 (Λ)/G0.
The morphism W0 → X0 sending ϕ to the isomorphism class of Coker(ϕ)

is surjective and its fibres are G0-orbits, hence it factors through a bijective
morphism W0/G0 → X0. Since X0 is smooth, Zariski’s Main Theorem tells
us that the latter is an isomorphism. �

We remark that W0 is a proper subset of Wss
0 (Λ), hence W0/G0 is a proper

open subset of the projective variety Wss
0 (Λ)/G0. Indeed, the morphism ϕ0

represented by the matrix ⎡
⎣XY X2 0

XZ 0 X
0 −XZ Y

⎤
⎦
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is not injective but is semi-stable with respect to Λ. This follows from King’s
criterion of semi-stability [7], which, in our case, says that a morphism is in
Wss

0 (Λ) if and only if it is not equivalent to a morphism having one of the
following forms:⎡

⎣� � 0
� � 0
� � �

⎤
⎦ ,

⎡
⎣� 0 0

� � �
� � �

⎤
⎦ ,

⎡
⎣0 � �

0 � �
0 � �

⎤
⎦ ,

⎡
⎣0 0 �

0 0 �
� � �

⎤
⎦ .

The first case is excluded by the fact that ϕ0 has two linearly independent
entries on column 3, the second case is excluded by the fact that ϕ0 has two
linearly independent entries on row 1. To exclude the third case, assume that⎡

⎣XY X2 0
XZ 0 X
0 −XZ Y

⎤
⎦

⎡
⎣c1

c2

�

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

for c1, c2 ∈ C and � ∈ V ∗. Then the triple (c1X,c2X,�) is a multiple of
(−X,Y,Z), which is absurd. The last case can also be easily excluded.

We recall from Section 2.4 in [4] the moduli spaces N(3,m,n) of semi-stable
Kronecker modules f : Cm ⊗ V → Cn.

Proposition 2.2.2. There exists a geometric quotient W1/G1 and it is a
proper open subset inside a fibre bundle over P2 × N(3,2,3) with fibre P16.

Proof. Let W ′
1 be the locally closed subset of W1 given by the conditions

that ϕ12 = 0, ϕ11 have linearly independent entries and ϕ22 have linearly
independent maximal minors. The set of morphisms ϕ11 form an open subset
U1 ⊂ Hom(2O(−2), O(−1)) and the set of morphisms ϕ22 form an open subset
U2 ⊂ Hom(2O(−1),3O). We denote U = U1 × U2. W ′

1 is the trivial vector
bundle over U with fibre Hom(2O(−2),3O). We represent the elements of G1

by pairs of matrices

(g,h) ∈ Aut
(
2O(−2) ⊕ 2O(−1)

)
× Aut

(
O(−1) ⊕ 3O

)
,

g =
[
g1 0
u g2

]
, h =

[
h1 0
v h2

]
.

Inside G1 we distinguish three subgroups: a unitary subgroup G′
1 given by

the conditions that g1, g2, h1, h2 be the identity morphisms, a reductive
subgroup G1red given by the conditions u = 0, v = 0 and a subgroup S of
G1red isomorphic to C∗ given by the conditions that g1, h1 be the morphisms
of multiplication by a non-zero constant a and that g2, h2 be the morphisms
of multiplication by a non-zero constant b. Note that G1 = G′

1G1red. Consider
the G1-invariant subset Σ ⊂ W ′

1 given by the condition

ϕ21 = ϕ22u + vϕ11,

u ∈ Hom
(
2O(−2),2O(−1)

)
, v ∈ Hom

(
O(−1),3O

)
.
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Note that W1 is the subset of injective morphisms inside W ′
1 \ Σ, so it is

open and G1-invariant. Moreover, it is a proper subset as, for instance, the
morphism represented by the matrix⎡

⎢⎢⎣
Y X 0 0
0 Y 2 X 0
0 Y Z 0 X
0 0 −Z Y

⎤
⎥⎥⎦

is in W ′
1 \ Σ but is not injective. Our aim is to construct a geometric quotient

of W ′
1 \ Σ modulo G1; it will follow that W1/G1 exists and is a proper open

subset of (W ′
1 \ Σ)/G1.

Firstly, we construct the geometric quotient W ′
1/G′

1. Because of the con-
ditions on ϕ11 and ϕ22 it is easy to check that Σ is a subbundle of W ′

1. The
quotient bundle, denoted Q′, has rank 17. The quotient map W ′

1 → Q′ is a
geometric quotient modulo G′

1. Moreover, the canonical action of G1red on
U is Q′-linearised and the map W ′

1 → Q′ is G1red-equivariant. Let σ be the
zero-section of Q′. The restricted map W ′

1 \ Σ → Q′ \ σ is also a geometric
quotient map modulo G′

1.
Let x ∈ U be a point and let ξ ∈ Q′

x be a non-zero vector lying over x.
The stabiliser of x in G1red is S and Sξ = C∗ξ. Thus, the canonical map
Q′ \ σ → P(Q′) is a geometric quotient modulo S. It remains to construct a
geometric quotient of P(Q′) modulo the induced action of G1red/S.

The existence of a geometric quotient of U modulo G1red/S follows from
the classical geometric invariant theory. We notice that

G1red/S �
((

Aut
(
2O(−2)

)
× Aut

(
O(−1)

))
/C∗)

×
((

Aut
(
2O(−1)

)
× Aut(3O)

)
/C∗)

.

Using King’s criterion of semi-stability [7], we can see that U1 is the set of
semi-stable points for the canonical action by conjugation of(

Aut
(
2O(−2)

)
× Aut

(
O(−1)

))
/C∗ on Hom

(
2O(−2), O(−1)

)
.

The resulting geometric quotient is N(3,2,1) and is clearly isomorphic to P2.
Analogously, U2 is the set of semi-stable points for the action of(

Aut
(
2O(−1)

)
× Aut(3O)

)
/C∗ on Hom

(
2O(−1),3O

)
and the resulting quotient is N(3,2,3). According to [1], this is a smooth
projective irreducible variety of dimension 6. We obtain:

U/(G1red/S) � N(3,2,1) × N(3,2,3) � P2 × N(3,2,3).

It remains to show that P(Q′) descends to a fibre bundle over U/(G1red/S).
We consider the character χ of G1red given by χ(g,h) = det(g)det(h)−1. Note
that χ is well-defined because it is trivial on homotheties. We multiply the
action of G1red on Q′ by χ and we denote the resulting linearised bundle by
Q′

χ. The action of S on Q′
χ is trivial, hence Q′

χ is G1red/S-linearised. The
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isotropy subgroup in G1red/S for any point in U is trivial, so we can apply
[6], Lemma 4.2.15, to deduce that Q′

χ descends to a vector bundle Q over
U/(G1red/S). The induced map P(Q′) → P(Q) is a geometric quotient map
modulo G1red/S. We conclude that the composed map

W ′
1 \ Σ −→ Q′ \ σ −→ P

(
Q′) −→ P(Q)

is a geometric quotient map modulo G1 and that a geometric quotient W1/G1

exists and is a proper open subset inside P(Q). �

Proposition 2.2.3. The geometric quotient W1/G1 is isomorphic to X1.

Proof. As at Proposition 2.2.1, we have a canonical bijective morphism
W1/G1 → X1. To show that this is an isomorphism we shall use the method
of Theorem 3.1.6 in [4]. Our aim is to construct resolution (ii) from Propo-
sition 2.1.2 not merely for an individual sheaf giving a point in X1, but also
for a flat family of sheaves giving points in X1. We achieve this for local
flat families by obtaining resolution (ii) in a natural manner from the rela-
tive Beilinson spectral sequence associated to the family. Thus, for any sheaf
F giving a point in X1, we need to recover its resolution from its Beilinson
spectral sequence. Diagram (2.2.3) in [4] for F reads:

2O(−2)
ϕ1 O(−1) 0

0 2O(−1)
ϕ4

3O

Since F is semi-stable and maps surjectively onto Coker(ϕ1), we see that
Coker(ϕ1) is the structure sheaf Cx of a point x ∈ P2 and that Ker(ϕ1) is
isomorphic to O(−3). The exact sequence (2.2.5) in [4]

0 −→ Ker(ϕ1)
ϕ5−→ Coker(ϕ4) −→ F −→ Coker(ϕ1) −→ 0

gives the extension

0 −→ Coker(ϕ5) −→ F −→ Coker(ϕ1) −→ 0.

We apply the horseshoe lemma to the above extension and to the resolutions

0 −→ O(−3) ⊕ 2O(−1) −→ 3O −→ Coker(ϕ5) −→ 0,

0 −→ O(−3) −→ 2O(−2) −→ O(−1) −→ Coker(ϕ1) −→ 0.

We arrive at the exact sequence

0 −→ O(−3) −→ O(−3) ⊕ 2O(−2) ⊕ 2O(−1) −→ O(−1) ⊕ 3O −→ F −→ 0.

Since H1(F ) = 0, we see that O(−3) can be cancelled and we get resolution (ii),
as desired. �
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Proposition 2.2.4. There exists a geometric quotient W2/G2, which is a
proper open subset inside a fibre bundle over N(3,3,2) with fibre P17. More-
over, W2/G2 is isomophic to X2.

Proof. The existence of W2/G2 follows from the construction of quotients
given at Section 9.3 of [5]. Our situation is also analogous to Section 3.1.2 of
[4]. We consider a polarisation Λ = (λ1, μ1, μ2) as in [5] for the action of G2 on
W2 satisfying the condition 0 < μ2 < 1/3. According to [5], Lemma 9.3.1, the
open subset Wss

2 (Λ) ⊂ W2 of semi-stable morphisms with respect to Λ is the
set of morphisms ϕ for which of ϕ11 is semi-stable with respect to the action
by conjugation of (GL(3,C) × GL(2,C))/C∗ on Hom(3O(−2),2O(−1)) and
such that ϕ is not equivalent to a morphism ψ satisfying ψ21 = 0. According
to King’s criterion of semi-stability [7], the condition on ϕ11 is the same as
saying that ϕ11 is not equivalent to a morphism represented by a matrix
having a zero-column or a zero-submatrix of size 1 × 2. Furthermore, this is
equivalent to the condition on ϕ11 from Proposition 2.1.3. We see now that
W2 is the open invariant subset of injective morphisms inside Wss

2 (Λ). It is a
proper subset because it is easy to construct semi-stable morphisms that are
not injective, for example the morphism represented by the matrix⎡

⎣ 0 X Y
X 0 −Z
Y 3 ZY 2 0

⎤
⎦ .

Adopting the notations of Section 3.1.2 of [4], let N(3,3,2) be the moduli space
of semi-stable Kronecker modules f : 3O(−2) → 2O(−1), let τ : E ⊗ V →
F be the universal morphism on N(3,3,2), let p1, p2 be the projections of
N(3,3,2) × P2 onto its factors and let

θ : p∗
1(E) ⊗ p∗

2

(
O(−2)

)
−→ p∗

1(F ) ⊗ p∗
2

(
O(−1)

)
be the morphism induced by τ . The sheaf U = p1∗(Coker(θ∗) ⊗ p∗

2O(1)) is
locally free on N(3,3,2) of rank 18. According to Section 9.3 of [5], P(U ) is a
geometric quotient of Wss

2 (Λ) modulo G2. Thus, W2/G2 exists and is a proper
open subset of P(U ).

We shall now prove that the natural bijective morphism W2/G2 → X2 is
an isomorphism. Given F in X2, we need to construct a resolution as in
Proposition 2.1.3 starting from the Beilinson spectral sequence of F . It is
easier to work, instead, with the dual sheaf G = F D(1), which gives a point in
MP2(5,2). The Beilinson tableau (2.2.3) in [4] for G takes the form

3O(−2)
ϕ1 3O(−1)

ϕ2 O

0 2O(−1)
ϕ4

3O
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According to Section 2.2 of [4], ϕ2 is surjective while ϕ4 is injective. Thus,
Ker(ϕ2) � Ω1. Consider the canonical morphism

ρ : 3O(−2) � O(−2) ⊗ Hom
(

O(−2),Ω1
)

−→ Ω1.

There is a morphism α : 3O(−2) → 3O(−2) such that ρ ◦ α = ϕ1. Since G
maps surjectively onto Ker(ϕ2)/Im(ϕ1), this sheaf has rank zero, that is,
Im(ϕ1) has rank 2. This excludes the possibility rank(α) = 1, because in this
case Im(ϕ1) would be isomorphic to O(−2). If rank(α) = 2, then Im(ϕ1)
would be isomorphic to 2O(−2). In this case Ker(ϕ2)/Im(ϕ1) would have
slope −1, hence it would destabilise G. We deduce that rank(α) = 3, hence
Im(ϕ1) = Ker(ϕ2) and Ker(ϕ1) � O(−3). The exact sequence (2.2.5) in [4]
takes the form

0 −→ O(−3)
ϕ5−→ Coker(ϕ4) −→ G −→ 0.

This easily yields the dual to the resolution from Proposition 2.1.3. �

Proposition 2.2.5. There exists a geometric quotient W3/G3 and it is
a smooth projective variety. Moreover, W3/G3 is isomorphic to the Hilbert
flag scheme of quintic curves in P2 containing zero-dimensional subschemes
of length 2.

Proof. Before constructing the quotient we notice that its existence already
follows from [5]. Let Λ = (λ1, λ2, μ1, μ2) be a polarisation for the action of G3

on W3, as in [5]. Using King’s criterion of semi-stability [7] we can verify
that for polarisations satisfying λ1 < μ1 and λ1 < μ2 the set of stable points
Ws

3(Λ) coincides with the set of semi-stable points Wss
3 (Λ) and is equal to W3.

According to [5], for polarisations satisfying λ2 > 6λ1 and μ1 > 3μ2 there is
a good and projective quotient Wss

3 (Λ)//G3 containing the smooth geometric
quotient Ws

3(Λ)/G3 as an open subset. We now choose a polarisation satis-
fying all the above conditions, i.e. satisfying 0 < λ1 < 1/7 and λ1 < μ2 < 1/4.
We conclude that there is a smooth geometric quotient W3/G3, which is a
projective variety.

Next we give two constructions of W3/G3, firstly as a bundle and secondly
as a Hilbert flag scheme. The first construction uses the method of Proposi-
tion 2.2.2, which consisted of finding successively quotients modulo subgroups.
Let W ′

3 be the open subset of W3 given by the conditions that ϕ12 �= 0 and
that ϕ22 be non-divisible by ϕ12. The pairs of morphisms (ϕ12, ϕ22) form an
open subset U ⊂ Hom(O(−1), O ⊕ O(1)) and W ′

3 is the trivial vector bundle
over U with fibre Hom(O(−3), O ⊕ O(1)). We represent the elements of G3

by pairs of matrices

(g,h) ∈ Aut
(

O(−3) ⊕ O(−1)
)

× Aut
(

O ⊕ O(1)
)
,

g =
[
g1 0
u g2

]
, h =

[
h1 0
v h2

]
.
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Inside G3 we distinguish two subgroups: a unitary subgroup G′
3 given by the

conditions that h be the identity morphism, g1 = 1, g2 = 1 and a subgroup
G′ ′

3 given by the condition that g be the identity morphism. Consider the
G3-invariant subset Σ ⊂ W ′

3 given by the conditions

ϕ11 = ϕ12u, ϕ21 = ϕ22u, u ∈ Hom
(

O(−3), O(−1)
)
.

Note that W3 = W ′
3 \ Σ. Clearly Σ is a subbundle of W ′

3. The quotient bundle
E′ has rank 19. The quotient map W ′

3 → E′ is a geometric quotient modulo
G′

3. Moreover, the canonical action of G′ ′
3 on U is E′-linearised and the map

W ′
3 → E′ is G′ ′

3 -equivariant. Let σ′ be the zero-section of E′. The restricted
map W3 → E′ \ σ′ is also a geometric quotient modulo G′

3.
We now construct a geometric quotient of E′ modulo G′ ′

3 . The quotient for
the base U can be described explicitly as follows. On P(V ∗) we consider the
trivial vector bundle with fibre S2V ∗ and the subbundle with fibre vV ∗ at any
point 〈v〉 ∈ P(V ∗). Let Q be the quotient bundle. Clearly, U/G′ ′

3 is isomorphic
to P(Q). Moreover, U is a principal G′ ′

3 -bundle over P(Q). According to
Theorem 4.2.14 in [6], E′ descends to a vector bundle E on P(Q). Clearly,
E is the geometric quotient E′/G′ ′

3 . Let σ be the zero-section of E. The
composed map W3 → E′ \ σ′ → E \ σ is a geometric quotient modulo G′

3G
′ ′
3 .

It is now clear that the fibre bundle P(E) is the geometric quotient W3/G3.
Thus, W3/G3 is a fibre bundle with fibre P18 and base a fibre bundle P(Q)
with base P2 and fibre P2.

It is clear that P(Q) is isomorphic to the Hilbert scheme of zero-dimensional
subschemes of P2 of length 2. Let F be the Hilbert flag scheme from the
proposition viewed as a subscheme of P(Q) × P(S5V ∗). Consider the map
W3 → F defined by

ϕ −→
(

〈ϕ12〉, 〈ϕ22 mod ϕ12〉,
〈
det(ϕ)

〉)
.

The fibres of this map are obviously G3-orbits. To show that this map is
a geometric quotient we shall construct local sections. We choose a point
x = (〈f 〉, 〈g mod f 〉, 〈h〉) in F . To fix notations, we write f = X and we may
assume that g is a quadratic form in Y and Z. There are unique forms h1(Y,Z)
and h2(X,Y,Z) such that h = h1 + Xh2. By hypothesis, h1 is divisible by g.
We put

σ(x) =
[
h1/g f

−h2 g

]
.

Note that σ extends to a local section in a neighbourhood of x because h2

and h1, hence also h1/g, depend algebraically on x. �

Proposition 2.2.6. The geometric quotient W3/G3 is isomorphic to X3.
In particular, X3 is a smooth closed subvariety of MP2(5,3).

Proof. As above, in order to show that the bijective morphism W3/G3 →
X3 is an isomorphism, we need to construct a resolution as in Proposition 2.1.4
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starting from the Beilinson tableau (2.2.3) in [4] for F , which takes the form:

3O(−2)
ϕ1 3O(−1)

ϕ2 O

O(−2)
ϕ3 4O(−1)

ϕ4
4O

As at Proposition 2.2.4, Ker(ϕ2) is equal to Im(ϕ1) and Ker(ϕ1) is isomor-
phic to O(−3). The exact sequence (2.2.5) in [4] gives the resolution

0 −→ O(−3)
ϕ5−→ Coker(ϕ4) −→ F −→ 0.

We combine this sequence with the exact sequence (2.2.4) in [4] that reads as
follows:

0 −→ O(−2)
ϕ3−→ 4O(−1)

ϕ4−→ 4O −→ Coker(ϕ4) −→ 0.

Indeed, ϕ5 lifts to a map O(−3) → 4O because Ext1(O(−3), Coker(ϕ3)) = 0.
We arrive at the resolution

0 −→ O(−2) −→ O(−3) ⊕ 4O(−1) −→ 4O −→ F −→ 0.

We have already seen at Proposition 2.1.4 how to derive the desired resolution
of F from the above exact sequence. �

2.3. Geometric description of the strata. We recall that the stratum
X0 of MP2(5,3) consists of isomorphism classes of cokernels of morphisms
ϕ = (ϕ11, ϕ12) as at Proposition 2.1.2(i). We distinguish a subset X01 ⊂ X0

given by the condition Coker(ϕ12) � Ix(1) ⊕ O, where Ix ⊂ O is the ideal
sheaf of a point x ∈ P2. Clearly X01 is closed in X0 and has codimension 1.

Proposition 2.3.1. The sheaves F giving points in X0 \ X01 are precisely
the sheaves admitting a resolution of the form

0 −→ 2O(−2) −→ Ω1(2) −→ F −→ 0.

Proof. Assume that F gives a point in X0 \ X01. From Proposition 2.1.2(i),
we have the exact sequence

0 −→ 2O(−2) −→ Coker(ϕ12) −→ F −→ 0.

By hypothesis Coker(ϕ12) is isomorphic to Ω1(2).
Conversely, assume that F has a resolution as in the claim. Combining with

the Euler sequence we find an injective morphism ϕ : 2O(−2) ⊕ O(−1) → 3O
such that F � Coker(ϕ). The fact that ϕ12 has linearly independent entries
ensures that ϕ satisfies the conditions from Proposition 2.1.2(i). �

Proposition 2.3.2. The generic sheaves F from X01 are precisely the
non-split extension sheaves of the form

0 −→ Jx(1) −→ F −→ OZ −→ 0,
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such that there is a global section of F taking the value 1 at every point of Z.
Here Jx ⊂ OC is the ideal sheaf of a point x on a quintic curve C ⊂ P2 and
Z ⊂ C is a union of four distinct points, also distinct from x, no three of
which are colinear.

There is an open subset inside X01 consisting of the isomorphism classes
of all sheaves of the form OC(1)(P1 + P2 + P3 + P4 − P5), where C ⊂ P2 is
a smooth quintic curve, P1, . . . , P5 are distinct points on C and P1, P2, P3, P4

are in general linear position.

Proof. We begin by noting that the sheaves giving points in X01 are pre-
cisely the sheaves F admitting a resolution

0 −→ 2O(−2) ⊕ O(−1)
ϕ−→ 3O −→ F −→ 0,

ϕ =

⎡
⎣q1 q2 0

� � �1
� � �2

⎤
⎦ ,

where q1, q2 are linearly independent two-forms and �1, �2 are linearly indepen-
dent one-forms. For generic F , q1 and q2 have no common linear factor and
the conic curves they define intersect in the union Z of four distinct points,
no three of which are colinear and also distinct from the common zero of �1
and �2. We apply the snake lemma to the exact diagram:

0 0

0 O(−1)

[
�1
�2

]

2O Ix(1) 0

0 2O(−2) ⊕ O(−1)
ϕ

O ⊕ 2O F 0

0 O(−4)

[
−q2
q1

]

2O(−2)
[q1 q2]

O OZ 0

0 0

The vertical maps are injections into the second factors, respectively projec-
tions onto the first factors. We get the exact sequence

0 −→ O(−4) −→ Ix(1) −→ F −→ OZ −→ 0,
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from which the conclusion follows. For the converse, we apply the horseshoe
lemma to the diagram:

0

0 O(−4)
δ

O(−4) 2O(−2)
γ

βIx(1)

ν

O
α

π

0 Jx(1)
ξ

F
ζ OZ 0

0 0

By hypothesis, the morphism π : O → OZ lifts to a morphism α : O → F .
Then β, γ, δ are defined in the usual way and we claim that δ �= 0. If δ
were zero, then γ would factor through a morphism Ker(π) → Ix(1). Since
Ext1(OZ , Ix(1)) = 0, this morphism would lift to a map η : O → Ix(1). The
composite map 2O(−2) → O α→ F would then coincide with the composition

2O(−2) −→ O −η−→ Ix(1) ν−→ Jx(1)
ξ−→ F ,

hence α + ξ ◦ ν ◦ η would factor through a morphism σ : OZ → F . We would
have π = ζ ◦ α = ζ ◦ α + ζ ◦ ξ ◦ ν ◦ η = ζ ◦ σ ◦ π, hence ζ ◦ σ would be the
identity morphism. The extension would split, contradicting our hypothesis
on F . Combining the resolutions for Jx(1) and OZ and cancelling O(−4), we
obtain the resolution

0 −→ 2O(−2) −→ O ⊕ Ix(1) −→ F −→ 0.

From this, we easily get a resolution for F as at the beginning of this proof.
Assume now that C is smooth and write Z = {P1, P2, P3, P4}, x = P5.

Clearly, the only non-trivial extension sheaf of OZ by Jx(1) is isomorphic
to F = OC(1)(P1 +P2 +P3 +P4 − P5). To finish the proof of the proposition,
we must show that F has a global section that does not vanish at any point of
Z. For 1 ≤ i ≤ 4, let εi : H0(OZ) → C be the linear form of evaluation at Pi.
Let δ : H0(OZ) → H1(Jx(1)) be the connecting homomorphism in the long
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exact cohomology sequence associated to the short exact sequence

0 −→ OC(1)(−x) −→ F −→ OZ −→ 0.

We must show that each εi is not orthogonal to Ker(δ). This is equivalent to
saying that εi is not in the image of the dual map δ∗. By Serre duality, δ∗ is
the restriction morphism

H0(OC(−1)(x) ⊗ ωC) H0((OC(−1)(x) ⊗ ωC)|Z)

H0(OC(1)(x)) H0(OC(1)(x)|Z)

H0(OC(1)) H0(OC(1)|Z)

The identity H0(OC(1)(x)) � H0(OC(1)) � V ∗ follows from the fact that the
connecting homomorphism in the long exact cohomology sequence associated
to the short exact sequence

0 −→ OC(1) −→ OC(1)(x) −→ Cx −→ 0

is non-zero. Indeed, its dual is the restriction map H0(OC(1)) → H0(OC(1)|x).
This map is clearly non-zero. Now δ∗(u) is a multiple of εi if and only if the
linear form u vanishes at Pj for all j �= i. By hypothesis, the points Pj , j �= i,
are non-colinear, so there is no such form u and we conclude that εi is not in
the image of δ∗. �

Proposition 2.3.3. The sheaves F in X1 are precisely the non-split ex-
tension sheaves of the form

0 −→ E D(1) −→ F −→ Cx −→ 0,

satisfying H1(F ) = 0, where Cx is the structure sheaf of a point x ∈ P2 and
E is in X2. Here E D = E xt1(E , ωP2) signifies the dual sheaf of E . Taking
into account the duality isomorphism [10], the sheaves E D(1) are precisely the
sheaves G in the dual stratum XD

2 ⊂ MP2(5,2) defined by the relations

h0
(

G(−1)
)

= 0, h1(G) = 1, h1
(

G ⊗ Ω1(1)
)

= 3.

The generic sheaves in X1 are of the form OC(2)(−P1 − P2 − P3 + P4),
where C ⊂ P2 is a smooth quintic curve, Pi are four distinct points on C
and P1, P2, P3 are non-colinear. In particular, X1 lies in the closure of X01.

Proof. Let F be in X1. As in the proof of Proposition 2.3.2, the snake
lemma gives an exact sequence

0 −→ Ker(ϕ11)
α−→ Coker(ϕ22) −→ F −→ Coker(ϕ11) −→ 0.
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Because of the form of ϕ11 given at Proposition 2.1.2(ii), we have the isomor-
phisms Ker(ϕ11) � O(−3) and Coker(ϕ11) � Cx for a point x ∈ P2. Denoting
G = Coker(α), we have an extension

0 −→ G −→ F −→ Cx −→ 0.

Again from Proposition 2.1.2(ii), we know that ϕ22 is injective, hence G has
a resolution of the form

0 −→ O(−3) ⊕ 2O(−1)
ψ−→ 3O −→ G −→ 0,

with ψ12 = ϕ22. According to the proof of Proposition 2.1.3, G is in the dual
stratum XD

2 .
Conversely, assume that F is an extension as in the claim. Using the

horseshoe lemma, we combine the resolutions

0 −→ O(−3) ⊕ 2O(−1)
ψ−→ 3O −→ G −→ 0

and
0 −→ O(−3) −→ 2O(−2) −→ O(−1) −→ Cx −→ 0

to obtain a resolution

0 −→ O(−3) −→ O(−3) ⊕ 2O(−2) ⊕ 2O(−1) −→ O(−1) ⊕ 3O −→ F −→ 0.

Note that Ext1(Cx,3O) = 0, so we can use the arguments at Proposition 2.3.2
to show that the extension would split if the morphism O(−3) → O(−3) in
the above complex were zero. We deduce that this morphism is non-zero, so
we may cancel O(−3) to get a resolution as in Proposition 2.1.2(ii).

The part of the claim concerning generic sheaves follows from the corre-
sponding part of Proposition 2.3.4 below.

To see that X1 is included in X01 we choose a point in X1 represented by
OC(2)(−P1 − P2 − P3 +P4). We may assume that the line through P1 and P2

intersects C at five distinct points P1, P2,Q1,Q2,Q3, which are also distinct
from P3 and P4. Then

OC(2)(−P1 − P2 − P3 + P4) � OC(1)(Q1 + Q2 + Q3 − P3 + P4).

Clearly, we can find points R1,R2,R3 on C, converging to Q1,Q2,Q3 respec-
tively, which are distinct from P3 and such that R1,R2,R3, P4 are in general
linear position. Then OC(1)(R1 + R2 + R3 + P4 − P3) represents a point in
X01 converging to the chosen point in X1. �

We recall from the proof of Proposition 2.1.3 that the sheaves G giving
points in the dual stratum XD

2 ⊂ MP2(5,2) are precisely the sheaves that admit
a resolution of the form

0 −→ O(−3) ⊕ 2O(−1)
ψ−→ 3O −→ G −→ 0,
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where ψ12 has linearly independent maximal minors. We consider the open
subset XD

20 of XD
2 given by the condition that the maximal minors of ψ12 have

no common linear factor and we denote XD
21 = XD

2 \ XD
20.

Proposition 2.3.4. (i) The sheaves G from XD
20 are precisely the twisted

ideal sheaves JZ(2), where Z ⊂ P2 is a zero-dimensional scheme of length 3
not contained in a line, contained in a quintic curve C ⊂ P2, and JZ ⊂ OC is
its ideal sheaf.

The generic sheaves in XD
2 are of the form OC(2)(−P1 − P2 − P3), where

C is a smooth quintic curve and P1, P2, P3 are non-colinear points on C.
By duality, the generic sheaves in X2 are of the form OC(1)(P1 +P2 +P3).

In particular, X2 lies in the closure of X1.
(ii) The sheaves G from XD

21 are precisely the extension sheaves of the form

0 −→ OL(−1) −→ G −→ OC(1) −→ 0,

where L ⊂ P2 is a line, C ⊂ P2 is a quartic curve and such that the image of
G under the canonical map

Ext1
(

OC(1), OL(−1)
)

−→ Ext1
(

O(1), OL(−1)
)

is non-zero.

Proof. (i) According to Propositions 4.5 and 4.6 in [2], Coker(ψ12) � IZ(2),
where Z ⊂ P2 is a zero-dimensional scheme of length 3 not contained in a
line and IZ ⊂ O is its ideal sheaf. Conversely, every IZ(2) is the cokernel
of some morphism ψ12 : 2O(−1) → 3O whose maximal minors are linearly
independent and have no common linear factor. Thus, the sheaves G ∈ XD

20

are precisely the cokernels of injective morphisms O(−3) → IZ(2). If C is the
quintic curve defined by the inclusion O(−3) ⊂ IZ(2) ⊂ O(2), then it is easy
to see that G � JZ(2).

To see that X2 is included in X1 we choose a generic sheaf in X2 of the
form OC(1)(P1 + P2 + P3). We may assume that the line through P1 and P2

intersects C at five distinct points P1, P2,Q1,Q2,Q3. For non-colinear points
R1,R2,R3 on C, converging to Q1,Q2,Q3 respectively, the sheaf

OC(2)(−R1 − R2 − R3 + P3)
� OC(1)(P1 + P2 + P3 + Q1 + Q2 + Q3 − R1 − R2 − R3)

represents a point in X1 converging to the point given by OC(1)(P1 +P2 +P3).
(ii) Let � be a common linear factor of the maximal minors of ψ12. Consider

the line L with equation � = 0. According to Section 3.3.3 of [4], Coker(ψ12) �
EL, where EL is the unique non-split extension

0 −→ OL(−1) −→ EL −→ O(1) −→ 0.

Conversely, every EL is the cokernel of some morphism ψ12 : 2O(−1) → 3O
with linearly independent maximal minors which have a common linear factor.
Thus, the sheaves G giving points in XD

21 are precisely the cokernels of the
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injective morphisms O(−3) → EL. Let C ⊂ P2 be the quartic curve defined
by the composition O(−3) → EL → O(1). We apply the snake lemma to the
diagram with exact rows

0 O(−3) EL

α

G 0

0 O(−3) O(1) OC(1) 0

As Ker(α) � OL(−1), we obtain an extension

0 −→ OL(−1) −→ G −→ OC(1) −→ 0

which maps to the class of EL in P(Ext1(O(1), OL(−1))). The converse is
clear, in view of the fact that Ext1(O(1), OL(−1)) � C. �

Proposition 2.3.5. The sheaves F giving points in X3 are precisely the
twisted ideal sheaves JZ(2), where Z ⊂ P2 is a zero-dimensional scheme of
length 2 contained in a quintic curve C and JZ ⊂ OC is its ideal sheaf.

The generic sheaves in X3 are of the form OC(1)(P1 + P2 + P3), where
C ⊂ P2 is a smooth quintic curve and P1, P2, P3 are distinct colinear points
on C. In particular, X3 lies in the closure of X2.

Proof. Adopting the notations of Proposition 2.1.4, we notice that the re-
striction of ϕ to O(−1) has cokernel IZ(2), where Z is the intersection of the
line with equation ϕ12 = 0 and the conic with equation ϕ22 = 0. Thus, the
sheaves F in X3 are the cokernels of injective morphisms O(−3) → IZ(2).
Let C be the quintic curve defined by the inclusion O(−3) ⊂ IZ(2) ⊂ O(2).
Clearly F � JZ(2).

To see that X3 ⊂ X2 choose a generic sheaf OC(1)(P1 + P2 + P3) in X3.
Clearly, we can find non-colinear points Q1,Q2,Q3 on C converging to P1, P2,
P3 respectively. Then OC(1)(Q1 + Q2 + Q3) represents a point in X2 con-
verging to the chosen point in X3. �

From what was said above, we can summarise the following proposition.

Proposition 2.3.6. {X0 \ X01,X01,X1,X2,X3} represents a stratification
of MP2(5,3) by locally closed irreducible subvarieties of codimension 0,1,2,3,4.

3. Euler characteristic one or four

3.1. Locally free resolutions for semi-stable sheaves.

Proposition 3.1.1. Every sheaf F giving a point in MP2(5,1) and satisfy-
ing the condition h1(F ) = 0 also satisfies the condition h0(F (−1)) = 0. These
sheaves are precisely the sheaves with resolution

0 −→ 4O(−2)
ϕ−→ 3O(−1) ⊕ O −→ F −→ 0,
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where ϕ11 is not equivalent to a morphism represented by a matrix of the form[
ψ 0
� �

]
, with ψ : mO(−2) −→ mO(−1), m = 1,2,3.

Proof. According to Claim 4.2 of [9], every sheaf G giving a point in
MP2(5,4) and satisfying the condition h0(G(−1)) = 0 also satisfies the con-
dition h1(G) = 0 and has a resolution

0 −→ O(−2) ⊕ 3O(−1)
ϕ−→ 4O −→ G −→ 0,

where ϕ12 is not equivalent to a morphism represented by a matrix of the
form [

� ψ
� 0

]
, with ψ : mO(−1) −→ mO, m = 1,2,3.

The result follows by duality. �

Proposition 3.1.2. Let F be a sheaf giving a point in MP2(5,1) satisfying
the conditions h1(F ) = 1 and h0(F (−1)) = 0. Then h0(F ⊗ Ω1(1)) = 0 or 1.
The sheaves in the first case are precisely the sheaves that have a resolution
of the form

(i) 0 −→ O(−3) ⊕ O(−2)
ϕ−→ 2O −→ F −→ 0,

where ϕ12 and ϕ22 are linearly independent two-forms. The sheaves from the
second case are precisely the sheaves with resolution

(ii) 0 −→ O(−3) ⊕ O(−2) ⊕ O(−1)
ϕ−→ O(−1) ⊕ 2O −→ F −→ 0,

ϕ =

⎡
⎣ q � 0

ϕ21 ϕ22 �1
ϕ31 ϕ32 �2

⎤
⎦ ,

where � is non-zero, q is non-divisible by � and �1, �2 are linearly independent
one-forms.

Proof. Let F give a point in MP2(5,1) and satisfy the conditions h1(F ) = 1
and h0(F (−1)) = 0. Put m = h0(F ⊗ Ω1(1)). The Beilinson free monad (2.2.1)
in [4] for F reads

0 −→ 4O(−2) ⊕ mO(−1) −→ (m + 3)O(−1) ⊕ 2O −→ O −→ 0

and gives the resolution

0 −→ 4O(−2) ⊕ mO(−1) −→ Ω1 ⊕ mO(−1) ⊕ 2O −→ F −→ 0.

Combining this with the standard resolution for Ω1 we obtain the following
exact sequence:

0 −→ O(−3) ⊕ 4O(−2) ⊕ mO(−1)
ϕ−→ 3O(−2) ⊕ mO(−1) ⊕ 2O −→ F −→ 0,
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with ϕ13 = 0, ϕ23 = 0. As in the proof of Proposition 2.1.4, we have
rank(ϕ12) = 3. Canceling 3O(−2), we get the resolution

0 −→ O(−3) ⊕ O(−2) ⊕ mO(−1)
ϕ−→ mO(−1) ⊕ 2O −→ F −→ 0,

with ϕ13 = 0. From the injectivity of ϕ, we must have m ≤ 2. If m = 2, then
Coker(ϕ23) is a destabilising subsheaf of F . We conclude that m = 0 or 1.

Assume that h0(F ⊗ Ω1(1)) = 0. We arrive at resolution (i). If ϕ12 and
ϕ22 were linearly dependent, then F would have a destabilising subsheaf of
the form OC , for a conic curve C ⊂ P2. Conversely, we assume that F has
resolution (i) and we must show that F cannot have a destabilising subsheaf E .
We may restrict our attention to semi-stable sheaves E . As F is generated
by global sections, we must have h0(E ) < h0(F ) = 2. Thus, E is in MP2(r,1)
for some 1 ≤ r ≤ 4 and we have h1(E ) = 0. Moreover, H0(E ⊗ Ω1(1)) vanishes
because the corresponding cohomology group for F vanishes. This excludes
the possibility r = 1. In the case r = 2, E is the structure sheaf of a conic
curve, but this, by virtue of our hypothesis on ϕ12 and ϕ22, is not allowed. If
E is in MP2(3,1), then, according to [8], E has resolution

0 −→ 2O(−2) −→ O(−1) ⊕ O −→ E −→ 0.

If E is in MP2(4,1), then, from the description of this moduli space found in
[4], we see that E has resolution

0 −→ 3O(−2) −→ 2O(−1) ⊕ O −→ E −→ 0.

It is easy to see that the first exact sequence must fit into a commutative
diagram

0 2O(−2)
ψ

β

O(−1) ⊕ O

α

E 0

0 O(−3) ⊕ O(−2)
ϕ

2O F 0

From the fact that α and α(1) are injective on global sections, we see that
Coker(α) is supported on a line. This is impossible because O(−3) maps in-
jectively to Coker(β) which maps injectively to Coker(α). The same argument
applies to the second exact sequence as well, except that Coker(α) this time
would be supported on a point.

Assume now that h0(F ⊗ Ω1(1)) = 1. We arrive at resolution (ii). If �1, �2
were linearly dependent, then F would have a destabilising subsheaf of the
form OL, for a line L ⊂ P2. If � = 0, then F would have a destabilising
quotient sheaf of the form OC(−1), for a conic curve C ⊂ P2. If � divided
q, then F would have a destabilising quotient sheaf of the form OL(−1).
Conversely, we assume that F has resolution (ii) and we must show that
there is no destabilising subsheaf. Let x be the point with equations �1 = 0,
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�2 = 0 and let Z ⊂ P2 be the zero-dimensional subscheme of length 2 given by
the equations � = 0, q = 0. We apply the snake lemma to the exact diagram:

0 0

0 O(−1)
ϕ23

2O Ix(1) 0

0 O(−3) ⊕ O(−2) ⊕ O(−1)
ϕ

O(−1) ⊕ 2O F 0

O(−4)

⎡
⎣−�

q

⎤
⎦

O(−3) ⊕ O(−2)

[
q �

]
O(−1) OZ 0

0 0

We get the exact sequence

0 −→ O(−4) −→ Ix(1) −→ F −→ OZ −→ 0.

Let C be the quintic curve defined by the inclusion O(−4) ⊂ Ix(1) ⊂ O(1).
We obtain an exact sequence:

0 −→ Jx(1) −→ F −→ OZ −→ 0,

where Jx ⊂ OC is the ideal sheaf of x on C. Let F ′ ⊂ F be a non-zero
subsheaf of multiplicity at most 4. Denote by C ′ its image in OZ and put
K = F ′ ∩ Jx(1). By [9], Lemma 6.7, there is a sheaf A ⊂ OC(1) containing K
such that A/K is supported on finitely many points and OC(1)/A � OS(1) for
a curve S ⊂ P2 of degree d ≤ 4. The slope of F ′ can be estimated as follows:

PF ′ (t) = PK(t) + h0
(

C ′)
= PA(t) − h0(A/K) + h0

(
C ′)

= POC
(t + 1) − POS

(t + 1) − h0(A/K) + h0
(

C ′)

= (5 − d)t +
d2 − 5d

2
− h0(A/K) + h0

(
C ′),

p
(

F ′) = − d

2
+

h0(C ′) − h0(A/K)
5 − d

≤ − d

2
+

2
5 − d

<
1
5

= p(F ).

We conclude that F is semi-stable. �

Proposition 3.1.3. There are no sheaves F giving points in MP2(5,1) and
satisfying the conditions h0(F (−1)) = 0 and h1(F ) = 2.

Proof. By duality, we need to show that there are no sheaves G in MP2(5,4)
satisfying the conditions h0(G(−1)) = 2 and h1(G) = 0. Assume that there is
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such a sheaf G. Write m = h1(G ⊗ Ω1(1)). The Beilinson monad gives a
resolution

0 −→ 2O(−2)
η−→ 3O(−2) ⊕ (m + 3)O(−1)

ϕ−→ mO(−1) ⊕ 4O −→ G −→ 0,

η =
[
0
ψ

]
.

Here ϕ12 = 0. As G maps surjectively onto Coker(ϕ11), the latter has rank
zero, forcing m ≤ 3. In the case m = 3, Coker(ϕ11) has Hilbert polynomial
P (t) = 3t, so the semi-stability of G gets contradicted. Thus, m ≤ 2.

We claim that any matrix representing a morphism equivalent to ψ has
three linearly independent entries on each column. The argument uses the
fact that G has no zero-dimensional torsion and is analogous to the proof that
the vector space H from Proposition 2.1.4 has dimension 3. Thus, we may
assume that one of the columns of ψ is[

0 · · · 0 X Y Z
]T

.

Let ϕ0 be the matrix made of the last three columns of ϕ22. The rows of ϕ0

are linear combinations of the rows of the matrix⎡
⎣−Y X 0

−Z 0 X
0 −Z Y

⎤
⎦ .

It is easy to see that the elements on any row of ϕ0 are linearly dependent. The
rows of ϕ0 cannot span a vector space of dimension 1, otherwise ϕ22 would
be equivalent to a morphism represented by a matrix having a zero-column,
hence O(−1) ⊂ Ker(ϕ), which is absurd. Clearly, Ker(ϕ0) is isomorphic to
O(−2) because ϕ0 has at least two linearly independent rows. This excludes
the case m = 0 because in that case ϕ0 = ϕ22 and Ker(ϕ22) � 2O(−2). In the
remaining two cases we shall prove that the rows of ϕ0 cannot span a vector
space of dimension 2. We argue by contradiction. Assume that m = 2 and
that ϕ0 is equivalent to a matrix of the form[

0
ξ

]
,

where ξ is a 2 × 3-matrix with linearly independent rows. Then Ker(ξ) �
O(−2) and Coker(ξ) � OL(1) for a line L ⊂ P2. The first isomorphism is
obvious and tells us that the maximal minors of ξ are linearly independent
and have a common linear factor, say �. Let L ⊂ P2 be the line with equation
� = 0. Note that Coker(ξ) is supported on L and has Hilbert polynomial
P (t) = t + 2. Moreover, it is easy to see that ξ has rank 1 at every point of
L, hence Coker(ξ) has no zero-dimensional torsion. This proves the second
isomorphism. We now use the argument from the proof of Proposition 2.1.4.
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There is a commutative diagram

3O(−1)
ξ

2O OL(1) 0

3O(−2) ⊕ 5O(−1)
ϕ

2O(−1) ⊕ 4O G 0

in which the first two vertical maps are injective. The induced morphism
OL(1) → G is zero because both sheaves are stable and p(OL(1)) > p(G). Thus
the map 4O → G is not injective on global sections. On the other hand,
H0(Coker(η)) vanishes, hence the map 4O → G is injective on global sections.
We have arrived at a contradiction. We conclude that the rows of ϕ0 span a
vector space of dimension 3.

Modulo elementary operations on rows and columns, ψ is equivalent to a
morphism represented by a matrix having one of the following forms:⎡

⎢⎢⎢⎢⎣

0 0
0 0
X R
Y S
Z T

⎤
⎥⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎢⎣

0 0
X 0
Y R
Z S
0 T

⎤
⎥⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎢⎣

X 0
Y 0
Z R
0 S
0 T

⎤
⎥⎥⎥⎥⎦ .

Here R,S,T form a basis of V ∗. In the first case, the triple (R,S,T ) is a
multiple of (X,Y,Z), because, as we saw above, Ker(ϕ0) � O(−2). Thus, ψ
is represented by a matrix with a zero-column. This is absurd. In the second
case, we can perform elementary row operations on the matrix⎡

⎣ X 0
0 X

−Z Y

⎤
⎦

to get the matrix ⎡
⎣−S R

−T 0
0 −T

⎤
⎦ .

It follows that

span{X} = span{X,Z} ∩ span{X,Y } = span{S,T } ∩ span{R,T } = span{T }

and (−S,R) = a(−Z,Y )+ (bX, cX) for some a, b, c ∈ C. Thus, ψ is equivalent
to the morphism represented by the matrix

[
0 X Y Z 0
0 0 0 0 X

]T

.
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This, as we saw above, is not possible. In the third case, we can perform
elementary row operations on the matrix⎡

⎣ 0
X
Y

⎤
⎦

to get the matrix ⎡
⎣S

T
0

⎤
⎦ .

Thus, we may assume that S = X , T = Y , R = Z. Performing elementary
row and column operations on ψ we can get a matrix with three zeros on a
column. This, as we saw above, is not possible. Thus far, we have eliminated
the case when m = 2. The case when m = 1 can be eliminated in an analogous
fashion. We conclude that there are no sheaves G as above. �

Proposition 3.1.4. There are no sheaves F giving points in MP2(5,1) and
satisfying the conditions h0(F (−1)) = 0 and h1(F ) ≥ 2.

Proof. The argument is the same as at Proposition 2.1.6 or at Theo-
rem 3.2.3 in [4]. Using the Beilinson monad for F (−1) we see that the open
subset of MP2(5,1) given by the condition h0(F (−1)) = 0 is parametrised by
an open subset M inside the space of monads of the form

0 −→ 9O(−1) A−→ 13O B−→ 4O(1) −→ 0.

The map Φ : M → Hom(13O,4O(1)) is defined by Φ(A,B) = B. Using the
vanishing of H1(F (1)) for an arbitrary sheaf in MP2(5,1), we prove that Φ has
surjective differential at every point of M . This further leads to the conclusion
that the set of monads in M whose cohomology sheaf F satisfies h1(F ) ≥ 2 is
included in the closure of the set of monads for which h1(F ) = 2. According
to Proposition 3.1.3, the latter set is empty, hence the former set is empty,
too. �

Proposition 3.1.5. The sheaves F giving points in MP2(5,1) and satisfy-
ing the condition h0(F (−1)) > 0 are precisely the sheaves with resolution of
the form

0 −→ 2O(−3)
ϕ−→ O(−2) ⊕ O(1) −→ F −→ 0,

ϕ =
[
�1 �2
f1 f2

]
,

where �1, �2 are linearly independent one-forms. For these sheaves, we have
h0(F (−1)) = 1 and h1(F ) = 2. These sheaves are precisely the non-split ex-
tension sheaves of the form

0 −→ OC(1) −→ F −→ Cx −→ 0,

where C ⊂ P2 is a quintic curve and Cx is the structure sheaf of a point.
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Proof. Assume that F gives a point in MP2(5,1) and satisfies the condition
h0(F (−1)) > 0. As in the proof of Proposition 2.1.3 in [4], there is an injective
morphism OC → F (−1) for some quintic curve C ⊂ P2. We obtain a non-split
extension

0 −→ OC(1) −→ F −→ Cx −→ 0.

Conversely, using the fact that OC is stable, it is easy to see that any non-split
extension sheaf as above gives a point in MP2(5,1).

Assume now that F has a resolution as in the claim. Let x be the point
given by the ideal (�1, �2) and let Ix ⊂ O be its ideal sheaf. Let f = �1f2 − �2f1

and let C be the quintic curve with equation f = 0. We apply the snake lemma
to the commutative diagram with exact rows

0 O(−4)

f

[
−�2
�1

]

2O(−3)

ϕ

Ix(−2) 0

0 O(1) i O(−2) ⊕ O(1)
p O(−2) 0

Here i is the inclusion into the second factor and p is the projection onto the
first factor. We deduce that F is an extension of Cx by OC(1). As h0(F ) = 3,
the extension does not split.

Conversely, assume that F is a non-split extension of Cx by OC(1). We
construct a resolution of F from the standard resolution of OC(1) and from
the resolution

0 −→ O(−4) −→ 2O(−3) −→ O(−2) −→ Cx −→ 0,

using the horseshoe lemma. We obtain a resolution of the form

0 −→ O(−4) −→ O(−4) ⊕ 2O(−3)
ϕ−→ O(−2) ⊕ O(1) −→ F −→ 0.

If the map O(−4) → O(−4) in the above resolution were zero, then, as in the
proof of Proposition 2.3.2, the extension would split. This would be contrary
to our hypothesis. We conclude that O(−4) can be cancelled in the above
exact sequence and we arrive at the resolution from the proposition. �

3.2. Description of the strata as quotients. In Section 3.1, we found
that the moduli space MP2(5,1) can be decomposed into four strata:

− an open stratum X0 given by the condition h1(F ) = 0;
− a locally closed stratum X1 of codimension 2 given by the conditions

h0
(

F (−1)
)

= 0, h1(F ) = 1, h0
(

F ⊗ Ω1(1)
)

= 0;

− a locally closed stratum X2 of codimension 3 given by the conditions

h0
(

F (−1)
)

= 0, h1(F ) = 1, h0
(

F ⊗ Ω1(1)
)

= 1;
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− the stratum X3 of codimension 5 given by the conditions

h0
(

F (−1)
)

= 1, h1(F ) = 2.

We shall see below at Proposition 3.2.5 that X3 is closed.
In the sequel, Xi will be equipped with the canonical reduced structure in-
duced from MP2(5,1). Let W0, W1, W2, W3 be the sets of morphisms ϕ from
Propositions 3.1.1, 3.1.2(i), 3.1.2(ii), respectively, Proposition 3.1.5. Each
sheaf F giving a point in Xi is the cokernel of a morphism ϕ ∈ Wi. Let Wi be
the ambient vector spaces of morphisms of sheaves containing Wi, for example,
W0 = Hom(4O(−2),3O(−1) ⊕ O). Let Gi be the natural groups of automor-
phisms acting by conjugation on Wi. In this subsection, we shall prove that
there exist geometric quotients Wi/Gi, which are smooth quasiprojective vari-
eties, such that Wi/Gi � Xi. We shall also give concrete descriptions of these
quotients.

Proposition 3.2.1. There exists a geometric quotient W0/G0, which is a
proper open subset inside a fibre bundle over N(3,4,3) with fibre P14. More-
over, W0/G0 is isomorphic to X0.

Proof. The situation is analogous to Proposition 2.2.4. Let Λ = (λ1, μ1, μ2)
be a polarisation for the action of G0 on W0 satisfying 0 < μ2 < 1/4. Note
that W0 is the proper open invariant subset of injective morphisms inside
Wss

0 (Λ). As usual, we denote by N(3,4,3) the moduli space of semi-stable
Kronecker modules f : 4O(−2) → 3O(−1) and let

θ : p∗
1(E) ⊗ p∗

2

(
O(−2)

)
−→ p∗

1(F ) ⊗ p∗
2

(
O(−1)

)
be the morphism of sheaves on N(3,4,3) × P2 induced from the universal
morphism τ . Then U = p1∗(Coker(θ∗)) is a vector bundle of rank 15 on
N(3,4,3) and P(U ) is the geometric quotient Wss

0 (Λ)/G0. Thus, W0/G0 exists
and is a proper open subset of P(U ).

The canonical morphism W0/G0 → X0 is bijective and, since X0 is smooth,
it is an isomorphism. �

Proposition 3.2.2. There exists a geometric quotient W1/G1 and it is a
proper open subset inside a fibre bundle with fibre P16 and base the Grassmann
variety Grass(2, S2V ∗). Moreover, W1/G1 is isomorphic to X1.

Proof. The existence of W1/G1 follows from Section 9.3 of [5]. Consider
a polarisation Λ = (λ1, λ2, μ1) for the action of G1 on W1 satisfying the con-
dition 0 < λ1 < 1/2. Then Wss

1 (Λ) is given by the conditions that ϕ12, ϕ22

be linearly independent two-forms and that the first column of ϕ be not a
multiple of the second column. Thus, W1 is the proper open invariant subset
of injective morphisms inside Wss

1 (Λ). The semi-stable morphisms that are
not injective are represented by matrices of the form[

q�1 ��1
q�2 ��2

]
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with � ∈ V ∗ non-zero, q ∈ S2V ∗ non-divisible by � and �1, �2 ∈ V ∗ linearly
independent. The moduli space N(6,1,2) of semi-stable Kronecker modules
f : O(−2) → 2O is isomorphic to Grass(2, S2V ∗). Let

θ : p∗
1(E) ⊗ p∗

2

(
O(−2)

)
−→ p∗

1(F )

be the morphism of sheaves on N(6,1,2) × P2 induced from the universal
morphism τ . Then U = p1∗(Coker(θ) ⊗ p∗

2(O(3))) is a vector bundle of rank
17 over N(6,1,2) and P(U ) is the geometric quotient Wss

1 (Λ)/G1. Thus W1/G1

exists and is a proper open subset of the projective variety P(U ).
To show that the canonical bijective morphism W1/G1 → X1 is an isomor-

phism, we shall construct resolution (i) from Proposition 3.1.2 for a sheaf F
giving a point in X1 in a natural manner from the Beilinson diagram (2.2.3)
in [4] for F , which has the form

4O(−2)
ϕ1 3O(−1)

ϕ2 O

0 0 2O

According to Section 2.2 of [4], ϕ2 is surjective, so Ker(ϕ2) � Ω1. Recall the
morphism ρ introduced in the proof of Proposition 2.2.4. There is a morphism
α : 4O(−2) → 3O(−2) such that ρ ◦ α = ϕ1. As at Proposition 2.2.4, we have
rank(α) = 3, forcing

Ker(ϕ2) = Im(ϕ1) and Ker(ϕ1) � O(−3) ⊕ O(−2).

The exact sequence (2.2.5) in [4] takes the form

0 −→ Ker(ϕ1)
ϕ5−→ 2O −→ F −→ 0

and gives us resolution (i) from Proposition 3.1.2. In this fashion, we construct
a local inverse to the morphism W1/G1 → X1. We conclude that this is an
isomorphism. �

Proposition 3.2.3. There exists a geometric quotient W2/G2 and it is a
proper open subset inside a fibre bundle with fibre P17 and base Y × P2, where
Y is the Hilbert scheme of zero-dimensional subschemes of P2 of length 2.

Proof. To obtain W2/G2 we shall construct successively quotients modulo
subgroups of G2, as at Propositions 2.2.2 and 2.2.5. Let W ′

2 ⊂ W2 be the
locally closed subset of morphisms ϕ satisfying the conditions from Proposi-
tion 3.1.2(ii), except injectivity. The pairs of morphisms (ϕ11, ϕ12) form an
open subset U1 ⊂ Hom(O(−3) ⊕ O(−2), O(−1)) and the morphisms ϕ23 form
an open subset U2 inside Hom(O(−1),2O). We denote U = U1 × U2. Clearly,
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W ′
2 is the trivial vector bundle on U with fibre Hom(O(−3) ⊕ O(−2),2O).

We represent the elements of G2 by pairs of matrices

(g,h) ∈ Aut
(

O(−3) ⊕ O(−2) ⊕ O(−1)
)

× Aut
(

O(−1) ⊕ 2O
)
,

g =

⎡
⎣g11 0 0

u21 g22 0
u31 u32 g33

⎤
⎦ , h =

⎡
⎣h11 0 0

v21 h22 h23

v31 h32 h33

⎤
⎦ .

Inside G2 we distinguish four subgroups: a reductive subgroup G2red given
by the conditions uij = 0, vij = 0, the subgroup S of pairs (g,h) of the form

g =

⎡
⎣a 0 0

0 a 0
0 0 b

⎤
⎦ , h =

⎡
⎣a 0 0

0 b 0
0 0 b

⎤
⎦ ,

with a, b ∈ C∗, and two unitary subgroups G′
2 and G′ ′

2 . Here G′
2 consists of

pairs (g,h) of morphisms of the form

g =

⎡
⎣ 1 0 0

0 1 0
u31 u32 1

⎤
⎦ , h =

⎡
⎣ 1 0 0

v21 1 0
v31 0 1

⎤
⎦ ,

while G′ ′
2 is given by pairs (g,h), where

g =

⎡
⎣ 1 0 0

u21 1 0
0 0 1

⎤
⎦ , h =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

Note that G2 = G′
2G

′ ′
2G2red. Consider the G2-invariant subset Σ of W ′

2 of
morphisms of the form⎡

⎣ q � 0
v21q + �1u31 v21� + �1u32 �1
v31q + �2u31 v31� + �2u32 �2

⎤
⎦ .

Note that W2 is the subset of injective morphisms inside W ′
2 \ Σ, so it is

open and G2-invariant. Moreover, it is a proper subset as, for instance, the
morphism represented by the matrix⎡

⎣X2 − Y 2 X 0
XZ2 Z2 Y
Y Z2 0 X

⎤
⎦

is in W ′
2 \ Σ but is not injective. Our aim is to construct a geometric quotient

of W ′
2 \ Σ modulo G2; it will follow that W2/G2 exists and is a proper open

subset of (W ′
2 \ Σ)/G2.

Firstly, we construct the geometric quotient W ′
2/G′

2. Because of the con-
ditions on q, �, �1, �2, it is easy to see that Σ is a subbundle of W ′

2 of rank 14.
The quotient bundle, denoted E′, has rank 18. The quotient map W ′

2 → E′ is
a geometric quotient modulo G′

2. Moreover, the canonical action of G′ ′
2G2red
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on U is E′-linearised and the map W ′
2 → E′ is G′ ′

2G2red-equivariant. Let σ′ be
the zero-section of E′. The restricted map W ′

2 \ Σ → E′ \ σ′ is also a geometric
quotient modulo G′

2.
Secondly, we construct a geometric quotient of E′ modulo G′ ′

2 . The quotient
for the base U can be described explicitly as follows. On V ∗ we consider the
trivial bundle with fibre S2V ∗ and the subbundle with fibre vV ∗ at any point
v ∈ V ∗. The quotient bundle Q′ is the geometric quotient U1/G′ ′

2 and U/G′ ′
2 �

(U1/G′ ′
2) × U2. Clearly, U is a principal G′ ′

2 -bundle over U/G′ ′
2 . According to

Theorem 4.2.14 in [6], E′ descends to a vector bundle E over U/G′ ′
2 . The

canonical map E′ → E is a geometric quotient modulo G′ ′
2 . The composed

map W ′
2 → E′ → E is a geometric quotient modulo G′

2G
′ ′
2 . Moreover, the

canonical action of G2red on U/G′ ′
2 is linearised with respect to E and the

map W ′
2 → E is G2red-equivariant. Let σ be the zero-section of E. The

restricted map W ′
2 \ Σ → E′ \ σ′ → E \ σ is also a geometric quotient modulo

G′
2G

′ ′
2 .

Let x ∈ U/G′ ′
2 be a point and let ξ ∈ Ex be a non-zero vector lying over x.

The stabiliser of x in G2red is S and Sξ = C∗ξ. Thus, the canonical map
E \ σ → P(E) is a geometric quotient modulo S. It remains to construct a
geometric quotient of P(E) modulo the induced action of G2red/S. Clearly,
(U/G′ ′

2)/(G2red/S) exists and is isomorphic to P(Q) × P2, where Q is the bun-
dle on P(V ∗) to which Q′ descends. As noted in the proof of Proposition 2.2.5,
P(Q) is the Hilbert scheme of zero-dimensional subschemes of P2 of length 2.
It remains to show that P(E) descends to a fibre bundle on P(Q) × P2. We
consider the character χ of G2red given by χ(g,h) = det(g)det(h)−1. Note
that χ is well-defined because it is trivial on homotheties. We multiply the
action of G2red on E by χ and we denote the resulting linearised bundle by
Eχ. The action of S on Eχ is trivial, hence Eχ is G2red/S-linearised. The
isotropy subgroup in G2red/S for any point in U/G′ ′

2 is trivial, so we can
apply [6], Lemma 4.2.15, to deduce that Eχ descends to a vector bundle F
over P(Q) × P2. The induced map P(E) → P(F ) is a geometric quotient map
modulo G2red/S. We conclude that the composed map

W ′
2 \ Σ −→ E′ \ σ′ −→ E \ σ −→ P(E) −→ P(F )

is a geometric quotient map modulo G2 and that a geometric quotient W2/G2

exists and is a proper open subset inside P(F ). �

Proposition 3.2.4. The geometric quotient W2/G2 is isomorphic to X2.

Proof. We must construct resolution (ii) from Proposition 3.1.2 starting
from the Beilinson spectral sequence for F . We prefer to work, instead, with
the sheaf G = F D(1), which gives a point in MP2(5,4). Diagram (2.2.3) in [4]
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for G takes the form

2O(−2)
ϕ1 O(−1) 0

O(−2)
ϕ3 4O(−1)

ϕ4
4O

Since G maps surjectively onto Coker(ϕ1) and is semi-stable, ϕ1 cannot be
zero and Coker(ϕ1) cannot be isomorphic to OL(−1) for a line L ⊂ P2. Thus
Coker(ϕ1) is the structure sheaf of a point x ∈ P2 and Ker(ϕ1) � O(−3). The
exact sequence (2.2.5) in [4] reads:

0 −→ O(−3)
ϕ5−→ Coker(ϕ4) −→ G −→ Cx −→ 0.

We see from this that Coker(ϕ4) has no zero-dimensional torsion. The exact
sequence (2.2.4) in [4] takes the form

0 −→ O(−2)
ϕ3−→ 4O(−1)

ϕ4−→ 4O −→ Coker(ϕ4) −→ 0.

We claim that ϕ3 is equivalent to the morphism represented by the matrix[
X Y Z 0

]T
.

The argument uses the fact that Coker(ϕ4) has no zero-dimensional torsion
and is analogous to the proof that the vector space H from Proposition 2.1.4
has dimension 3. Now we can describe ϕ4. We claim that ϕ4 is equivalent to
a morphism represented by a matrix of the form⎡

⎢⎢⎣
−Y X 0 �

−Z 0 X �
0 −Z Y �
0 0 0 �

⎤
⎥⎥⎦

with � ∈ V ∗. The argument, we recall from the proof of Proposition 3.1.3,
uses the fact that the map 4O → Coker(ϕ4) is injective on global sections and
the fact that the only morphism OL(1) → Coker(ϕ4) for any line L ⊂ P2 is the
zero-morphism. Indeed, such a morphism must factor through ϕ5 because the
composed map OL(1) → Coker(ϕ4) → G is zero. This follows from the fact
that both OL(1) and G are semi-stable and p(OL(1)) > p(G).

If � = 0, then Coker(ϕ4) would have a direct summand with Hilbert poly-
nomial P (t) = 2t + 3. Such a sheaf must map injectively to G, because its
intersection with O(−3) could only be the zero-sheaf. This contradicts the
semi-stability of G. Thus, � �= 0. Let L be the line with equation � = 0. We
obtain the extension

0 −→ O(1) −→ Coker(ϕ4) −→ OL −→ 0,

which yields the resolution

0 −→ O(−1) −→ O ⊕ O(1) −→ Coker(ϕ4) −→ 0.
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Write C = Coker(ϕ5). Since Ext1(O(−3), O(−1)) = 0, the morphism ϕ5 lifts
to a morphism O(−3) → O ⊕ O(1). We obtain the resolution

0 −→ O(−3) ⊕ O(−1) −→ O ⊕ O(1) −→ C −→ 0.

We now apply the horseshoe lemma to the extension G of Cx by C, to the
above resolution of C and to the standard resolution of Cx tensored with
O(−1). We obtain the resolution

0 −→ O(−3) −→ O(−3)⊕2O(−2)⊕ O(−1) −→ O(−1) ⊕ O ⊕ O(1) −→ G −→ 0.

The morphism O(−3) → O(−3) is non-zero because H1(G) vanishes. We may
cancel O(−3) we get the dual of resolution (ii) from Proposition 3.1.2. �

Proposition 3.2.5. There exists a geometric quotient W3/G3, which is
isomorphic to the universal quintic inside P2 × P(S5V ∗). Moreover, W3/G3

is isomorphic to X3, so this is a smooth closed subvariety of MP2(5,1).

Proof. For the first part of the claim, we refer to Section 3.2 in [4]. Suc-
cinctly, the map of W3 to the universal quintic given by[

�1 �2
f1 f2

]
−→

(
x, 〈�1f2 − �2f1〉

)
, where x is the zero-set of �1 and �2,

is a geometric quotient map. Clearly, the natural morphism W3/G3 → X3

is bijective. In order to show that it is an isomorphism, we need to derive a
resolution as in Proposition 3.1.5 starting from the Beilinson spectral sequence
of F and performing algebraic operations (compare Theorem 3.1.6 in [4]). By
duality, we may also start with the Beilinson spectral sequence for the sheaf
G = F D(1). Table (2.2.3) in [4] for E1(G) takes the form

3O(−2)
ϕ1 3O(−1)

ϕ2 O

2O(−2)
ϕ3 6O(−1)

ϕ4
5O

As in the proof of Proposition 2.2.4, we have Ker(ϕ2) = Im(ϕ1) and
Ker(ϕ1) � O(−3). The exact sequence (2.2.5) in [4]

0 −→ O(−3)
ϕ5−→ Coker(ϕ4) −→ G −→ 0

yields the resolution

0 −→ 2O(−2)
η−→ O(−3) ⊕ 6O(−1) −→ 5O −→ G −→ 0,

η =
[

0
ϕ3

]
.

As in the proof of Proposition 3.1.3, we can show that any matrix equivalent
to the matrix representing ϕ3 has three linearly independent entries on each
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column. It follows that, modulo elementary operations on rows and columns,
ϕ3 is represented by a matrix having one of the following forms:⎡

⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
X R
Y S
Z T

⎤
⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
X 0
Y R
Z S
0 T

⎤
⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
X 0
Y 0
Z R
0 S
0 T

⎤
⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎢⎣

X 0
Y 0
Z 0
0 X
0 Y
0 Z

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Here R,S,T form a basis of V ∗. As in the proof of Proposition 3.1.3, it can
be shown that the first three matrices are unfeasible. We are left with the
last possibility.

By virtue of [10], Lemma 3, taking duals of the locally free sheaves occurring
in the above resolution of G yields a monad with middle cohomology F of the
form

0 −→ 5O(−2) −→ 6O(−1) ⊕ O(1)
ηT

−→ 2O −→ 0.

From this, we get the resolution

0 −→ 5O(−2) −→ 2Ω1 ⊕ O(1) −→ F −→ 0.

Combining with the standard resolution of Ω1 yields the exact sequence

0 −→ 2O(−3) ⊕ 5O(−2)
ϕ−→ 6O(−2) ⊕ O(1) −→ F −→ 0.

From the semi-stability of F , we see that rank(ϕ12) = 5, so we may cancel
5O(−2) to get the desired resolution for F . �

3.3. Geometric description of the strata. Let F = Coker(ϕ) be a sheaf
in X0 with ϕ as in Proposition 3.1.1. We recall that ϕ11 is semi-stable as
a Kronecker V -module. We shall decompose X0 into locally closed subsets
according to the kernel of ϕ11. We have an exact sequence

0 −→ O(−d)
η−→ 4O(−2)

ϕ11−→ 3O(−1) −→ Coker(ϕ11) −→ 0,

η =
[
η1 η2 η3 η4

]T
, ηi = (−1)iϕi/g,

where ϕi is the maximal minor of ϕ11 obtained by deleting the ith column and
g = gcd(ϕ1, ϕ2, ϕ3, ϕ4). The maximal minors of a generic morphism ϕ11 have
no common factor, that is, Ker(ϕ11) � O(−5). We denote by X01 and X02

the subsets of X0 for which Ker(ϕ11) is isomorphic to O(−4), respectively to
O(−3). The case deg(g) = 3 is not feasible, because in this case ϕ11 is equiv-
alent to a morphism represented by a matrix with a zero-column, contrary to
semi-stability. As before, the superscript D applied to a subset of MP2(5,1)
will signify the corresponding subset of MP2(5,4) obtained by duality.

Proposition 3.3.1. The sheaves G from (X0 \ (X01 ∪ X02))D ⊂ MP2(5,4)
have the form JZ(3), where Z ⊂ P2 is a zero-dimensional scheme of length 6
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not contained in a conic curve, contained in a quintic curve C, and JZ ⊂ OC

is its ideal sheaf.
The generic sheaves G in XD

0 have the form OC(3)(−P1 − · · · − P6), where
C ⊂ P2 is a smooth quintic curve and Pi, 1 ≤ i ≤ 6, are distinct points on C
not contained in a conic curve. By duality, the generic sheaves F in X0 have
the form OC(P1 + · · · + P6).

Proof. The sheaves G from (X0 \ (X01 ∪ X02))D are precisely the sheaves
with resolution

0 −→ O(−2) ⊕ 3O(−1)
ψ−→ 4O −→ G −→ 0,

where ψ12 is semi-stable as a Kronecker V -module and its maximal mi-
nors have no common factor. According to Propositions 4.5 and 4.6 in [2],
Coker(ψ12) � IZ(3), where Z ⊂ P2 is a zero-dimensional scheme of length 6
not contained in a conic curve. Conversely, any IZ(3) is the cokernel of some
ψ12 with the above properties. The conclusion now follows as at Proposi-
tion 2.3.4(i). �

Proposition 3.3.2. The sheaves F giving points in X02 are precisely the
extension sheaves

0 −→ OC′ −→ F −→ OC −→ 0,

satisfying H1(F ) = 0. Here C ′ and C are arbitrary cubic, respectively conic
curves in P2.

Proof. Assume that F is in X02, that is, Ker(ϕ11) � O(−3). The entries
of η span V ∗, otherwise the semi-stability of ϕ11, as a Kronecker V -module,
would get contradicted. For instance, if

η ∼

⎡
⎢⎢⎣

X
Y
0
0

⎤
⎥⎥⎦ ,

then

ϕ11 ∼

⎡
⎣−Y X � �

0 0 � �
0 0 � �

⎤
⎦ .

Thus

η ∼

⎡
⎢⎢⎣

X
Y
Z
0

⎤
⎥⎥⎦ ,

forcing

ϕ11 ∼

⎡
⎣−Y X 0 �

−Z 0 X �
0 −Z Y �

⎤
⎦ =

⎡
⎣ρ

�
�
�

⎤
⎦ .
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We have an exact sequence

0 −→ O(−2) −→ Coker(ρ) −→ Coker(ϕ11) −→ 0

hence, since Coker(ρ) � O, we have an isomorphism Coker(ϕ11) � OC for a
conic curve C ⊂ P2. Applying the snake lemma to the exact diagram

0

O

0 4O(−2)
ϕ

3O(−1) ⊕ O F 0

0 O(−3) 4O(−2)
ϕ11 3O(−1) OC 0

0

we get an extension as in the proposition. Conversely, assume we are given
an extension

0 −→ OC′ −→ F −→ OC −→ 0

satisfying H1(F ) = 0. We shall first show that there is a resolution for OC as
in the diagram above. Combining the exact sequences

0 −→ O(−3) −→ 3O(−2)
ρ−→ 3O(−1) −→ O −→ 0

and
0 −→ O(−2) −→ O −→ OC −→ 0

we obtain the resolution

0 −→ O(−3)
η−→ 4O(−2)

ψ−→ 3O(−1) −→ OC −→ 0.

We need to prove that ψ is semi-stable as a Kronecker V -module. Since η has
three linearly independent entries, ψ must have three linearly independent
maximal minors, and this rules out the cases when ψ could be equivalent to
a matrix having a zero-column or a zero-submatrix of size 2 × 2. It remains
to rule out the case

ψ =

⎡
⎣−Y X 0 R

−Z 0 X S
0 0 0 T

⎤
⎦ .

Denote

ξ =
[

−Y X 0
−Z 0 X

]
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and let L1, L2 be the lines with equations X = 0, respectively T = 0. The
snake lemma applied to the exact diagram

0 0

0 O(−3) 3O(−2)
ξ

2O(−1) OL1 0

0 O(−3) 4O(−2)
ψ

3O(−1) OC 0

0 O(−2) T O(−1) OL2(−1) 0

0 0

yields an extension

0 −→ OL1 −→ OC −→ OL2(−1) −→ 0.

This gives h0(OC ⊗ Ω1(1)) = 1, which is absurd, namely H0(OC ⊗ Ω1(1))
vanishes. Thus ψ is semi-stable. We now apply the horseshoe lemma to the
extension

0 −→ OC′ −→ F −→ OC −→ 0,

to the standard resolution of OC′ and to the resolution of OC from above.
We obtain the exact sequence

0 −→ O(−3) −→ O(−3) ⊕ 4O(−2) −→ 3O(−1) ⊕ O −→ F −→ 0.

By hypothesis H1(F ) vanishes, hence the map O(−3) → O(−3) is non-zero.
Cancelling O(−3) we obtain a resolution as in Proposition 3.1.1 in which
ϕ11 = ψ is a semi-stable Kronecker V -module. We conclude that F gives a
point in X02. �

Let X10 ⊂ X1 be the open subset given by the condition that ϕ12 and ϕ22

have no common linear term. We denote by X11 = X1 \ X10 the complement.

Proposition 3.3.3. (i) The sheaves F giving points in X10 are precisely
the sheaves JZ(2), where Z ⊂ P2 is the intersection of two conic curves without
common component, Z is contained in a quintic curve C ⊂ P2 and JZ ⊂ OC

is its ideal sheaf.
The generic sheaves in X1 are of the form OC(2)(−P1 − P2 − P3 − P4),

where C ⊂ P2 is a smooth quintic curve and Pi, 1 ≤ i ≤ 4, are distinct points
on C in general linear position.
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(ii) The sheaves F giving points in X11 are precisely the extension sheaves

0 −→ OL(−1) −→ F −→ Jx(1) −→ 0

satisfying H0(F ⊗ Ω1(1)) = 0. Here L ⊂ P2 is a line and Jx ⊂ OC is the ideal
sheaf of a point x on a quartic curve C ⊂ P2.

Proof. (i) Adopting the notations of 3.1.2(i), we notice that the restriction
of ϕ to O(−2) has cokernel IZ(2), where Z is the subscheme of length 4 in P2

given by the equations ϕ12 = 0, ϕ22 = 0. The sheaves in X10 are precisely the
cokernels of injective morphisms O(−3) → IZ(2). Let C be the quintic curve
defined by the inclusion O(−3) ⊂ IZ(2) ⊂ O(2). We have F � JZ(2).

(ii) Let us write ϕ12 = �ψ12, ϕ22 = �ψ22, with �,ψ12, ψ22 non-zero one-forms,
ψ12 and ψ22 linearly independent. Consider the morphism

ψ : O(−3) ⊕ O(−1) −→ 2O, ψ =
[
ϕ11 ψ12

ϕ21 ψ22

]
.

Clearly, Coker(ψ) is isomorphic to a sheaf of the form Jx(1) as in the claim.
Conversely, any sheaf Jx(1) is the cokernel of some injective morphism ψ with
linearly independent entries ψ12 and ψ22. Let L be the line with equation
� = 0. We apply the snake lemma to the diagram with exact rows

0 O(−3) ⊕ O(−2)
ϕ

α

2O F 0

0 O(−3) ⊕ O(−1)
ψ

2O Jx(1) 0

α =
[
1 0
0 �

]
.

As Coker(α) � OL(−1), we get the extension

0 −→ OL(−1) −→ F −→ Jx(1) −→ 0.

Conversely, assume that F is an extension of Jx(1) by OL(−1) satisfying the
condition H0(F ⊗ Ω1(1)) = 0. Combining the resolutions for these two sheaves
we get the exact sequence

0 −→ O(−3) ⊕ O(−2) ⊕ O(−1) −→ O(−1) ⊕ 2O −→ F −→ 0.

Our cohomological condition in the hypothesis ensures that O(−1) may be
cancelled, hence we obtain a resolution as in Proposition 3.1.2(i) with ϕ12 =
�ψ12 and ϕ22 = �ψ22. Thus, F gives a point in X11. �

Proposition 3.3.4. The generic sheaves from X2 are precisely the non-
split extension sheaves

0 −→ Jx(1) −→ F −→ OZ −→ 0
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for which there is a global section of F (1) taking the value 1 at every point
of Z. Here Jx ⊂ OC is the ideal sheaf of a point x on a quintic curve C ⊂ P2

and Z ⊂ C is the union of two distinct points, also distinct from x.
There is an open subset of X2 consisting of the isomorphism classes of all

sheaves of the form OC(1)(−P1 + P2 + P3), where C ⊂ P2 is a smooth quintic
curve and P1, P2, P3 are distinct points on C. In particular, X2 lies in the
closure of X1 and X3 lies in the closure of X2.

Proof. One direction was proven at Proposition 3.1.2(ii). Given F in X2,
there is an extension as in the claim with x given by the equations �1 =
0, �2 = 0, Z given by the equations q = 0, � = 0 and C given by the equation
det(ϕ) = 0.

For the converse, we apply the horseshoe lemma to the resolutions

0 −→ O(−4) −→ Ix(1) −→ Jx(1) −→ 0

and

0 −→ O(−4)
ζ−→ O(−3) ⊕ O(−2)

ξ−→ O(−1) π−→ OZ −→ 0,

ζ =
[

−�
q

]
, ξ =

[
q �

]
.

By hypothesis, π lifts to a morphism α : O(−1) → F . We define morphisms
β,γ, δ as at Proposition 2.3.2. By the reason given there, δ is non-zero, namely,
if δ were zero, then the extension for F would split. We arrive at the resolution

0 −→ O(−3) ⊕ O(−2) −→ O(−1) ⊕ Ix(1) −→ F −→ 0,

which, further, yields resolution (ii) from Proposition 3.1.2.
Assume now that C is smooth and write x = P1, Z = {P2, P3}. The

only non-trivial extension sheaf of OZ by Jx(1) is isomorphic to the sheaf
F = OC(1)(−P1 + P2 + P3). We must show that F (1) has a global section
that does not vanish at P2 and P3. We argue as at Proposition 2.3.2. Let
ε2, ε3 : H0(OZ) → C be the be the linear forms of evaluation at P2, P3. Let
δ : H0(OZ) → H1(Jx(2)) be the connecting homomorphism in the long exact
cohomology sequence associated to the short exact sequence

0 −→ OC(2)(−x) −→ F (1) −→ OZ −→ 0.

We must show that neither ε2 nor ε3 is orthogonal to Ker(δ). This is equiva-
lent to saying that neither ε2 nor ε3 are in the image of the dual map δ∗. By
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Serre duality, δ∗ is the restriction morphism

H0(OC(−2)(x) ⊗ ωC) H0((OC(−2)(x) ⊗ ωC)|Z)

H0(OC(x)) H0(OC(x)|Z)

H0(OC) � C

[
1
1

]

C2 � H0(OC |Z)

The linear forms ε2 and ε3 correspond to the vectors (1,0) and (0,1) in C2,
so they are clearly not in the image of δ∗. The identity H0(OC(x)) = H0(OC)
follows from the fact that there is no rational function on C that has exactly
one pole of multiplicity 1. If this were the case, C would have genus 0.

To see that X2 ⊂ X1 choose a point in X2 given by OC(1)(−P1 +P2 +P3).
We may assume that P1, P2, P3 are non-colinear and that the line through P2

and P3 intersects C at five distinct points denoted P2, P3,Q1,Q2,Q3. Then
OC(1)(−P1 +P2 +P3) is isomorphic to OC(2)(−P1 − Q1 − Q2 − Q3). Clearly,
we can find points R1,R2,R3 on C, converging to Q1,Q2,Q3 respectively,
such that P1,R1,R2,R3 are in general linear position. Thus, the semi-stable
sheaf OC(2)(−P1 − R1 − R2 − R3) gives a point in X1 converging to the chosen
point in X2.

According to Proposition 3.1.5, the generic sheaves in X3 have the form
OC(1)(P ), where C ⊂ P2 is a smooth quintic curve and P is a point on C.
Choose distinct points P1, P2 on C, which are also distinct from P , such that
P2 converges to P1. The stable-equivalence class of OC(1)(−P1 +P2 +P ) is in
X2 and converges to the stable-equivalence class of OC(1)(P ). We conclude
that X3 ⊂ X2. �

The following result will be helpful in the discussion about sheaves from
X01, which we have left for the end.

Proposition 3.3.5. Let ψ : 4O(−2) → 3O(−1) be a Kronecker V -module.
Let ψi, 1 ≤ i ≤ 4, denote the maximal minor of ψ obtained by deleting the
ith column. Assume that the minors ψi have a common linear factor. Then
Ker(ψ) � O(−4) and ψ is semi-stable if and only if ψi, 1 ≤ i ≤ 4, are linearly
independent three-forms.

Proof. Assume that Ker(ψ) � O(−4) and that ψ is semi-stable. We argue
by contradiction. If the maximal minors of ψ were linearly dependent, then,
performing possibly column operations on ψ, we could assume that one of
them is zero, say ψ4 = 0. Let ψ′ be the matrix obtained from ψ by deleting
the fourth column. It is easy to see that ψ′ is semi-stable as a Kronecker
V -module. It follows that ψ′ is equivalent to the morphism represented by



1514 M. MAICAN

the matrix ⎡
⎣−Y X 0

−Z 0 X
0 −Z Y

⎤
⎦ .

Thus, the vector ⎡
⎢⎢⎣

X
Y
Z
0

⎤
⎥⎥⎦

is in the kernel of ψ. This contradicts our hypothesis that Ker(ψ) be isomor-
phic to O(−4).

Conversely, assume that ψi, 1 ≤ i ≤ 4, are linearly independent. Then they
cannot have a common factor of degree 2, that is, in view of the comments at
the beginning of this subsection, we have Ker(ψ) � O(−4). The semi-stability
of ψ is also clear: if ψ were equivalent to a matrix having a zero-column, then
the ψi would span a vector space of dimension at most 1. If ψ were equivalent
to a matrix having a zero-submatrix of size 2 × 2, then the ψi would span
a vector space of dimension at most two. If ψ were equivalent to a matrix
having a zero-submatrix of size 1 × 3, then the ψi would span a vector space
of dimension at most 3. �

Proposition 3.3.6. The sheaves F giving points in X01 occur as non-split
extension sheaves of one of the following three kinds:

(i) 0 −→ G −→ F −→ OL −→ 0,

where H1(F ) = 0. Here L ⊂ P2 is a line and G is in the exceptional divisor
of MP2(4,0). For fixed L and G the feasible extension sheaves form a locally
closed subset of P(Ext1(OL, G)).

(ii) 0 −→ E −→ F −→ OZ −→ 0.

Here Z ⊂ P2 is a zero-dimensional scheme of length 3 not contained in a line
and E is a sheaf in MP2(5, −2) such that E (1) belongs to the stratum X3 of
MP2(5,3).

(iii) 0 −→ OL(−1) −→ F −→ JZ(1)D −→ 0.

Here L ⊂ P2 is a line and Z ⊂ P2 is a zero-dimensional scheme of length 3
not contained in a line, contained in a quartic curve C ⊂ P2, and JZ ⊂ OC

is its ideal sheaf. For fixed JZ and L the feasible extension sheaves form a
locally closed subset of P(Ext1(JZ(1)D, OL(−1))).

Proof. Let F give a point in X01. Recall the resolution from Proposi-
tion 3.1.1. We have the isomorphism Ker(ϕ11) � O(−4) and we denote
C = Coker(ϕ11). We have PC (t) = t + 3, so this sheaf is the direct sum of
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a zero-dimensional sheaf and OL(d) for a line L ⊂ P2 and an integer d. It is
thus clear that C has a subsheaf C ′ with Hilbert polynomial PC ′ (t) = t + 2.

Applying the snake lemma to a diagram similar to the first diagram in the
proof of Proposition 3.3.2, we obtain an extension

0 −→ OC −→ F −→ C −→ 0,

where C ⊂ P2 is a quartic curve. Let F ′ ⊂ F be the preimage of C ′. We
have PF ′ (t) = 5t and it is easy to see that F ′ is semi-stable. We now use
the possible resolutions for sheaves in MP2(5,0) found in Section 4, which we
obtain independently of any result in this subsection. Taking into account
that H0(F ′ ⊗ Ω1(1)) = 0 leaves only two possible resolutions, the ones at
Propositions 4.1.2 and 4.1.3. The first resolution must fit into a commutative
diagram

0 5O(−2)
ψ

β

5O(−1)

α

F ′ 0

0 4O(−2)
ϕ

3O(−1) ⊕ O F 0

Since α(1) is injective on global sections, we have one of the following two
possibilities:

α ∼

⎡
⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 X Y Z

⎤
⎥⎥⎦ or α ∼

⎡
⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 X Y

⎤
⎥⎥⎦ .

In the first case Ker(α) is isomorphic to Ω1, so the latter is isomorphic to a
direct sum of copies of O(−2). This is absurd. In the second case, we have
Ker(β) � O(−2), hence, without loss of generality, we may assume that β
is the projection onto the first four terms. From the commutativity of the
diagram, we get

ψ =

⎡
⎢⎢⎢⎢⎣

ϕ11

0
0
0

� � � �
� � � �

−Y
X

⎤
⎥⎥⎥⎥⎦ .

This shows that F ′ maps surjectively onto the cokernel of ϕ11. But this is im-
possible because, by construction, the image of F ′ in C is the proper subsheaf
C ′. Thus far, we have shown that the resolution from Proposition 4.1.2 for
F ′ is unfeasible. It remains to examine the resolution from Proposition 4.1.3.
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This fits into a commutative diagram of the form

0 O(−3) ⊕ 2O(−2)
ψ

β

2O(−1) ⊕ O

α

F ′ 0

0 4O(−2)
ϕ

3O(−1) ⊕ O F 0

Since α and α(1) are injective on global sections, we see that α and β are
injective and we may write

β =

⎡
⎢⎢⎣

−�2 0 0
�1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ , α =

⎡
⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ .

From the commutativity of the diagram and the semi-stability of ϕ11, we see
that �1 and �2 are linearly independent one-forms and

ϕ11 =

⎡
⎣ �1 �2 0 0

� �
� �

ξ

⎤
⎦ .

We recall that the greatest common divisor of the maximal minors of ϕ11 is
a linear form g. Since g divides both �1 det(ξ) and �2 det(ξ), we see that g
divides det(ξ), hence ξ is equivalent to a matrix having a zero-entry. Thus we
may write

ϕ11 =

⎡
⎣�1 �2 0 0

� � ξ3 0
� � � ξ4

⎤
⎦ =

⎡
⎣ ζ

0
0

� � � ξ4

⎤
⎦ .

It is clear that ζ is semi-stable as a Kronecker V -module. Assume that the
maximal minors of ζ have a common linear factor, say Z. We may then write

ϕ =

⎡
⎢⎢⎣

X Z 0 0
Y 0 Z 0
� � � S
� � � T

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ ϕ′

0
0
S

� � � T

⎤
⎥⎥⎦ .

Notice that g is a multiple of Z, S is non-zero and does not divide det(ϕ′)/Z.
We have Coker(ζ) � OL, where L ⊂ P2 is the line with equation Z = 0. We
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apply the snake lemma to the exact diagram

0 0

0 O(−2)

[
S
T

]

O(−1) ⊕ O

0 4O(−2)
ϕ

3O(−1) ⊕ O F 0

0 O(−3) 3O(−2)
ζ

2O(−1) OL 0

0 0

in order to obtain a non-split extension of the form

0 −→ G −→ F −→ OL −→ 0,

where G has resolution

0 −→ O(−3) ⊕ O(−2)
ψ−→ O(−1) ⊕ O −→ G −→ 0,

with ψ12 = S different from zero. From Proposition 5.2.1 in [4], we see that
G is in the exceptional divisor of MP2(4,0). Conversely, any G of MP2(4,0),
which is in the exceptional divisor, i.e. satisfying the condition h0(G) = 1,
occurs as the cokernel of a morphism ψ as above with ψ12 �= 0. Assume now
that F is an extension of OL with a sheaf G as above, satisfying H1(F ) = 0.
Choose an equation Z = 0 for L. We combine the resolution of G with the
resolution

0 −→ O(−3) −→ 3O(−2)
ζ−→ 2O(−1) −→ OL −→ 0

and we obtain a resolution

0 −→ O(−3) −→ O(−3) ⊕ 4O(−2) −→ 3O(−1) ⊕ O −→ F −→ 0.

The morphism O(−3) → O(−3) in the above complex is non-zero because, by
hypothesis, H1(F ) vanishes. Thus, we may cancel O(−3) to get a resolution
as in Proposition 3.1.1 with

ϕ =

⎡
⎢⎢⎣

ζ
0
0

� � �
� � �

ψ12

ψ22

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ ϕ′

0
0

ψ12

� � � ψ22

⎤
⎥⎥⎦ .

In view of Proposition 3.3.5, the condition that F be in X01 is equivalent to
saying that det(ϕ′)/Z, ψ12X,ψ12Y,ψ12Z are linearly independent two-forms.
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This defines an open subset inside the closed set of extension sheaves of OL

by G with vanishing first cohomology.
It remains to examine the case when the maximal minors of ζ have no

common factor. Then g is a multiple of ξ4. We have Ker(ζ) � O(−4). Ac-
cording to Propositions 4.5 and 4.6 in [2], the cokernel of ζ is isomorphic to
the structure sheaf of a zero-dimensional scheme Z of length 3 not contained
in a line. Write as above

ϕ =

⎡
⎢⎢⎣

ζ
0
0

� � �
� � �

S
T

⎤
⎥⎥⎦

and note that the snake lemma gives an extension

0 −→ E −→ F −→ OZ −→ 0,

where E has a resolution

0 −→ O(−4) ⊕ O(−2)
ψ−→ O(−1) ⊕ O −→ E −→ 0

in which ψ12 = S and ψ22 = T . We have PE (t) = 5t − 2. According to Propo-
sition 2.1.4, E is in MP2(5, −2) precisely if S does not divide T . In that case
E (1) gives a point in the stratum X3 of MP2(5,3). Finally, assume that S
divides T . We have a non-split extension of sheaves

0 −→ OL(−1) −→ F −→ S −→ 0,

where L ⊂ P2 is given by the equation S = 0 and S has a resolution of the
form

0 −→ 3O(−2)
ψ−→ 2O(−1) ⊕ O −→ S −→ 0,

where ψ11 = ζ. According to Proposition 3.3.2 in [4], the subset of MP2(4,3)
of sheaves of the form S D(1) is an open subset consisting of all sheaves of
the form JZ(2), where Z ⊂ P2 is a zero-dimensional scheme of length 3 not
contained in a line, contained in a quartic curve C ⊂ P2 and JZ ⊂ OC is its
ideal sheaf. Assume we are given S as above, L ⊂ P2 a line with equation
S = 0 and F a non-split extension of S by OL(−1). We combine the above
resolution for S with the standard resolution of OL(−1) to get a resolution
for F as in Proposition 3.1.1. By Proposition 3.3.5, the condition that F be
in X01 is equivalent to saying that S divides det(ϕ′) and det(ϕ′)/S together
with the maximal minors of ζ form a linearly independent set in S2V ∗. These
conditions define a locally closed subset of P(Ext1(S, OL(−1))). �

From what was said above, we can summarise the following proposition.

Proposition 3.3.7. {X0,X1,X2,X3} represents a stratification of
MP2(5,1) by locally closed irreducible subvarieties of codimension 0,2,3,5.
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4. Euler characteristic zero

4.1. Locally free resolutions for semi-stable sheaves.

Proposition 4.1.1. Every sheaf F giving a point in MP2(5,0) and satis-
fying the condition h0(F (−1)) > 0 is of the form OC(1) for a quintic curve
C ⊂ P2.

Proof. Consider a non-zero morphism O → F (−1). As in the proof of
Proposition 2.1.3 in [4], it factors through an injective map OC → F (−1).
Here C ⊂ P2 is a curve; its degree must be 5, otherwise OC would desta-
bilise F (−1). As both OC and F (−1) have the same Hilbert polynomial, the
injective morphism from above must be an isomorphism.

The converse follows from the general fact that the structure sheaf of a
curve in P2 is stable. �

Proposition 4.1.2. The sheaves F giving points in MP2(5,0) and satisfy-
ing the condition h1(F ) = 0 are precisely the sheaves with resolution

0 −→ 5O(−2)
ϕ−→ 5O(−1) −→ F −→ 0.

Moreover, such a sheaf F is properly semi-stable if and only if ϕ is equivalent
to a morphism of the form[

� ψ
� 0

]
for some ψ : mO(−2) −→ mO(−1), 1 ≤ m ≤ 4.

Proof. Assume that F gives a point in MP2(5,0) and its first cohomology
vanishes. For a suitable line L ⊂ P2, we have an exact sequence

0 −→ F −→ F (1) −→ F (1)|L −→ 0.

The associated long cohomology sequence shows that H1(F (1)) vanishes, too.
The same argument applied to the exact sequence

0 −→ F (−1) −→ F ⊗ V −→ F ⊗ Ω1(2) −→ 0

shows that H1(F ⊗ Ω1(2)) = 0. The Beilinson free monad (2.2.1) in [4] for
F (1) gives the resolution

0 −→ 5O(−1) −→ 5O −→ F (1) −→ 0.

Conversely, assume that F is the cokernel of a morphism ϕ as in the proposi-
tion. Trivially, F has no zero-dimensional torsion, because it has a locally free
resolution of length 1. For any subsheaf F ′ ⊂ F , we have H0(F ′) = 0 because
the corresponding cohomology group for F vanishes. We get χ(F ′) ≤ 0, hence
p(F ′) ≤ 0 = p(F ) and we conclude that F is semi-stable.

To finish the proof, we must show that for properly semi-stable sheaves
F the morphism ϕ has the special form given in the proposition. Consider
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a proper subsheaf F ′ ⊂ F which gives a point in MP2(m,0), 1 ≤ m ≤ 4. As
noted, H0(F ′) vanishes, hence also H1(F ′) vanishes and, repeating the above
steps with F ′ instead of F , we arrive at the resolution

0 −→ mO(−2)
ψ−→ mO(−1) −→ F ′ −→ 0.

This fits into a commutative diagram of the form

0 mO(−2)
ψ

β

mO(−1)

α

F ′ 0

0 5O(−2)
ϕ

5O(−1) F 0

Since α(1) is injective on global sections we see that α, hence also β, are
injective. Thus, ϕ has the required special form. �

Proposition 4.1.3. The sheaves F giving points in MP2(5,0) and satisfy-
ing the cohomological conditions h0(F (−1)) = 0 and h1(F ) = 1 are precisely
the sheaves with resolution

0 −→ O(−3) ⊕ 2O(−2)
ϕ−→ 2O(−1) ⊕ O −→ F −→ 0,

where ϕ12 : 2O(−2) → 2O(−1) is an injective morphism.

Proof. The Beilinson free monad (2.2.1) in [4] for F reads as follows:

0 −→ 5O(−2) ⊕ mO(−1) −→ (m + 5)O(−1) ⊕ O −→ O −→ 0.

From this, we obtain the exact sequences

0 −→ 5O(−2) ⊕ mO(−1) −→ Ω1 ⊕ (m + 2)O(−1) ⊕ O −→ F −→ 0

and

0 −→ O(−3) ⊕ 5O(−2) ⊕ mO(−1)
ϕ−→ 3O(−2) ⊕ (m + 2)O(−1) ⊕ O −→ F −→ 0,

with ϕ13 = 0, ϕ23 = 0. As in the proof of Proposition 2.1.4, we see that
rank(ϕ12) = 3, so we may cancel 3O(−2) to get the resolution

0 −→ O(−3) ⊕ 2O(−2) ⊕ mO(−1)
ϕ−→ (m + 2)O(−1) ⊕ O −→ F −→ 0,

with ϕ13 = 0. By the injectivity of ϕ we must have m ≤ 1. If m = 1, then F
has a subsheaf of the form OL, for a line L ⊂ P2, contrary to semi-stability. We
conclude that m = 0 and we obtain a resolution as in the proposition. If ϕ12

were not injective, then ϕ12 would be equivalent to a morphism represented by
a matrix with a zero-row or a zero-column. Thus, F would have a destabilising
subsheaf of the form OC or a destabilising quotient sheaf of the form OC(−1)
for a conic curve C ⊂ P2.

Conversely, we assume that F has a resolution as in the proposition and we
need to show that there are no destabilising subsheaves E . Such a subsheaf
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must satisfy h0(E ) = 1, h1(E ) = 0, PE (t) = mt + 1, 1 ≤ m ≤ 4. Moreover,
H0(E (−1)) and H0(E ⊗ Ω1(1)) vanish because the corresponding cohomology
groups for F vanish. We can now write the Beilinson free monad for E . We
get a resolution that fits into a commutative diagram

0 (m − 1)O(−2)
ψ

β

(m − 2)O(−1) ⊕ O

α

E 0

0 O(−3) ⊕ 2O(−2)
ϕ

2O(−1) ⊕ O F 0

Since α and α(1) are injective on global sections, we see that α is injective,
forcing β to be injective, too. Thus, m = 2 or m = 3. In both cases, ϕ12 fails
to be injective, contradicting our hypothesis. �

Proposition 4.1.4. The sheaves F giving points in MP2(5,0) and satisfy-
ing the cohomological conditions h0(F (−1)) = 0 and h1(F ) = 2 are precisely
the sheaves with resolution

0 −→ 2O(−3) ⊕ O(−1)
ϕ−→ O(−2) ⊕ 2O −→ F −→ 0

such that ϕ11 has linearly independent entries and, likewise, ϕ22 has linearly
independent entries.

Proof. Let F give a point in MP2(5,0) and satisfy the conditions from the
proposition. The Beilinson free monad for F reads

0 −→ 5O(−2) ⊕ mO(−1) −→ (m + 5)O(−1) ⊕ 2O −→ 2O −→ 0.

Dualising and tensoring with O(1) we get the following resolution for the sheaf
G = F D(1), which gives a point in MP2(5,5):

0 −→ 2O(−2)
η−→ 2O(−2) ⊕ (m + 5)O(−1)

ϕ−→ mO(−1) ⊕ 5O −→ G −→ 0,

η =
[
0
ψ

]
.

Here ϕ12 = 0. As G has rank zero and maps surjectively onto C = Coker(ϕ11),
we see that m ≤ 2. If m = 2, then ϕ11 must be injective, otherwise C will have
positive rank. We get PC (t) = 2t, hence C destabilises G. The case m = 0 can
be eliminated as in the proof of Proposition 3.1.3. Thus, m = 1. As in the
proof of Proposition 3.2.5, we may assume that ψ is represented by the matrix[

X Y Z 0 0 0
0 0 0 X Y Z

]T

.

From the Beilinson monad for F , we obtain the resolution

0 −→ 5O(−2) ⊕ O(−1) −→ 2Ω1 ⊕ 2O −→ F −→ 0,

which, combined with the standard resolution for Ω1, yields the exact sequence

0 −→ 2O(−3) ⊕ 5O(−2) ⊕ O(−1)
ϕ−→ 6O(−2) ⊕ 2O −→ F −→ 0.
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Note that F maps surjectively onto Coker(ϕ11, ϕ12), so this sheaf is supported
on a curve, forcing rank(ϕ12) ≥ 4. If rank(ϕ12) = 4, then Coker(ϕ11, ϕ12)
would have Hilbert polynomial P (t) = 2t − 2, so it would destabilise F . We
deduce that rank(ϕ12) = 5, so we may cancel 5O(−2) to get a resolution as in
the proposition. If the entries of ϕ11 were linearly dependent, then F would
have a destabilising quotient sheaf of the form OL(−2) for a line L ⊂ P2. If
the entries of ϕ22 were linearly dependent, then F would have a destabilising
subsheaf of the form OL.

Conversely, we assume that F has a resolution as in the proposition and
we need to show that there is no destabilising subsheaf. Let F ′ ⊂ F be a
non-zero subsheaf of multiplicity at most 4. We shall use the extension

0 −→ Jx(1) −→ F −→ Cz −→ 0

from Proposition 4.3.2. Denote by C ′ the image of F ′ in Cz and put K =
F ′ ∩ Jx(1). Let A and OS be as in the proof of Proposition 3.1.2. Recall that
S is a curve of degree d ≤ 4. We can estimate the slope of F ′ as in the proof
of Proposition 3.1.2 and we get

p
(

F ′) = − d

2
+

h0(C ′) − h0(A/K)
5 − d

≤ − d

2
+

1
5 − d

< 0 = p(F ).

We conclude that F is semi-stable. �
Let Xi, i = 0,1,2,3, be the subset of MP2(5,0) of stable-equivalence classes

of sheaves F as in Propositions 4.1.2, 4.1.3, 4.1.4, respectively, Proposi-
tion 4.1.1.

Proposition 4.1.5. The subsets X0,X1,X2,X3 are disjoint. The subset
of MP2(5,0) of stable-equivalence classes of properly semi-stable sheaves is
included in X0 ∪ X1.

Proof. Let F be a properly semi-stable sheaf in MP2(5,0). We have an
exact sequence

0 −→ F ′ −→ F −→ F ′ ′ −→ 0,

with F ′ giving a point in MP2(r,0), F ′ ′ giving a point in MP2(s,0), r + s = 5.
From the description of MP2(r,0), 1 ≤ r ≤ 4, found in [4], we have the relations

h0
(

F ′) = 0 if r = 1,2, h0
(

F ′) ≤ 1 if r = 3,4.

In all possible situations we get h0(F ) ≤ 1, hence the stable-equivalence class
of F is in X0 ∪ X1. Thus all sheaves in X2 and X3 are stable, so X2 is disjoint
from the other Xi and the same is true for X3. It remains to show that X0 and
X1 are disjoint. Let F be a properly semi-stable sheaf as in Proposition 4.1.2
and let G be a sheaf in the same class of stable-equivalence as F . Let F ′

be one of the terms of a Jordan–Hölder filtration of F . From the proof of
Proposition 4.1.2, it transpires that F ′ has resolution

0 −→ mO(−2) −→ mO(−1) −→ F ′ −→ 0
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for some integer 1 ≤ m ≤ 4. Thus, H0(F ′) = 0. Any term of a Jordan–Hölder
filtration of G is also a term of a Jordan–Hölder filtration of F , hence its group
of global sections vanishes. We deduce that H0(G) = 0. Thus, F cannot give
a point in X1. �

Proposition 4.1.6. There are no sheaves F giving points in MP2(5,0) and
satisfying the cohomological conditions h0(F (−1)) = 0 and h1(F ) ≥ 3.

Proof. In view of Proposition 4.1.5, we may restrict our attention to sta-
ble sheaves F in MP2(5,0). Suppose that F satisfies h0(F (−1)) = 0 and
h1(F ) �= 0. Consider a non-zero morphism O → F . As in the proof of Propo-
sition 2.1.3 in [4], this must factor through an injective morphism OC → F ,
where C ⊂ P2 is a curve. From the stability of F , we see that C can only have
degree 4 or 5.

Assume that C has degree 5. The quotient sheaf C = F /OC is supported
on finitely many points and has length 5. Take a subsheaf C ′ ⊂ C of length 4,
and let F ′ be its preimage in F . We get an exact sequence

0 −→ F ′ −→ F −→ Cx −→ 0,

where Cx is the structure sheaf of a point. Any destabilising subsheaf of F ′

would ruin the stability of F , hence F ′ is in MP2(5, −1). From Section 3.1, we
know that h0(F ′) ≤ 2, hence h0(F ) ≤ 2 unless h0(F ′) = 2 and the morphism
F → Cx is surjective on global sections. In this case, we can apply the horse-
shoe lemma to the above extension, to the standard resolution of Cx and to
the resolution

0 −→ O(−4) ⊕ O(−1) −→ 2O −→ F ′ −→ 0.

We obtain a resolution

0 −→ O(−2) −→ O(−4) ⊕ 3O(−1)
ϕ−→ 3O −→ F −→ 0,

which yields an exact sequence

0 −→ O(−4) −→ Coker(ϕ12) −→ F −→ 0.

We claim that the morphism O(−2) → 3O(−1) in the above resolution is
equivalent to the morphism represented by the matrix⎡

⎣X
Y
Z

⎤
⎦ .

The argument uses the fact that F has no zero-dimensional torsion and is
analogous to the proof that the vector space H at Proposition 2.1.4 has di-
mension 3. We can now describe ϕ12. We claim that ϕ12 is equivalent to the
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morphism represented by the matrix⎡
⎣−Y X 0

−Z 0 X
0 −Y Z

⎤
⎦ .

The argument, we recall from the proof of Proposition 3.1.3, uses the fact
that the map 3O → F is injective on global sections and the fact that the
only morphism OL(1) → F for any line L ⊂ P2 is the zero-morphism. We
deduce that Coker(ϕ12) is isomorphic to O(1). We obtain h0(F (−1)) = 1,
contradicting our hypothesis.

Assume now that C has degree 4. The zero-dimensional torsion C ′ of the
quotient sheaf C = F /OC has length at most 1, otherwise its preimage in F
would violate stability. Assume that C ′ has length 1. Let F ′ be its preimage
in F . We have an extension

0 −→ F ′ −→ F −→ OL −→ 0.

Here L ⊂ P2 is a line and it is easy to see that F ′ gives a point in MP2(4, −1).
From the description of MP2(4,1) found in [4], we know that h0(F ′) ≤ 1, hence
h0(F ) ≤ 2.

Assume, finally, that C has no zero-dimensional torsion. Then C � OL(1)
for a line L ⊂ P2. We have h0(F ) ≤ 2 unless the morphism F → OL(1) is
surjective on global sections. In that case, we can apply the horseshoe lemma
to the extension

0 −→ OC −→ F −→ OL(1) −→ 0,

to the standard resolution of OC and, fixing an equation for L, say X = 0, to
the resolution

0 −→ O(−2)
η−→ 3O(−1)

ξ−→ 2O −→ OL(1) −→ 0,

η =

⎡
⎣X

Y
Z

⎤
⎦ , ξ =

[
−Y X 0

−Z 0 X

]
.

We obtain the exact sequence

0 −→ O(−2) −→ O(−4) ⊕ 3O(−1) −→ 3O −→ F −→ 0.

We saw above that this leads to the relation h0(F (−1)) = 1, which is contrary
to our hypothesis. �

4.2. Description of the strata as quotients. In Section 4.1, we found
that the moduli space MP2(5,0) can be decomposed into four strata:

− an open stratum X0 given by the condition h1(F ) = 0;
− a locally closed stratum X1 of codimension 1 given by the conditions

h0
(

F (−1)
)

= 0, h1(F ) = 1;
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− a locally closed stratum X2 of codimension 4 given by the conditions

h0
(

F (−1)
)

= 0, h1(F ) = 2;

− the closed stratum X3 given by the condition h0(F (−1)) > 0, consisting of
sheaves of the form OC(1), where C ⊂ P2 is a quintic curve. Clearly, X3 is
isomorphic to P(S5V ∗).

In the sequel, Xi will be equipped with the canonical reduced structure in-
duced from MP2(5,0). Let W0, W1, W2 be the sets of morphisms ϕ from
Propositions 4.1.2, 4.1.3, respectively Proposition 4.1.4. Each sheaf F giving
a point in Xi, i = 0,1,2, is the cokernel of a morphism ϕ ∈ Wi. Let Wi be
the ambient vector spaces of homomorphisms of sheaves containing Wi, for
example, W0 = Hom(5O(−2),5O(−1)). Let Gi be the natural groups of au-
tomorphisms acting by conjugation on Wi. In this subsection, we shall prove
that there exist a good quotient W0//G0, a categorical quotient of W1 by G1

and a geometric quotient W2/G2. We shall prove that each quotient is isomor-
phic to the corresponding subvariety Xi. We shall give concrete descriptions
of W0//G0 and W2/G2.

Proposition 4.2.1. There exists a good quotient W0//G0 and it is a proper
open subset inside N(3,5,5). Moreover, W0//G0 is isomorphic to X0. In
particular, MP2(5,0) and N(3,5,5) are birational.

Proof. Let Wss
0 ⊂ W0 denote the subset of morphisms that are semi-stable

for the action of G0. This group is reductive, so by the classical geometric
invariant theory there is a good quotient Wss

0 //G0, which is nothing but the
Kronecker moduli space N(3,5,5). According to King’s criterion of semi-
stability [7], a morphism ϕ ∈ W0 is semi-stable if and only if it is not in the
G0-orbit of a morphism of the form

[
� ψ
� 0

]
for some ψ : (m + 1)O(−2) −→ mO(−1), 0 ≤ m ≤ 4.

It is now clear that W0 is the subset of injective morphisms inside Wss
0 , so it

is open and G0-invariant. In point of fact, it is easy to check that W0 is the
preimage in Wss

0 of a proper open subset inside Wss
0 //G0. This subset is the

good quotient of W0 by G0.
We shall now prove the injectivity of the canonical map W0//G0 → X0.

Consider the map υ : W0 → X0 sending ϕ to the stable-equivalence class of
its cokernel. Consider a properly semi-stable sheaf F = Coker(ϕ), ϕ ∈ W0,
giving a point [F ] in X0. For simplicity of notations, we assume that F has
a Jordan–Hölder filtration of length 2, that is, there is an extension

0 −→ F ′ −→ F −→ F ′ ′ −→ 0
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of stable sheaves F ′ ∈ MP2(r,0) and F ′ ′ ∈ MP2(s,0). From the proof of Propo-
sition 4.1.2, we see that there are resolutions

0 −→ rO(−2)
ϕ′

−→ rO(−1) −→ F ′ −→ 0,

0 −→ sO(−2)
ϕ′ ′

−→ sO(−1) −→ F ′ ′ −→ 0.

Using the horseshoe lemma, we see that ϕ is in the orbit of a morphism
represented by a matrix of the form[

ϕ′ ′ 0
� ϕ′

]
.

It is clear that ϕ′ ′ ⊕ ϕ′ is in the closure of the orbit of ϕ. Thus, υ−1([F ]) is
a union of orbits, each containing ϕ′ ′ ⊕ ϕ′ in its closure. It follows that the
preimage of [F ] in W0//G0 is a point. Thus far, we have proved that the
canonical map W0//G0 → X0 is bijective. To show that it is an isomophism,
we use the method of Theorem 3.1.6 in [4]. We must produce a resolution
as in Proposition 4.1.2 starting from the Beilinson spectral sequence for F .
Diagram (2.2.3) in [4] for F reads

5O(−2)
ϕ1 5O(−1) 0

0 0 0

From the exact sequence (2.2.5) in [4], we deduce that ϕ1 is injective and its
cokernel is isomorphic to F . �

Proposition 4.2.2. There exists a categorical quotient of W1 modulo G1,
which is isomorphic to X1.

Proof. Let υ : W1 → X1 be the canonical map sending a morphism ϕ to the
stable-equivalence class of its cokernel. As in the proof of Proposition 4.2.1,
one can check that the preimage of an arbitrary point in X1 under υ is a
union of G1-orbits whose closures have non-empty intersection. This shows
that υ is bijective. To show that υ is a categorical quotient map we proceed
as at Theorem 3.1.6 in [4]. Given F in X1, we need to produce a resolution as
in Proposition 4.1.3 starting from the Beilinson spectral sequence. We shall
work, instead, with the dual sheaf G = F D(1), which gives a point in MP2(5,5).
Diagram (2.2.3) in [4] for G takes the form

O(−2) 0 0

O(−2)
ϕ3 5O(−1)

ϕ4
5O
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The exact sequence (2.2.5) in [4] reads

0 −→ O(−2) −→ Coker(ϕ4) −→ G −→ 0.

Repeating the arguments from the proof of Proposition 3.2.4 it is easy to see
that we may write

ϕ3 =

⎡
⎢⎢⎢⎢⎣

X
Y
Z
0
0

⎤
⎥⎥⎥⎥⎦ and ϕ4 =

⎡
⎢⎢⎢⎢⎣

−Y X 0 � �
−Z 0 X � �
0 −Z Y � �
0 0 0 ψ11 ψ12

0 0 0 ψ21 ψ22

⎤
⎥⎥⎥⎥⎦ .

If the morphism ψ : 2O(−1) → 2O represented by the matrix (ψij)1≤i,j≤2

were not injective, then ψ would be equivalent to a morphism represented by
a matrix with a zero-row or a zero-column. From the snake lemma, it would
follow that Coker(ϕ4) has a subsheaf S with Hilbert polynomial P (t) = 3t+4
or 2t + 3. This sheaf would map injectively to G because S ∩ O(−2) = {0}.
The semi-stability of G would be violated. We deduce that ψ is injective and
we obtain the extension

0 −→ O(1) −→ Coker(ϕ4) −→ Coker(ψ) −→ 0,

which yields the resolution

0 −→ 2O(−1) −→ 2O ⊕ O(1) −→ Coker(ϕ4) −→ 0.

Combining with the resolution of G from above, we obtain the exact sequence

0 −→ O(−2) ⊕ 2O(−1) −→ 2O ⊕ O(1) −→ G −→ 0.

By duality, this corresponds to the resolution at Proposition 4.1.3 for F . �

Proposition 4.2.3. There exists a geometric quotient W2/G2 and it is a
proper open subset inside a fibre bundle over P2 × P2 with fibre P18.

Proof. The construction of W2/G2 is analogous to the construction of the
geometric quotient W1/G1 from Proposition 2.2.2. Let W ′

2 ⊂ W2 be the lo-
cally closed subset given by the conditions ϕ12 = 0, ϕ11 has linearly indepen-
dent entries, ϕ22 has linearly independent entries. The pairs of morphisms
(ϕ11, ϕ22) form an open subset

U ⊂ Hom
(
2O(−3), O(−2)

)
× Hom

(
O(−1),2O

)
.

The reductive subgroup G2red of G2 acts on U with kernel S and U/(G2red/S)
is isomorphic to P2 × P2. Note that W ′

2 is the trivial bundle over U with fibre
Hom(2O(−3),2O). The subset Σ ⊂ W ′

2 given by the condition

ϕ21 = ϕ22u + vϕ11,

u ∈ Hom
(
2O(−3), O(−1)

)
, v ∈ Hom

(
O(−2),2O

)
,
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is a subbundle. The quotient bundle Q′ has rank 19 and descends to a vector
bundle Q on U/(G2red/S) as at Proposition 2.2.2. Then P(Q) is the geometric
quotient (W ′

2 \ Σ)/G2.
Note that W2 is the open invariant subset of injective morphism inside

W ′
2 \ Σ. It is a proper subset as, for instance, the morphism represented by

the matrix ⎡
⎣X Y 0

Z3 0 Y
0 Z3 −X

⎤
⎦

is in W ′
2 \ Σ but is not injective. We conclude that W2/G2 exists and is a

proper open subset inside P(Q). �
Proposition 4.2.4. The geometric quotient W2/G2 is isomorphic to X2.

Proof. The canonical morphism W2/G2 → X2 is easily seen to be injective,
there being no properly semi-stable sheaves in X2, cf. Proposition 4.1.5. To
show that it is an isomorphism, we must construct a resolution as in Propo-
sition 4.1.4 starting from the Beilinson spectral sequence of a sheaf F in X2.
We prefer to work, instead, with the dual sheaf G = F D(1), which gives a point
in MP2(5,5). Diagram (2.2.3) in [4] for G takes the form

2O(−2)
ϕ1 O(−1) 0

2O(−2)
ϕ3 6O(−1)

ϕ4
5O

As in the proof of Proposition 3.2.4, we see that Coker(ϕ1) is the structure
sheaf of a point x ∈ P2 and Ker(ϕ1) � O(−3). The exact sequence (2.2.5) in
[4] reads

0 −→ O(−3)
ϕ5−→ Coker(ϕ4) −→ G −→ Cx −→ 0.

We see from this that Coker(ϕ4) has no zero-dimensional torsion. The exact
sequence (2.2.4) in [4] reads

0 −→ 2O(−2)
ϕ3−→ 6O(−1)

ϕ4−→ 5O −→ Coker(ϕ4) −→ 0.

We claim that ϕ3 is equivalent to the morphism represented by the matrix[
X Y Z 0 0 0
0 0 0 X Y Z

]T

.

Firstly, we show that any matrix representing a morphism equivalent to ϕ3

has three linearly independent entries on each column. For this, we use the
fact that the only morphism from the structure sheaf of a point to Coker(ϕ4) is
the zero-morphism and we argue as in the proof that the vector space H from
Proposition 2.1.4 has dimension 3. Thus, ϕ3 has one of the four canonical
forms given in the proof of Proposition 3.2.5. Three of these can be eliminated
as in the proof of Proposition 3.1.3. The argument, we recall, uses the fact
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that the map 5O → Coker(ϕ4) is injective on global sections as well as the
fact that the only morphism OL(1) → Coker(ϕ4) for any line L ⊂ P2 is the
zero-morphism. Indeed, such a morphism must factor through ϕ5 because
the composed morphism OL(1) → Coker(ϕ4) → G is zero. This follows from
the fact that both OL(1) and G are semi-stable and p(OL(1)) > p(G).

Next, we describe ϕ4. Its matrix cannot be equivalent to a matrix having
a zero-row. Indeed, if this were the case, then Coker(ϕ4) would be isomorphic
to O ⊕ C, where C is a torsion sheaf with resolution

0 −→ 2O(−2) −→ 6O(−1) −→ 4O −→ C −→ 0.

We have PC (t) = 2t+4 and C maps injectively to G because C ∩ O(−3) = {0}.
The semi-stability of G is violated. We conclude that ϕ4 has the form[

ξ 0
� ψ

]
,

where ξ is a morphism as in the proof of Proposition 4.1.6 and ψ is equivalent
to the morphism ϕ12 also from Proposition 4.1.6. We have exact sequences

0 −→ O(−2) −→ 3O(−1)
ξ−→ 2O −→ OL(1) −→ 0,

0 −→ O(−2) −→ 3O(−1)
ψ−→ 3O −→ O(1) −→ 0.

Recall that the greatest common divisor of the maximal minors of ξ is a linear
form. The line L ⊂ P2 is the zero-locus of this form. From the snake lemma,
we obtain an extension

0 −→ O(1) −→ Coker(ϕ4) −→ OL(1) −→ 0,

hence a resolution

0 −→ O −→ 2O(1) −→ Coker(ϕ4) −→ 0.

Note that ϕ5 lifts to a morphism O(−3) → 2O(1), so we arrive at the exact
sequence

0 −→ O(−3) ⊕ O −→ 2O(1) −→ G −→ Cx −→ 0.

From the horseshoe lemma, we obtain the resolution

0 −→ O(−3) −→ O(−3) ⊕ 2O(−2) ⊕ O −→ O(−1) ⊕ 2O(1) −→ G −→ 0.

The group H1(G) vanishes, hence O(−3) can be cancelled to yield the dual of
the resolution from Proposition 4.1.4. �
4.3. Geometric description of the strata. Let Xs

0 denote the subset of
X0 of isomorphism classes of stable sheaves. Given ϕ ∈ W0, we denote its
domain by O(−2) ⊕ 4O(−2) and denote by ϕ12 the restriction of ϕ to the
second component. Let Y0 be the open subset of X0 of stable-equivalence
classes of sheaves F that occur as cokernels

0 −→ O(−2) ⊕ 4O(−2)
ϕ−→ 5O(−1) −→ F −→ 0

in which the maximal minors of ϕ12 have no common factor.
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Proposition 4.3.1. The sheaves in Y0 have the form JZ(3), where Z ⊂ P2

is a zero-dimensional scheme of length 10 not contained in a cubic curve,
contained in a quintic curve C, and JZ ⊂ OC is its ideal sheaf.

The generic sheaves in Xs
0 have the form OC(3)(−P1 − · · · − P10), where

C ⊂ P2 is a smooth quintic curve and Pi, 1 ≤ i ≤ 10, are distinct points on C
not contained in a cubic curve.

Proof. Consider the sheaf F = Coker(ϕ), where the maximal minors of
ϕ12 have no common factor. According to Propositions 4.5 and 4.6 in [2],
Coker(ϕ12) � IZ(3), where Z ⊂ P2 is a zero-dimensional scheme of length 10,
not contained in a cubic curve. Conversely, any IZ(3) is the cokernel of some
morphism ϕ12 : 4O(−2) → 5O(−1) whose maximal minors have no common
factor. It now follows, as at Proposition 2.3.4(i), that F � JZ(3).

The claim about generic stable sheaves follows from the fact that any line
bundle on a smooth curve is stable. �

Proposition 4.3.2. The sheaves F in X2 are precisely the non-split ex-
tension sheaves of the form

0 −→ Jx(1) −→ F −→ Cz −→ 0,

where Jx ⊂ OC is the ideal sheaf of a point x on a quintic curve C ⊂ P2

and Cz is the structure sheaf of a point z ∈ C. When x = z, we exclude the
possibility F � OC(1).

The generic sheaf in X2 has the form OC(1)(P − Q), where C ⊂ P2 is a
smooth quintic curve and P,Q are distinct points on C. In particular, the
closure of X2 contains X3.

Proof. To get the extension from the claim, we apply the snake lemma to
a diagram similar to the diagram from the proof of Proposition 2.3.2. Here

ϕ =

⎡
⎣u1 u2 0

� � v1

� � v2

⎤
⎦ ,

C is given by the equation det(ϕ) = 0, x is the point given by the equations
v1 = 0, v2 = 0 and z is the point given by the equations u1 = 0, u2 = 0. To
prove the converse we combine the resolutions

0 −→ O(−4) −→ Ix(1) −→ Jx(1) −→ 0

and
0 −→ O(−4) −→ 2O(−3) −→ O(−2) −→ Cz −→ 0

into the resolution

0 −→ O(−4) −→ O(−4) ⊕ 2O(−3) −→ O(−2) ⊕ Ix(1) −→ F −→ 0.
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If x �= z, then Ext1(Cx, Ix(1)) = 0 and the arguments from the proof of Propo-
sition 2.3.2 show that the map O(−4) → O(−4) in the above complex is non-
zero. Canceling O(−4), we get the exact sequence

0 −→ 2O(−3) −→ O(−2) ⊕ Ix(1) −→ F −→ 0

from which we immediately obtain a resolution as in Proposition 4.1.4. A pri-
ori we have two possibilities: either h0(F ) = 2 or 3. In the first case, the map
O(−4) → O(−4) is non-zero and we are done. In the second case, we can
combine the resolutions

0 −→ O(−4) ⊕ O(−1) −→ 2O −→ Jx(1) −→ 0

and
0 −→ O(−2) −→ 2O(−1) −→ O −→ Cz −→ 0

into the resolution

0 −→ O(−2) −→ O(−4) ⊕ 3O(−1) −→ 3O −→ F −→ 0.

We saw in the proof of Proposition 4.1.6 how this resolution leads to the
conclusion that F be isomorphic to OC(1) for a quintic curve C ⊂ P2. This
possibility is excluded by hypothesis.

If C is a smooth quintic curve and P converges to Q, then OC(1)(P − Q)
represents a point in X2 converging to the point in X3 represented by OC(1).
This shows that X3 ⊂ X2. �

Proposition 4.3.3. {X0,X1,X2,X3} represents a stratification of
MP2(5,0) by locally closed irreducible subvarieties of codimension 0,1,4,6.

Proof. We saw above that X3 lies in X2 and we know that X0 is dense in
MP2(5,0). Thus, we only need to show that X2 is included in the closure of X1.
For this, we shall apply the method of Theorem 3.2.3 in [4]. Consider the open
subset X = MP2(5,0) \ X3 of stable-equivalence classes of sheaves satisfying
the condition H0(F (−1)) = 0. Using the Beilinson monad for F (−1), we see
that X is parametrised by an open subset M inside the space of monads of
the form

0 −→ 10O(−1) A−→ 15O B−→ 5O(1) −→ 0.

The automorphism of MP2(5,0) taking the stable-equivalence class of a sheaf
F to the stable-equivalence class of the dual sheaf F D leaves X invariant.
Thus, in view of Serre duality, he have H1(F (1)) = H0(F D(−1)) = 0 for all F
in X . This allows us to deduce that the map Φ defined by Φ(A,B) = B has
surjective differential at every point in M . As at Theorem 3.2.3 in [4], this
leads to the conclusion that X2 is included in the closure of X1 in X , hence
X2 is included in the closure of X1 in MP2(5,0). �
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