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ON THE SPECTRUM OF BANACH ALGEBRA-VALUED
ENTIRE FUNCTIONS

J. P. BANNON, P. CADE AND R. YANG

Abstract. In this paper, we investigate a notion of spectrum
σ(f) for Banach algebra-valued holomorphic functions on C

n.

We prove that the resolvent σc(f) is a disjoint union of domains

of holomorphy when B is a C∗-algebra or is reflexive as a Banach

space. Further, we study the topology of the resolvent via consid-
eration of the B-valued Maurer–Cartan type 1-form f(z)−1 df(z).

As an example, we explicitly compute the spectrum of a linear

function associated with the tuple of standard unitary generators
in a free group factor von Neumann algebra.

0. Introduction

In this paper, B stands for a Banach algebra with a unit I . For a holomor-
phic function f from a domain Ω ⊂ C

n to B, we define

σ(f) :=
{
z ∈ Ω : f(z) is not invertible in B

}
.

σ(f) will be called the spectrum of f in this paper. The term is justified by
the special case f = A − zI for which σ(f) = σ(A). Since the set of invert-
ible elements in B is open, σc(f) := Ω \ σ(f) is open, hence σ(f) is relatively
closed in Ω. To avoid complications caused by Ω, we will confine ourselves to
the case Ω = C

n. This work is motivated by interest in certain connections
between geometric and topological properties of σ(f) and the structure of

B. A classical form of this work is the so-called analytic Fredholm theorem
which states that if g is a holomorphic map from a domain Ω ⊂ C to the set
of compact operators on a Banach space, then σ(I + g) is an analytic subset
of Ω, meaning it is either the whole Ω or a discrete subset of Ω. A residue
theory concerning the integral of the B-valued 1-form f −1(z)df(z) was carried
out by Gohberg and Sigal ([GS]), and by Bart, Ehrhardt and Silbermann in
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a series of papers, see [BES] and the references therein. Multivariable studies
along this line seem scarce. In the case f(z) = z1A1 + z2A2 + · · · + znAn,
where Aj ∈ B for each j, σ(f) is called the projective spectrum of the tuple
A = (A1,A2, . . . ,An) and is studied by the first author in [Ya]. This paper
generalizes the work in [Ya]. Indeed, it is a bit surprising to see that the re-
sults that hold for linear functions still hold for general holomorphic functions.
Moreover, we will manage to compute the projective spectrum for a tuple of
free Haar unitary elements, that is, a tuple of unitary elements in a finite von
Neumann algebra M with trace τ that is free with respect to τ in the sense of
Voiculescu [Vo], and such that each unitary U in the tuple satisfies τ(Um) = 0
if m �= 0.

1. Geometric properties of σc(f)

We first look at two examples.

Example 1.1. If B is the k × k matrix algebra Mk(C), then f(z) is not
invertible if and only if detf(z) = 0. Hence, σ(f) is the hypersurface {z ∈
Cn : detf(z) = 0}.

Example 1.2. Suppose B is Abelian, we let M be the maximal ideal space
of B. Then f(z) is not invertible if and only if there exists a φ ∈ M such that
φ(f(z)) = 0. Denoting the hypersurface {z ∈ C

n : φ(f(z)) = 0} by S(φ, f), we
have

σ(f) =
⋃

φ∈M
S(φ, f).

If B is a commutative sub-algebra of square matrices, then σ(f) is a finite
union of hypersurfaces. For general commutative Banach algebra, σ(f) may
be an uncountable union of hypersurfaces.

Let B be a subalgebra of a Banach algebra A. If for every element b ∈ B
that is invertible in A then b−1 ∈ B we say B is inversion-closed.

Theorem 1.3. Let H be a reflexive Banach space, and B be an inversion-
closed Banach sub-algebra of B(H). If f is a B-valued entire function, then
every path connected component of σc(f) is a domain of holomorphy.

Proof. We let U be a path connected component of σc(f), and λ be a
point in ∂U . We will show by contradiction that there exists a φ ∈ B ∗

such that φ(f(z)−1) does not extend holomorphically to any neighborhood
of λ.
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Suppose on the contrary for every φ ∈ B ∗, φ(f(z)−1) extends holomorphi-
cally to a neighborhood of λ. Then for every x ∈ H and s ∈ H ∗,

φx,s(C) = s(Cx), C ∈ B
defines a bounded linear functional on B. Set Fm(x, s) := φx,s(f(zm)−1).
Since φx,s(f(z)−1) extends holomorphically to a neighborhood of λ,
limm→∞ Fm(x, s) exists for every x and s. Define

F∞(x, s) = lim
m→∞

Fm(x, s),

and it follows from the Uniform Boundedness Principle that ‖Fm‖ ≤ M, ∀m,
for some positive constant M . In particular F∞ is a bounded bilinear form on

H × H ∗. Hence, if we fix x then F∞(x, ·) is in H ∗ ∗. Now since H is reflexive,
there is a unique B(x) ∈ H such that

F∞(x, s) = s
(
B(x)

)
∀x ∈ H, s ∈ H ∗.

One checks easily that B is a bounded linear operator on B. Further,

s
(
Bf(λ)x

)
= F∞

(
f(λ)x, s

)
= lim

m→∞
Fm

(
f(λ)x, s

)
= lim

m→∞
s
(
f
(
zm

)−1
f(λ)x

)
= lim

m→∞
s
(
f
(
zm

)−1(
f
(
z(m)

)
+ f(λ) − f

(
z(m)

))
x
)

= s(x) + lim
m→∞

s
(
f
(
zm

)−1(
f(λ) − f

(
z(m)

))
x
)

= s(x) + lim
m→∞

Fm

((
f(λ) − f

(
z(m)

))
x, s

)
.

Since ∣∣Fm

((
f(λ) − f

(
z(m)

))
x, s

)∣∣ ≤ M
∥∥(

f(λ) − f
(
z(m)

))
x
∥∥‖s‖

and f is continuous, s(Bf(λ)x) = s(x), ∀x ∈ H, s ∈ H ∗, which implies that
Bf(λ) = I .

On the other hand, for a C ∈ B(H), its transpose B∗ is an operator on H ∗

defined by B∗(s)(x) = s(Bx). Then, applying similar arguments as above we
have

s
(
f(λ)Bx

)
= F∞

(
x, f ∗(λ)s

)
= s(x),

and hence f(λ)B = I . This contradicts with the fact f(λ) is not invertible.
�

In the case where B is a C∗-algebra, it can be identified (via ∗-isomorphism)
with a C∗-subalgebra of the set of bounded linear operators on a Hilbert space
(cf. Davidson [Da], Kadison and Ringrose [KR]), and it is inversion-closed (cf.
Douglas [Do]). We therefore have the following corollary.

Corollary 1.4. If B is a C∗-algebra, then every path connected component
of σc(f) is a domain of holomorphy.
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The proof of Theorem 1.3 can be modified to work for other Banach alge-
bras. For example, when B is reflexive as a Banach space. In this case, we
define

Fm(s) = s
(
f
(
zm

)−1) ∀s ∈ B ∗.

By the Uniform Boundedness Principle and an argument similar to that in
the proof of Theorem 1.3, {Fm} is bounded and the functional F∞(s) :=
limm→∞ Fm(s) is in B ∗ ∗. If B = B ∗ ∗, then there exists a B ∈ B such that

F∞(s) = φ(B) ∀s ∈ B ∗.

Now for a fixed C ∈ B and any φ ∈ B ∗ we consider the bounded linear func-
tional φC on B defined by

φC(X) := φ(XC), X ∈ B.

Then

φ
(
Bf(λ)

)
= F∞(φf(λ))

= lim
m→∞

Fm(φf(λ))

= lim
m→∞

φ
(
f
(
zm

)−1
f(λ)

)
= φ(I) + lim

m→∞
φ
(
f
(
zm

)−1(
f(λ) − f

(
z(m)

)))
= φ(I) + lim

m→∞
Fm(φ(f(λ)−f(z(m))))

= φ(I),

which implies Bf(λ) = I . Defining

φ′
C(X) := φ(CX), X ∈ B,

and using the same argument we have f(λ)B = I . We summarize this obser-
vation in the next corollary.

Corollary 1.5. If B is reflexive (as a Banach space), then σc(f) is a
disjoint union of domains of holomorphy.

2. On the topology of σc(f)

Define ωf (z) = f(z)−1 df(z). It appears that ωf (z) contains much topolog-
ical information about σc(f). First of all, differentiating both sides of

f(z)−1f(z) = I

one obtains
d
(
f(z)−1

)
= −f(z)−1 df(z)f(z)−1,

and it follows that

(2.1) dωf (z) = d
(
f(z)−1

)
∧ df(z) = −ωf (z) ∧ ωf (z).
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Bounded linear functionals on B are good tools to decode it. First, one
observes that for a φ ∈ S ∗

1 ,

φ
(
ωf (z)

)
=

n∑
j=1

φ

(
f(z)−1 ∂f

∂zj

)
dzj

is a holomorphic 1-form on σc(f). Likewise, for a k-linear functional F ,
F (ωf (z), ωf (z), . . . , ωf (z)) is a holomorphic k-form on σc(f).

A k-linear functional F on B is said to be invariant if

(2.2) F (a1, a2, . . . , ak) = F
(
ga1g

−1, ga2g
−1, . . . , gakg−1

)
for all a1, a2, . . . , ak in B and every invertible operator g. One sees that the
trace is an invariant 1-linear functional on S1.

Proposition 2.1. If F is an invariant k-linear functional on B then
F (ωf (z), ωf (z), . . . , ωf (z)) is a closed k-form on σc(f).

The proof of Proposition 2.1 is a general argument based on the identity
(2.1). Similar argument was used in Chern characteristic classes (cf. [Ch]).

For g of the type g = I − g′ with ‖g′ ‖ < 1, we consider the power series
expansion in g′ of the right-hand side of (2.2). By (2.2), the terms involving
(g′)m for m ≥ 1 are all zero. In particular, the first order term is zero, which
implies that

(2.3)
k∑

i=1

F
(
a1, a2, . . . , g

′ai − aig
′, . . . , ak

)
= 0.

By linearity (2.3) remains true when a1, a2, . . . , ak are B-valued differential
forms and g′ is any element in B. Now if a1, a2, . . . , ak are B-valued 1-forms,
one checks that for any 1 ≤ s ≤ n,

F
(
a1, a2, . . . , g

′ dzs ∧ ai + ai ∧ g′ dzs, . . . , ak

)
= F

(
a1, a2, . . . , g

′ai − aig
′, . . . , ak

)
(−1)k−i+1 dzs,

hence by (2.3)
k∑

i=1

(−1)i−1F
(
a1, a2, . . . , g

′ dzs ∧ ai + ai ∧ g′ dzs, . . . , ak

)
= 0.

Clearly, the above equality remains true if g′ dzs is replaced by any B-valued 1-
form. So when a1, a2, . . . , ak and ω are all B-valued 1-forms, (2.3) implies that

(2.4)
k∑

i=1

(−1)i−1F (a1, a2, . . . , ω ∧ ai + ai ∧ ω, . . . , ak) = 0.

Now we check that if F is a bounded invariant k-linear functional on B,
then

dF
(
ωf (z), ωf (z), . . . , ωf (z)

)
= 0,



1460 J. P. BANNON, P. CADE AND R. YANG

k = 1,2, . . . , n. The key is identity (2.1).

dF
(
ωf (z), ωf (z), . . . , ω(z)

)
=

k∑
i=1

(−1)i−1F
(
ωf (z), ωf (z), . . . , d ωf (z)︸ ︷︷ ︸

ith place

, . . . , ωf (z)
)

= −
k∑

i=1

(−1)i−1F
(
ωf (z), ωf (z), . . . , ωf (z) ∧ ωf (z), . . . , ωf (z)

)
.

Letting a1, a2, . . . , ak and ω be all equal to ωf (z) in (2.4), we obtain

dF
(
ωf (z), ωf (z), . . . , ω(z)

)
= 0,

and the proof is complete.

Example 2.2. Now we consider the case when B is a Banach algebra with
a trace tr. It is easy to see that

F (a1, a2, . . . , ak) := tr(a1a2 · · · ak)

is an invariant k-linear functional on B, and

F
(
ωf (z), . . . , ωf (z)

)
= tr

(
ωk

f (z)
)

is a closed k-form on σc(f). If k is even, say k = 2m where m ≥ 1, then
because of the equality dωf (z) = −ωf (z) ∧ ωf (z),

tr
(
ωk

f (z)
)

= (−1)m tr
((

dωf (z)
)m)

= (−1)m+1 d tr
(
ωf (z)

(
dωf (z)

)m−1)
= (−1)2m d tr

((
ωf (z)

)2m−1)
= 0.

In the case f is a linear function, something interesting can be said about
tr(ω3

f (z)). Consider f(z) = z1A1 + z2A2 + z3A3 + z4A4. To be consistent with
notions in [Ya], we denote σ(f) by P (A), and denote ωf (z) by ωA(z).

Theorem 2.3. If A = (A1,A2,A3,A4) is a 4-tuple of elements in a Banach
algebra B with trace φ, then

(2.5) φ
(
ω3

A

)
= g(z)S(z),

where S(z) = z1 dz2 ∧ dz3 ∧ dz4 − z2 dz1 ∧ dz3 ∧ dz4 +z3 dz1 ∧ dz2 ∧ dz4 − z4 dz1 ∧
dz2 ∧ dz3, and g(z) is holomorphic on P c(A).

Proof. Recall that for A,C ∈ B and x ∈ C we have φ(AC) = φ(CA) and
φ(xA) = xφ(A). Using these properties, a straightforward calculation yields
the formula

(2.6) φ
(
ω3

A

)
=

∑
1≤i<j<k≤4

Iijk dzi ∧ dzj ∧ dzk.
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Where

Iijk = 3 · φ(A(z)−1AiA(z)−1AjA(z)−1Ak − A(z)−1AiA(z)−1AkA(z)−1Aj).

Furthermore, we have the following identity, I123
z4

= −I124
z3

, this is seen by
the following calculation.

z3

3
I123 = z3φ

(
A(z)−1A1A(z)−1A2A(z)−1A3

− A(z)−1A1A(z)−1A3A(z)−1A2

)
= φ

(
A(z)−1A1A(z)−1A2A(z)−1z3A3

− A(z)−1A1A(z)−1z3A3A(z)−1A2

+ A(z)−1A1A(z)−1A2A(z)−1z1A1

− A(z)−1A1A(z)−1z1A1A(z)−1A2

+ A(z)−1A1A(z)−1A2A(z)−1z2A2

− A(z)−1A1A(z)−1z2A2A(z)−1A2

+ A(z)−1A1A(z)−1A2A(z)−1z4A4

− A(z)−1A1A(z)−1z4A4A(z)−1A2

− A(z)−1A1A(z)−1A2A(z)−1z4A4

+ A(z)−1A1A(z)−1z4A4A(z)−1A2

)
= φ

(
A(z)−1A1A(z)−1A2A(z)−1A(z)

− A(z)−1A1A(z)−1A(z)A(z)−1A2

)
− φ

(
A(z)−1A1A(z)−1A2A(z)−1z4A4

− A(z)−1A1A(z)−1z4A4A(z)−1A2

)
= φ

(
A(z)−1A1A(z)−1A2 − A(z)−1A1A(z)−1A2

)
− z4φ

(
A(z)−1A1A(z)−1A2A(z)−1A4

− A(z)−1A1A(z)−1A4A(z)−1A2

)
=

−z4

3
I124.

A similar calculation shows that I123
z4

= −I124
z3

= I134
z2

= −I234
z1

. Since

φ
(
ω3

A

)
= I123 dz1 ∧ dz2 ∧ dz3 + I124 dz1 ∧ dz2 ∧ dz4

+ I134 dz1 ∧ dz3 ∧ dz4 + I234 dz2 ∧ dz3 ∧ dz4,

it follows that φ(ω3
A) = −I123

z4
S(z). Note, if z4 = 0 then the above calculation

shows I123 = 0. Hence g(z) = −I123
z4

is holomorphic on P c(A). �

It is not hard to see that the function g in Theorem 2.3 is invariant under
similarity. That is if B = (B1,B2,B3,B4) is another tuple of elements such
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that Ai = sBis
−1 for some invertible element s and all i, then P (A) = P (B)

and gA = gB . Properties of g appear to be an interesting topic, which we will
take up in another paper. There is no doubt that g can be more explicit for
certain simpler algebras B. One example is given in [Ya] for the case B is the
algebra of 2 × 2 matrices.

3. Projective spectrum of a free n-tuple of Haar unitary elements

In this section, we take another look at the case when f(z) is the linear
function z1A1 + z2A2 + · · · + znAn. We will compute σ(f) when A is a tuple
of free Haar unitaries.

Let M denote a finite von Neumann algebra with faithful normal trace
τ (cf. [KR]). Recall that ‖A‖2 = τ(A∗A)1/2 for every A ∈ M . We say that
a unitary element U in M is a Haar unitary element (with respect to τ ) if
τ(Um) = 0 when m �= 0. For example, any of the standard unitary generators
in the von Neumann algebra of a free group is a Haar unitary element.

We now describe ∗-freeness with respect to τ in the sense of Voiculescu
(cf. [Vo]). A family of ∗-subalgebras (Ai)i∈Λ of M with I ∈ Ai is ∗-free (with
respect to τ ) if products of centered variables such that consecutive ones are
from different algebras have expectation zero, more precisely if

τ(a1 a2 · · · an) = 0

whenever τ(aj) = 0 for 1 ≤ j ≤ n and aj ∈ Ai(j) where i(j) �= i(j + 1) for
1 ≤ j ≤ n − 1. A family (xi)i∈Λ of elements in M is called ∗-free if the family
of unital von Neumann subalgebras ({1, xi} ′ ′)i∈Λ they generate is ∗-free in the
above sense. The simplest example of a ∗-free family is the set of standard
unitary generators in the group von Neumann algebra of a free group.

Also recall that an element T ∈ M is called R-diagonal if T has polar
decomposition U |T |, where U is a Haar unitary ∗-free from |T | with respect
to τ . We recall (Lemma 3.9 of [HL]) that if A ∈ M is an arbitrary element
and U ∈ M is a Haar unitary element ∗-free from A, then the element AU
and UA are both R-diagonal elements.

The crucial element in our computation is Proposition 4.6 of [HL]. We only
use a small part of this result and so state only what we need, for brevity.

Proposition 3.1 (Proposition 4.6 of [HL]). Let U,H be elements in M
that are ∗-free with respect to τ , with U Haar unitary and H positive.

(i) If H is invertible, then

σ(UH) =
{
z ∈ C :

∥∥H −1
∥∥−1

2
≤ |z| ≤ ‖H‖2

}
;

(ii) If H is not invertible, then

σ(UH) =
{
z ∈ C : |z| ≤ ‖H‖2

}
.
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In what follows, we consider the function f(z) =
∑n

i=1 ziUi. Let

Ωj =
{
z ∈ C

n : 2|zj |2 > |z|2
}
, j = 1,2, . . . , n.

Proposition 3.2. Let U = (U1,U2, . . . ,Un) be a tuple, where (Ui)i∈{1,2,...,n}
is a ∗-free family of Haar unitary elements in M . Then

σc(f) =
n⋃

j=1

Ωj .

Proof. For simplicity, we prove the result for the case U = (U,V,W ) where
U,V,W are free Haar unitary elements. The proof for the general case is
similar.

Let (z1, z2, z3) be any point in C
3 that is not the origin. Without loss

of generality, we assume |z1| ≥ |z2| ≥ |z3|. A(z) is invertible if and only if
U(z1I + z2U

∗V + z3U
∗W ) is invertible, and it is the case if and only if −z1 /∈

σ(z2U
∗V + z3U

∗W ). Since U ∗V and V ∗W are ∗-free,

z2U
∗V + z3U

∗W = U ∗V
(
z2I + z3V

∗W
)

is R-diagonal by Lemma 3.9 of [HL]. Hence, σ(z2U
∗V +z3U

∗W ) is determined
by Proposition 4.6 of [HL] as follows:
Case 1. If H := |z2I + z3V

∗W | is not invertible, then

σ
(
z2U

∗V + z3U
∗W

)
=

{
w ∈ C : |w| ≤ ‖H‖2 =

√
|z2|2 + |z3|2

}
.

Case 2. If H is invertible, then |z2| > |z3| and

σ
(
z2U

∗V + z3U
∗W

)
=

{
w ∈ C :

(
|z2|2 − |z3|2

)1/2 ≤ |w| ≤
(

|z2|2 + |z3|2
)1/2}

.

Therefore, −z1 /∈ σ(z2U
∗V + z3U

∗W ) if and only if |z1|2 > |z2|2 + |z3|2
or |z2|2 − |z3|2 > |z1|2. But |z2|2 − |z3|2 > |z1|2 contradicts the assumption
that |z1| ≥ |z2| ≥ |z3|. So in conclusion, for a nonzero triple (z1, z2, z3) with
|z1| ≥ |z2| ≥ |z3|, A(z) is invertible if and only if z ∈ Ω1. The theorem is then
established by symmetry of A. �

Example 3.3. We now compute τ(ωf ) for f(z) =
∑n

i=1 ziUi, where Ui are
∗-free Haar unitary elements with respect to τ . On Ω1 = {z ∈ C

n : 2|z1|2 >
|z|2},

f −1(z)df(z) =

(
n∑

i=1

ziUi

)−1( n∑
i=1

Ui dzi

)

=

(
n∑

i=1

zi

z1
U ∗

1 Ui

)−1(
1
z1

U ∗
1

)
U1

(
n∑

i=1

U ∗
1 Ui dzi

)

=

(
n∑

i=1

zi

z1
U ∗

1 Ui

)−1( n∑
i=1

U ∗
1 Ui

dzi

z1

)
.
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Denoting zi+1
z1

by ξi, i = 1,2,3, . . . , n − 1, one sees that z ∈ Ω1 if and only
if |ξ| < 1. Using the fact

dξi =
dzi+1

z1
− zi+1

dz1

z1
,

we have

ωf =

(
I +

n−1∑
i=1

ξiU
∗
1 Ui+1

)−1(n−1∑
i=1

U ∗
1 Ui+1 dξi +

dz1

z1

(
I +

n−1∑
i=1

ξiU
∗
1 Ui+1

))

=

(
I +

n−1∑
i=1

ξiU
∗
1 Ui+1

)−1(n−1∑
i=1

U ∗
1 Ui+1 dξi

)
+

dz1

z1
I.

For simplicity, we denote
∑n−1

i=1 ξiU
∗
1 Ui+1 by W (ξ). Then

τ(ωf ) =
dz1

z1
+ τ

(
I + W (ξ)

)−1
dW (ξ).

When |ξ| is small enough such that |W (ξ)| < 1, (I +W (ξ))−1 =
∑∞

j=0(−1)j ×
W j(ξ), and hence τ((I + W (ξ))−1 dW (ξ)) = 0 because U1,U2, . . . ,Un are
Haar unitaries. Since τ((I + W (ξ))−1 dW (ξ)) is holomorphic, τ((I +
W (ξ))−1 dW (ξ)) = 0 for |ξ| < 1. In conclusion, on Ω1, τ(ωf ) = dz1

z1
. By sym-

metry, τ(ωf ) = dzi

zi
on Ωi for each i.

It is in fact not hard to see that the de Rham cohomology space H1(Ωi,C) =
C

dzi

zi
.

References

[BES] H. Bart, T. Ehrhardt and B. Silbermann, Trace conditions for regular spectral
behavior of vector-valued analytic functions, Linear Algebra Appl. 430 (2009),
1945–1965. MR 2503944

[Ch] S. S. Chern, Complex manifolds without potential theory, 2nd ed., Springer-Verlag,
New York, 1979. MR 0533884

[Da] K. Davidson, C∗-algebra by examples, American Mathematical Society, Provi-
dence, RI, 1996.

[Do] R. G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Springer,
New York, 1998. MR 1634900

[GS] I. C. Gohberg and E. I. Sigal, An operator generalization of the logarithmic residue
theorem and the theorem of Roché, Math. Sb. 13 (1971), 603–625.
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