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ON THE SPECTRUM OF BANACH ALGEBRA-VALUED
ENTIRE FUNCTIONS

J. P. BANNON, P. CADE AND R. YANG

ABSTRACT. In this paper, we investigate a notion of spectrum
o(f) for Banach algebra-valued holomorphic functions on C".
We prove that the resolvent o°(f) is a disjoint union of domains
of holomorphy when B is a C*-algebra or is reflexive as a Banach
space. Further, we study the topology of the resolvent via consid-
eration of the B-valued Maurer—Cartan type 1-form f(z) ™" df(z).
As an example, we explicitly compute the spectrum of a linear
function associated with the tuple of standard unitary generators
in a free group factor von Neumann algebra.

0. Introduction

In this paper, B stands for a Banach algebra with a unit /. For a holomor-
phic function f from a domain 2 C C" to B, we define

o(f):={z€Q: f(2) is not invertible in B}.

o(f) will be called the spectrum of f in this paper. The term is justified by
the special case f = A — zI for which o(f) =0(A). Since the set of invert-
ible elements in B is open, o°(f) :=Q\ o(f) is open, hence o(f) is relatively
closed in 2. To avoid complications caused by €2, we will confine ourselves to
the case 0 =C". This work is motivated by interest in certain connections
between geometric and topological properties of o(f) and the structure of
B. A classical form of this work is the so-called analytic Fredholm theorem
which states that if ¢ is a holomorphic map from a domain Q C C to the set
of compact operators on a Banach space, then (I + g) is an analytic subset
of 2, meaning it is either the whole Q or a discrete subset of Q. A residue
theory concerning the integral of the B-valued 1-form f~1(2)df(z) was carried
out by Gohberg and Sigal ([GS]), and by Bart, Ehrhardt and Silbermann in
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a series of papers, see [BES] and the references therein. Multivariable studies
along this line seem scarce. In the case f(z) = 2141 + 2242 + -+ + 2, 4,,
where A; € B for each j, o(f) is called the projective spectrum of the tuple
A= (A41,As,...,A,;) and is studied by the first author in [Ya]. This paper
generalizes the work in [Ya]. Indeed, it is a bit surprising to see that the re-
sults that hold for linear functions still hold for general holomorphic functions.
Moreover, we will manage to compute the projective spectrum for a tuple of
free Haar unitary elements, that is, a tuple of unitary elements in a finite von
Neumann algebra M with trace 7 that is free with respect to 7 in the sense of
Voiculescu [Vo], and such that each unitary U in the tuple satisfies 7(U™) =0
if m#0.

1. Geometric properties of o¢(f)

We first look at two examples.

ExXAMPLE 1.1. If B is the k x k matrix algebra My (C), then f(z) is not
invertible if and only if det f(z) =0. Hence, o(f) is the hypersurface {z €
C™: det f(2) =0}.

ExXAMPLE 1.2. Suppose B is Abelian, we let M be the maximal ideal space
of B. Then f(z) is not invertible if and only if there exists a ¢ € M such that
#(f(2)) =0. Denoting the hypersurface {z € C" : ¢(f(z)) =0} by S(¢, f), we
have

a(f)=J S5

peM

If B is a commutative sub-algebra of square matrices, then o(f) is a finite
union of hypersurfaces. For general commutative Banach algebra, o(f) may
be an uncountable union of hypersurfaces.

Let B be a subalgebra of a Banach algebra A. If for every element b € B
that is invertible in A then b=! € B we say B is inversion-closed.

THEOREM 1.3. Let 'H be a reflexive Banach space, and B be an inversion-
closed Banach sub-algebra of B(H). If f is a B-valued entire function, then
every path connected component of o°(f) is a domain of holomorphy.

Proof. We let U be a path connected component of o¢(f), and A be a
point in OU. We will show by contradiction that there exists a ¢ € B*
such that ¢(f(z)~!) does not extend holomorphically to any neighborhood
of A.
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Suppose on the contrary for every ¢ € B*, ¢(f(2)™') extends holomorphi-
cally to a neighborhood of A. Then for every x € H and s € H*,
¢:,5(C)=s(Cz), CeB

defines a bounded linear functional on B. Set F,(z,s) := ¢, s(f(z™)71).
Since ¢, s(f(2)7!) extends holomorphically to a neighborhood of A,
limy;, 00 Fin (2, 8) exists for every z and s. Define

Fo(z,s)= lim F,,(x,s),

and it follows from the Uniform Boundedness Principle that || F, || < M,Vm,
for some positive constant M. In particular F, is a bounded bilinear form on
H x H*. Hence, if we fix x then F(x,-) is in H**. Now since H is reflexive,
there is a unique B(x) € H such that

Fu(z,s)=s(B(z)) VxeH,scH"
One checks easily that B is a bounded linear operator on B. Further,
s(Bf(Nz) = Fao (f(N)z, 5)
= lim F,(f(\)z,s)

= lim s(f(=")"" f(N)e)
= lim s(f(zm)fl(f(z(m)) + ) = f(z1))=)

=s(@)+ lim s(F(=") " (fO) = 1 (z™))e)
=s(z)+ mlgnOO Fo((f(N) - f(z(m)))x, s).
Since
|[Fn (FO) = £(20)), )| < M| (FO0) = £ (1)) ][
and f is continuous, s(Bf(\)x) = s(x),Vx € H,s € H*, which implies that
Bf(\)=1.

On the other hand, for a C' € B(H), its transpose B* is an operator on H*
defined by B*(s)(z) = s(Bx). Then, applying similar arguments as above we
have

s(f(A\)Bz) = F (z, f*(A)s) = s(z),
and hence f(A\)B = 1. This contradicts with the fact f()) is not invertible.
O

In the case where B is a C*-algebra, it can be identified (via *-isomorphism)
with a C*-subalgebra of the set of bounded linear operators on a Hilbert space
(cf. Davidson [Da], Kadison and Ringrose [KR]), and it is inversion-closed (cf.
Douglas [Do]). We therefore have the following corollary.

COROLLARY 1.4. If B is a C*-algebra, then every path connected component
of o¢(f) is a domain of holomorphy.
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The proof of Theorem 1.3 can be modified to work for other Banach alge-
bras. For example, when B is reflexive as a Banach space. In this case, we
define

F(s)= s(f(zm)_l) Vs € B*.
By the Uniform Boundedness Principle and an argument similar to that in

the proof of Theorem 1.3, {F,,} is bounded and the functional Fi.(s):=
lim,,— 00 Fin(s) is in B**. If B = B**, then there exists a B € B such that

Foo(s) = ¢(B) Vse B

Now for a fixed C' € B and any ¢ € B* we consider the bounded linear func-
tional ¢¢ on B defined by

dc(X) :=¢(XC), XeB.
Then
d(Bf(N) = Foo(ds(n))
= lim Fn(dr)
= lim_o(f(=™) " FV)
=o(I)+ lim ¢(F(=")" (fO) = f(z™)))
=o(I) + lim Fin(dcpn-pzom))
=o(I),
which implies Bf(\) =I. Defining
¢c(X):=¢(CX), XeB,

and using the same argument we have f(A\)B =I. We summarize this obser-
vation in the next corollary.

COROLLARY 1.5. If B is reflexive (as a Banach space), then o°(f) is a
disjoint union of domains of holomorphy.
2. On the topology of o¢(f)

Define wy(z) = f(2) ' df(z). It appears that wy(z) contains much topolog-
ical information about ¢¢(f). First of all, differentiating both sides of

f) T ) =1
one obtains
d(f(2)7") =—f(x) " df(2) f(2) 7,
and it follows that

(2.1) duog(z) = d(f(=) ") NdF(2) = —wp(2) Awy (2).
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Bounded linear functionals on B are good tools to decode it. First, one

observes that for a ¢ € ST,
Z zj
= Zj

is a holomorphic 1-form on o¢(f). Likewise, for a k-linear functional F,
F(wf(z),wf(2),...,ws(z)) is a holomorphic k-form on o¢(f).
A k-linear functional F' on B is said to be invariant if

(22) F(ah az, ..., ak) = F(ga/lg_17ga/2.g_l7 s agak?g_l)
for all ai,as,...,a; in B and every invertible operator g. One sees that the
trace is an invariant 1-linear functional on Sj.

ProprosSITION 2.1. If F is an invariant k-linear functional on B then
F(wf(z),wf(2),...,ws(z)) is a closed k-form on o°(f).

The proof of Proposition 2.1 is a general argument based on the identity
(2.1). Similar argument was used in Chern characteristic classes (cf. [Ch]).

For g of the type g =1 — ¢’ with ||¢’|| <1, we consider the power series
expansion in ¢’ of the right-hand side of (2.2). By (2.2), the terms involving
(¢')™ for m > 1 are all zero. In particular, the first order term is zero, which
implies that

k
(2.3) ZF(al,ag,...7g’ai—aig',...7ak):O.

i=1
By linearity (2.3) remains true when aq,as,...,a; are B-valued differential
forms and ¢’ is any element in B. Now if a1, as,...,a, are B-valued 1-forms,

one checks that for any 1 < s <n,
F(al,ag,...,g’dzs/\ai+aiAg’dzs,...,ak)
:F(al,ag,...,g’ai —aig’,...,ak)(—l)k7i+1 dzs,
hence by (2.3)

i(—l)i_lF(al,az, g dzg Nag+a; ANg'dz, .. ar) =0.
i=1
Clearly, the above equality remains true if ¢’ dz, is replaced by any B-valued 1-
form. So when ay,as,...,a; and w are all B-valued 1-forms, (2.3) implies that
(2.4) i(—l)iilF(al, as,...,wAa;+a; Nw,...,a) =0.
Now we clr:(ik that if F' is a bounded invariant k-linear functional on B,
then

dF (wy(2),wp(2),...,ws(2)) =0,
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k=1,2,...,n. The key is identity (2.1).

dF (wy(z),wf(z),...,w(z))

=Y (1) F(wr(2),ws (), d ﬁ@ s wi(2))

=1

ith place
k .
= Z(—l)l_lF(wf(z),wf(z), cwi(2) Awp(2), .. wr(2)).
i=1
Letting ai,as,...,a; and w be all equal to wf(z) in (2.4), we obtain
dF (wy(z),wf(z),...,w(z)) =0,

and the proof is complete.

EXAMPLE 2.2. Now we consider the case when B is a Banach algebra with
a trace tr. It is easy to see that

F(ay,as,...,a) =tr(aras---ag)
is an invariant k-linear functional on B, and
F(wf(z), ... ,wf(z)) = tr(w’;(z))

is a closed k-form on o°(f). If k is even, say k = 2m where m > 1, then
because of the equality dws(z) = —ws(z) Awys(2),

tr(w’;(z)) =(-nm tr((dwf(z))m)
(=)™ dtr (wy (2) (dwp(2)) ™)
(—1)*m dtr((wf(z))2m_1)

=0.
In the case f is a linear function, something interesting can be said about
tr(wi’c(z)). Consider f(z) = 2141 4+ 2242 + 2343+ 24 A4. To be consistent with
notions in [Ya], we denote o(f) by P(A), and denote wy(z) by wa(z).

THEOREM 2.3. If A= (A4, As, Az, Ay) is a 4-tuple of elements in a Banach
algebra B with trace ¢, then

(2.5) ¢(wi) = 9(2)S(2),
where S(z) = z1 dza Ndz3s Ndzg — 20 dz1 Ndzs Ndzy + 23 dz1 Ndzo Adzg — 24 dzq A
dzo ANdzs, and g(z) is holomorphic on P¢(A).

Proof. Recall that for A,C € B and x € C we have ¢(AC) = ¢(CA) and

d(xA) =x¢(A). Using these properties, a straightforward calculation yields
the formula

(2.6) o(Wh) = > Iykdz Adz Adz.
1<i<j<k<4
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Where
Iijk =3- ¢(A(Z)_lAiA(Z)_lAjA(Z)_lAk - A(Z)_lAiA(Z)_lAkA(Z)_lAj).

Furthermore, we have the following identity, IZB = %1324, this is seen by
the following calculation.

z
331123 = z30(A

2) LA A(2) T AR A(2) T A

_

_|_
b
3/
;:
::r>
3/
ﬁzH
b
'S
N
»—Ag
&

—A(z)” 1A 1A(2)” 1A(z)A z)_lAg)

—o(A(z) T A A(2)
—A(2) 1A A(2) 1z4A4A(z) 145)
= ¢(A(2) T ALA(2) T Az — A(2) T AL A(2) T As)
— 210(A(2) TALA(2) T As A(z) T Ay
)1 1

—A(2) AL A(z) T ALA(2) T Ay)
—24
=—1194.
3 112
A similar calculation shows that I;—ff = %;24 = 1;24 = *Z“. Since

(b(wi) = l93dz1 Ndzo ANdzs + T1o4dz1 ANdzo N\ dzy
+ 1134 le A ng AN dZ4 + 1234 dZQ A ng AN dZ4,

it follows that ¢(w?) = _1123 S(z). Note, if z4 =0 then the above calculation
shows I193 =0. Hence g(z ) 223 is holomorphic on P¢(A). O

It is not hard to see that the function g in Theorem 2.3 is invariant under
similarity. That is if B = (Bj, Be, B3, By) is another tuple of elements such
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that A; = sB;s™! for some invertible element s and all i, then P(A) = P(B)
and g4 = gp. Properties of g appear to be an interesting topic, which we will
take up in another paper. There is no doubt that g can be more explicit for
certain simpler algebras B. One example is given in [Ya] for the case B is the
algebra of 2 x 2 matrices.

3. Projective spectrum of a free n-tuple of Haar unitary elements

In this section, we take another look at the case when f(z) is the linear
function z1 A1 + 29045 + -+ + 2, A,,. We will compute o(f) when A is a tuple
of free Haar unitaries.

Let M denote a finite von Neumann algebra with faithful normal trace
7 (cf. [KR]). Recall that ||A|ls = 7(A*A)Y/? for every A€ M. We say that
a unitary element U in M is a Haar unitary element (with respect to 7) if
7(U™) =0 when m # 0. For example, any of the standard unitary generators
in the von Neumann algebra of a free group is a Haar unitary element.

We now describe x-freeness with respect to 7 in the sense of Voiculescu
(cf. [Vo]). A family of x-subalgebras (A;);en of M with I € A; is x-free (with
respect to 7) if products of centered variables such that consecutive ones are
from different algebras have expectation zero, more precisely if

T(CLl ag - -- an):()

whenever 7(a;) =0 for 1 < j <n and a; € A;¢;) where i(j) #i(j + 1) for
1<j<n-—1. A family (z;);ea of elements in M is called *-free if the family
of unital von Neumann subalgebras ({1, z;}”);ca they generate is *-free in the
above sense. The simplest example of a *-free family is the set of standard
unitary generators in the group von Neumann algebra of a free group.

Also recall that an element T € M is called R-diagonal if T has polar
decomposition U|T|, where U is a Haar unitary -free from |T'| with respect
to 7. We recall (Lemma 3.9 of [HL]) that if A€ M is an arbitrary element
and U € M is a Haar unitary element *-free from A, then the element AU
and UA are both R-diagonal elements.

The crucial element in our computation is Proposition 4.6 of [HL]. We only
use a small part of this result and so state only what we need, for brevity.

PROPOSITION 3.1 (Proposition 4.6 of [HL]). Let U,H be elements in M
that are *-free with respect to 7, with U Haar unitary and H positive.

(i) If H is invertible, then
11
o(UH) = {z eC: ||H 1H2 <z < ||H||2},
(ii) If H 1is not invertible, then
c(UH)={z€C: |2| < | H|:}.
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In what follows, we consider the function f(z)=>""_, z;U;. Let
O ={zeC": 252>z}, j=12...,n

PROPOSITION 3.2. Let U = (Uy,Us, ..., Uy) be a tuple, where (Us)icqi,2,... n}
s a x-free family of Haar unitary elements in M. Then

o(f)=J 9.
j=1

Proof. For simplicity, we prove the result for the case U = (U, V, W) where
U,V,W are free Haar unitary elements. The proof for the general case is
similar.

Let (21,22,23) be any point in C3 that is not the origin. Without loss
of generality, we assume |z1| > |22| > |23]. A(z) is invertible if and only if
U(z11 + 2U*V 4 2sU*W) is invertible, and it is the case if and only if —z; ¢
0(2U*V + 23U*W). Since U*V and V*W are *-free,

22UV + 23U W = U*V(ZQI + ZgV*W)
is R-diagonal by Lemma 3.9 of [HL]. Hence, o (22U*V + z3U*W) is determined
by Proposition 4.6 of [HL] as follows:
Case 1. If H := |zl 4+ 23V*W| is not invertible, then

o(2U*V + 23U W) ={weC: |w| < ||H|2 = v/|22]> + | 23]}

Case 2. If H is invertible, then |z3| > |23] and
* * 2 2
o (22U + 23U W) = {w e C: (|22 — |23]2)""* < | < (|22 + |2s]?) ' /* ).

Therefore, —z1 ¢ o(22U*V + 23U*W) if and only if |2z1]? > |22| + |23/?
or |z2|% — |23]% > |21|%. But |22]® — |23]2 > |21]? contradicts the assumption
that |z1] > |22] > |23]. So in conclusion, for a nonzero triple (z1,22,23) with
|z1] > |z2| > |23], A(2) is invertible if and only if z € ;. The theorem is then
established by symmetry of A. O

n

EXAMPLE 3.3. We now compute 7(wy) for f(z) =3, z;U;, where U; are
x-free Haar unitary elements with respect to 7. On Q; ={z€ C": 2|z |> >

2%},
n -1 n

i=1
n -1 n

=3 Zui; <iU*>U N UiUdz
i:lzlll o 11‘:1111

—-1
“L N " vy A2
(i) (Brns)
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Denoting % by &, i=1,2,3,...,n — 1, one sees that z € Q; if and only
if |¢] < 1. Using the fact
dzi+1 le

d&: = — 2+l
21 Z1

we have

-1 n—1 dZ n—1
ZUfUin&Jr?ll I+Z§iUikUi+1
i=1 i—1

1=

n—1
wy= I+ Z&UTUZ+1
i=1
-1 n—1
d
N UrUide ) + 2L
i=1 “1

n—1
I+ &UiUin

i=1

For simplicity, we denote 37— &UU;+1 by W(€). Then

d _
rw) =TT+ W(©) T AW (E).
When [¢] is small enough such that [W(£)[ <1, (I+W(£))™" =3"72,(—1)7 x

Wi(€), and hence 7((I + W(£))~tdW (€)) =0 because Uy,Us,...,U, are
Haar unitaries.  Since 7((I + W(£))"1dW(€)) is holomorphic, 7((I +
W (€)1 dW (€)) =0 for |¢] < 1. In conclusion, on Qy, T(wys) = %L, By sym-

A

metry, 7(wy) = Z* on §; for each i.
It is in fact not hard to see that the de Rham cohomology space H*(§2;,C) =
C4z

zi "
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