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FROBENIUS AMPLITUDE, ULTRAPRODUCTS, AND
VANISHING ON SINGULAR SPACES

DONU ARAPURA

ABSTRACT. A general Akizuki-Kodaira—Nakano vanishing theo-
rem is proved for a singular complex projective variety by posi-
tive characteristic techniques. The passage to characteristic zero
is handled using ultraproducts.

When X is a singular complex algebraic variety, Du Bois [Du] defined a
complex of sheaves QJX which plays the role of the sheaf of regular j-forms
on a nonsingular variety. For example, if X is a projective variety, then
H'(X,C) decomposes into a sum @@ H*~7 (X, Q%) refining the classical Hodge
decomposition. Our goal is to prove a general vanishing theorem that for any
complex of locally free sheaves on a singular projective variety H'(X, Q% ®
F*)=0 for i +j > dim X + ¢(F*), where the Frobenius ampltitude ¢(F*)
refines the invariant introduced in [A1]. When combined with the bounds on ¢
given in [A1], [A2], we recover generalizations of the Akizuki-Kodaira—Nakano
vanishing theorem due to Le Potier, Navarro Aznar and others. The vanishing
theorem is deduced from an extension of the Deligne-Illusie decomposition
[DI] to Du Bois’ complex. This also leads to another proof of the Hodge
decomposition in the singular case.

In the first couple of sections, we reexamine the definition of Frobenius
amplitude. It is most natural over a field of characteristic p > 0, and we do
not change anything here. In our earlier work, we extended the notion into
characteristic 0 by essentially taking the supremum of ¢ over all but finitely
many mod p reductions. In this paper, we relax the definition by replacing
“all but finitely many reductions” by “a large set of reductions”. The result is
potentially smaller (i.e., better) than before. The precise definition depends
on making a suitable choice of what a large set of primes should mean. For
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1368 D. ARAPURA

the choice to be suitable, we require that the collection of large sets forms
a filter which is non principal in the appropriate sense. We can then recast
the definition of Frobenius amplitude in terms of ultraproducts with respect
to ultrafilters containing this filter. Since the use of ultraproducts is not that
common in algebraic geometry, we include a brief EGA-style treatment of
them. We should point out that this discussion is not strictly necessary for
the main result. Readers who prefer to do so can jump to the final section
and substitute the original definition for ¢ whenever it occurs.

1. Ultraproducts of schemes

Recall that a filter on a set S is a collection of nonempty subsets of S
which is closed under finite intersections and supersets. A property will be
said to hold for almost all s € S, with respect to a fixed filter F, if the set
of s for which it holds lies in F. An ultrafilter is a filter which is maximal
with respect to inclusion. Equivalently, an ultrafilter is a filter & such that
for any T'C S either T €U or S —T €U. For example, the set of all subsets
containing a fixed s € S is an ultrafilter. Such examples, called principal
ultrafilters, are not particularly interesting. If S is infinite the set of cofinite
subsets (complements of finite sets) forms a nonprincipal filter. By Zorn’s
lemma, this can be extended to a non principal ultrafilter. Some results
depend crucially on the filter being an ultrafilter, so to avoid confusion, we
will reserve U exclusively for an ultrafilter in what follows.

Suppose that F is a filter on S. Given a collection of Abelian groups
(respectively, commutative rings) A, indexed by S, the set Ir C [], Ay of
elements which are zero for almost all s forms a subgroup (respectively, ideal).
The quotient [[As/F =[] As/IF is their filter product. (This is commonly
referred to as the reduced product, but this would be too confusing when
applied to commutative rings and schemes.) The filter product is called an
ultraproduct when F =U is an ultrafilter. Given an element of a € [[ As/F
represented by a sequence (as) € [[As, following [S3], we will refer to the
elements as as approximations to a.

PROPOSITION 1.1. If each As is a field then any maximal ideal in [] As is
giwen by I, for some ultrafilter U on S. All prime are mazximal. Suppose that
P is a property expressible by a set of first order sentences in the language
of fields (for example that the field is algebraically closed or has characteris-
tic=mn). If P is satisfied in A for almost all s with respect to an ultrafilter U,
then P is satisfied in [[ As/U.

Proof. For f €[ As, let 2(f)={s|fs =0}. One has 2(fg) = 2(f) Uz(g)
and z(af + Bg +vfg) = 2(f) N z(g) for appropriate coefficients depending
on f and g. From this, it follows that for any ideal I C [[ A5, F = z(I) is
a filter. One can also check that if F' is a filter, then Ir = {f | 2(f) € F'} is
an ideal, such that z(Ir) = F and Iy = I. Therefore, we obtain an order
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preserving bijection between the sets of ideals and filters. This proves the first
statement. Suppose that F' is a filter which is not an ultrafilter. Then there
exists a subset 7' C S such that 7,5 — T € F [BS, chap. I, Lemma 3.1]. Let 7
be the characteristic function of T’

(1 ifseT,
s=10 otherwise.

Then it follows that 7,1 — 7€ Ir. As 7(1 —7) =0, Ir is not prime. This
implies that prime ideals necessarily arise from ultrafilters. The last statement
is a special case of Los’s theorem in model theory [BS, chap. 5§2]. O

Filter products can be taken for other structures. For example, [[N/F will
inherit the structure of a partially ordered commutative semiring. By Los’s
theorem, this satisfies the first order Peano axioms if 7 =U is an ultrafilter.
In particular, it is totally ordered. Under the diagonal embedding, N gets
identified with an initial segment of [[ N/U. The elements of the complement
can be thought of as infinitely large nonstandard numbers.

The basic references for scheme theory are [EGA] and [H]; the first ref-
erence is a bit better for our purposes, since it has less reliance on the
noetherian condition. To simplify the discussion, all schemes should be as-
sumed to be separated unless stated otherwise. Given a collection of affine
schemes {Spec A, }scs, Spec([ [, As) is their coproduct in the category of affine
schemes, although not in the category of schemes unless S is finite. This is
already clear when A, are all fields, [[,Spec A, =S while Spec(]J], As) is
the set of ultrafilters on S by the previous proposition. In fact, as a space,
Spec([ [, As) is the Stone-Cech compactification of S. This is a very strange
scheme from the usual viewpoint (it is not noetherian. .. ), but this is precisely
the sort of construction we need. So it will be convenient to extend this to
the category of all separated schemes.

PROPOSITION 1.2. There is a functor {Xs}ses — \/, Xs from the category
of S-tuples of separated schemes to the category of separated schemes, such
that it takes a family of open immersions to an open immersion and

\/ Spec As = Spec (H AS> .

Moreover, there are canonical morphisms Xy — \/ X induced by projection
[1As — As for affine schemes. Given a collection of quasi-coherent sheaves
Fs on X, we have a quasi-coherent sheaf \/S Fs on \/S X, which restricts to
Fs on each component X.

Proof. Choose affine open covers {Us; = Spec Ay} e, for each X, Af-
ter replacing each Jg by the maximum of the cardinalities of J, and then
allowing repetitions Us;, = Ug j,,, = --- if necessary, we can assume that

Js = J is independent of s. Then \/, X, is obtained by gluing Spec(]]; As;)
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together. A refinement of the open cover {U; } can be seen to yield an isomor-
phic scheme. So the construction does not depend on this. The projections
Spec([[, As;j) — Asj patch to yield canonical maps X, — \/ X.

Finally, given Fs = J\?; on Spec A; we construct F =[] Mj; on the above
cover, and then patch. O

We refer to \/ X as the affine coproduct. Of course, we have a morphism
[1Xs — V X, from the usual coproduct, but this usually is not an isomor-
phism as we noted above.

Given a scheme Y, let ¥ CY be a set of points. Define

B(2) =Spec [ ] k(v),
yeD
where k(y) are the residue fields. By Proposition 1.1, the points of 3(X) are
necessarily closed, and they correspond to ultrafilters on X. As a topologi-
cal space, this can be identified with the Stone-Cech compactification of 3.
The embedding ¥ C 3(X) maps a point to the associated principal ultrafilter.
Nonprincipal ultrafilters give points on the boundary.

LEMMA 1.3. IfY is separated, there is a canonical morphism ¢: B(Y)—Y
of schemes induced by the canonical homomorphism

A— T[] km)

meESpec A

on any affine open set Spec ACY.
Proof. This is follows immediately by choosing an affine open cover. O

We will call a subset X CY separating if 5(X) — Y is injective on structure
sheaves. For example, ¥ =Y is separating when it is reduced, and the set of
closed points Clsd(Y") is separating if in addition Y is Jacobson. The residue
field at an ultrafilter &/ on ¥ regarded as point in §(X) is none other than the
ultrapoduct k(U) =]]k(y)/U. Let

Yy =Speck(U) — B(X) — A(Y)

be the corresponding map of schemes. Let us call an ultrafilter on 3, or the
corresponding point of 3(X), pseudo-generic if it contains all nonempty opens
of ¥ with respect to the topology induced from the Zariski topology on Y.
Such ultrafilters clearly exist by Zorn’s lemma. Pseudo-generic points will
play the role of generic points. The next lemma shows that such points do in
fact dominate the scheme theoretic generic point.

LEMMA 1.4. Suppose that Y is integral and separated and that X CY is
separating. Let U be a pseudo-generic ultrafilter. Then k(U) contains the
function field K(Y). If Y CY is a nonempty open subscheme then Yy =Yy,
where!' ={UeU|UCY' NE}.
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Proof. We can reduce immediately to the case where Y = Spec A, with A a
domain. By assumption the canonical map ¢ : A — [], .5, A/m is injective.
As already noted, L = (]],,cx k(m))/U is a field. An element a € A maps
to zero in L if and only if Uy ={m |a € m} €lU. On the other hand, the
complement Uy = {m |a ¢ m} is open. If it is nonempty, then it would lie in
U leading to the impossible conclusion that ) € . Thus, Uy = () which implies
that ¥(a) =0 and therefore a = 0. Thus, L contains A and consequently its
field of fractions K(Y).

For the second part, we can check immediately that /' is an ultrafilter on
¥ =Y N3, and that projection

I1:w — I] *w)

yex yex’

is an isomorphism modulo I/ and U/’. O

Note that the field k(Uf) is usually much bigger than k(Y).
Given a collection of fields ks indexed by S, and ks-schemes X, we define
their ultraproduct \/ X;s/U by the cartesian diagram

VX, /U V X,

| |

Speck(U) = Spec(] [ ks/U) — Spec[] ks

for any ultrafilter on S. It would more appropriate to call this the ultra-
coproduct, but we have chosen to be consistent with earlier usage. The ultra-
product is clearly functorial in the obvious sense. Note that this construction
makes sense even when U is replaced by a filter, and we will occasionally use
it in the more general setting. In this case the base need no longer be the
spectrum of a field.

We record the following which is an immediate consequence of the con-
struction.

LEMMA 1.5. If, for each s, {Spec As;} ey, is an affine open cover of X,

then
Spec(H Asj. Ok, HkS/U) & Spec (H Asjs/u)
is an affine open cover of \| Xs/U indexed by [[Js/U.

It is easy to see from this, that our ultraproduct coincides with the identi-
cally named notion defined by Schoutens [S2, §2.6]. Let us start by analyzing
the topological properties. By [EGA, Chap. I, 1.1.1.10], a separated scheme
is quasi-compact if and only if it admits a finite cover by open affine schemes.
Let say that the family X is uniformly quasi-compact if each X, is covered
by a fixed number of affine schemes, where the number is independent of s.
The point of the definition is the following.
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COROLLARY 1.6. The ultraproduct of a uniformly quasi-compact family of
schemes is again quasi-compact.

Proof. Suppose that X is covered by N open affine sets {Spec A, ;}, then
the cover {Spec][A,;/U} is indexed by [[{1,...,N}/U which can be iden-
tified (using Los’s theorem for example) with {1,..., N} under the diagonal
embedding. O

Suppose that f: X — Y is a morphism of schemes. Let X, denote the
fibre over y € Y, then we have a commutative diagram

\/yGY Xy —X

l

BY)——Y

We thus get a morphism \/ X, — B(Y") xy X which is generally not an isomor-
phism. To see this, let Y = Spec A and X = Spec A[z]. Then the morphism
corresponds to the injective map of algebras

(TT#0m) )] =TT (k) )
which is not surjective unless Spec A is finite.

Fix a separating set ¥ C Clsd(Y") and an ultrafilter ¢ on X. We define the
ultra-fibre over U by

Xu :Yu Xﬁ(z) \/Xy: \/ Xy/u,
yeD

where we recall that Y, = Speck(U). This construction can be extended to
filters as well. It will be useful to view the ultra-fibre as a kind of enhanced
fibre. 'We have a morphism to the usual fibre 7 : Xy — Yy Xy X. For a
principal filter corresponding to y € Y, it is easy to see that this gives an
isomorphism Xz = X,. From now on, we will assume that that ¢/ is pseudo-
generic and that Y is integral. Then Yy Xy X =Yy Xgpec i (v) Xy is the
generic fibre X, = Spec K(Y) xy X followed by an extension of scalars. The
map 7 is usually not an isomorphism. The ultra-fibre carries more structure.
Any collection of endomorphisms X, — X, gives rise to an endomorphism of
Xy For example, if the residue fields of the points in ¥ have finite charac-
teristic, we get a Frobenius morphism Fr: X;; — X, by assembling the usual
char(k(y))-power Frobenius maps on the components X,,.

The definition of a (quasi)coherent sheaf on a ringed space can be found in
[EGA, Chap. I, chap 185]. Roughly speaking, a sheaf of modules is coherent
if it is locally finitely presented. (NB: the definition in [H] is only correct
for noetherian schemes.) Given a collection of separated ks-schemes X, and
quasi-coherent sheaves F on X,. We define the quasi-coherent sheaf \/ F, /U
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as the pullback of \/ Fy to \/ Xs/U, for any (ultra)filter &. Even if all the
sheaves Fg are coherent, their ultraproduct need not be. For a counterexam-
ple, we may take a family of locally free sheaves of unbounded rank. However,
the converse statement is true under a finiteness condition.

LEMMA 1.7. Suppose that {Xs}scs is a uniformly quasi-compact family of
schemes, and U is an ultrafilter on S. Any coherent sheaf on \| X /U is given
by \V Fs/U for a collection of coherent sheaves Fy.

We first start with a general sublemma.

LEMMA 1.8. Any coherent sheaf on Spec A is given by M with M finitely
presented.

Proof. When A is noetherian, this is a consequence of [EGA, Chap. I,
1.1.5.1]. The general case is proved the same way. Any quasi-coherent sheaf

F =M for a uniquely determined module M [EGA, Chap. I, 1.1.4.1]. Write
M as a direct limit of finitely generated submodules M = hi>nM A- When F

is coherent, we have F = M, for some A by [EGA, Chap. I, 0.5.2.3]. Thus,
implies that M is finitely generated. Thus, we have a surjection ¢ : Og;ec a4
F. Since kerq is coherent, we see that it is also finitely generated, and this
proves the result. O

Proof of Lemma 1.7. First, assume that X; = Spec A;. Then the sub-
lemma implies that F is given by a finitely presented []As/U-module M.
Fix a presentation matrix (fi; s) € Maty, <, (][] As/U) for M. Then for each s,
let M, be the cokernel of the approximation (f;;s) € Maty,x,(As), and let

Fs = MS. Clearly, M is the ultraproduct of the corresponding modules, and
so F2V F/U.

For the general case, choose an open cover {U; ; = Spec 4; } for each X,
by N open sets. Let F; denote the restrictions of F to U; = \/s U, s/U. Note
that by Corollary 1.6, or more accurately by its proof, {U;}i=1,..  n cover
\/ Xs. We can construct coherent sheaves F;, such that Fly, = \/ F; /U
by the previous paragraph. The identity maps ¢;; : F;|v,; = Fj|u,;, can be
approximated by maps ¢j; s : Fislv,; . — Fjslv,;.. Using Los’s theorem, we
can see that ¢;; s¢;; s = id and the cocycle identity ¢;; s = ¢i;,s¢:j,s holds for
almost all s. For these values of s, we can glue F; , together using with ¢;;
to form a coherent sheaf F, such that Fi|y, , = F; s [EGA, Chap. I, chap 1
3.3.1]. For the remaining s, we can simply take F; = 0. With these choices,
the lemma is clearly satisfied. O

COROLLARY 1.9. A coherent sheaf on the ultra-fibre of a projective mor-
phism is an ultraproduct of coherent sheaves on the fibres.

Proof. The fibres are uniformly quasi-compact. O
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LEMMA 1.10. Given a filter L, set X =\/ Xs/L and F =\/ Fs/L. Then
H{(X,F)2[[H (X, Fs)/L.

Proof. Choose affine open covers {U; s} for each X;. Then we can compute
H'(X,Fs) as the ith cohomology of the Cech complex C® = C*({U; s}, Fs).
Similarly H'(X,F) is the cohomology of

Since modules over a product of fields are flat, we can write
wict) = mi(T]cs) @ I kL
=[[H (c2) @[ ]ks/L
= [[H (X, Fo)/L. O
The cohomology groups H*(X,F) may be infinite dimensional, even when
the sheaves F, are coherent and the schemes are proper. However, we can
assign a generalized dimension dim H*(X Fs) € [[N/U.
Let f: X — Y be a morphism to an integral scheme with ¥ C Y separating.

Suppose that U is a pseudo-generic ultrafilter. Then we have a canonical map
7'+ Xy — X, to the generic fibre.

LEMMA 1.11. Suppose that f: X — Y 1is projective, and Y is noetherian.
If F is a coherent sheaf on X, then H'(Xy, 7" " F) = H (X, F) @ kU4).

Proof. After shrinking X and Y if necessary, we can assume that F is
the restriction of a sheaf 7 on X and that Y = Spec A. Thanks to the
semicontinuity theorem, cf. [H, Chap. III 12.11], by shrinking further, we can
assume that the cohomology of F commutes with base change which means
that H'(X,F’) is a free A-module such that H* (X, F)®k(y) = H (X, F'|x,)
for all 4 and all (not necessarily closed) y € Y. By Lemma 1.10,

H' (Xy,n" F) = [[H(X,,F|x,) /U
=[[H (X, F) ®akly)/U
~ H'(X,F') @4 k()
= H' (X, F) @4 K(Y) @x(y) kU)
~ HY(X,,F) @) kU). O

Let us call a coherent sheaf F on Xy, standard if it isomorphic to F/, :=
7"*F' for some coherent sheaf 7’ on X, where 7’ : Xy — X, is the canonical
map.

COROLLARY 1.12. A standard coherent sheaf on Xy has finite dimensional
cohomology as a k(U)-vector space.
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This corollary is not true for arbitrary coherent sheaves. For any non-
standard natural number N = (N;) € [[N/U, we can define the line bundle
Opy, (N) =\/, Opn (N,)/U. Then H?(Opy (N)) is infinite dimensional in gen-
eral.

A map of standard sheaves will be called standard if it is the pullback
of a map of sheaves on X,,. The category of standard sheaves and maps is
equivalent to the category of coherent sheaves on X, thanks to the following
theorem.

THEOREM 1.13 (Van den Dries—Schmidt). If X — Y is locally of finite type
and U an ultrafilter, then m: Xy — Yy Xy X s faithfully flat.

Proof. Since 7 is evidently affine, this follows from the version given in
[S1, Section 3.1]. O

Standard coherent ideal sheaves on projective space can be described quite
explicitly. The ring []ks[zo,-..,xn]/U is graded by the monoid [[N/U. A fi-
nitely generated homogeneous ideal I C []ks[zo,...,xs]/U with respect to
this grading determines a family of homogeneous ideals I C kq[xo,...,xs)
such that I =[] I,/U [S3, Section 2.4.12]. We can form the associated coher-
ent sheaf T =[] I,/U on P};. Let us say that an element (fs) of [ ks[zo, ...,
x,]/U has finite degree if there exists d € N such that deg fs; < d for almost
all s.

LEMMA 1.14. 7 is standard coherent if I is generated by a finite set of
elements with finite degrees.

Proof. Observe that we have an embedding

(Hks/u) (20, @a) C [ (kslzo, . aa]) /U

under which elements on the left can be identified with finite degree elements.
Thus, the generators of I are polynomials. Therefore, I is the extension of
J=1In(]ks/U)[zo0,...,2n] to the bigger ring, and the same goes for its
localizations. This implies that Z is the pullback of the ideal sheaf associated
to J. (]

As an easy application of all of this, we show that the cohomological com-
plexity of a homogeneous ideal, as measured by the Castelnuovo-Mumford
regularity, can be bounded by a function of the degrees of its generators. Al-
though such results can be obtained more directly with effective bounds [BM],
[L], the proof here is quite short. For other bounds in ideal theory obtained in
the same spirit, see [DS], [S3]. Given an ideal sheaf Z on P}, let I = @PT'(Z())
denote the corresponding ideal and d(I) the smallest integer such that I is
generated by homogeneous polynomials of degree at most d(I).

LEMMA 1.15 (Bayer-Mumford). Given d,n,i,m there exists a constant C
such for any field k and any ideal sheaf T on Py with d(Z) =d, we have
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Rt (PR, Z(m)) < C. In particular, the regularity of T is uniformly bounded by
a constant depending only on d(I) and n.

Proof. Suppose the lemma is false. Then there is an infinite sequence
of examples Z,, ks such that d(Is) =d but hi(Z;(m)) — co. Therefore, 7 =
\/ Z;/U will have infinite dimensional ith cohomology for any non principal
ultrafilter 4. Let N = ("gf{l). By allowing repetitions if necessary, for each
s we can list generators fis,...,fns € ks[Zo,...,2,] with degrees < d for
the ideals I, corresponding to Z,. Then the sequences (f;s) generate the
ideal I corresponding to Z. By the previous lemma 7 is standard. This
implies, by Corollary 1.12; that the cohomology is finite dimensional, which
is a contradiction. O

2. F-amplitude

For the remainder of this paper, we fix a filter £ on the set of prime num-
bers ¥ such that for any p € ¥, there exists L € £ not containing p. The last
condition ensures that any ultrafilter containing £ is necessarily non principal.
The elements of £ are the large sets of primes in the introduction. We could
take for £ the collection of cofinite subsets, or the filter generated by com-
plements of subsets of zero Dirichlet density. Let Os. =[] F,, be the product
of algebraic closures of finite fields. The ultraproduct k(U) = Ox /U, for any
U D L, is an algebraically closed field of characteristic zero with cardinality
2% Therefore, there is a noncanonical isomorphism k(i) = C which we fix
for the discussion below.

Suppose that k is a field of characteristic 0. We can assume without es-
sential loss of generality that it is embedable into C. Let A(k) be the set
of finitely generated Z-algebras contained in k. For each A € A(k), choose a
separating family (defined previously) of maximal ideals m,, € Max(A) with
embeddings A/m, C F,. We assume that these choices are compatible with
the inclusions 4; C A, (the existence of such compatible family is straightfor-
ward). Given an algebraic variety X (with a coherent sheaf F) defined over
k, a thickening of X (and F) over A € A(k) is a flat morphism X — Spec A
(with an A-flat coherent sheaf f') such that X = Speck Xgpeca X (and F is
the restriction of F). A more detailed discussion of thickenings and related
issues can be found in [Al]. For any filter & D £, we can form the ultra-fibre
Xy after identifying ¥ with the set of m,. Since this is independent of the
thickening, we denote it by Xi;. Ditto for Fyy. We will assume that U is
pseudo-generic. As explained earlier, there is a map 7 : Xy — X (such that
Fu is the pullback of F). Given N = (N,) € [[N/U, let Fr™¥ = X;y — Xy be
the morphism given by the pN#th power Frobenius on X,

We recall the original definition of Frobenius or F-amplitude from [Al].
We will denote it by ¢oq to differentiate it from a variant ¢ defined below.



FROBENIUS AMPLITUDE AND VANISHING ON SINGULAR SPACES 1377

Given a locally free sheaf F on a variety X defined over a field of characteristic
p >0, ¢o1a(F) is the smallest natural number p such that for any coherent &,

H (X, PV (F)@&) =0
for > p and N > 0. In this case, we set ¢(F) = ¢o1a(F). In characteristic 0,
®o1a Was defined using reduction modulo p:

o (F) = min (max ears )),
XA\ m

where we maximize over all closed fibres of a thickening (X, F) of (X, F), and
then minimize over all thickenings. Basic properties including finiteness can
be found in [A1]. The idea is take the worst case of ¢ among all fibres of the
best possible thickening. It is easy to see that for any thickening,

Bora(F) = ¢(F

for all but finitely p in X. We redefine Frobenius amplitude in characteristic
0 as the smallest integer p for which

p>¢(Flx,,)
holds for almost all p with respect to L.

Xomy)

LEMMA 2.1.
(1) For any locally free sheaf F, we have ¢(F) < ¢ora(F).

(2) &(F) is the smallest integer such that for any coherent sheaf of the form
E=\E/L on X, there exists Ng € [[N/L such that

H (X, BV (F)@&) =0

for i > ¢(F) and N > Ny. (We are suppressing ©* above to simplify
notation.)

(3) &(F) is the smallest integer such that for any ultrafilter U D L and any
coherent sheaf €& on Xy, there exists Ng € [[N/U such that

H ( Xy, N (F)® &) =0
fori>&(F) and N > Ny.

Proof. (1) is immediate from the definition. (2) follows from Lemma 1.10.
For (3), it is enough apply Corollary 1.9 and observe that for any family of
vector spaces V),

[I[v/e=0 = [[wu=0 vusc. O

We use the lemma to extend this notion to a bounded complex of coherent
sheaves F* : ¢(F*®) is the smallest integer such that for any coherent sheaf £
on Ay,

H (Xy, LE?N*(F) @~ &) =0
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for i > ¢(F) and N > 0. Note that Fr" or : X3y — X need not be flat when
X is singular, so to get a reasonable notion we are forced to take derived
functors. The following is immediate.

LEMMA 2.2. For any distinguished triangle
Ft = F5 = Fi = FH
O(F3) < max(¢(F7), d(F3)).

3. Frobenius split complexes

Suppose for the moment that X is a scheme in characteristic p > 0 or an
ultra-fibre, so that X possesses a Frobenius morphism Fr. Let (C*,F) be
a bounded filtered complex of sheaves on X with a finite filtration. By a
Frobenius splitting of the complex, we mean a diagram of quasi-isomorphisms

Pcrict 2 K Fr.ct

or equivalently a representative for an isomorphism

O’:@GI‘%C. ~Fr,C*

in the derived category. A filtered complex is called Frobenius split possesses
a Frobenius splitting. Although the terminology is convenient in the present
context, we warn the reader that it conflicts slightly with the standard no-
tion of a Frobenius split variety. We make the collection of filtered complexes
with splittings into a category with morphisms given by a morphism of fil-
tered complexes (Cq, F1) — (Ca, F») together with a compatible commutative
diagram
@, Cricp = K; < Fr.C}

|

@, GriCy = Ky < Fr.C3

When (C*, F) is defined on a variety X over a field of characteristic zero, a
Frobenius splitting will mean a Frobenius splitting of its pullback to X .

The obvious question is how do Frobenius split complexes arise in nature?
In answer, we propose the following vague slogan: Complezes (C*, F') arising
from the Hodge theory of varieties in characteristic zero, with F' corresponding
to the Hodge filtration, ought to be Frobenius split. Since the objects of Hodge
theory are usually highly transcendental, we should qualify this by restricting
to complexes of geometric origin. However, we prefer not to try to make
this too precise, but instead to keep it as guiding principle in the search for
interesting examples. We begin with the basic example due to Deligne and
lusie [DI].
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THEOREM 3.1 (Deligne-Tllusie). Let X be a smooth variety with a normal
crossing divisor D defined over a perfect field of characteristic p > dim X.
Suppose that (X, D) lifts mod p*. Then there is an isomorphism

ox : @ Q% (log D)[—i] = Fr, Q% (log D)

in the derived category which depends canonically on the mod p? lift of (X, D).

COROLLARY 3.2. If (X, D) is as above, or defined over a field of character-
istic 0, the logarithmic de Rham complex Q% (log D) with its stupid filtration,
F'=Q%'(log D) is Frobenius split.

The functoriallity statement given in the theorem is not good enough for
our purposes. The isomorphism o is realised explicitly as a map 6x from
D Q% (log D)[—i] to a sheafified Cech complex C({U;},Fr. Q% (log D)) with
respect to an affine open cover of X. In addition to the cover, it depends
on mod p? lift of (X,D) and mod p? lifts of Fr|y,. It is clear that given
any morphism f : X; — X, with D; D f~1 Dy, which lifts mod p?, that com-
patible choices can be made. Then from the formulas in [DI], we see that
we get a morphism of Frobenius split complexes extending the natural map
0%, (log D2) — f*Q%, (log Dy ).

An additional example of a Frobenius split complex, consistent with the
earlier principle, is provided by a theorem of Ilusie [I, Theorem 4.7] which
implies the following proposition.

PROPOSITION 3.3. Let f: X — Y be a proper semistable map with dis-
criminant E CY defined over a field k of characteristic p > 0 which lifts
mod p?. Let H = Rif*QB(/Y(logD) be a Hodge bundle with filtration FI =

Rif*Q)Z(j/'Y(logD), where D = f~1E. If V denotes the Gauss—Manin connec-
tion, then the complex
V. ol V. 02 v
HY 0L (logE) o HY 0% (log E) @ H % -
with filtration
F Yok (logE)@ FIt Y ...
is Frobenius split.

Further examples of Frobenius split complexes can be built from simpler
pieces using mappling cones. More generally, given a bounded complex

(CQ,O7F) N (C.’l,F) ...
of Frobenius split complexes, we can form the total complex

Tor(c**) = @ ¢t

Jk=i
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in the usual way with filtration
FPTot(C*®) = € Freiv.
Jt+k=i
Together with the diagram

Tot (@ Gr* (C“)) — Tot(K**) « Fr, Tot(C**)

this becomes a Frobenius split complex.

Let us call a filtered complex (C®, F') coherent if it is a bounded complex of
quasi-coherent sheaves such that the differentials are differential operators and
GrpC® is quasi-isomorphic to a complex of coherent sheaves with Ox-linear
differentials. For example, (2% (log D),Q)Z(i(log D)) is coherent. A slight re-
finement of the arguments of Deligne and Illusie yields the following theorem.

THEOREM 3.4. Let X be complete variety in positive characteristic or the
ultra-fibre of a complete variety in characteristic zero. Suppose that (C*, F) is
a coherent Frobenius split complex on X. Then

(1) The spectral sequence
EY = H™ (X,GripC*) = H™ (X,C*)

degenerates at Fj.
(2) For any bounded complex of locally free sheaves F*°,

H'(X,Gr},C*® F*) =0
for any j and i >m + ¢(F*), where m = max{c | H*(Gr’ C*) # 0}.

Proof. Since F, is a subquotient of Fy, to prove £ = E, it is enough to
prove equality of dimensions. The morphism Fr is affine, by definition in the
first case and because it is an ultraproduct of affine morphisms in the second.
Therefore R Fr, Gr% C* =0 for i > 0, which implies RFr, C®* =Fr,C®. Thus,

HI(X,C*) = H(X,Fr.C*) =@ H’ (X,GriC*)
which forces dim Eq = dim Fo, and proves (1).
By definition of ¢
H' (X, H*(Gr},C*) @ FrN* F*) =0
for i > ¢(F*), all j and N > 0. So by a standard spectral sequence argument,
H'(X,Gr.C* @ Fr"* F*) =0
for i >m+ ¢(F*) and N > 0. So (2) is consequence of the sublemma:

LEMMA 3.5. If H(X,Grl,C* @ Fr* F*) =0 for all j, then H(X,Gr},C* ®
F*)=0 for all j.
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Proof. The assumption forces H*(X,C® ® Fr* F*) =0. On the other hand,
the projection formula and existence of a Frobenius splitting implies

HY(X,C*@ " F*) 2 H'(X, (Fr.C*) @ F*) = P H' (X,Gr}, C* ® F*).
: O
J

This concludes the proof of the theorem. O

From this, we recover the key degeneration of spectral sequence and van-
ishing theorems of [DI], [I], [Al] and [A2].

4. Splitting of the Du Bois complex

Our goal is to prove a general Akizuki-Nakano—Kodaira type vanishing
theorem for singular varieties. The right replacement for differential forms
in the Hodge theory of such spaces was found by Du Bois [Du]. Given a
complex algebraic variety X, Du Bois constructed a filtered complex (Q;(, F)
of sheaves, such that
(1) The complex is unique up to filtered quasi-isomorphism. In other words,

it is well defined in the filtered derived category DF(X).

(2) There exists a map of complexes from the de Rham complex with the
stupid filtration (Q},Q)Z(p ) to (2%, F7). This is a filtered quasi-isomor-
phism when X is smooth.

(3) The complexes QY = Gre Q7 [i] give well defined objects in the bounded
derived category of coherent sheaves DY, (Ox). (The shift is chosen so
that Q% = Q% when X is smooth.)

(4) The associated analytic sheaves Q3*"
the spectral sequence

B = H*(X,Q%) = H*"*(X**,C)

resolve C. When X is complete,

degenerates at E; and abuts to the Hodge filtration for the canonical

mixed Hodge structure on the right.
This can be refined for pairs [Du, §6]. If Z C X is a closed set with dense com-
plement, there exists a filtered complex (2, (log Z), F) € DF(X) such that
Q% (log Z) = Grt, Q2 (logZ)[i] € D%, (Ox) and there is a spectral sequence
(1) Ef’ = H*(X,Q%(log D)) = H***((X — 2)*,C)
which degenerates when X is complete.

At the heart of the construction is cohomological descent (cf. [De], [GNPP],

[PS]), which is a refinement of Cech theory. Using resolution of singularities
one can construct a diagram

do
— -
.. X X
—= X 0




1382 D. ARAPURA

such that X; are smooth, the usual simplicial identities hold, and cohomo-
logical descent is satisfied. The last condition means that the cohomology of
any sheaf F on X can be computed on X, as follows. A simplicial sheaf is a
collection of sheaves F; on X; with maps 07 F; — F; 1. We define [ Xe, Fe) =
ker[6s — 07 : T(Fo) — I'(F1)] and H (X, F,) = RT(X,, F). If Fs is replaced
by a resolution by injective simplicial sheaves Zg then H*(X,,F,) is just the
cohomology of the total complex
Tot(I(Z3) = T(Z3) —---).

The pullback of F gives a simplicial sheaf F, on X,, and the descent condition
requires that H'(X,F) = H'(X,,F,). It is important for our purposes to
note that the diagram X, can be assumed finite, in fact with the bound
dim X; < dim X — 4, thanks to [GNPP]. Also if a proper closed set Z C X is
given, then one can construct a simplicial resolution such that preimage Z,
of Z on each X; is essentially a union of a divisor with normal crossings (see
[PS, Definition 5.21] for the precise conditions).

We recall the construction of Du Bois’s complex. Choose a smooth simpli-
cial scheme f, : Xo — X as above. Then (Q}.,Q)Z(:) gives a filtered complex
of simplicial sheaves on X,. By modifying the procedure for defining coho-
mology described above, we can form higher direct images for such objects.
One then sets

® (2% F*) =Rfen (%, 057)
and in the “log” case
(3) (2%, (log 2), F*) = Rfe. (2%, (log f12),...).

It follows that

QY =Rfe.Q, = Tot (R fo.Qy, — RO, — ).
In particular, from Grauert—Riemenschneider’s vanishing theorem and the
dimension bound, we get an elementary description of the top level

Q% = fo.Q%,, n=dimX.

In fact, this formula holds when fj is replaced by a resolution of singularities
[GNPP, p. 153].

In positive characteristic, de Jong’s results [J] on smooth alterations can
be used to construct a smooth simplicial scheme X, — X satisfying descent.
However, this is not good enough to guarantee a well defined Du Bois complex.
In our case, we can avoid these problems by applying (2) and (3) to the mod
p >0 fibres of a thickening Xy — & D Z of a simplicial resolution of complex
varieties. Equivalently, we can work with the ultra-fibres X3 — Xy D Zy.
The following is suggested by the principle enunciated in the last section.

THEOREM 4.1. If X is defined over a field of characteristic 0, then
(Q5% (log 2), F) is Frobenius split.
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Proof. We have to show that

P, log 2,)[~i] 2 Fr. 25, (log Z,)

for p> 0. For p large, f: X, , — &} is a smooth simplicial scheme. Then
from Theorem 3.1 and the remarks following it, we obtain an isomorphism

@QZ (log Z,)[—i] = Fr. Q%, _ (log Z,)

of simplicial sheaves. Therefore,
GBQ’ (log Z,) @Rf.*ﬁx. (log Z,)[—i]

o Rf.* Fr, QXP (log Zp)
>~ Fr, Rf.*Q}p (log Zp)
=~ Fr, Q:YP (log Z,,). O

As a corollary, we can reprove Du Bois’ result.
COROLLARY 4.2. When X is complete the spectral sequence (1) degenerates.

Proof. Apply Theorem 3.4. O

COROLLARY 4.3. If X is a complete complex variety and F® a bounded
complex of locally free sheaves, then

H (X, 9% (log Z) @ F*) =

fori+j>dimX + ¢(F°®). In particular, if F is a k-ample vector bundle in
Sommese’s sense, then H'(X,Q% (log Z) ® F) vanishes for i+ j > dim X +
rk(F)+ k.

Proof. The first statement follows from Theorem 3.4. For the second, we
can appeal to the estimates on ¢ proved in [Al, Theorem 6.1] and [A2, The-
orems 2.13, 5.17]. O

The special case of the last result for ample line bundles is due to Navarro
Aznar [GNPP, Chap. V] when Z =), and Kovacs [Kv] in general.

Acknowledgments. My thanks to the referees for pointing out various am-
biguities in the original, and also for suggesting the additional reference [S3],
which gives a nice overview of ultraproducts in a related context.
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