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FIXED-POINT ALGEBRAS FOR PROPER ACTIONS AND
CROSSED PRODUCTS BY HOMOGENEOUS SPACES

ASTRID AN HUEF, S. KALISZEWSKI, IAIN RAEBURN AND DANA P. WILLIAMS

Abstract. We consider a fixed free and proper action of a lo-
cally compact group G on a space T , and actions α : G → AutA

on C∗-algebras for which there is an equivariant embedding of

(C0(T ), rt) in (M(A), α). A recent theorem of Rieffel implies

that α is proper and saturated with respect to the subalgebra

Cc(T )ACc(T ) of A, so that his general theory of proper ac-
tions gives a Morita equivalence between A �α,r G and a gen-
eralised fixed-point algebra Aα. Here we investigate the functor

(A,α) �→ Aα and the naturality of Rieffel’s Morita equivalence,

focusing in particular on the relationship between the different

functors associated to subgroups and quotients. We then use the

results to study induced representations for crossed products by

coactions of homogeneous spaces G/H of G, which were previ-
ously shown by an Huef and Raeburn to be fixed-point algebras
for the dual action of H on the crossed product by G.

1. Introduction

Suppose that a locally compact group G acts freely and properly on the
right of a locally compact space T , and rt is the induced action of G on
C0(T ). Let α : G → AutA be an action of G on a C∗-algebra A. Rieffel
proved in [28, Theorem 5.7] that if there is a nondegenerate homomorphism
φ : C0(T ) → M(A) such that αs ◦ φ = φ ◦ rts, then α is proper and saturated
in the sense of [27] with respect to the subalgebra A0 := φ(Cc(T ))Aφ(Cc(T ))
of A. The general theory of [27] then implies that the reduced crossed product
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A�α,r G is Morita equivalent via a bimodule Z(A,α,φ) to a generalised fixed-
point algebra Aα sitting in the multiplier algebra M(A) of A.

Theorem 5.7 of [28] covers all the main examples of proper actions, such as
the dual actions on crossed products by coactions and the actions on graph
algebras induced by free actions on graphs (see [13, Remark 4.5]), and this
has opened up new applications of the theory in [27]. It was used in [12], for
example, to show that if δ is a coaction of G on B and H is a closed subgroup
of G, then the dual action δ̂ of H on the crossed product B �δ G is proper
and saturated with fixed-point algebra the crossed product B�δ (G/H) by the
homogeneous space. The resulting Morita equivalence of (B �δ G) �δ̂ H with
B �δ (G/H) extends Mansfield’s imprimitivity theorem for crossed products
by coactions to arbitary closed subgroups (as opposed to the normal subgroups
in [17] and [14]) [12, Theorem 3.1]. More generally, the identification of the
fixed-point algebra as a crossed product by a homogeneous space promises
to give us useful leverage for studying this previously intractable family of
crossed products.

The results in [27] depend on the existence of a dense invariant subalgebra
A0, and the Morita equivalences obtained there depend on the choice of A0.
Theorem 5.7 of [28], on the other hand, says that in the presence of the ho-
momorphism φ, there is a canonical choice φ(Cc(T ))Aφ(Cc(T )) for A0. This
makes it possible to ask questions about the functoriality and naturality of
the constructions in [27] on categories of triples (A,α,φ). Such questions were
answered in [16] for a category which is particularly appropriate to Landstad
duality for crossed products by coactions, and the general theory in [16] has
interesting implications for non-Abelian duality for crossed products. The
success of this program prompted the present authors to investigate the nat-
urality of Rieffel’s Morita equivalence in a category modelled on those in [5],
where the isomorphisms are given by Morita equivalences [10]. The main
result of [10] says that Rieffel’s Morita equivalences implement a natural iso-
morphism between a crossed-product functor and a functor Fix which sends
(A,α,φ) to Fix(A,α,φ) := Aα. This implies in particular that the Morita
equivalence of [12] is a natural isomorphism in an appropriate category [10,
Theorem 5.6].

In this paper, we investigate applications of Rieffel’s construction to crossed
products by coactions of homomogeneous spaces. Our ultimate goal is to
study and in particular to construct and understand induced representations
of crossed products by homogeneous spaces. Here we construct an induction
process based on the bimodules implementing Rieffel’s equivalence, and in-
vestigate its properties. Our main theorem establishes induction-in-stages for
induced representations of crossed products by homogeneous spaces. As in
[10], we work as far as possible in the “semi-comma category” associated to a
free and proper action of G on a space T , and obtain our results for crossed
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products by homogeneous spaces by applying the general theory to the pairs
(T,G) = (G,H) associated to closed subgroups H of G.

We begin by reviewing the definition and properties of the semi-comma
category, Rieffel’s proper actions, and the basics of coactions and their crossed
products. We also prove a key property of the inclusion of Fix(A,α,φ) in
M(A) which was used implicitly at a key point in [16, Theorem 2.6]. In
Section 3, we discuss the relationship between fixed-point algebras and Green
induction of representations for crossed products by actions. Theorem 3.1 says
that Green induction from H to G is dual to the restriction map associated to
an inclusion of fixed-point algebras, which immediately implies an induction-
restriction result for crossed products by homogeneous spaces associated to
an arbitrary pair of closed subgroups H ⊂ K (Corollary 3.3). It also implies
that the Green bimodules define a natural transformation between reduced-
crossed-product functors (Theorem 3.5).

In Section 4, we discuss the general version of induction-in-stages. This has
two main ingredients: we need to extend the functor Fix to an equivariant
version, and then prove what we call “fixing-in-stages”: fixing first over a
normal subgroup and then over the quotient is naturally isomorphic to fixing
once over the whole group (Theorem 4.5). Once we have this, it makes sense
to prove that the construction of Rieffel’s Morita equivalence can also be done
in stages (Theorem 4.6). Next, in Section 5, we produce an equivariant version
of the natural equivalence of [10, Theorem 3.5].

The last two sections contain our main applications to crossed products
by coactions. In Section 6, we use our results on fixing-in-stages to prove a
decomposition theorem for crossed products by homogeneous spaces (Theo-
rem 6.2). Unfortunately, because we only have the results of Section 4 for
normal subgroups, we need to restrict attention to pairs of subgroups H ⊂ K
for which H is normal in K. However, we do not need to assume that H and
K are normal in G, and hence our results represent a substantial step forward.
We stress that, while our Theorem 6.2 constructs a natural isomorphism, in
this case the existence of the isomorphism (which in our category is really a
Morita equivalence) is itself new. In our last section, we discuss induction of
representations from one crossed product by a homogeneous space to another,
and in particular prove induction-in-stages.

2. Preliminaries

2.1. Categories of C∗-algebras. We are interested in several categories
of C∗-algebras, and we have tried to stick to the conventions of [10]. In the
category C∗, the objects are C∗-algebras and the morphisms from A to B are
isomorphism classes of right-Hilbert bimodules AXB (where, as in [10], we
always assume that X is full as a Hilbert B-module and that the left action of
A is given by a nondegenerate homomorphism κ : A → L(X)). We denote the
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category used in [16], in which the morphisms from A to B are nondegenerate
homomorphisms σ : A → M(B), by C∗

nd. As in [10], we are interested in
functors defined on the category C∗act(G), in which the objects are dynamical
systems (A,α) consisting of an action α of a fixed locally compact group G
on a C∗-algebra A and the morphisms are suitably equivariant right-Hilbert
bimodules.

Now suppose that G acts freely and properly on the right of a locally com-
pact space T , and (C0(T ), rt) is the corresponding object in C∗act(G). The
objects in both the semi-comma category C∗act(G, (C0(T ), rt)) of [10] and
the comma category (C0(T ), rt) ↓ C∗actnd(G) of [16] consist of an object (A,
α) in C∗act(G) together with a nondegenerate homomorphism φ : C0(T ) →
M(A) which is rt–α equivariant. In C∗act(G, (C0(T ), rt)), however, the mor-
phisms from (A,α,φ) to (B,β,ψ) are just the morphisms from (A,α) to (B,β)
in C∗act(G) (ignoring φ and ψ), whereas in (C0(T ), rt) ↓ C∗actnd(G), they are
nondegenerate homomorphisms σ : A → M(B) such that ψ = σ ◦ φ. Our rea-
sons for choosing to work in the semi-comma category are explained in [10,
Section 2]. Of crucial importance, in [5], in [10], and here, is Proposition 2.1
of [10], which says that every morphism [AXB] in C∗act(G, (C0(T ), rt)) is
the composition of an isomorphism (that is, a morphism coming from an
imprimitivity bimodule) and a morphism coming from a nondegenerate ho-
momorphism κ : A → M(K(X)) = L(X).

2.2. Fixing. Suppose that G acts freely and properly on the space T . We
consider an object (A,α,φ) in C∗act(G, (C0(T ), rt)), and the subalgebra A0 :=
span{φ(f)aφ(g) : a ∈ A, f, g ∈ Cc(T )} of A. As in [10], [16], we simplify
the notation by dropping the φ from our notation when no ambiguity seems
possible, and by writing, for example, XB for span{x · b : x ∈ X, b ∈ B}.
Thus,

A0 = Cc(T )ACc(T ) = span
{
fag : a ∈ A,f, g ∈ Cc(T )

}
.

It was shown in [16, Section 2], using a theory developed by Olesen–Pedersen
[20], [21] and Quigg [22], [24], that for every a ∈ A0, there exists E(a) ∈ M(A)
such that

ω
(
E(a)

)
=

∫
G

ω
(
αs(a)

)
ds for ω ∈ A∗;

we will write EG or Eα for E if we want to emphasise the particular group or
action. The range E(A0) of E is a ∗-subalgebra of M(A)α, and Fix(A,α,φ)
is by definition the norm closure E(A0) in M(A). We showed in [10, Theo-
rem 3.3] that Fix extends to a functor from the semi-comma category
C∗act(G, (C0(T ), rt)) to C∗.

Rieffel’s theorem (Theorem 5.7 of [28]) implies that the action α is proper
and saturated with respect to A0, and so the theory of [27] gives us a Morita
equivalence between the reduced crossed product A�α,r G and a generalized-
fixed point algebra Aα sitting in M(A), implemented by an imprimitivity
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bimodule Z(A,α,φ). It was shown in [16, Proposition 3.1] that Fix(A,α,φ)
coincides with the algebra Aα appearing in [27]. (We use the notation Aα for
Fix(A,α,φ) if we think it is obvious what φ is, and add a subscript FixG if
there is more than one group around.) We proved in [10, Theorem 3.5] that the
assignments (A,α,φ) �→ Z(A,α,φ) implement a natural isomorphism between
Fix and a reduced-crossed-product functor RCP : C∗act(G, (C0(T ), rt)) → C∗.

2.3. Coactions. The main applications of our theory are to crossed products
by coactions, and in particular to crossed products by coactions of homoge-
neous spaces. We have formulated some of these applications as corollaries to
our more general results, so it seems useful to set out our conventions at the
start.

As in [10], we work exclusively with the normal nondegenerate coactions
introduced in [23] and discussed in [5, Appendix A]; we explained in [9, Sec-
tion 5] why normal coactions seem to be particularly appropriate when dealing
with homogeneous spaces. We use the category C∗coactn(G) in which the ob-
jects (B,δ) are normal coactions δ : B → M(B ⊗ C∗(G)), and the morphisms
from (B,δ) to (C,ε) are isomorphism classes [X,Δ] of right-Hilbert B − C
bimodules X carrying a δ − ε compatible coaction Δ (see Theorem 2.15 of
[5]). We denote the crossed product of (B,δ) by (B �δ G,jB, jG), and then
Theorem 3.13 of [5] says that the assignments

(B,δ) �→ B �δ G and [X,Δ] �→ [X �Δ G]

form a functor CP : C∗coactn(G) → C∗.
The dual action δ̂ : G → Aut(B �δ G) is characterised by

δ̂t

(
jB(b)jG(f)

)
= jG(b)jG

(
rtt(f)

)
for b ∈ B and f ∈ C0(G),

and hence (B �δ G, δ̂, jG) is an object in C∗act(G, (C0(G), rt)). Now let H be
a closed subgroup of G. Theorem 3.13 of [5] implies that there is a functor

CPH : C∗coactn(G) → C∗act
(
H,

(
C0(G), rt

))
such that (B,δ) �→ (B �δ G, δ̂|H,jG). Since the right action of H is free and
proper, we can apply the general theory of [10], and hence there is a fixed-point
algebra Fix(B �δ G, δ̂|H,jG). The discussion in [16, Section 6] shows that this
fixed-point algebra, which is by definition a C∗-subalgebra of M(B �δ G),
coincides with the reduced crossed product of B by the homogeneous space
G/H . The latter is by definition the closed span

B �δ,r (G/H) := span
{
jB(b)jG|(f) : b ∈ B,f ∈ C0(G/H)

}
⊂ M(B �δ G),

and is a C∗-subalgebra of M(B �δ G) by [17, Proposition 8]. We proved in
[10, Proposition 5.5] that (B,δ) �→ B �δ,r (G/H) is the object map in a functor
RCPG/H : C∗coactn(G) → C∗, and that this functor coincides with Fix ◦ CPH .
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2.4. Identifications of multipliers. Suppose that the action of G on T is
free and proper, and that (A,α,φ) is an object in the semi-comma category
C∗act(G, (C0(T ), rt)).

Proposition 2.1. The set E(A0)A0 is dense in A0 in the C∗-norm of A.

The proof uses the following lemma, which follows from a routine compact-
ness argument.

Lemma 2.2. Suppose that K is a compact subset of a C∗-algebra A and
ε > 0. Then there exists a ∈ A0 such that ‖a‖ ≤ 1 and ‖ab − b‖ < ε for all
b ∈ K.

Proof of Proposition 2.1. Let b ∈ A0, and choose f ∈ Cc(T ) such that b =
fb. Choose g ∈ Cc(T ) such that Ert(g)f = f (see [16, Lemma 2.7]). Proper-
ness implies that M := {s ∈ G : rts(g)f �= 0} is compact, and then we can ap-
ply Lemma 2.2 to K := {α−1

s (rts(g)fb) : s ∈ M }. This gives a ∈ A0 such that
αs(a)rts(g)fb ∼ rts(g)fb uniformly in norm for s ∈ M . Now [16, Lemma 2.2]
gives

E(ag)fb =
∫

M

αs(ag)fbds =
∫

M

αs(a)rts(g)fbds

∼
∫

M

rts(g)fbds = Ert(g)fb = fb = b. �
Corollary 2.3. The inclusion ιG of Aα := Fix(A,α,φ) in M(A) is non-

degenerate, and extends to an isomorphism of M(Aα) onto{
m ∈ M(A) : mιG

(
Aα

)
⊂ ιG

(
Aα

)
and ιG

(
Aα

)
m ⊂ ιG

(
Aα

)}
⊂ M(A).

Corollary 2.3 was implicitly assumed in the proof of [16, Proposition 2.6],
and hence also indirectly in [10] whenever we applied that proposition. To see
the problem, recall that [16, Proposition 2.6] says that a nondegenerate homo-
morphism σ : A → M(B) in the comma category “restricts” to a nondegener-
ate homomorphism of Fix(A,α,φ) into M(Fix(B,β,ψ)). In the proof, they
show that the strictly continuous extension σ : M(A) → M(B) maps E(A0)
into {m ∈ M(B) : m(FixB) ∪ (FixB)m ⊂ FixB}, but then they need Corol-
lary 2.3 to identify this with M(FixB), so that the restriction σ| : FixA →
M(B) can be viewed as a homomorphism σ| : FixA → M(FixB).

In [16] and [10], nondegenerate homomorphisms were silently extended to
multiplier algebras. In this paper, where there are often several different fixed-
point algebras around, these issues can be a little slippery, and we often make
the extensions explicit to avoid confusion. In particular, the inclusions ιG
and their extensions to multiplier algebras crop up a lot. When we take these
issues into account, we restate Proposition 2.6 of [16] as follows:

Proposition 2.4. Suppose that σ : (A,α,φ) → (B,β,ψ) is a morphism
in the comma category (C0(T ), rt) ↓ C∗actnd(G) of [16]. Then there is a
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nondegenerate homomorphism σG of Fix(A,α,φ) into M(Fix(B,β,ψ)) such
that ιG ◦ σG is the restriction σ ◦ ιG of σ : M(A) → M(B) to the subalgebra
Fix(A,α,φ) of M(A).

3. Fix and Green induction

Let α : G → AutA be an action of a locally compact group on a C∗-algebra,
and let H be a closed subgroup of G. In [7, Section 2], Green constructed an((

A ⊗ C0(G/H)
)

�α⊗lt G
)

− (A �α| H)

imprimitivity bimodule X(A,α), and defined induction of representations by
applying Rieffel’s theory to the right-Hilbert (A �α G) − (A �α| H) bimodule
XG

H(A,α) obtained from X(A,α) using the canonical map of A �α G into
M((A ⊗ C0(G/H)) �α⊗lt G) (the details of this process are also discussed in
[9, pages 5–6]). Let I and J be the kernels of the quotient maps of A �α G
and A �α| H onto the corresponding reduced crossed products. Induction-
in-stages, as in [7, Proposition 8], implies that XG

H(A,α)-Ind takes regular
representations to regular representations, so I = XG

H(A,α)-IndJ , and the
corresponding quotient XG

H,r(A,α) of XG
H(A,α) is a right-Hilbert (A �α,r

G) − (A�α|,r H) bimodule. Both XG
H(A,α) and XG

H,r(A,α) are completions of
Cc(G,A), viewed as a Cc(G,A) − Cc(H,A) bimodule with the inner products
and actions given in [5, Equations (B.5)].

It is a recurring theme in non-Abelian duality that duality swaps induction
and restriction of representations [2], [3], [5], [9], [15]. Our next theorem shows
that this is a general phenomenon in our semi-comma category.

Theorem 3.1. Suppose that a locally compact group G acts freely and
properly on a locally compact space T , and H is a closed subgroup of G. Let
(A,α,φ) be an object in the semi-comma category C∗act(G, (C0(T ), rt)). Then
(A,α|H,φ) is an object in C∗act(H, (C0(T ), rt)), and the following diagram
commutes in C∗:

(3.1) A �α,r G
Z(A,α,φ)

XG
H,r(A)

Fix(A,α,φ)

Fix(A,α|H,φ)

A �α|,r H
Z(A,α|H,φ)

Fix(A,α|H,φ).

Our proof of this theorem is similar to that of [15, Theorem 3.1]. The
next lemma seems more elementary to us than the result of Mansfield [17,
Lemma 25] used in [15, Theorem 3.1], but we lack a reference.

Lemma 3.2. Suppose (A,α,φ) is an object in C∗act(G, (C0(T ), rt)). Then
the subset L := span{s �→ aαs(b) : a, b ∈ A0} of Cc(G,A) is dense in Green’s
imprimitivity bimodule XG

H (and hence also in XG
H,r).
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Proof. When we proved in [13, Lemma C.1] that α is saturated, we showed
that span{s �→ aαs(b)ΔG(s)−1/2 : a, b ∈ A0} is dense in Cc(G,A) in the in-
ductive limit topology, and this implies that L is dense in Cc(G,A) in the
inductive limit topology.

We need to show that we can approximate any element x of Cc(G,A) in
the XG

H -norm by elements of L. We know that there are a compact set K ⊂ G
and xn ∈ L such that suppxn ⊂ K and ‖xn − x‖∞ → 0. For any y ∈ Cc(G,A),
we have

〈y, y〉A�α|H(h)

= ΔH(h)−1/2

∫
G

αt

(
y
(
t−1

)∗
y
(
t−1h

))
dt

= ΔH(h)−1/2

∫
G

y∗(t)αt

(
y
(
t−1h

))
ΔG(t)dt

= ΔH(h)−1/2
((

yΔ−1
G

)∗ ∗ y
)
(h).

Thus, the support of 〈x − xn, x − xn〉A�H is contained in K−1K, and

‖x − xn‖2
XG

H
=

∥∥〈x − xn, x − xn〉A�H

∥∥(3.2)

=
∥∥Δ−1/2

H

(
(x − xn)Δ−1

G

)∗ ∗ (x − xn)
∥∥

≤
∥∥Δ−1/2

H

(
(x − xn)Δ−1

G

)∗ ∗ (x − xn)
∥∥

L1(H,A)

≤ C(H,G,K)‖xn − x‖2
L1(H,A),

where C(H,G,K) = ‖(Δ−1/2
H Δ−1

G )|K‖ ∞μ(K−1). Since ‖xn − x‖ ∞ → 0, we
also have xn|H → x|H in the inductive limit topology on Cc(H,A), and hence
‖x − xn‖L1(H,A) → 0. Now (3.2) implies that xn → x in XG

H . �

Proof of Theorem 3.1. Fix a, b ∈ A0. Note that EG(a) and EH(b) are both
in M(A). Moreover, EG(a)b ∈ A0 by [16, Lemma 2.3] and EG(a)EH(b) =
EH(EG(a)b) by [16, Lemma 2.1]. Thus Fix(A,α|H,φ) is a right-Hilbert
Fix(A,α,φ) − Fix(A,α|H,φ) bimodule, and the right vertical arrow in the
diagram (3.1) makes sense. Since the horizontal arrows in (3.1) are invertible,
to see that (3.1) commutes it suffices to show

(3.3) Z(A,α,φ) ⊗Fix(A,α,φ) Z(A,α|H,φ)∼ ∼= XG
H,r(A)

as right-Hilbert (A �α,r G) − (A �α|,r H) bimodules. (Here Z(A,α|H,φ)∼ is
the dual module; below we write � : Z(A,α,φ) → Z(A,α|H,φ)∼ for �(λb) =
λ̄ · �(b).)

Define Ω : A0 ⊗Fix(A,α,φ) �(A0) → Cc(G,A) ⊂ XG
H,r by Ω(a ⊗ �(b))(s) =

aαs(b∗). We will show that Ω extends to give the isomorphism (3.3). Since
we know from Lemma 3.2 that Ω has dense range, it suffices to show that Ω
preserves the (A �α|,r H)-valued inner products and is (A �α,r G)-linear.
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Fix a, b, c, d ∈ A0. We compute the (A �α|,r H)-valued inner products:

〈
Ω

(
a ⊗ �(b)

)
,Ω

(
c ⊗ �(d)

)〉
A�α|,rH

(h)

= ΔG(h)−1/2

∫
G

αt

(
Ω

(
a ⊗ �(b)

)(
t−1

)∗Ω
(
c ⊗ �(d)

)(
t−1h

))
dt

= ΔG(h)−1/2

∫
G

αt

((
aαt−1

(
b∗))∗

cαt−1h

(
d∗))

dt

= ΔG(h)−1/2

(∫
G

bαt

(
a∗c

)
dt

)
αh

(
d∗)

= ΔG(h)−1/2bEG
(
a∗c

)
αh

(
d∗)

;〈
a ⊗ �(b), c ⊗ �(d)

〉
A�α|,rH

(h)

=
〈

〈c, a〉Fix(A,α,φ) · �(b), �(d)
〉

A�α|,rH
(h)

=
〈
EG

(
c∗a

)
· �(b), �(d)

〉
A�α|,rH

(h)

=
〈
�
(
b · EG

(
c∗a

)∗)
, �(d)

〉
A�α|,rH

(h)

= A�α|,rH

〈
b · EG

(
c∗a

)∗
, d

〉
(h)

= ΔG(h)−1/2bEG
(
a∗c

)
αh

(
d∗)

,

so Ω is isometric. If z ∈ Cc(G,A) ⊂ A �α,r G and x ∈ XG
H,r, then z · x is given

by the formula (z · x)(s) =
∫

G
z(t)αt(x(t−1s))ΔG(t)1/2 dt (see [9, Section 2]).

Thus

(
z · Ω

(
a ⊗ �(b)

))
(s) =

∫
G

z(t)αt

(
Ω

(
a ⊗ �(b)

)(
t−1s

))
ΔG(t)1/2 dt

=
∫

G

z(t)αt

(
aαt−1s

(
b∗))

ΔG(t)1/2 dt

=
(∫

G

z(t)αt(a)ΔG(t)1/2 dt

)
αs

(
b∗)

= (z · a)αs

(
b∗)

= Ω
(
z · a ⊗ �(b)

)
(s).

Hence, Ω extends to an isomorphism, as required. �

Theorem 3.1 has three direct outcomes. First we generalise Theorem 3.1
of [15] to non-normal subgroups, by applying Theorem 3.1 with (T,G,H) =
(G,K,H) and (A,α,φ) = (B �δ G, δ̂, jG).

Corollary 3.3. Suppose that H and K are closed subgroups of a locally
compact group G with H ⊂ K, and (B,δ) is an object in C∗coactn(G). Then
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the following diagram commutes in C∗:

(B �δ G) �δ̂,r K
Z(B�δG,δ̂|K ,jG)

XK
H,r(B�δG)

B �δ,r (G/K)

B�δ,r(G/H)

(B �δ G) �δ̂,r H
Z(B�δG,δ̂|H ,jG)

B �δ,r (G/H).

The second outcome of Theorem 3.1 characterises the representations of
Fix(A,α,φ) which extend to representations of Fix(A,α|H,φ), in the spirit of
[9, Theorem 6.1]. Indeed, applying Proposition 3.4 with (T,G,H) = (G,K,H)
gives a direct generalisation of Theorem 6.1 of [9] to pairs of subgroups H ⊂ K
with either H normal in K or H amenable.

Proposition 3.4. Suppose that a locally compact group G acts freely and
properly on a locally compact space T , and H is a closed subgroup of G.
Assume that H is either normal or amenable. Let (A,α,φ) be an object in
C∗act(G, (C0(T ), rt)). Let ω be a representation of Fix(A,α,φ) on a Hilbert
space H, and denote by (ρ,U) the covariant representation of (A,G,α) such
that ρ�U = Z(A,α,φ)-Indω. Then there is a representation η of Fix(A,α|H,φ)
on H such that ω = η| Fix(A,α,φ) if and only if there is a representation φ of
C0(G/H) in the commutant ρ(A)′ such that (φ,U) is a covariant representa-
tion of (C0(G/H),G, lt).

Proof. The proof proceeds as in [9, Theorem 6.1]. Since the horizontal
arrows in (3.1) are bijections, ω is in the image of Res := Fix(A,α|, φ)-Ind
if and only if ρ � U is in the image of XG

H,r(A)-Ind. Green’s imprimitivity
theorem (the usual version if H is amenable, or [9, Theorem 6.2] if H is
normal) says that ρ � U is in the image of XG

H,r(A)-Ind if and only if there is
a representation φ of C0(G/H) in the commutant of ρ(A) such that (φ,U) is
a covariant representation of (C0(G/H),G, lt). �

The third outcome of Theorem 3.1 takes more work.

Theorem 3.5. Let H and K be closed subgroups of G with H ⊂ K.
(1) The reduced Green bimodules XK

H,r(A,α) implement a natural trans-
formation between the functors RCPH : (A,α,φ) �→ A �α,r H and RCPK on
C∗act(G, (C0(T ), rt)).

(2) The bimodules implementing restriction of representations give a natu-
ral transformation between the functors FixH : (A,α,φ) �→ Fix(A,α|H,φ) and
FixK on C∗act(G, (C0(T ), rt)).

In fact, naturality of induction (part (1) of Theorem 3.5) is equivalent to
naturality of restriction (part (2) of Theorem 3.5). To see this, suppose that
[W,u] is a morphism in C∗act(G, (C0(T ), rt)) from (A,α,φ) to (B,β,ψ), and
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consider the diagram

(3.4)

A �α|,r K
Z(A,α|K,φ)

XK
H,r(A,α)

W�u|,rK

Fix(A,α|K,φ)

Fix(A,α|H)

Fix(W,u|K)

B �β|,r K
Z(B,β|K,ψ)

XK
H,r(B,β)

Fix(B,β|K,ψ)

Fix(B,β|H)

A �α|,r H
Z(A,α|H,φ)

W�u|,rH

Fix(A,α|H,φ)

Fix(W,u|H)

B �β|,r H
Z(B,β|H,ψ)

Fix(B,β|H,ψ).

Part (1) says that the left-hand face commutes and part (2) that the right-
hand face commutes. The top and bottom faces commute by [10, Theo-
rem 3.5], and the front and back faces commute by Theorem 3.1. So, since
the left-right arrows are all isomorphisms in our category (that is, are imple-
mented by imprimitivity bimodules), the left-hand face commutes if and only
if the right-hand face commutes, and part (1) is equivalent to part (2).

So we can prove the theorem by proving either (1) or (2). On the face
of it (sorry), it would seem to be easier to prove that a square involving
restriction maps commutes. However, in the context of non-Abelian duality
the fixed-point algebras in the corners of the right-hand face will be crossed
products by homogeneous spaces G/H and G/K, and since representations of
such crossed products are not given by covariant pairs, “restriction” doesn’t
obviously have an intuitive meaning. So we complete the proof of Theorem 3.5
with the following lemma.

Lemma 3.6. The left-hand face of (3.4) commutes.

The analogue of the left-hand face for full crossed products commutes by
[4, Theorem 4.1], and we will deduce from this that the reduced version com-
mutes. To do this, we need two lemmas.

Lemma 3.7. Suppose that θ : AXB → AYB is an isomorphism of right-
Hilbert bimodules, and J is an ideal in B. Then X-IndJ = Y -IndJ . If I
is an ideal in A which is contained in X-IndJ , then there is a right-Hilbert
A/I − B/J bimodule isomorphism θJ of XJ := X/XJ onto Y J such that
θJ(q(x)) = q(θ(x)) for x ∈ X .
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Proof. (We use the same letter q for several different quotient maps.) No-
tice that θ maps XJ onto Y J , and hence induces a linear isomorphism of
XJ onto Y J such that θJ (q(x)) = q(θ(x)), and it follows from [26, Proposi-
tion 2.5] that θJ is an isomorphism of right-Hilbert B/J -modules. For a ∈ A,
the definition of the induced ideal (in [5, Definition 1.7]) gives

a ∈ X-IndJ ⇐⇒ a · x = 0 for all x ∈ X

⇐⇒ a · x ∈ XJ for all x ∈ X (by [26, Lemma 3.23])
⇐⇒ a · θ(x) ∈ θ(XJ) = Y J for all x ∈ X

⇐⇒ a ∈ Y -IndJ.

Thus, the left actions of A on XJ and Y J pass to left actions of A/(Y -IndJ)
and A/I such that q(a) · q(x) = q(a · x), and θJ is also an (A/I)-module
homomorphism. �

Lemma 3.8. Suppose that we have right-Hilbert bimodules AVB and BYC ,
and that we have ideals I in A, J in B and L in C satisfying J ⊂ Y -IndL
and I ⊂ V -IndJ . Then the map v ⊗ y �→ q(v) ⊗ q(y) induces an isomorphism

(V ⊗B Y )/
(
(V ⊗B Y )L

) ∼= (V/V J) ⊗B/J (Y/Y L)

of right-Hilbert (A/I) − (C/L) bimodules.

Proof. A calculation shows that q(〈u ⊗ x, v ⊗ y〉C) = 〈q(u) ⊗ q(x), q(v) ⊗
q(y)〉C , so the map is well defined and preserves the inner product. Another
calculation shows that the map preserves the left action, and since it has dense
range this suffices. �

Proof of Lemma 3.6. The commutativity of diagram (4.1) in [4] says that
there is an isomorphism

(3.5) XK
H (A,α) ⊗A�α|H (W �u| H) ∼= (W �u| K) ⊗B�β|K XK

H (B,β)

of right-Hilbert (A �α| K) − (B �β| H) bimodules; we write LHS and RHS
for the left and right sides of (3.5). Let I ⊂ A �α| K, J ⊂ A �α| H and
L ⊂ B �β| H be the kernels of the quotient maps onto the reduced crossed
products. Then applying Lemma 3.7 to (3.5) gives an isomorphism

(3.6) LHS/(LHS)L ∼= RHS/(RHS)L.

Since I = XK
H -IndJ by induction-in-stages, and J = (W �u| H)-IndL by [1,

Corollary on page 300], Lemma 3.8 implies that

LHS/(LHS)L ∼= XK
H,r(A,α) ⊗A�α,rH (W �u|,r H).

Similarly, we have

RHS/(RHS)L ∼= (W �u|,r K) ⊗B�β|,rK XK
H,r(B,β),

and the isomorphism in (3.6) says that left face of (3.4) commutes. �
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4. Fixing-in-stages

Throughout this section, G is a locally compact group acting freely and
properly on a locally compact space T , and N is a closed normal subgroup
of G. Restricting the actions to N gives a functor from C∗act(G, (C0(T ), rt))
to C∗act(N, (C0(T ), rt|)). Since the action of N on T is also free and proper,
we can then apply the functor Fix, and the composition is a functor FixN :
C∗act(G, (C0(T ), rt)) → C∗ which assigns to each object (A,α,φ) a fixed-point
algebra Aα|N := Fix(A,α|N,φ). We will build an equivariant version Fix

G/N
N

of FixN with values in C∗act(G/N, (C0(T/N), rt|)), so that there is an iter-
ated fixed-point algebra FixG/N (Aα|N ), and prove that FixG/N ◦ FixG/N

N is
naturally isomorphic to FixG (see Theorem 4.5 below).

Viewing functions in C0(T/N) as bounded functions on T gives an em-
bedding of C0(T/N) in Cb(T ) = M(C0(T )), which identifies C0(T/N) with
the generalised fixed-point algebra C0(T )rt = Fix(C0(T ), rt|N, id) (see, for ex-
ample, [18, Proposition 3.1]). Now applying Proposition 2.4 to φ : C0(T ) →
M(A) gives a nondegenerate homomorphism φN : C0(T/N) → M(Aα|N ) such
that ιN ◦ φN is the restriction to C0(T/N) of the strictly continuous extension
φ : M(C0(T )) → M(A).

Proposition 4.1. Let [X,u] be a morphism from (A,α,φ) to (B,β,ψ)
in C∗act(G, (C0(T ), rt)). There are actions αG/N , βG/N and uG/N of G/N
such that (Fix(X,u|N), uG/N ) defines a morphism from (Aα|N , αG/N , φN ) to
(Bβ|N , βG/N , ψN ) in the category C∗act(G/N, (C0(T/N), rt)), and the assign-
ments

(4.1) (A,α,φ) �→
(
Aα|N , αG/N , φN

)
and [X,u] �→

[
Fix(X,u|N), uG/N

]
,

from C∗act(G, (C0(T ), rt)) to C∗act(G/N, (C0(T/N), rtG/N )), form a functor
Fix

G/N
N .

To prove Proposition 4.1, we have to define the actions, and then chase
through the proof that Fix is a functor [10, Section 4] checking that the
constructions are equivariant. We do this in a series of lemmas.

We claim that each αt maps Aα|N into Aα|N , and then define α
G/N
tN :=

αt|Aα|N . Since N is normal in G,∫
N

ξ(n)dn = ΔG,N (t)
∫

N

ξ
(
t−1nt

)
dn(4.2)

:= ΔG(t)ΔG/N (tN)−1

∫
N

ξ
(
t−1nt

)
dn

for ξ ∈ Cc(N). Fix f ∈ Cc(T ), t ∈ G and a ∈ A0. Then, writing EN for the
expectation associated with (A,α|N,φ) and applying [16, Lemma 2.2], we
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have

fαt

(
EN (a)

)
= αt

(
α−1

t (f)EN (a)
)

= αt

(∫
N

α−1
t (f)αn(a)dn

)
(4.3)

=
∫

N

fα(tnt−1)t(a)dn

= ΔG,N (t)
∫

N

fαnt(a)dn

= fΔG,N (t)EN
(
αt(a)

)
.

Since φ is nondegenerate, this implies that αt(EN (a)) = ΔG,N (t)EN (αt(a)),
which belongs to EN (A0) ⊂ Aα|N . The continuity of αt now implies that
αt(Aα|N ) ⊂ Aα|N , and we can define αG/N : G/N → Aut(Aα|N ) by αtN =
αt|Aα|N . To see that αG/N is strongly continuous, let a ∈ A0, and choose
f, g ∈ Cc(T ) such that αt(a) = fαt(a)g for all t in a compact neighbourhood
of e. Then the norm continuity of a �→ EN (fag) implies that t �→ EN (fαt(a)g)
is continuous at e, and (4.3) implies that t �→ α

G/N
tN (EN (a)) is continuous at e.

Since φ ◦ rtt = αt ◦ φ and the definition of αG/N implies that ιN ◦ α
G/N
tN = αt ◦

ιN , φN = (ιN )−1 ◦ φ is rt − αG/N equivariant, and since rtG/N
tN = rtt|C0(T/N),

the triple (Aα|N , αG/N , φN ) is an object in the semi-comma category. Now
we have to deal with morphisms. Since the morphisms in the semi-comma
category are the same as those in C∗act(G/N), we do not need to worry
about the homomorphisms φN any more. So we take (X,u) as in Propo-
sition 4.1, and recall the construction of FixX from [10, Section 3], as it
applies to u|N . Let (K(X), μ,φK) be the object in C∗act(G, (C0(T ), rt)) and
κ : A → M(K(X)) the nondegenerate homomorphism provided by the canon-
ical decomposition of [X,u] in [10, Corollary 2.3]. The actions μ, u and β give
an action L(u) of G on the linking algebra L(X), and (L(X),L(u), φK ⊕ ψ)
is an object in C∗act(G, (C0(T ), rt)). Proposition 3.1 of [10] implies that
the top right-hand corner Xu|N in L(X)L(u)|N is a Kμ|N − Bβ|N imprimi-
tivity bimodule, and Proposition 2.4 gives a nondegenerate homomorphism
κN : Aα|N → M(Kμ|N ), so Xu|N becomes a right-Hilbert Aα|N − Bβ|N bi-
module Fix(X,u|N).

The construction described two paragraphs above applies to the action
L(u), giving a strongly continuous action L(u)G/N : G/N → AutL(X)L(u)|N

which restricts to the actions βG/N and μG/N on the diagonal corners, and
hence restricts to a compatible action uG/N on the corner Xu|N . The opera-
tions on the imprimitivity bimodule Xu|N come from the matrix operations in
L(X)L(u)|N , so (Xu|N , uG/N ) is a (K(X)μ|N , αG/N ) − (Bβ|N , βG/N ) imprimi-
tivity bimodule. The homomorphism κ|N defining the left action is αG/N −
μG/N equivariant, and hence (Xu|N , uG/N ) is a right-Hilbert (Aα|N , αG/N ) −
(Bβ|N , βG/N ) bimodule.
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Next we show that the map [X,u] �→ [Xu|N , uG/N ] is well defined.

Lemma 4.2. Let (A,α,φ) and (B,β,ψ) be objects in C∗act(G, (C0(T ), rt)).
If (X,u) and (Y, v) are isomorphic as right-Hilbert (A,α) − (B,β) bimodules,
then (Fix(X,u|N), uG/N ) and (Fix(Y, v|N), vG/N ) are isomorphic as right-
Hilbert (Aα|N , αG/N ) − (Bβ|N , βG/N ) bimodules.

Proof. Suppose that Ψ : (X,u) → (Y, v) is an isomorphism, and ρ : K(X) →
K(Y ) is the isomorphism such that ρ(Θx,w) = ΘΨ(x),Ψ(w). It is shown in the
proof of [10, Lemma 3.2] that ρ, Ψ and idB give an isomorphism ΨL : L(X) →
L(Y ), and that the top-right corner of ΨL carries Fix(X,u) isomorphically
onto Fix(Y, v). Since ΨL is L(u) − L(v) equivariant, and the actions uG/N

and vG/N are the restrictions of u and v to the fixed-point modules, this
isomorphism of Fix(X,u) onto Fix(Y, v) is equivariant. �

We have now proved that the assignments (4.1) are well defined, and it
remains to prove that they define a functor Fix

G/N
N . The argument in the

second paragraph of [10, Section 4.3] shows that fixing the identity at an
object (A,α,φ) gives the identity Aα|N (Aα|N )Aα|N at the object Aα|N in C∗,
and adding the action αG/N throughout shows that Fix

G/N
N takes (A,α,φ)

to the identity morphism at Fix
G/N
N (A,α,φ). Proving that Fix preserves

composition was the hard bit of [10, Theorem 3.3], and we have to check that
all the isomorphisms constructed in its proof can be made equivariant. The
next two lemmas are equivariant versions of [10, Proposition 4.1] and [10,
Theorem 4.5].

Lemma 4.3. Suppose that (K,μ,φ), (B,β,ψ) and (C,γ, ζ) are objects in
C∗act(G, (C0(T ), rt)), that (K,μ)(X,u)(B,β) is an imprimitivity bimodule, and
that σ : B → M(C) is a nondegenerate homomorphism which is β − γ equi-
variant and satisfies σ ◦ ψ = ζ. Then (Fix(X,u|N) ⊗Bβ|N Cγ|N , uG/N ⊗ γG/N )
and (Fix(X ⊗B C, (u ⊗ γ)|N), (u ⊗ γ)G/N ) are isomorphic as right-Hilbert
(Kμ, μG/N ) − (Cγ , γG/N ) bimodules.

Proof. In [10, Proposition 4.1], we found a nondegenerate homomorphism

ΦL :
(
L(X),L(u)

)
→

(
M

(
L(X ⊗B C)

)
,L(u ⊗ γ)

)
,

which is a morphism in the comma category (C0(T ), rt) ↓ C∗actnd(G), and
hence also in (C0(T ), rt) ↓ C∗actnd(N), and is L(u) − L(u ⊗ γ) equivariant.
Proposition 2.4 gives a nondegenerate homomorphism (ΦL)N of L(X)L(u)|N =
L(Xu|N ) into M(L(X ⊗B C)L(u⊗γ)|N ) = M(L((X ⊗B C)(u⊗γ)|N )), and apply-
ing Lemma 4.3 of [10] gave the isomorphism Ω of [10, Proposition 4.1]: if Ψ
denotes the top right-hand corner of (ΦL)N , then Ω is given by Ω(m ⊗ d) =
Ψ(m) · d, where the action is that of Cγ|N on (X ⊗B C)(u⊗γ)|N , which is by
definition induced by matrix multiplication in M(L((X ⊗B C)(u⊗γ)|N )). The
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homomorphism (ΦL)N is L(u)G/N − L(u ⊗ γ)G/N equivariant, and then the
calculation(

0 Ψ(uG/N
tN (m)) · γ

G/N
tH (d)

0 0

)

= (ΦL)N

((
0 u

G/N
tN (m)

0 0

))(
0 0
0 γ

G/N
tN (d)

)

= L(u ⊗ γ)G/N
tN

(
(ΦL)N

((
0 m
0 0

)))
L(u ⊗ γ)G/N

tN

((
0 0
0 d

))

= L(u ⊗ γ)G/N
tN

((
0 Ω(m ⊗ d)
0 0

))

shows that

Ω
(
u

G/N
tN (m) ⊗ γ

G/N
tN (d)

)
= Ψ

(
u

G/N
tH (m)

)
· γ

G/N
tN (d)

= (u ⊗ γ)G/N
tH

(
Ω(m ⊗ d)

)
. �

Lemma 4.4. Suppose that (A,α,φ), (B,β,ψ) and (C,γ, ζ) are objects in
C∗act(G, (C0(T ), rt)), and that (A,α)(X,u)(B,β) and (B,β)(Y, v)(C,γ) are im-
primitivity bimodules. Then(

Xu|N ⊗Bβ|N Y v|N , uG/N ⊗ vG/N
) ∼=

(
(X ⊗B Y )(u⊗v)|N , (u ⊗ v)G/N

)
as (Aα, αG/N ) − (Cγ , γG/N ) imprimitivity bimodules.

Proof. In the proof of [10, Theorem 4.5], we identify K((X ⊗B Y ) ⊕ Y ⊕ C)
with

F =

⎛
⎝A X X ⊗B Y

∗ B Y
∗ ∗ C

⎞
⎠ ,

and show that the actions α, β γ, u, v and u ⊗ v combine to give an action
η of G on F such that (F,η,φ ⊕ ψ ⊕ ζ) is an object in C∗act(G, (C0(T ), rt)).
Then

ηG/N =

⎛
⎝αG/N uG/N (u ⊗ v)G/N

∗ βG/N vG/N

∗ ∗ γG/N

⎞
⎠

acts on

F η|N =

⎛
⎝Aα|N Xu|N (X ⊗B Y )(u⊗v)|N

∗ Bβ|N Y v|N

∗ ∗ Cγ|N

⎞
⎠ .

The isomorphism of Xu|N ⊗Bβ|N Y v|N onto (X ⊗B Y )(u⊗v)|N is given by x ⊗
y �→ xy, where xy is by definition the top right entry in the product in F η|N
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of

(4.4)

⎛
⎝0 x 0

0 0 0
0 0 0

⎞
⎠ and

⎛
⎝0 0 0

0 0 y
0 0 0

⎞
⎠ .

Thus, the isomorphism takes u
G/N
tN (x) ⊗ v

G/N
tN (y) to the top-right entry of

the image of the product of (4.4) under η
G/N
tN , which is (u ⊗ v)G/N

tN (xy), as
required. �

End of the proof of Proposition 4.1. Suppose that (X,u) is a Hilbert (A,
α) − (B,β) bimodule and that (Y, v) is a Hilbert (B,β) − (C,γ) bimodule. Now
we need to follow the proof of [10, Theorem 3.3] to see how the isomorphism
there is defined. We start with the tensor product(

Fix(X,u|N), uG/N
)

⊗Bβ|N

(
Fix(Y, v|N), vG/N

)
,

and use [10, Corollary 2.3] to factor this equivariantly as(
K

(
Xu|N)

, μG/N
)

⊗K(Xu|N )

(
Xu|N , uG/N

)
⊗Bβ|N

(
K

(
Y v|N)

, ρG/N
)

⊗K(Y v|N )

(
Y v|N , vG/N

)
.

Lemma 4.3 implies that the above is equivariantly isomorphic to(
K

(
Xu|N)

, μG/N
)

⊗K(Xu|N )

((
X ⊗B K(Y )

)(u⊗ρ)|N
, (u ⊗ ρ)G/N

)
⊗K(Y v|N )

(
Y v|N , vG/N

)
.

By Lemma 4.4, this is equivariantly isomorphic to(
K

(
Xu|N)

, μG/N
)

⊗K(Xu|N )

((
X ⊗B K(Y ) ⊗K(Y ) Y

)(u⊗ρ⊗v)|N
, (u ⊗ ρ ⊗ v)G/N

)
.

In the proof of [10, Theorem 3.3], we provide a right-Hilbert module isomor-
phism

θ| :
(
X ⊗B K(Y ) ⊗K(Y ) Y

)(u⊗ρ⊗v)|N → (X ⊗B Y )(u⊗v)|N ,

and it is enough to prove that θ| is (u ⊗ ρ ⊗ v)G/N − (u ⊗ v)G/N equivariant.
Recall that θ| is defined as follows. We first let θ : X ⊗B K(Y ) ⊗K(Y ) Y →

X ⊗B Y be the right (C,γ)-homomorphism given by (x ⊗ Θ ⊗ y) �→ x ⊗ Θ(y).
Then

L(θ) :=
(

Adθ θ
∗ id

)
is an isomorphism in C∗act(G, (C0(T ), rt)) which maps (L(X ⊗B K(Y ) ⊗K(Y )

Y ),L(u ⊗ ρ ⊗ v)) onto (L(X ⊗B Y ),L(u ⊗ v)). Then Proposition 2.4 gives an
isomorphism L(θ)| on fixed-point algebras, and θ| is the top right-hand corner
of L(θ)|. The restriction L(θ)| is L(u ⊗ ρ ⊗ v)G/N − L(u ⊗ v)G/N equivariant,
and this equivariance implies that θ| is (u ⊗ ρ ⊗ v)G/N − (u ⊗ v)G/N equivariant,
as required. �
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Theorem 4.5. Suppose that a locally compact group G acts freely and prop-
erly on a locally compact space T , and N is a closed normal subgroup of G.
For every object (A,α,φ) in the semi-comma category C∗act(G, (C0(T ), rt)),
the injection ιN of M(Aα|N ) in M(A) described in Corollary 2.3 restricts
to an isomorphism ιG,N = ιG,N (A,α,φ) of Fix(Aα|N , αG/N , φN ) onto Aα :=
Fix(A,G,φ), and these isomorphisms give a natural isomorphism between
FixG/N ◦ FixG/N

N and Fix.

Proof. Corollary 2.3 implies that ιN is an injection, so for the first part
it suffices to check that ιN maps FixG/N (Aα|N , αG/N , φN ) onto Fix(A,α,φ).
Let a ∈ A0. We start by showing that EN (a) belongs to the domain (Aα|N )0
of EG/N . Choose f, g ∈ Cc(T ) such that a = φ(f)aφ(g), and h,k ∈ Cc(T/N)
such that h ≡ 1 on (suppf)/N and k ≡ 1 on (supp g)/N . Then φ(h) and φ(k)
are α|N -invariant, so

EN
(
φ(f)aφ(g)

)
= ιN

(
EN

(
φ(hf)aφ(gk)

))
= ιN

(
φ(h)EN

(
φ(f)aφ(g)

)
φ(k)

)
= φN (h)ιN

(
EN

(
φ(f)aφ(g)

))
φN (k)

= φN (h)EN
(
φ(f)aφ(g)

)
φN (k)

belongs to (Aα|N )0 = φN (Cc(T/N))Aα|NφN (Cc(T/N)), and EG/N (EN (a))
makes sense.

Next, we compute EG(a). Let f ∈ Cc(T ), and again choose h ∈ Cc(T/N)
such that h ≡ 1 on (suppf)/N . Several applications of [16, Lemma 2.2] show
that φ(f)EG(a) is given by the norm-convergent A-valued integrals

φ(f)EG(a) =
∫

G

φ(f)αt(a)dt =
∫

G/N

∫
N

φ(f)αtn(a)dnd(tN)(4.5)

=
∫

G/N

αt

(∫
N

α−1
t

(
φ(f)

)
αn(a)dn

)
d(tN)

=
∫

G/N

αt

(
φ
(
rt−1

t (f)
)
EN (a)

)
d(tN)

=
∫

G/N

φ(f)αt

(
EN (a)

)
d(tN)

=
∫

G/N

φ(f)φ(h)αG/N
tN

(
EN (a)

)
d(tN)

= φ(f)
∫

G/N

ιN
(
φN (h)

)
α

G/N
tN

(
EN (a)

)
d(tN).
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Since EN (a) belongs to Aα|N , (4.5) is the product in M(A) of φ(f) with the
image under ιN of the norm-convergent Aα|N -valued integral∫

G/N

φN (h)αG/N
tN

(
EN (a)

)
d(tN) = φN (h)EG/N

(
EN (a)

)
.

Thus

φ(f)EG(a) = φ(f)ιN
(
φN (h)EG/N

(
EN (a)

))
= φ(f)φ(h)ιN

(
EG/N

(
EN (a)

))
= φ(f)ιN

(
EG/N

(
EN (a)

))
.

Since φ is nondegenerate, this implies that

(4.6) EG(a) = ιN
(
EG/N

(
EN (a)

))
= ιG,N

(
EG/N

(
EN (a)

))
for all a ∈ A0.

Since Fix(Aα|N , αG/N , φN ) is by definition

span
{
EG/N

(
φN (h)bφN (k)

)
: b ∈ Aα|N , h, k ∈ Cc(T/N)

}
,

and since EN (A0) is dense in Aα|N , the norm continuity of the function
b �→ EG/N (φN (h)bφN (k)) and the argument in the first paragraph of the proof
imply that

Fix
(
Aα|N , αG/N , φN

)
= span

{
EG/N

(
EN (a)

)
: a ∈ A0

}
.

Thus, we can deduce from Equation (4.6), first, that ιN (Fix(Aα|N )) is con-
tained in Fix(A,α,φ), and, second, that it is dense in Fix(A,α,φ). Since ιN
is a homomorphism between C∗-algebras, it has closed range, and hence it is
onto, as required.

To establish naturality, we consider a right-Hilbert (A,α) − (B,β) bimodule
(X,u) and its canonical factorisation, as in [10, Corollary 2.3]:

(A,α,φA) κ (K, μ,φK) X (B,β,φB).

Next, we apply Proposition 2.4 iteratively to get maps κN : Aα|N → M(Kμ|N )
and (κN )G/N : Fix(Aα|N ) → M(Fix(Kμ|N )). We need to prove that the fol-
lowing diagram commutes:

Fix
(
Aα|N , αG/N

) ιG,N (A)

Fix(Fix(X,u|),uG/N )

(κN )G/N

Fix(A,α)
κG

Fix(X,u)Fix
(

Kμ|N , μG/N
)

(Xu|N )uG/N

ιG,N (K)
Fix(K, μ)

Xu

Fix
(
Bβ|N , βG/N

) ιG,N (B)
Fix(B,β).
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The left and right triangles commute because the functor Fix is defined on
morphisms by factoring, fixing and reassembling (see [10, Section 3]). So it
remains for us to prove that the lower and upper quadrilaterals commute.

For the lower quadrilateral, we need to look at the construction of the fixed-
point bimodules (see [10, Section 3] and our page 218). The imprimitivity bi-
module (Xu|N, uG/N ) is by definition the top right-hand corner of (L(X)L(u)|N,

L(u)G/N ), and (Xu|N )uG/N

is by definition the top right-hand corner of
Fix(L(Xu|N ),L(uG/N )) = Fix(L(X)L(u)|N ,L(u)G/N ). Applying the first part
of the present theorem to the object (L(X),L(u), φK ⊕ ψ) in C∗act(G, (C0(T ),
rt)) gives an isomorphism ιG,N (L(X)) of FixG/N (L(X)L(u)|N ) onto Fix(L(X),
L(u)); this isomorphism is induced by the inclusion of L(X)L(u)|N in M(L(X)),
which restricts on the corners to the inclusions of Kμ|N and Bβ|N in M(K)
and M(B), and hence ιG,N (L(X)) restricts to ιG,N (K) and ιG,N (B) on the
diagonal corners. Now general nonsense (as in Lemma 4.6 of [6], for example)
implies that the restriction of ιG,N (L(X)) to the top right-hand corner is an
isomorphism of (Xu|N )uG/N ⊗FixBβ|N Fix(B,β) onto Fix(K, μ) ⊗Fix(K,μ) Xu.
But the existence of such an isomorphism says precisely that the bottom
quadrilateral commutes.

For the top quadrilateral, we have to come to grips with the property
which characterises κG, and this means adding some ι maps. So we consider
the diagram

(4.7)

Fix
(
Aα|N , αG/N

) ιG,N (A)

κN

(κN )G/N

Fix(A,α)
κG

κFix
(

Kμ|N , μG/N
)

ιG/N

ιG,N (K)
Fix(K, μ)

ιG

M
(
Kμ|N) ιN

M(K).

Proposition 2.4 implies that the right and left triangles commute. The bottom
quadrilateral is the strictly continuous extension of the diagram

Fix
(

Kμ|N , μG/N
) ιG,N (K)

ιG/N

Fix(K, μ)

ιG

M
(

Kμ|N) ιN
M(K),

which commutes because the vertical arrows are inclusions and ιG,N = ιN . So
the bottom quadrilateral of (4.7) commutes. Thus, since the ι’s are all injec-
tions, it suffices to prove that the outside square commutes. Proposition 2.4
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tells us that ιN ◦ κN is the restriction of κ to Aα|N ⊂ M(A), which we can
rewrite as κ ◦ ιN . But

ιN ◦ κN = κ ◦ ιN =⇒ ιN ◦ κN = κ ◦ ιN =⇒ ιN ◦ κN = κ ◦ ιN ,

which since ιG,N = ιN says that the outside square of (4.7) commutes, as
required. �

Theorem 4.6. Suppose that G acts freely and properly on a locally compact
space T , N is a closed normal subgroup of G, and (A,α,φ) is an object in
the semi-comma category C∗act(G, (C0(T ), rt)). Then the following diagram
commutes in C∗:

(4.8) A �α|,r N
Z(A,α|N,φ)

A�α,rG

Aα|N = Fix(A,α|N,φ)

Z(Aα|N ,αG/N ,φN )

Fix
(
Aα|N , αG/N , φN

)
ιG,N

A �α,r G
Z(A,α,φ)

Fix(A,α,φ).

Proof. We will show that the map Ω : A0 ⊗EN (A0) E
N (A0) → A0 defined by

Ω(a ⊗ EN (b)) = aEN (b) extends to a right-Hilbert (A�α|,r N) − Fix(A,α,φ)-
bimodule isomorphism of

Z(A,α|N,φ) ⊗Aα|N Z
(
Aα|N , αG/N , φN

)
onto Z(A,α,φ). We begin by showing that Ω preserves the inner-product: for
a1, a2, b1, b2 ∈ A0, we have〈

a1 ⊗ EN (b1), a2 ⊗ EN (b2)
〉
Fix(A,α)

=
〈

〈a2, a1〉Aα|N EN (b1),EN (b2)
〉
Fix(A,α)

= ιG,N

(〈
EN

(
a∗
2a1

)
EN (b1),EN (b2)

〉
Fix(Aα|N ,αG/N )

)
= ιG,N

(
EG/N

(
EN (b1)∗EN

(
a∗
2a1

)∗
EN (b2)

))
= ιG,N

(
EG/N

(
EN

(
EN

(
b∗
1

)
a∗
1a2E

N (b2)
)))

= EG
(
EN

(
b∗
1

)
a∗
1a2E

N (b2)
)

(using (4.6))

=
〈
a1E

N (b1), a2E
N (b2)

〉
Fix(A,α)

=
〈
Ω

(
a1 ⊗ EN (b1)

)
,Ω

(
a2 ⊗ EN (b2)

)〉
Fix(A,α)

.

Next, note that the left action of z ∈ Cc(N,A) ⊂ A �α|,r N on a ∈ A0 ⊂
Z(A,α,φ), which is given by

z · a =
∫

G

z(t)αt(a)ΔG(t)1/2 dt,
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is the integrated form of the covariant representation (π,U), where

π(a)b = ab and Ut(b) = αt(b)ΔG(t)1/2 for a, b ∈ A0.

The inclusion of A �α|,r N in M(A �α,r G) is the integrated form of (id, iG|),
where iG : G → M(A �α,r G) is the canonical map. Thus w ∈ Cc(N,A) acts
on a ∈ A0 by

(4.9) w · a =
∫

N

g(n)αn(a)ΔN (n)1/2 dn

(since N is normal the modular functions of G and N coincide on N ). From
(4.9), we deduce, first, that Ω preserves the left action: for a, b ∈ A0, we have

w · Ω
(
a ⊗ EN (b)

)
= w ·

(
aEN (b)

)
=

∫
N

w(n)αn

(
aEN (b)

)
ΔG(t)1/2 dn

=
∫

N

w(n)αn(a)EN (b)ΔG(t)1/2 dn

=
(∫

N

w(n)αn(a)ΔG(t)1/2 dn

)
EN (b)

= Ω
(
w · a ⊗ EN (b)

)
= Ω

(
w ·

(
a ⊗ EN (b)

))
.

Next, we use formula (4.9) again to see that Ω has dense range, and hence
is surjective. To do this, let c ∈ A0 ⊂ Z(A,α,φ). Since Z(A,α|N,φ) is an
imprimitivity bimodule which is obtained by completing A0, we can find an
approximate identity {ei} for A �α|,r N of the form ei =

∑ni

j=1 L〈xi,j , xi,j 〉,
where all the elements xi,j belong to A0 (by [19, Lemma 6.3], for example).
Since the inclusion of A �α|,r N in M(A �α,r G) is nondegenerate, the net
{ei} converges to 1 strictly in M(A �α,r G), and we can approximate c in
Z(A,α,φ) by an element ei · c. But now we observe that the formula (4.9) for
the left action of w ∈ Cc(N,A) on A0 ⊂ Z(A,α,φ) is exactly the same as the
formula for the left action of w on A0 ⊂ Z(A,α|N,φ), and hence we have

ei · c =
ni∑

j=1

L〈xi,j , xi,j 〉 · c =
ni∑

j=1

xi,j · 〈xi,j , c〉Aα|N =
ni∑

j=1

xi,jE
N

(
x∗

i,jc
)
.

Since each xi,jE
n(x∗

i,jc) belongs to the range of Ω, we deduce that Ω has dense
range. Now general nonsense tells us that Ω is a right-module homomorphism,
and hence is an isomorphism of right-Hilbert bimodules. �

5. Rieffel’s Morita equivalence is equivariant

Let [X,u] be a morphism from (A,α) to (B,β) in C∗act(G). Recall that
ΔG,N (s) := ΔG(s)ΔG/N (sN)−1 (see Equation (4.2)). By Lemma 3.23 of [5],
there is a unique action αdec : G → Aut(A �α|,r N) such that αdec

s (w)(n) =
ΔG,N (s)αs(w(s−1ns)) for w ∈ Cc(N,A). The same formula defines an αdec −
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βdec compatible action udec on Cc(N,X) ⊂ X �u|,r N . By Theorem 3.24 of
[5], the assignments

(A,α) �→
(
A �α|,r N,αdec

)
and (X,u) �→

(
X �u|,r N,udec

)
define a functor RCPG

N from C∗act(G) to C∗act(G).
Now let (A,α) in C∗act(G/N). Composing with the quotient map q : G →

G/N gives an action Inf(α) = α ◦ q of G on A, and there is an Inf(α) −
Inf(β) compatible action Inf(u) = u ◦ q on X . By Corollary 3.18 of [5], the
assignments

(A,α) �→
(
A, Inf(α)

)
and (X,u) �→

(
X, Inf(u)

)
define a functor InfG

G/N from C∗act(G/N) to C∗act(G).
Applying Theorem 3.5 of [10] with (T,G) = (G,N) gives a natural isomor-

phism between functors FixN and RCPN defined on C∗act(G, (C0(G), rt)); the
next theorem is an equivariant version of this natural isomorphism.

Theorem 5.1. Suppose that G is a locally compact group acting freely
and properly on a locally compact space T , and that N is a closed normal
subgroup of G. Let (A,α,φ) be an object in C∗act(G, (C0(T ), rt)). Then there
is an αdec − Inf(αG/N ) compatible action Rie(α) of G on Rieffel’s bimodule
Z(A,α|N,φ), and the assignment

(A,α) �→
(
Z(A,α|N,φ),Rie(α)

)
implements a natural isomorphism between the functors RCPG

N and InfG
G/N ◦

Fix
G/N
N .

Proof. We start by showing that there is an αdec – Inf(αG/N ) compatible
action Rie(α) on Z(A,α|, φ) such that Rie(α)s(a) = ΔG,N (s)1/2αs(a) for a ∈
A0.

Fix a, b ∈ A0. The modular functions of G and N agree on N by normality,
so

αdec
s

(
A�α|,rN 〈a, b〉

)
(n) = ΔG,N (s)αs

(
A�α|,rN 〈a, b〉

(
s−1ns

))
= ΔG,N (s)αs

(
aαs−1ns

(
b∗)

ΔN

(
s−1ns

)−1/2)
= ΔG,N (s)αs(a)αns

(
b∗)

ΔN (n)−1/2

= ΔG,N (s)A�α|,rN

〈
αs(a), αs(b)

〉
(n)

= A�α|,rN

〈
Rie(α)s(a),Rie(α)s(b)

〉
(n);

replacing a by w · a shows that Rie(α)s(w · a) = αdec
s (w) · Rie(α)s(a). Next,

given c ∈ A0 we compute

c
(
Inf

(
αG/N

))
s

(
〈a, b〉Aα|N

)
= cαs

(
〈a, b〉Aα|N

)
= αs

(
α−1

s (c)EN
(
a∗b

))
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= αs

(∫
N

α−1
s (c)αn

(
a∗b

)
dn

)
=

∫
N

cαsn

(
a∗b

)
dn

= ΔG,N (s)
∫

N

cαns

(
a∗b

)
dn (see (4.2))

= ΔG,N (s)
∫

N

cαn

(
αs(a)∗αs(b)

)
dn

= cEN
(
Rie(α)s(a)∗ Rie(α)s(b)

)
= c

〈
Rie(α)s(a),Rie(α)s(b)

〉
Aα|N ,

and replacing b by b · l shows that Rie(α)s(a · l) = Rie(α)s(a) · (Inf(αG/N ))s(l)
for l ∈ EN (A0). In particular,∥∥Rie(α)s(a)

∥∥2 =
∥∥αdec

s

(
A�α|,rN 〈a, a〉

)∥∥ =
∥∥

A�α|,rN 〈a, a〉
∥∥ = ‖a‖2,

so Rie(α)s extends to an automorphism of Z(A,α|N,φ).
To see that Rie(α) is strongly continuous it suffices to see that for a fixed

a ∈ A0, s �→ A�α|,rN 〈Rie(α)s(a), a〉 = A�α|,rN 〈ΔG,N (s)αs(a), a〉 is continuous
(see, e.g., [13, Lemma 2.1]). So the strong continuity of Rie(α) follows from
the strong continuity of α and the continuity of ΔG,N .

Let [X,u] : (A,α,φ) → (B,β,ψ) be a morphism in C∗act(G, (C0(T ), rt)).
We factor X using [10, Corollary 3.5]:

(A,α,φ) κ (
K(X), μ,φK

) (X,u)
(B,β,ψ).

We need to show that the outer square of the following diagram

(
A �α|,r N,αdec

) (Z(A,α|N,φ),Rie(α))

(X�rN,udec)

κ�rN

(
Aα|N , Inf

(
αG/N

))
κN

(Fix(X,u|),Inf(uG/N ))K �μ|,r N

(X�u|,rN,μdec)

Z(K,μ|N,φK)

Kμ|N

(Xu|,Inf(uG/N ))(
B �β|,r N,βdec

)
(Z(B,β|N,ψ),Rie(β))

(
Bβ|N , Inf

(
βG/N

))
commutes equivariantly. Without the actions, the diagram commutes by [10,
Theorem 3.5]. The left and right triangles commute equivariantly because
RCPG

N is a functor from C∗act(G) to C∗act(G) and InfG
G/N ◦ FixG/N

N is a func-
tor from C∗act(G, (C0(T ), rt)) to C∗act(G).

By [16, Theorem 3.2] the isomorphism representing the upper quadrilat-
eral is Φ : Z(A,α|N,φ) ⊗Aα| Kμ|N → Z(K, μ|N,φK) given by Φ(a ⊗ EN (l)) =
κ(a)EN (l) for a ∈ A0 and l ∈ (Kμ|N )0. The α − μ equivariance of κ gives the
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equivariance of Φ:

Φ
(
Rie(α)s(a) ⊗ Inf(μ)s

(
EN (l)

))
= κ

(
Rie(α)s(a)

)
Inf(μ)s

(
EN (l)

)
= ΔG,N (s)1/2κ

(
αs(a)

)
μs

(
EN (l)

)
= ΔG,N (s)1/2μs

(
κ(a)EN (l)

)
= Rie(μ)s

(
Φ

(
a ⊗ EN (l)

))
.

So the upper quadrilateral commutes equivariantly, and it remains to show
that the lower quadrilateral commutes equivariantly.

The imprimitivity bimodule W := Z(L(X),L(u)|N,φK ⊕ ψ) comes with
the L(u)dec − Inf(L(u)G/N ) compatible action Rie(L(u)), and since the iso-
morphism of L(X) �L(u)|,r N onto L(X �u|,r N) is L(u)dec − L(udec) equi-
variant and L(X)L(u)| = L(Xu|), we can view (W,Rie(L(u))) as a (L(X �u|,r
N),L(udec)) − (L(Xu|), Inf L(uG/N )) imprimitivity bimodule. Let p, q ∈
M(L(X �u|,r N)) and p′, q′ ∈ M(L(Xu|)) be the complementary corner pro-
jections.

Let k ∈ K0. The map k �→ (k
0

0
0 ) extends to a norm-preserving map of K0 ⊂

Z(K, μ|N,φK) into W , and hence extends to an isomorphism of Z(K, μ|N,φK)
onto pFp′ which is compatible with the inclusion of Kμ|N onto pL(X)L(u)|Np′.
Similarly, Z(B,β|N,ψ) is isomorphic to qWq′.

In [10, Theorem 3.5], we showed that the lower quadrilateral commutes by
applying [6, Lemma 4.6] to get isomorphisms

Ψ1 : pWp′ ⊗Kμ| Xu| → pWq′ given by Ψ1(k ⊗ m) = k · m,

where the action of m ∈ Xu| on k ∈ pWp′ is the right action of L(Xu|) on W ,
so that k · m is the product of(

k 0
0 0

)
∈ L(X0) and

(
0 m
0 0

)
∈ M

(
L(X)

)
and

Ψ2 : X �u|,r N ⊗B�β|,rN qWq′ → pWq′ given by Ψ2(z ⊗ b) = z · b.

The actions Rie(μ) and Rie(u) of G on pWp′ = Z(K, μ|, φK) and pWq′ are
restrictions of the action Rie(L(u)) of G on W . The action Inf(uG/N ) of G
on Xu| is the restriction to the top-right corner of the action Inf(L(u)G/N ) of
G on L(X)L(u)|. Since Rie(L(u)) and Inf(L(u)G/N ) are compatible actions,
Ψ1 is (Rie(μ) ⊗ Inf(uG/N )) − Rie(u) equivariant. Similarly, Ψ2 is equivariant.
Thus, the lower quadrilateral commutes equivariantly, as required. �

Let δ : B → M(B ⊗ C∗(G)) be a normal nondegenerate coaction. When
(T,G,N) = (G,G,N) and (A,α,φ) = (B �δ G, δ̂, jG), Theorem 5.1 is part of
[5, Theorem 4.3] (it does not include the assertions about equivariance with
respect to coactions). This application was our motivation for formulating
Theorem 5.1.
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6. Naturality for crossed products by coactions

Throughout this section, H ⊂ K are closed subgroups of G such that H
is normal in K. We begin by showing that under these circumstances the
functor RCPG/H of [10, Proposition 5.5] has an equivariant version.

Lemma 6.1. For every object (B,δ) and morphism [X,Δ] in C∗coactn(G),
there are actions (δ̂|H)K/H and (Δ̂|H)K/H of K/H on B �δ,r (G/H) and
X �Δ,r (G/H) such that

(δ̂|H)K/H
tH

(
jB(b)jG|(f)

)
= jB(b)jG|

(
rttH(f)

)
,(6.1)

(Δ̂|H)K/H
tH

(
jX(x)jG|(f)

)
= jG(x)jG|

(
rttH(f)

)
(6.2)

for b ∈ B, f ∈ C0(G/H) and x ∈ X . Adding these actions makes RCPG/H

into a functor RCP
K/H
G/H from C∗coactn(G) to C∗act(K/H), and this functor

coincides with Fix
K/H
H ◦ CPK .

Proof. Proposition 4.1 shows that the functor FixH : C∗act(G, (C0(G),
rt)) → C∗ extends to a functor Fix

K/H
H : C∗act(G, (C0(G), rt)) → C∗act(K/

H), and hence FixH ◦ CPK also extends. Since the effect of the two functors
RCPG/H and FixH ◦ CPK is exactly the same (they yield the same subspaces
of multiplier algebras and bimodules), we just need to check that the actions
have the effect described in (6.1) and (6.2). But the automorphism (δ̂|H)K/H

tH

of Fix(B �δ G, δ̂|H) is by definition the restriction of (δ̂|H)t = δ̂t, so this
follows immediately from the definition of the dual action. �

Theorem 6.2. Suppose that H and K are closed subgroups of a locally
compact group G such that H is normal in K. Let (B,δ) be an object in
C∗coactn(G), and let

ιK,H : Fix
(
B �δ,r (G/H), δ̂K/H , (jG)H

)
→ Fix(B �δ G, δ̂|K,jG)

be the isomorphism of Theorem 4.5. Then

(6.3) (B,δ) �→ [ιK,H ] ◦
[
Z

(
B �δ,r (G/H), δ̂K/H , (jG)H

)]
is a natural isomorphism between the functors

RCPK/H ◦ RCPK/H
G/H : (B,δ) �→

(
B �δ,r (G/H)

)
�δ̂K/H ,r (K/H), and

RCPG/K : (B,δ) �→ B �δ,r (G/K)

from C∗coactn(G) to C∗.

Proof. Theorem 3.5 of [10], applied with (T,G) = (G/H,K/H) and (A,α,

φ) = (B �δ,r (G/H), δ̂K/H , (jG)H), says that the Rieffel bimodules Z(B �δ,r

(G/H), δ̂K/H , (jG)H) give natural isomorphisms between
RCPK/H : C∗act

(
K/H,

(
C0(G/H), rt

))
→ C∗, and

FixK/H : C∗act
(
K/H,

(
C0(G/H), rt

))
→ C∗ .
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Thus, the Rieffel bimodules also give natural isomorphisms between

RCPK/H ◦ FixK/H
H ◦ CPK and FixK/H ◦ FixK/H

H ◦ CPK

from C∗coactn(G) to C∗. But Fix
K/H
H ◦ CPK = RCP

K/H
G/H by Lemma 6.1, and

Theorem 4.5 says that ιK,H is a natural isomorphism of FixK/H ◦ FixK/H
H

onto FixK , so the composition (6.3) is a natural isomorphism from

RCPK/H ◦ RCPK/H
G/H to FixK ◦ CPK .

Another application of [10, Proposition 5.5] says that FixK ◦ CPK = RCPG/K ,
and hence we have proved the theorem. �

7. Induction of representations between crossed products by
homogeneous spaces

Suppose that δ is a normal coaction of a locally compact group G on
a C∗-algebra B, and H , K are closed subgroups of G with H ⊂ K. We
want to define an induction process IndG/H

G/K from Rep(B �δ,r (G/K)) to
Rep(B �δ,r (G/H)) which has “the usual properties one would expect”, and
fortunately we have previously described what we think this means for actions.
So, dualising the criteria described in the introduction to [8], we want:
(1) an imprimitivity theorem which characterises induced representations;
(2) regularity : the representations induced from the trivial quotient {G/G}

are the regular representations; and
(3) induction-in-stages: for H ⊂ K ⊂ L, we have IndG/H

G/K ◦ IndG/K
G/L = IndG/H

G/L .

When all the subgroups are normal, the process constructed by Mansfield in
[17] has these properties: Mansfield himself proved an imprimitivity theorem
[17, Theorem 28] and that the representations induced from G/G are the
regular representations [17, Proposition 21], and induction-in-stages was later
proved in [15, Corollary 4.2]. (There are potentially confusing switches of
hypotheses between [17] and [15], but since one can pass from normal to
reduced coactions and back again by [23] (see also [11]), the results all hold for
the reduced coactions used in [17] and the normal coactions used in [15]. The
analogous results for maximal coactions were only recently obtained in [8].)

Our goal here is to do what we can for non-normal subgroups. We have
not been able to completely eliminate normality hypotheses, but we get a sat-
isfactory theory for pairs of subgroups H , K such that H is normal in K. For
such a pair, Z(B �δ,r (G/H), δ̂K/H , (jG)H) is a Morita equivalence between
(B �δ,r (G/H)) �δ̂K/H (K/H) and the fixed-point algebra FixK/H(B �δ,r

(G/H), δ̂K/H , (jG)H) by Theorem 6.2. Since B �δ,r (G/H) is itself the fixed-
point algebra for the system (B �δ G, δ̂|H , jG) and H is normal in K, we
can use the isomorphism ιK,H from FixK/H ◦ FixK/H

H (B �δ G, δ̂|K , jG) onto
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FixK(B �δ G, δ̂|K , jG) = B �δ,r (G/K) (see Theorem 4.5) to view Z(B �δ,r

(G/H), δ̂K/H , (jG)H) as a right Hilbert (B �δ,r (G/K))-module, and throw
away the left action of K/H to obtain a right-Hilbert (B�δ,r (G/H)) − (B�δ,r

(G/K)) bimodule Z
G/H
G/K (B,δ); formally, Z

G/H
G/K (B,δ) is the composition

B �δ,r (G/H)
Z(B�δ,r(G/H),δ̂K/H)

FixK/H

(
B �δ,r (G/H), δ̂K/H

)
ιK,H

B �δ,r (G/K).

We now define
IndG/H

G/K := Z
G/H
G/K (B,δ)-Ind.

Remark 7.1. Because this induction process is defined using Rieffel in-
duction as in [26, Section 2.4], it automatically has lots of nice properties: it
is functorial on representations and intertwining operators; it preserves weak
containment, and hence is well defined on ideals [26, Corollary 2.73]; and it
is continuous [26, Corollary 3.35]. Further, the naturality of Theorem 6.2
implies that IndG/H

G/K will be compatible with the Rieffel-induction processes
arising from morphisms [W,Δ] in the category C∗coactn(G).

Adapting the argument of [9, Proposition 2.1] to reduced crossed products
gives an imprimitivity theorem for this process:

Corollary 7.2. Suppose that H and K are closed subgroups of a locally
compact group G such that H is normal in K, that δ is a normal coaction of
G on B, and that π is a nondegenerate representation of B �δ,r (G/H) on Hπ .
Then there is a nondegenerate representation τ of B �δ,r (G/K) such that π

is unitarily equivalent to IndB�δ,r(G/H)

B�δ,r(G/K) τ if and only if there exists a unitary

representation U of K/H on Hπ such that (π,U) is covariant for δK/H and
π � U factors through the reduced crossed product (B �δ,r (G/H)) �δK/H ,r

(K/H). (The last requirement is automatic if K/H is amenable.)

Next, suppose that π is a representation of B = B �δ| (G/G). Since δ
is normal, the reduction δr is a reduced coaction of G on B (as opposed
to a quotient of B), and (B �δ G,jB, jG) is also the crossed product by the
reduction δr (by Propositions 3.3 and 2.8 of [23] or Theorem 4.1 of [25]). Thus,
it follows from the discusssion preceding Theorem 6.2 of [16] that ZG

G/G(B,δ)
is the bimodule D used in [17], and Proposition 21 of [17] implies that IndG

G/G π

is equivalent to the regular representation ((π ⊗ λ) ◦ δ,1 ⊗ M) on Hπ ⊗ L2(G).
So our induction process has properties (1) and (2). Property (3) is harder.

Theorem 7.3. Suppose that δ is a normal coaction of G on B, and that
H , K and L are closed subgroups of G such that H ⊂ K ⊂ L and both H
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and K are normal in L. Then for every representation π of B �δ,r (G/L),
IndG/H

G/K(IndG/K
G/L π) is unitarily equivalent to IndG/H

G/L π.

Proof. We will prove the stronger statement that

(7.1) Z
G/H
G/K (B,δ) ⊗B�(G/K) Z

G/K
G/L (B,δ) ∼= Z

G/H
G/L (B,δ)

as right-Hilbert (B �δ,r (G/H)) − (B �δ,r (G/L)) bimodules.
To make our calculations less cluttered, we write (C,β) for (B �δ G, δ̂), and

write, for example, FixH C for Fix(C,βH , jG). Now we apply Theorem 4.6
with T = G, (G,N) = (L/H,K/H) and (A,α,φ) = (FixH C,βL/H , jG), ob-
taining the following commutative diagram (in which we have omitted the
crossed products on the left because they are not relevant for our purposes):

FixH C
Z(FixH C,(βL/H)|K/H)

=

FixK/H

(
FixH C,βL/H |K/H

)
Z(FixK/H(FixH C,βL/H |K/H))

FixL/K

(
FixK/H

(
FixH C,βL/H |K/H

)
,
(
βL/H

)(L/H)/(K/H))
ιL/H,K/H

FixH C
Z(FixH C,βL/H)

FixL/H

(
FixH C,βL/H

)
.

To get a diagram involving the modules Z
G/H
G/K (B,δ) which were used to define

our induction process, we need to add lots of “fix–fix” isomorphisms. This
gives us a diagram of the following shape:

FixH C
Z(FixH C)

=

FixK/H FixH C

Z(FixK/H FixH C)

ιK,H

FixK C

Z(FixK C,βL/K)

Fix(L/H)/(K/H) FixK/H FixH C

ιL/H,K/H

θ FixL/K FixK C

ιL,K

FixH C
Z(FixH C)

FixL/H FixH C
ιL,H

FixL C = B � (G/L).

Notice that the compositions along the top, right and bottom are the three
bimodules Z

G/H
G/K (B,δ), Z

G/K
G/L (B,δ) and Z

G/H
G/L (B,δ), so to prove (7.1), it will

suffice to prove that this diagram commutes in C∗. Theorem 4.6 implies that
the left-hand rectangle commutes. The square in the top-right comes from the
isomorphism ιK,H of FixK/H FixH C onto FixK C, which carries the action
(βL/H)(L/H)/(L/K) of L/K = (L/H)/(L/K) into βL/K , and hence induces an
isomorphism θ of fixed-point algebras, which appears in the middle row. So
the top right-hand square commutes. It remains to show that the bottom
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right-hand square commutes, and this will require us to look closely at the
construction of the maps.

First of all, the top arrow θ is induced by the isomorphism ιK,H , and since
the fixed-point algebras are by definition subalgebras of M(FixK/H FixH C)
and M(FixK C), θ is simply the strictly continuous extension ιK,H to the mul-
tiplier algebra. The vertical arrow ιL,K is the strictly continuous extension of
the inclusion ιK of FixK C in M(C), which is nondegenerate by Corollary 2.3.
Thus

(7.2) ιL,K ◦ θ = ιK ◦ ιK,H = ιK ◦ ιK,H .

If m ∈ FixK/H FixH C, then ιK,H(m) belongs to FixK C, and hence ιK ◦
ιK,H(m) = ιK(ιK,H(m)); since ιK is the inclusion, we have ιK ◦ ιK,H = ιK,H =
ιH .

On the other hand, ιL/H,L/K is the strictly continuous extension of the
inclusion j of FixK/H FixH C in M(FixH C), so

(7.3) ιL,H ◦ ιL/H,L/K = ιH ◦ j = ιH ◦ j.

Since j is an inclusion, ιH ◦ j = ιH ; since we have already seen that ιH =
ιK ◦ ιK,H , Equations (7.2) and (7.3) imply that ιK,H ◦ θ and ιL,H ◦ ιL/H,L/K

are the strictly continuous extensions of the same homomorphism from
FixK/H FixH C to M(C), and hence are equal. Thus the diagram commutes,
as claimed, and this completes the proof. �
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