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ORTHOGONALITY IN COMPLEX MARTINGALE SPACES
AND CONNECTIONS WITH THE BEURLING–AHLFORS

TRANSFORM

PRABHU JANAKIRAMAN

Abstract. We introduce and analyze a notion of orthogonal-
ity and dimension for spaces of C

n-martingales. In particular,

the space of martingale transforms of heat-extensions of L2(R2m)

functions is shown to be the orthogonal sum of 2 conformal sub-
spaces. We show that a theorem and proof of D. L. Burkholder

for the computation of Lp-norm of martingale transforms applies

specially for n-conformal and for pairwise conformal n-martin-
gales. This leads to estimates of the Lp-norms of singular integral

operators associated with the second-order Riesz transforms, in
particular of the Beurling–Ahlfors operator.
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1. Introduction

The objective of this paper is three-fold. First, we begin a study of the
geometry of martingale spaces along lines parallel to linear algebra and to
several complex-variables. We define and analyze the property of orthog-
onality for C

n-valued martingales. This leads to the notion of dimension
for a martingale space and provides a platform for the introduction of other
concepts from standard geometry. Next, we analyze the geometric structure
further and show that a class of martingale spaces of even dimension 2m can
be decomposed into the orthogonal sum of subspaces consisting of conformal
martingales. We show here that a space of martingale transforms by constant
matrices is spanned by the transforms generated by 2m2 (instead of 4m2)
special matrices. Finally, in the last part, we find application for this theory
in the computation of the Lp-norm of martingale transforms and obtain cor-
responding estimates for the norm of the Beurling–Ahlfors operator B and
related singular integral operators. These applications are driven by the work
of Burkholder on sharp martingale inequalities [Bu1], [Bu2], [Ban].

The material of this paper is founded on a generalization of the concept
of orthogonality to C and Cn-valued martingales. Here, we have borrowed
from several complex variables and adapted to the martingale setting. Thus,
there is bound to be overlap with known material; we highlight some of these
connections in this introduction. However since orthogonality as presented
here is not the same starting point for some of the past research on C

n-
martingales, there is justification in pursuing the subject independently and



ORTHOGONALITY IN COMPLEX MARTINGALE SPACES 1511

consequently, in the different presentation of the material. We believe this
work will be useful for those working with martingale transforms. It introduces
new classes of martingales for which the old questions can be asked. We
also hope that the paper will give new insight and alternative approaches to
understanding orthogonal martingales and their connections with other fields
in mathematics, such as several complex variables.

1.1. Orthogonality and dimension. Let us begin by considering two real
valued continuous martingales X and Y , defined on a suitable probability
space. Their quadratic variation processes are denoted 〈X〉 and 〈Y 〉; the
mutual covariation process is 〈X,Y 〉. 〈X〉 is the unique increasing process
such that X2

t − 〈X〉t is a martingale. Likewise, 〈X,Y 〉 is the unique bounded
variation process such that XtYt − 〈X,Y 〉t is a martingale. The existence of
〈X〉 follows from the Doob–Meyer decomposition theorem, and we can derive
via the polarization identity that

2〈X,Y 〉 = 〈X + Y 〉 − 〈X〉 − 〈Y 〉.
We think of this covariation process as representing the dot-product for mar-
tingales. Thus if 〈X,Y 〉 ≡ 0, we say that X and Y are orthogonal martingales.
This is well known material; see [KaSh], [BaWa].

More generally, one can say that an R
n-valued martingale X = (X1, . . . ,Xn)

is pairwise orthogonal if 〈Xi,Xj 〉 ≡ 0 for all i �= j. A classic example is Z̃ =
(a1Z1, . . . , anZn) where ai ∈ R and (Z1, . . . ,Zn) is n-dimensional Brownian
motion. We may expect that X should be adapted to a filtration that is rich
enough to accommodate its n-dimensions of orthogonality. In particular, if
the martingales X1, . . . ,Xn belong to a vector space of martingales adapted to
a d-dimensional Brownian motion filtration, then it should follow that n ≤ d
and that the “dimension” of the martingale space is at most d.

To make this precise, suppose the filtration F is Brownian, generated by
d-dimensional Brownian motion Z. Then given any martingale adapted to F
which starts at zero, almost all paths have the stochastic integral representa-
tion

(1.1)
∫ t

0

Hs · dZs.

H is an R
d-valued predictable process. If X1, . . . ,Xn are pairwise orthogonal

martingales with integrands H1, . . . ,Hn respectively, then the orthogonality
condition is equivalent to requiring Hi · Hj = 0 for all i �= j, almost surely, for
all t ≥ 0. But Hi is d-dimensional, hence we can have at most d such vectors.
It follows that n ≤ d. This leads to a natural notion of dimension for a space
of real-valued martingales.

Definition 1.1. Let M̂ be a vector space of martingales adapted to the
Brownian filtration of d-dimensional Brownian motion Z. Then the dimension
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n of M̂ is the maximum number of martingales X1, . . . ,Xn that exist in M̂
such that (X1, . . . ,Xn) is a pairwise orthogonal martingale.

To see that the concept is not entirely trivial even under the Brownian
filtration assumption, consider the real vector space generated by Z1

t and∫ t

0
hs dZ1

s + Z2
t where Z1

t + iZ2
t is complex Brownian motion and h is a non-

trivial process. This space of martingales requires 2-dimensional Brownian
motion to represent all martingales as in (1.1). However, its dimension as per
our definition is 1. (We may refer as Brownian dimension to the minimal d
such that all martingales in a space can be written as stochastic integrals with
respect to a d-dimensional Brownian motion.)

Remark 1.1. The use of the word “Dimension” to refer to the quantity in
Definition 1.1 seems natural given the way we have come upon it. However,
it can also have unusual implications; for example, a martingale space of
dimension n may have distinct proper subspaces of the same dimension! So
as necessary, the value may alternatively be referred to as orthodimension,
(maximal) orthogonality index, or ortho-index. In this paper, we will keep to
dimension.

Observe that given any orthonormal basis {v1, . . . , vd} and R-martingale
X =

∫ t

0
Hs · dZs, we can project X on the basis directions to get an orthogonal

decomposition X = X1 + · · · + Xd. If the martingale space is rich enough to
contain all such projections, then clearly its dimension is also ≥ d, hence
equals d. The issue is whether the set of predictable processes {Hs} from
which our martingales are derived includes the projected processes as well.

1.2. Conformality and holomorphic decomposition. One of our pri-
mary objectives is to define orthogonality for complex valued martingales. It
seems natural to do this as there are important examples of C-martingales that
are best thought of directly as C-valued. Most important are the conformal
martingales on which we will soon say quite a bit. Our notion of orthogonality
for C-valued martingales does not appear to be explicitly defined or analyzed
in the literature.

Definition 1.2. Two C-martingales X and Y are orthogonal if XȲ is a
martingale.

This definition corroborates with our earlier definition of dimension exactly.
Importantly it puts a limit on the number n of martingales in a collection that
can all be mutually pairwise orthogonal, because just as in R

d, an orthogonal
basis in C

d has exactly d-vectors.
When we think of complex-valued martingales, the most simple and im-

portant examples are the conformal martingales. A conformal martingale is a
complex martingale X + iY such that 〈X〉 = 〈Y 〉 and 〈X,Y 〉 = 0. It is a time
change of complex Brownian motion and arises for example when an analytic
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function is composed with planar Brownian motion. This result of P. Lévy
(see [Bas]) connects Brownian motion with complex analysis and is perhaps
the starting point for conformal martingales. They are now a standard part of
martingale theory and their applications are plenty. See [GeSh], [Da1], [Da2],
[BaJa].

An impressive fact is that any given martingale that is run on 2-dimensional
Brownian motion can be written as the sum of two conformal martingales.
For instance, if Xt =

∫ t

0
h1

s dZ1
s +h2

s dZ2
s is a complex process, then with ZC =

Z1 + iZ2 and Z̄C = Z1 − iZ2, we can rewrite X as

Xt =
∫ t

0

(
h1

s − ih2
s

2

)
dZC +

∫ t

0

(
h1

s + ih2
s

2

)
dZ̄C(1.2)

= X1
t + X2

t .

(See [Ok] and [Ub] for more on such representations.) Both Xj
t are conformal

martingales. This decomposition property validates our geometric viewpoint
and helps to centralize upon the concept of orthogonality. Two important
facts about the decomposition will be proved. 1. X1 and X2 are mutually
orthogonal as per our definition, i.e. X1X̄2 is a martingale, 2. X1 and X2 are
mutually holomorphic, i.e. X1X̄2 is a conformal martingale. The holomorphic
decomposition is unique (for our class of martingales) in the sense that any
conformal martingale has to run either against ZC or against Z̄C. These facts
may seem apparent in retrospect given the representation (1.2). Still they
need to be explicitly stated and proved under proper conditions. And from
our standpoint, we do not use the language of (1.2) and approach the subject
through the theory of martingale transforms, hence all such facts are worth
establishing independently.

We will show that X1 and X2 are projections of X onto orthogonal spaces
of conformal martingales. So there will be two projection operators E1 and
E2 that act on X as a martingale transform. The concept of martingale
transform is widely used; see [Bu1], [BaWa].

Definition 1.3. Let Z be a d-dimensional Brownian motion, and let Xt =∫ t

0
Hs · dZs be a martingale. Given a constant d × d complex matrix A, the

martingale transform of X by A is denoted A � X and equals

(1.3) A � Xt =
∫ t

0

AHs · dZs.

Remark 1.2. Throughout this paper, A�X may also be referred to simply
as AX . This should be clear from the context since X is a martingale. More
generally, martingale transforms can be done with variable matrices, or other
operators like conjugation acting on the stochastic integrands. These may
be relevant for further development of the theory presented in this paper.
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However we will focus primarily on constant matrices and consider spaces of
complex martingales that are closed under conjugation.

When d = 2, let

E1 =
1
2

(
1 −i
i 1

)
, E2 =

1
2

(
1 i

−i 1

)
.

We see that X1 = E1 �X and X2 = E2 �X . These are genuinely “projection”
operators.

We come to a highlight of the paper. Let M0 be the space of all martingales
of the form

∫ t

0
∇ϕ(Zs, T − s) · dZs, where ϕ is the heat-extension of an L2(C)

function. Let M be the space of all transforms of martingales in M0. We
prove that

M = E1 � M0 ⊕ E2 � M0.

We already mentioned that the decomposition is orthogonal and holomorphic.
However it is not clear why the two matrices E1 and E2 are sufficient to
span transforms generated by all matrices. There is a deep reason that ties
martingale transforms with singular integral operators. The final part of
the paper will be devoted to the study of this connection in the light of the
theory developed in previous sections. In particular, we address the problem of
computing the Lp-norm of a special singular integral operator, the Beurling–
Ahlfors operator. This topic is in fact the author’s primary interest and the
analysis of the martingales associated with the Beurling–Ahlfors operator has
led the author to the martingale theory presented in the paper. We introduce
this subject separately in Section 10.

1.3. Orthogonality for Cn-martingales. The paper is equally devoted
to the generalization of these concepts to C

n-valued martingales. There are
four notions of orthogonality that we introduce. Let X = (X1, . . . ,Xn) and
Y = (Y1, . . . , Yn) be C

n-martingales.

(1) X and Y are mutually (standard) orthogonal if X · Ȳ =
∑n

j=1 Xj Ȳj is a
martingale.

(2) In the special case n = 2, X and Y are mutually C
2-orthogonal if both

X1Ȳ1 + X2Ȳ2 and −X1Y2 + X2Y1 are martingales.
(3) X is a pairwise orthogonal n-martingale if for all i �= j, the process XiX̄j

is a martingale.
(4) Let X as X1 + iX2 where X1 and X2 are R

n-valued martingales, the
real (R) and imaginary (I) parts of X . Then X is an RI -orthogonal
n-martingale if X1 and X2 are mutually orthogonal martingales.

Our theory for the notion of dimension of a martingale space is developed
for Cn-martingales run on d-dimensional Brownian motion, using the con-
cepts of mutual (standard) orthogonality of two C

n-martingales. The results
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will depend on n and d but the central ideas are the same as what were de-
scribed earlier. The next concept, of mutual C

2-orthogonality is a special
generalization of standard C-orthogonality to C2; it has good potential for
future research and is discussed in Section 3.5. The third concept, of pairwise
orthogonality in X attains significance as we define dimension and further
investigate the orthogonal decomposition of martingale spaces. It also leads
to a very natural generalization of conformality that appears to be a promis-
ing subject for future research. However, we have to distinguish it from the
definition already found in the literature.

1.3.1. Standard conformality vs. pairwise conformality. The subject of con-
formality for C

n-martingales is introduced by Fukushima and Okada [FuOk]
who define X = (X1, . . . ,Xn) to be a conformal martingale if all Xj and XiXj

are martingales. Thus, if Z is planar Brownian motion, then (Z,Z) is a con-
formal 2-martingale. Much work has been done based on this definition; see
[Fuk], [Ub], [Fuj]. However, the standard ‘conformal’ n-martingale is not
pairwise orthogonal whereas our theory on the geometric structure of martin-
gale spaces is based on pairwise orthogonality. We give a variant definition
of n-dimensional conformality that fits naturally into the theory of this pa-
per. Observe that Y = Y1 + iY2 is conformal if and only if 〈Y1〉 = 〈Y2〉 and
〈Y1, Y2〉 = 0. The essential properties are mutual orthogonality and equiv-
alence of the real and imaginary parts. Thus, for higher dimensions is the
following definition.

Definition 1.4. An n-martingale Y = (Y1, . . . , Yn) is pairwise conformal
if it is a pairwise orthogonal n-martingale with equivalent coordinates, that
is, if Yj Ȳk is a martingale and 〈Yj 〉 = 〈Yk 〉, for all j �= k.

When n = 2 and Y1 and Y2 are real, this definition agrees with the usual
R

2-valued conformal martingale. However, it does not obtain a C-conformal
martingale when n = 1. This is in contrast with the Fukushima–Okada defini-
tion which implies C-conformality for n = 1 (since Y 2

1 = Y 2
11 − Y 2

12 + i2Y11Y12 is
also a martingale). So from our perspective, a standard C-conformal martin-
gale run on d dimensional Brownian motion is understood as being pairwise
conformal when it is identified as a C

2-martingale with real coordinates. Im-
portantly then, when acted upon by a C

d×d orthogonal matrix, the martingale
transform is again a pairwise conformal C

2-martingale. See Section 3.5 for
the rudiments of a deeper theory underlying this C = R

2 connection for mar-
tingales.

By normalizing 〈Yj 〉t ≡ t, we also acquire a new generalization of n di-
mensional Brownian motion. This is briefly discussed in Section 3.3. In
Section 11, we give an application that estimates the Lp norm constant Cp

in the inequality ‖Y ‖p ≤ Cp‖X‖p when Y is a pairwise conformal martingale
and 〈Y 〉 ≤ 〈X〉.



1516 P. JANAKIRAMAN

Remark 1.3. A different definition of orthogonality for C
1 martingales,

that X and Y are orthogonal if XY is a martingale, is used in [Ki]. This
appears to have been derived from the Fukushima–Okada definition of con-
formality for C

n-martingales. However we will use the term “orthogonal” as
per Definition 1.2.

1.3.2. RI -conformality. The last notion of orthogonality leads to what looks
like another natural generalization of conformality to C

n-martingales.

Definition 1.5. X = X1 + iX2 is an RI -conformal n-martingale if 〈X1〉 ≡
〈X2〉 and X1 · X2 is a martingale.

“RI” stands for Real–Imaginary, to indicate that the conformality is defined
by relating the real and imaginary parts of the C

n-martingale, just as when
n = 1. Xk = (Xk

1 , . . . ,Xk
n) and hence 〈Xk 〉 =

∑
j 〈Xk

j 〉. Like with planar
conformality, we can do a time-change to obtain a C

n process Z = Z1 + iZ2

that satisfies 〈
Zj
〉

t
≡ t and

〈
Z1,Z2

〉
≡ 0.

It is not clear what properties of Z are determined by this requirement. Note
that an n-conformal martingale is automatically RI -conformal. Our main
application of Section 11 works with n-conformal and pairwise conformal n-
martingales but does not seem to hold with RI -conformality in general. How-
ever, we outline in Section 6 how a C

n-martingale space can be orthogonally
decomposed into subspaces containing RI -conformal martingales. It would
be of interest to find examples of more general RI -conformal martingales and
to prove deeper theorems regarding them.

1.4. Outline of the paper. In Section 2, we give the basic definitions
and some notations for matrices. The reader can refer here if any new term
suddenly shows up in the paper. In Section 3, we begin the subject on the
geometry of a martingale space. We work with a space of martingales whose
quadratic variation is strictly increasing, obtain an orthogonal decomposi-
tion for the space and finally define the notion of dimension. A couple of
other interesting topics include an introduction to C

n-Brownian motion in
Section 3.3 and a multiplication map for C

2 in Section 3.5. Section 4 gives
more definitions. Section 5 shows that how when n = 1 and d = 2m, we can
holomorphically decompose the space. Several interesting results appear along
the way. We also obtain information on projection operators that determine
this decomposition. In Sections 6 and 7, we discuss briefly the cases with
n > 1, d = 2m and n = 1, d = 2m + 1; this is not the focus of the paper. In
Section 8, an important theorem is shown how special projections are suffi-
cient to determine the space of all martingale transforms. This leads to the
relationship between martingale transforms and singular integrals which is
the topic of Section 9. In Section 10, we give an introduction to the subject
of norm-computation of martingale transforms and of the Beurling–Ahlfors
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(BA) operator. Then in Section 11, we generalize a proof of Burkholder and
show that it is applicable for pairwise orthogonal n-conformal martingales;
this gives some norm estimates for projection operators and for the BA trans-
form.

2. Definitions and terminology

This section is meant to be a reference for terms and definitions of the
various objects/concepts we will study. Some terms will not have specific
application in this paper, but they appeared to be natural adjunct categories
for future research and so we record them as well.

The following special matrices will be used.

I =
(

1
1

)
, J =

(
−1

1

)
, A1 =

(
1

−1

)
,

A2 =
(

1
1

)
, E1 =

1
2

(
1 −i
i 1

)
, E2 =

1
2

(
1 i

−i 1

)
,

A∗
1 =

1
2

(
1 i
i −1

)
, A∗

2 =
1
2

(
1 −i

−i −1

)
.

Definition 2.1.
(1) A martingale space is a real or complex vector space of martingales.
(2) (a) A C-valued martingale X1 + iX2 is an orthogonal martingale if X1X2

is a martingale.
(b) A Cn-valued martingale X = (X1, . . . ,Xn) (n ≥ 2) is n-orthogonal if

Xi is an orthogonal martingale for each i.
(c) A Cn-valued martingale X is n-conformal if Xi is a conformal mar-

tingale for each i.
(d) A Cn-valued martingale X = (X1, . . . ,Xn) has equivalent coordinates

if 〈Xi〉 = 〈Xj 〉 for all i, j. (Alternatively, X is said to be an equivalent
n-martingale.)

(3) (a) A Cn-valued martingale X = (X1, . . . ,Xn) (n ≥ 2) is a (pairwise) or-
thogonal n-martingale if for all i �= j, XiX̄j is a martingale.

(b) A Cn-valued martingale X is a (pairwise) Brownian n-martingale if
for all i �= j, XiX̄j is an orthogonal martingale.

(c) A Cn-valued martingale X is a (pairwise) holomorphic n-martingale
if for all i �= j, XiX̄j is a conformal martingale.

(d) A Cn-valued martingale X is a (pairwise) conformal n-martingale if
it is a pairwise orthogonal n-martingale with equivalent coordinates.

(e) A Cn-valued martingale X = X1 + iX2 is RI -conformal if 〈X1〉 =
〈X2〉 and X1 · X2 is a martingale.

(f) A Cn-valued martingale X is an orthogonal (Brownian, holomorphic)
n-martingale up to conjugation if either XiXj or XiX̄j is a martingale
(orthogonal, conformal) for all i �= j.
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Definition 2.2.

(1) (a) Two C
n-valued martingales X and Y are mutually (standard) orthog-

onal if X · Ȳ =
∑n

i=1 XiȲj is a martingale.
(b) X and Y are mutually (standard) Brownian if X · Ȳ is an orthogonal

martingale.
(c) X and Y are mutually (standard) holomorphic if X · Ȳ is a conformal

martingale.
(d) A C

n×k martingale X = (X1, . . . ,Xk) is pairwise orthogonal if Xi · X̄j

is a martingale, for all i �= j.
(2) Given two C

n-martingales X and Y , the covariation process 〈X,Y 〉 is
the unique complex-valued bounded-variation process such that Xt · Ȳt −
〈X,Y 〉t is a martingale.

(3) (a) Two martingale vector spaces S and T are mutually orthogonal if
every X ∈ S and Y ∈ T are mutually orthogonal. Their sum space
is then denoted S ⊕ T and referred to as the orthogonal sum of S
and T .

(b) Two martingale vector spaces S and T are mutually holomorphic if
every X ∈ S and Y ∈ T are mutually holomorphic. Their sum space
is then denoted S ⊕H T and referred to as the holomorphic sum of S
and T .

(4) A martingale space S is called a conformal space if all its elements are
conformal martingales.

Definition 2.3. The dimension of a C
n-martingale space M̂ is the max-

imum number k such that there exists a pairwise orthogonal k-martingale
(X1, . . . ,Xk) ∈ M̂k. The dimension is infinite if no finite k exists.

3. The geometry of a martingale space

Let

(3.1) M̃ =
{∫ t

0

Hs · dZs

}
be the space of general continuous C

n-valued martingales adapted to the
Brownian filtration of d-dimensional Brownian motion Zt. Almost all paths
of such martingales have the above stochastic integral representation.

Definition 3.1.

(1) We will call a martingale X ∈ M̃ non-stagnant if d〈X〉t > 0 almost surely
for all t > 0. Call the set of non-stagnant martingales Sns.

(2) A martingale vector-space consisting of only non-stagnant martingales is
a non-stagnant martingale space.
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Of special interest is the non-stagnant space of martingales that arise from
the heat-extensions of functions on R

d. Denote

(3.2) M =
{∫ t

0

F (Zs, T − s) · dZs

}
,

where F : Rd × [0, T ) → Cn×d is heat-extension of Cn×d function in L2(Rd).
The martingales in M are non-stagnant because the heat-kernel has the semi-
group property and the functions F are real-analytic for each t; and a non-
trivial real analytic function cannot be 0 on a set of positive measure. Thus,
we have

M ⊂ Sns ⊂ M̃.

3.1. Orthogonal decomposition and dimension. In this subsection,
we prove the important fact that if X = (X1, . . . ,Xk) is an orthogonal k-
martingale in Mk, then k ≤ nd. Thus, a notion of dimension applies to M ;
and likewise there is scope to formulate other concepts from linear-algebra for
martingale spaces.

Theorem 3.1. Given X ∈ M , there exists subspaces UX and U ⊥
X of M̃

such that

(1) X ∈ UX ,
(2) Y ∈ M̃ is orthogonal to X if and only if Y ∈ U ⊥

X ,
(3) M̃ = UX ⊕ U ⊥

X .

Proof. Let X = (X1, . . . ,Xn) where Xj = Xj1 + iXj2. Denote the stochas-
tic integrand d-vector of Xj by x2j−1 + ix2j . Similarly consider another mar-
tingale Y along with its stochastic integrands yj . To say that X is orthogonal
to Y means

X · Ȳ =
n∑

j=1

Xj Ȳj =
n∑

j=1

[
Xj1Yj1 + Xj2Yj2 + i(−Xj1Yj2 + Xj2Yj1)

]
is a martingale. Thus, in terms of the integrands we have

(3.3)
∑

j

(x2j−1 · y2j−1+x2j · y2j) = 0,
∑

j

(−x2j−1 · y2j +x2j · y2j−1) = 0.
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Then letting

(3.4) x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x3

...
x2n−1

x2

x4

...
x2n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x2

−x4

...
−x2n

x1

x3

...
x2n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and similarly for y and y∗, we find that (3.3) is equivalent to

(3.5) 0 = x · y = x · y∗ = x∗ · y = x∗ · y∗ = 0.

Thus X is orthogonal to Y implies that any given point (ω, t), we must have
x = 0 or y = 0 or {x,x∗, y, y∗ } is an orthogonal basis of a 4-dimensional sub-
space of R2nd. Since X and Y are non-stagnant martingales, we may assume
that the possibility x = 0 or y = 0 does not occur almost surely for t ≥ 0.
Denote

Ax = span
{
x,x∗}

and let A⊥
x be the 2nd-2 dimensional space orthogonal to Ax. Importantly,

observe that Ax is closed under the ∗ operation: w ∈ Ax if and only if w∗ ∈ Ax.
Denote

UX =
{
W ∈ M̃ : w ∈ Ax(ω, t) a.s., t ≥ 0

}
and

U ⊥
X =

{
W ∈ M̃ : w ∈ A⊥

x (ω, t) a.s., t ≥ 0
}
.

These are subspaces of the general space M̃ and not necessarily of M . Given
any W ∈ M̃ , its integrand vector

w = w1 + w2 = ProjAx
(w) + ProjA⊥

x
(w),

thus we can write W as the sum of the projected martingales

W = W1 + W2,

where W1 ∈ UX and W2 ∈ U ⊥
X . Clearly by the preceding arguments we know

that W1 and W2 are orthogonal to each other. This completes the proof. �

An interesting question is whether there are martingale spaces N in M̃
that are non-stagnant and closed under the projection operator. In this case,
the spaces UX and U ⊥

X can be realized as subspaces of N . In the special case
of M , the ProjAx

(w) is another function that however does not appear to be
real-analytic. Still it may necessarily give rise to non-stagnant martingales.
One can therefore ask whether closing M under the projection operation will
give a bigger space of non-stagnant martingales.
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We can now define the notion of dimension.

Definition 3.2. The dimension of a C
n-valued martingale space M̂ is

defined as the maximum number k such that there exists a pairwise orthogonal
k-martingale (X1, . . . ,Xk) ∈ M̂k. The dimension is infinite if no finite k exists.

Dim(M̂)(3.6)
= sup{k : ∃X1, . . . ,Xk s.t. Xi · X̄j is martingale for all i �= j}.

Let us establish the dimension of the space M defined in (3.2).

Theorem 3.2. Dim(M) = nd.

Proof. By Theorem 3.1, if X is orthogonal to Y , then the corresponding
expanded integrands x and y satisfy the property that {x,x∗, y, y∗ } is an
orthogonal basis of a 4-dimensional subspace, almost surely for t ≥ 0. Thus if
(X1, . . . ,Xm) is an orthogonal m-martingale, then{

x1, x
∗
1, . . . , xm, x∗

m

}
spans a 2m-dimensional subspace of R

2nd, almost surely for t ≥ 0. It follows
that m ≤ nd since there is no further room in R

2nd.
To show Dim ≥ nd, take any fixed orthonormal basis of R2nd of the form

{v1, v
∗
1 , . . . , vnd, v

∗
nd}. Given X ∈ M , the projections

Xj = Proj
(
X, span

(
vj , v

∗
j

))
are easily seen to be in M , since the projection’s stochastic integrand coordi-
nates are simply linear combinations of those of X . Then X = X1 + · · · +Xnd

where (X1, . . . ,Xnd) is a pairwise orthogonal nd-martingale. It follows that
Dim ≥ nd. �

Remark 3.1. If we do not restrict the integrand processes of the martin-
gales then the dimension can be infinite. For example, consider integrands of
the form Fj(Bs) where Fj can be any smooth function. Then the functions
can have disjoint supports, the martingales need not be non-stagnant, and
the dimension can be infinite.

In fact the proof of Theorem 3.2 holds for any non-stagnant martingale
space M̂ wherein the martingales are known to be of the form

∫ t

0
Hs · dZs where

Z is pre-fixed d-dimensional Brownian motion. Let us observe on the other
hand that the notions of orthogonality and of dimension can be defined for
any space of continuous martingales adapted to any filtration F . Therefore,
given a C

n-valued continuous-martingale space M̂ of finite dimension D, we
may ask for the minimal set of conditions so that
(1) D = nd for some positive integer d, and/or
(2) There is a d-dimensional Brownian motion Z such that every X ∈ M̂ has

stochastic integral representation with respect to Z.
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(3) There exists an extended probability space containing d-dimensional
Brownian motion Z such that every X ∈ M̂ has stochastic integral repre-
sentation with respect to Z.

This converse problem considers the notion of dimension (and orthogonal-
ity) as a fundamental starting point to analyzing the structure of martingale
spaces. The second condition will be true if we require that the filtration of
the martingale space is contained in the filtration of a d-dimensional Brown-
ian motion. In general, however we are asking to understand the structure of
the martingale space in new ways that would implicate necessary conditions
on the filtration, d and corresponding Z.

Note 1. We assume for simplicity in Sections 3.2, 3.3 and Section 3.4 that
all the martingale spaces consist of C

1-valued martingales.

3.2. Basis-representation. Having defined dimension, we can introduce
other notions of linear algebra for the martingale setting. For instance, the
notion of basis.

Definition 3.3. Given a martingale space of dimension n, any orthogonal
n-martingale X = (X1, . . . ,Xn) is said to be a (orthogonal) basis-representa-
tion of M̂ .

It has been shown that any X ∈ M is the sum of elements of an orthog-
onal basis-representation of M . This raises two natural questions. Given a
martingale space M̂ ,

(1) What are the minimal conditions that ensure every X ∈ M̂ belongs to a
(orthogonal) basis representation?

(2) Can we understand the elements of a basis-representation as spanning
M̂? In this case, along with the independence implied by orthogonality,
we can think of the basis-representation as actually constituting a basis.

In general it is not true that every element of a martingale space belongs
to a basis-representation. Consider the real martingale space generated by
{Z1,Z2,

∫ t

0
hdZ1+

∫ t

0
k dZ2+Z3}. h and k are nontrivial predictable processes

(suitably chosen). Then one can show that the dimension is 2, but
∫ t

0
hdZ1 +∫ t

0
k dZ2 +Z3 does not belong to an orthogonal basis representation. Likewise

it is not true that a basis representation actually spans the whole space, at
least not when we take linear combinations with scalar coefficients. We will
impose a ‘closure-under-projection’ condition that will give positive answers
to both the questions.

Definition 3.4. A martingale space M̂ is closed under one-to-one or mu-
tual projections if for any X,Y ∈ M̂ , both Proj(X;Y ) and Proj(Y ;X) are
in M̂ .
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The stochastic integrand of the projected martingale Proj(X;Y ) is the
projection of the integrand of X in the direction of the integrand of Y .

Theorem 3.3. Let M̂ be a non-stagnant martingale space that is closed
under mutual projections and has dimension Dim(M̂) = n.

(1) If (X1, . . . ,Xn) is a basis representation of M̂ and Y is any element of
M̂ , then there exists complex processes Θ1, . . . ,Θn such that

(3.7) Y = Θ1 � X1 + · · · + Θn � Xn.

(2) Every element of M̂ belongs to a basis-representation.

Here Θ � X is same as (ΘI) � X .

Proof of Theorem 3.3.
(1) At any (ω, s), denote the stochastic integrand of Xj as Hj and that of Y

as K. Let V = span{H1, . . . ,Hn} be the n-dimensional subspace of C
d

spanned by the Hj ’s. Then

K = Proj(K;V ) + Proj
(
K;V ⊥) := KV + K̂V .

There exists C-valued processes Θj such that

KV = Θ1H
1 + · · · + ΘnHn.

The projected martingale YV =
∑n

j=1 Θj � Xj is in M̂ because by the

closure property, each Θj � Xj = Proj(Y ;Xj) is in M̂ . It follows that
ŶV = Y − YV ∈ M̂ . If ŶV is a nontrivial non-stagnant martingale, then
(X1, . . . ,Xn, ŶV ) is an orthogonal collection, which means the dimension
is strictly greater than n, thus contradicting the hypothesis. Therefore
ŶV ≡ 0. We have shown that the Xj ’s span M̂ in the sense of (3.7).

(2) Let X̃1 ∈ M̂ and V1 = Proj(M̂ ; X̃1) be the subspace of all martingales in
M̂ that travel ‘parallel’ to X̃1, that is, whose stochastic integrand vector
is in the subspace spanned by that of X̃1. If Y ∈ M̂ is any martingale
not in V1, then Y = YV1 + YV ⊥

1
is the sum of the projected martingales,

both in M̂ . Let X̃2 = YV ⊥
1

and V2 = span(X̃1, X̃2). Take any Y not in V2,
then Y = YV2 + YV ⊥

2
. We set X̃3 = YV ⊥

2
. Continue this process till we get

X̃1, . . . , X̃r that span M̂ . We know that r ≤ n; it is in fact equal since
the r stochastic integrands of X̃j ’s must span the n-space spanned by the
integrands of any given basis-representation. �

Definition 3.5. The Brownian-dimension BDim(M̂) is the minimal d such
that there exists a d-dimensional Brownian motion Z such that all martingales
in M̂ can be written as stochastic integrals run against Z, that is,

∫ t

0
Hs · dZs

(after possibly expanding the probability space and common filtration).
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In general, for M̂ as in Theorem 3.3, we have the estimate
BDim

2
≤ Dim ≤ BDim,

d

2
≤ n ≤ d,

since a basis element as a complex process could be like Z1 or Z1+iZ2√
2

.

Problem. Characterize and classify martingale spaces for which BDim =
Dim and those for which BDim = 2Dim.

3.3. Pairwise conformality and C
n-Brownian motion. Suppose X =

(X1, . . . ,Xn) is a basis-representation of M̂ . Define the process X̃j =
∫ t

0
H̃j

s ·
dZs =

∫ t

0
Hj

|Hj | · dZs. Then X̃ = (X̃1, . . . , X̃n) is a pairwise conformal n-martin-

gale with 〈X̃j 〉t = t for each j; we may consider it an orthonormal basis-
representation of M̂ . Corresponding with the Lévy characterization of stan-
dard R

n-Brownian motion, we define

Definition 3.6. A Cn-valued martingale X = (X1, . . . ,Xn) is a Cn-Brown-
ian motion if
(1) X starts at 0,
(2) X is continuous,
(3) XiX̄j − δijt is a martingale for 1 ≤ i, j ≤ n.

Thus by Theorem 3.3, we have that if M̂ is non-stagnant, closed under
projections and has dimension n and Brownian dimension d, then there is
a C

n-Brownian motion X̃ = (X̃1, . . . , X̃n) such that any martingale in M̂

has a stochastic integral representation
∑k

j=1

∫ t

0
Kj

s dX̃j . We may regard all
Cn-Brownian motions, for fixed n, as equivalent entities, and seek to find
which properties the general class shares with the subclass of R

n-Brownian
motion. Likewise we can take special properties of R

n-Brownian motion and
see how they change for more general C

n-Brownian motion. We are led to
the important questions:

Question 1. Is the Lévy characterization for C
n-Brownian motion funda-

mentally unique? Are there other equivalent characterizations?

For n = 1, observe that Z1 and Z1+iZ2√
2

have distinct distributions in C but
generate isomorphic 1-dimensional martingale subspaces (see Section 3.4.1).
We can search for an alternate property of “distribution” or “concentration”
that holds for all C1-Brownian motion; this and the properties of starting at 0
and of having independent increments should then provide an equivalent char-
acterization. For higher dimension, we then require pairwise orthogonality.
One idea is to filter out some property shared by both R

1 and R
2-Brownian

motions that will replace or generalize the requirement of normal distribution.
(See [PM] for subtle properties of the (standard) Brownian sample paths.) In
a way, this property should characterize Brownian motion independently of
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the space in which it is embedded; it is similar to how the curvature of a
surface is independent of the space in which the surface is embedded. These
are possible directions for future research.

3.4. More concepts from linear algebra.

3.4.1. Isomorphic spaces. Suppose X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn)
are two basis-representations of M̂ . Let X̃j =

∫ t

0
H̃j

s · dZs =
∫ t

0
Hj

|Hj | · dZs, and

Ỹ j =
∫ t

0
K̃j

s · dZs =
∫ t

0
Kj

|Kj | · dZs. Then there exists a d × d orthonormal matrix

process A such that A � X̃ = Ỹ , hence

Y j
t =

∫ t

0

Kj
s · dZs =

∫ t

0

|Kj
s |AsH̃

j
s · dZs = A �

(
|Kj | � X̃j

)
.

If we assume that M̂ contains ‘all’ complex-transform processes of the form
Θ � X̃j and Θ � Ỹ j , then the matrix process A serves as an automorphism
of M̂ , that preserves covariation and pairwise orthogonality. Likewise we can
consider isomorphism between subspaces of equal dimension. For instance,
Z1 and Z1+iZ2√

2
are generators of isomorphic 1-dimensional martingale spaces.

The orthogonal transform by matrix

A =

(
1√
2

1√
2

i√
2

− i√
2

)
restricted to the span of Z1 is an isomorphism such that

{Θs � Z1} ∼=
{

A � Θs � Z1 = Θs �
Z1 + iZ2√

2

}
.

3.4.2. Inner-dimension and CP-spaces. In Theorem 3.3, we conveniently as-
sumed that the martingale space is non-stagnant and closed under projections.
However, we have not given any non-trivial martingale space that satisfy these
hypotheses. One example can possibly be derived by finding the projection-
closure of the martingale space M (or M0 in (5.17)); if the closure space is
also non-stagnant, then we would have a valid and important example. It is
left for future research to verify this, or find alternate examples and conditions
for which also the theorem holds. We record a couple of related definitions
that may prove useful in this direction.

Definition 3.7. The continuous martingales X1, . . . ,Xn have regions of
local orthogonality if the set{

(ω, t) ∈ Ω × (0, ∞) : 〈Xj ,Xk 〉t(ω) = 0 for all j �= k
}

has positive measure.
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Definition 3.8. The inner-dimension IDim(M̂) of a martingale space is
the maximum m such that there exists X1, . . . ,Xm in M̂ with regions of local
orthogonality.

It is clear that Dim(M̂) ≤ IDim(M̂) ≤ BDim(M̂).

Definition 3.9. Let T be a vector space of complex predictable processes.
A complex-process martingale space (or CP-space) (M̂, T ) is a martingale
space closed under martingale transforms by scalar-processes in T . That is,
if Xt =

∫ t

0
Hs · dZs ∈ M̂ and Θ ∈ T , then the process

Θ � Xt =
∫ t

0

Θ(ω, s)Hs(ω) · dZs

is also an element of M̂ .

In the case of non-stagnant martingale spaces, we may assume that Θ is
nonzero almost surely for each t > 0.

3.4.3. An alternate approach. Before concluding this subsection, let us ob-
serve that we could have alternatively taken a more standard linear-algebra
approach to the subject. Given X ∈ M , let UX denote as in Theorem 3.1 the
subspace of all martingales in M̃ whose integrand vector is in span{x,x∗ }.

Definition 3.10. Say that (X1, . . . ,Xk) is an independent representation
if for any Yj ∈ UXj , the condition Y1 + · · · + Yk = 0 implies Yj ≡ 0 for all j. If
not, say (X1, . . . ,Xk) is dependent.

This would lead to a different notion for dimension, bounded above by the
Brownian dimension. Similarly one can perhaps develop ideas for operators,
eigen-martingale, eigenvalue-process, etc. These in turn may give new insight
in doing analysis on martingale spaces.

3.5. Multiplication in C
2 and an alternate notion of orthogonal-

ity. Recall our definition that two C
n martingales X and Y are mutually

(standard) orthogonal if X · Ȳ =
∑

j Xj Ȳj is a martingale. The definition
seems appropriate for n = 1. However it may not always be the best gener-
alization for higher dimensions. Consider our comment in the introduction
that a C-conformal martingale is pairwise conformal when it is identified as
a C

2-martingale with real coordinates. To justify this identification however,
we also should understand orthogonality between two C

2 martingales with
real coordinates as the same as orthogonality between the corresponding C

martingales.
Let X = X1 + iX2 and Y = Y1 + iY2 be mutually orthogonal C-martingales.

Then we know

(3.8) X1Y1 + X2Y2 and − X1Y2 + X2Y1
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are martingales. Now consider them as two R
2 martingales (X1,X2) and

(Y1, Y2). To say that (X1,X2) and (Y1, Y2) are mutually (standard) orthogonal
would then imply only that X1Y1 + X2Y2 is a martingale; it will not require
−X1Y2 + X2Y1 to also be a martingale. To avoid this discrepancy, let us
introduce a new notion of orthogonality between C

2 martingales.

Definition 3.11. Two C
2 martingales X = (X1,X2) and Y = (Y1, Y2) are

mutually C
2-orthogonal if the processes X1Ȳ1 +X2Ȳ2 and −X1Y2 +X2Y1 are

both martingales.

Our definition is based on investigation of the multiplication map for C2;
this is briefly outlined in the next subsection. Interestingly, if n = 2 and we
use orthogonality as in Definition 3.11, then the dimension of the space M in
(3.2) is equal to d, the Brownian dimension. Contrast this with the conclusion
in Theorem 3.2 that Dim(M) = 2d if we use standard-orthogonality.

3.5.1. Multiplication in C
2. The generalization in Definition 3.11 is based

on considerations of the algebraic structure of C
2. Recall that the standard

multiplication in C takes a pair (X,Y ) ∈ C × C to a scalar value XY ∈ C. We
may consider this instead as a map from C × C to R × R that takes

(X,Y ) �→ (X1Y1 − X2Y2,X1Y2 + X2Y1).

By identifying C with R
2, this is equivalent to(

(X1,X2), (Y1, Y2)
)

�→ (X1Y1 − X2Y2,X1Y2 + X2Y1).

Finally considering R
2 as a subspace of C

2, we obtain the following multipli-
cation map on C

2.

Definition 3.12. Let X = (X1,X2) and Y = (Y1, Y2) be two points in C
2.

Then
(1) Their C

2 product [X,Y ] : C
2 × C

2 → C
2 is defined by the map

(3.9) (X,Y ) �→ [X,Y ] = (X1Y1 − X2Y2,X1Ȳ2 + X2Ȳ1).

(2) The conjugation operator for C
2 is defined as

(3.10) Y = (Y1, Y2) = (Ȳ1, −Ȳ2).

(3) The C
2 inner product map is defined to be

(X,Y ) �→ [X,Y ] = (X1Ȳ1 + X2Ȳ2, −X1Y2 + X2Y1).

Remark 3.2. We can perhaps repeat the procedure suitably and obtain
corresponding product maps for C2k

, and in the end a single general map for
the nested space {C2k

: k ∈ N}.

The reader must wonder at our choice for the product of two C
2 points.

Naturally, one seeks a multiplication map that makes the space a field or as
close to a field as possible. Definitely (C2, (+, [·, ·])) is not a field. On the
other hand, we do have the following important properties.
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(1) Distributivity is there for both X and Y coordinates.
(2) C

2 has a multiplicative right identity 1 = (1,0) such that [X,1] = X .
(However 1 is not a left identity; we only have [1,X] = (X1, X̄2).)

(3) For every a ∈ C, we have [a1, [X,Y ]] = [aY,X] and [[X,Y ], a1] = [X,aY ].
Here aY = (aY1, aY2).

(4) Every nonzero element has a multiplicative inverse such that [X,X−1] =
[X−1,X] = 1. Specifically,

(3.11) X−1 =
X

|X|2 =
(

X̄1

|X|2 , − X̄2

|X|2
)

.

(4) The inner product map satisfies

(3.12) [X,X] =
(

|X|2,0
)
= |X|21.

So we have to decide if these are the properties most useful for our purposes.
For the author, this seems to be the case although obviously, the full im-
plications of the geometric and algebraic structure of (C2, (+, [·, ·])) are not
yet evident. One hopes that this approach to higher dimensions will have
applications in other areas of mathematics as well.

3.5.2. C
2-orthogonality for martingales. Coming back to martingales, if X

and Y are C2-martingales, we define the C2 covariation process 〈X,Y 〉 to be
the unique bounded variation process such that

[X,Y ]t − 〈X,Y 〉t

is a martingale. In particular, X and Y are mutually C
2-orthogonal if and

only if [X,Y ] is a martingale. Thus, a separate higher dimensional theory for
n = 2 can be pursued based on Definition 3.11. We however do not deal with
this any further in this paper.

Remark 3.3. Interestingly, the more obvious map {X,Y } = (X1Y1 − X2Y2,
X1Y2 + X2Y1) (with X = (X1, −X2)) corresponds to a space that has mul-
tiplicative inverse for all points outside of the algebraic variety {(X1,X2) :
X2

1 + X2
2 = 0}. The definition of C

2-orthogonality based on {·, · } may be
in line with the Fukushima–Okada theory. (The author found out after the
acceptance of this paper that this multiplication leads to a notion of holomor-
phicity for functions mapping from C

2 into C
2; this is well known as bicomplex

holomorphicity. See [CR].)

4. More definitions

In this section, we record a few more definitions and terminology used in
the paper.

Definition 4.1.
(1) The ∗ operation for vectors in R

2nd is defined as in (3.4).
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(2) A vector space V is said to be closed under ∗ if for all v, we have v ∈
V ⇐⇒ v∗ ∈ V .

Definition 4.2.
(1) Given a C

n-martingale X with stochastic integrand vector x = (x1 +
ix2, . . . , x2n−1 + ix2n), the expanded-integrand of X is the R

2nd valued
process

(4.1) x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x3

...
x2n−1

x2

x4

...
x2n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2) The martingale X is said to travel or run on V ⊂ R
2nd if for each t > 0,

almost surely, its expanded-integrand process x is in V .
(3) Given V closed under ∗ and martingale X with expanded-integrand x,

the (standard) projection of X on V denoted Proj(X;V ) is the process
whose expanded-integrand equals the projection of x on V .

(4) Given V closed under ∗ and martingale X , any martingale transform of
X that travels in V is said to be a (general) projection of X on V .

The proof of Theorem 3.1 establishes the following corollary.

Corollary 4.1. Let V and W be 2 orthogonal spaces in R
2nd that are

closed under the ∗ operation. If X travels in V and Y travels in W , then X
and Y are orthogonal martingales.

5. Holomorphic decomposition of a martingale space

In Section 3, an algorithm is given informing how to obtain an orthogonal
decomposition of a C

n-martingale X ∈ M . First, take an orthonormal basis
of R

2nd of the form {v1, v
∗
1 , . . . , vnd, v

∗
nd}. If x denotes the expanded integrand

process, then let xj denote the projected process Proj(x; span(vj , v
∗
j )) and

let Xj = Proj(X; span(vj , v
∗
j )) be the corresponding process with expanded

integrand xj . Then X1, . . . ,Xnd is an orthogonal collection of nd C
n-valued

martingales such that Xj · X̄k is a martingale for all j �= k, and X = X1 +
· · · + Xnd.

In this section, we address the question of whether the orthogonal spanning
collection can be chosen so that the decomposition (X1, . . . ,Xnd) is holomor-
phic, that is, each Xj · X̄k is conformal. However, the theory for C-martingales
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(n = 1) is alone considered. We will later briefly look at the case n > 1, d = 2m
in Section 6.

Proposition 5.1. A pairwise orthogonal 2-conformal martingale is holo-
morphic.

Proof. Let X = X1 + iX2 and Y = Y 1 + iY 2, with integrand vectors x1 +
ix2 and y1 + iy2 ∈ R

d + iRd. We must show that XȲ is conformal. The
mutual orthogonality of X and Y implies that

XȲ =
(
X1Y 1 + X2Y 2

)
+ i
(

−X1Y 2 + X2Y 1
)

is a martingale. Thus, we have

(5.1) x1 · y1 + x2 · y2 = 0; −x1 · y2 + x2 · y1 = 0.

Consider its stochastic integrand vector (up to constant):

C + iD =
(
X1y1 + Y 1x1 + X2y2 + Y 2x2

)
+ i
(

−X1y2 − Y 2x1 + X2y1 + Y 1x2

)
.

In order to be conformal, we must require |C| = |D| and C · D = 0. Consider

|C|2 − |D|2 = 2
(
X1Y 1 + X2Y 2

)
(y1 · x1 + y2 · x2)

+ 2
(
X1Y 2 − Y 1X2

)
(y1 · x2 − y2 · x1),

C · D = −
(
X1Y 2 − Y 1X2

)
(y1 · x1 + y2 · x2)

+
(
X1Y 1 + X2Y 2

)
(y1 · x2 − y2 · x1).

Both of these terms are zero by (5.1); it follows that XȲ is conformal. �
In particular, if the orthogonal projections of X : X1, . . . ,Xd are confor-

mal themselves, then the d-martingale (X1, . . . ,Xd) is a pairwise holomorphic
decomposition of X . We seek to establish conditions on {v1, v

∗
1 , . . . , vd, v

∗
d }

that will ensure this. Let {w,w∗ } denote a suitable pair generated by a vec-
tor w =

(
w1
w2

)
, where wi ∈ R

d. Any projection will have the form
(
aw1−bw2
bw1+aw2

)
.

We want that |aw1 − bw2| = |bw1 + aw2| and (aw1 − bw2) · (bw1 + aw2) = 0
for all possible a and b ∈ R. This will happen if and only if |w1| = |w2| and
w1 · w2 = 0. Conclusion:

Theorem 5.1. Let v1, v
∗
1 , . . . , vd, v

∗
d be an orthonormal basis of R

2d where
vj =

(
x2j−1
x2j

)
. Suppose also that

(5.2) |x2j−1| = |x2j | and x2j−1 · x2j = 0

for all j ∈ {1, . . . , d}. Then given any C-martingale X ∈ M and letting Xj =
Proj(X; span{vj , v

∗
j }), the decomposition X = X1 + · · · + Xd is a holomophic

decomposition of X .

Let Ej denote the Projection operator that takes each X to the corre-
sponding Xj . Then we can conclude that for the space M given in (3.2)

Corollary 5.1. M = E1M ⊕ · · · ⊕ EdM .
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Proof. That M ⊂ E1M ⊕ · · · ⊕ EdM is clear from the previous arguments,
since every martingale in M is an orthogonal sum of the projections. In fact,
every martingale in EjM is also in M since the integrand coordinates are
replaced by a fixed linear combination of them; and they remain in the space
of heat-extensions. �

Thus, we can always decompose M into d mutually orthogonal subspaces
M1, . . . ,Md. If in addition, the vectors vj ’s satisfy the condition (5.2), then M
has a holomorphic decomposition into d conformal subspaces: that is, each
element of the subspace is a conformal martingale and elements of distinct
subspaces Mj and Mk are mutually holomorphic.

Naturally, we wish to ask whether orthogonal spanning collections exist
that satisfy condition (5.2). It is only a linear-algebra problem, but our in-
terest in it lies much deeper than just affirming and classifying holomorphic
decomposition of M . To see why this is the case, we now return to the
motivating ground of dimension 2 theory, to the space M0 of martingales
generated by functions on the plane and to spaces of martingale transforms
of M0. The author’s background for the theory of martingale transforms
via matrices comes from his study of [BaWa], [BaMH] and from his work in
[BaJa]; the choices for the martingale spaces and special matrices as well as
some of the implications found below may be traced back to these papers.

5.1. The martingale spaces we consider; d = 2, n = 1. Although the
space M in (3.2) is rich enough to develop the theory of orthogonality, it
is actually a little-too-big for our purposes. We want to analyze a (almost)
proper subspace of M . Let Z be 2-dimensional Brownian motion and let
Bs = (Zs, T − s) be the corresponding space–time Brownian motion started
at height T . Denote three martingale spaces:

M0 =
{∫ t

0

∇Uϕ(Bs) · dZs : Uϕ heat-ext of ϕ ∈ L2(C)
}

,(5.3)

M1 = I � M0 + J � M0, where I =
(

1
1

)
, J =

(
−1

1

)
(5.4)

M =
{

A � ϕ =
∫ t

0

A∇Uϕ(Bs) · dZs : ϕ ∈ L2,A any 2 × 2 matrix
}

(5.5)

Thus M1 consists of all martingales of the form∫ t

0

∇Uϕ(Bs) · dZs +
∫ t

0

J ∇Uψ(Bs) · dZs,

where ϕ,ψ ∈ L2(C). It is clear that M0 ⊂ M1 ⊂ M. Let us begin by com-
puting the dimension of M.
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Theorem 5.2.

(1) Dim(M) = 2.
(2) Each X ∈ M belongs to the basis representation (X,J � X̄).

Proof. Suppose X =
∫ t

0
Hs · dZs and Y =

∫ t

0
Ks · dZs are mutually orthog-

onal. Let

H =
(

a + ib
c + id

)
, K =

(
e + if
g + ih

)
.

The condition of orthogonality implies that the extended vectors and their
∗-vectors are mutually orthogonal:⎧⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎝
a
c
b
d

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−b

−d
a
c

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
e
g
f
h

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−f

−h
e
g

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

is an orthogonal basis of R
4. On the other hand, a simple check reveals that⎧⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎝
a
c
b
d

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−b

−d
a
c

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
c

−a
−d
b

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
d

−b
c

−a

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

is also an orthogonal basis of R
4. It follows that⎛⎜⎜⎝

e
g
f
h

⎞⎟⎟⎠= α

⎛⎜⎜⎝
c

−a
−d
b

⎞⎟⎟⎠+ β

⎛⎜⎜⎝
d

−b
c

−a

⎞⎟⎟⎠ ,

and hence

K =
(

e + if
g + ih

)
= α

(
c − id

−a + ib

)
+ β

(
d + ic

−b − ia

)
= (α + iβ)

(
c − id

−a + ib

)
= −(α + iβ)JH̄.

Since M is closed under both the conjugation operator and matrix trans-
forms by J , it follows that (X,J � X̄) is an orthogonal basis-representation of
M and hence Dim(M) = 2. �

Our main theorem (in Section 8) states that in fact M = M1. Hence,
Dim(M1) = 2. However for M0, we conjecture the following.

Conjecture 1. Dim(M0) = 1.
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To try and prove this conjecture, one can begin by assuming there exist L2

functions ϕ and ψ such that I � ϕ and I � ψ are orthogonal, then show that
one of the functions must be identically 0. Then we have

I � ψt =
∫ t

0

∇ψ(Bs) · dZs =
∫ t

0

A(ω, s)J ∇ϕ̄(Bs) · dZs

=
∫ t

0

A(Bs)J ∇ϕ̄(Bs) · dZs,

and ∇ψ(z, t) = A(z, t)J ∇ϕ̄(z, t). Writing out the terms gives A(z, t) = − ∂xψ
∂yϕ̄ =

∂yψ
∂xϕ̄ , which implies

�(ψ, ϕ̄) = ∂xψ∂xϕ̄ + ∂yψ∂yϕ̄ = 0.

Computing the Laplacian of ψϕ̄ and using the facts ∂tϕ̄ = Δϕ̄ and ∂tψ = Δψ,
we have

Δ(ψϕ̄) = ϕ̄Δψ + ψΔϕ̄ + 2�(ψ, ϕ̄)
= ϕ̄∂tψ + ψ∂tϕ̄

= ∂t(ψϕ̄).

We conclude that ψ, ϕ̄ and ψϕ̄ all satisfy the heat equation. Thus, we are left
with the following equivalent conjecture for heat-extensions of L2 functions.

Conjecture 2. Let f , g ∈ L2(C). Let F , G and H denote the heat exten-
sions of f , g and fg respectively. Then H ≡ FG if and only if one of f or g
is identically 0.

This “conjecture” may already be a known fact to experts in semi-group
theory. We expect that understanding the reasons behind it will be important
to distinguishing the martingales in M0 from more general complex martin-
gales in M and M. This may in turn help address the norm-computation
problem of the Beurling–Ahlfors transform (see Section 11).

Remark 5.1. Interestingly if instead of heat-extensions, we considered
harmonic extensions into the disk of functions on the circle, then the cor-
responding space M0 will have the full dimension 2. This is because the J
operation changes the gradient of a harmonic function to that of the conjugate
harmonic function.

5.2. Holomorphic decomposition for d = 2, n = 1. We prove that M1

is the holomorphic sum of two conformal subspaces M1 and M2 where each
Mi equals the projection of M0 onto it. Define the operators E1 and E2 as
martingale transforms by the matrices I+iJ

2 and I−iJ
2 , respectively. Thus,

(5.6) E1ϕ =
I + iJ

2
� ϕ, E2ϕ =

I − iJ

2
� ϕ.
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Define the subspaces

M1 = E1M0, M2 = E2M0.

Theorem 5.3.

(1) M1 and M2 are spaces of conformal martingales.
(2) M1 and M2 are mutually orthogonal to each other.
(3) M1 and M2 are mutually holomorphic to each other, hence

(5.7) M1 = M1 ⊕H M2,

and given any X ∈ M1, we have the holomorphic decomposition

(5.8) X = E1X + E2X.

Proof. Recall the algorithm for getting conformal subspaces that are holo-
morphic to one another. We work in R

4. Get four vectors {v, v∗,w,w∗ } that
form an orthonormal basis and satisfy (5.2). For d = 2, an answer is easy to
find by plugging in values; the vectors are

v =

⎛⎜⎜⎝
1√
2

0
0
1√
2

⎞⎟⎟⎠ , v∗ =

⎛⎜⎜⎝
0

− 1√
2

1√
2

0

⎞⎟⎟⎠ ,

(5.9)

w =

⎛⎜⎜⎝
1√
2

0
0

− 1√
2

⎞⎟⎟⎠ , w∗ =

⎛⎜⎜⎝
0
1√
2

1√
2

0

⎞⎟⎟⎠ .

Let V = span(v, v∗) and W = span(w,w∗). Denote the gradient of a function
∇Uϕ by

∇Uϕ =
(

x1 + iy1

x2 + iy2

)
,

and let

u =

⎛⎜⎜⎝
x1

x2

y1

y2

⎞⎟⎟⎠ .

The projection of u onto V and W are respectively,

Proj(u;V ) =
1
2

⎛⎜⎜⎝
x1 + y2

x2 − y1

−x2 + y1

x1 + y2

⎞⎟⎟⎠ , Proj(u;W ) =
1
2

⎛⎜⎜⎝
x1 − y2

x2 + y1

x2 + y1

−x1 + y2

⎞⎟⎟⎠ .
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In the C
2 notation, these are respectively,

1
2

(
x1 + y2 + i(−x2 + y1)
x2 − y1 + i(x1 + y2)

)
=

1
2

(
1 −i
i 1

)
∇Uϕ = E1∇ϕ,

1
2

(
x1 − y2 + i(x2 + y1)

x2 + y1 + i(−x1 + y2)

)
=

1
2

(
1 i

−i 1

)
∇Uϕ = E2∇ϕ.

Observe therefore that the projected martingales are E1ϕ and E2ϕ, and be-
cause vectors in V and W satisfy the conformality property (5.2) and are
orthogonal spaces, these are conformal martingales that are mutually holo-
morphic. Thus,

I � ϕ = E1ϕ + E2ϕ

is a holomorphic decomposition of any given martingale in M0. It also follows
that M1 = E1M0 and M2 = E2M0 are spaces of conformal martingales whose
elements are mutually holomorphic. (5.7) is proved. �

An important fact is that any conformal martingale in M1 has to “travel”
either entirely on V or entirely on W .

Theorem 5.4. A martingale in M1 is conformal if and only if it is in M1

or in M2.

The “if” part is already proved; the following lemma and proposition prove
the reverse implication.

Lemma 5.1. Let ϕ and ψ be functions in L2(C). If Y = 2E1ϕ + 2E2ψ
is a conformal martingale, then the heat extensions (denoted also as ϕ and
ψ) must satisfy the condition that at every point either ϕ̄ is analytic or ψ is
analytic.

Proof. Denote the gradient operator ∇ =
(
∂x

∂y

)
and its perpendicular by

∇⊥ =
(−∂y

∂x

)
. We have

Y = (I + iJ)ϕ + (I − iJ)ψ
=
(
I(ϕ1 + ψ1) − J(ϕ2 − ψ2)

)
+ i
(
I(ϕ2 + ψ2) + J(ϕ1 − ψ1)

)
,

d〈Y1〉 �
∣∣∇(ϕ1 + ψ1)

∣∣2 +
∣∣∇(ϕ2 − ψ2)

∣∣2 − 2∇(ϕ1 + ψ1) · ∇⊥(ϕ2 − ψ2),

d〈Y2〉 �
∣∣∇(ϕ1 − ψ1)

∣∣2 +
∣∣∇(ϕ2 + ψ2)

∣∣2 − 2∇(ϕ1 − ψ1) · ∇⊥(ϕ2 + ψ2).

Setting 〈Y1〉 = 〈Y2〉 implies

(5.10)
(

∇ϕ1 − ∇⊥ϕ2

)
·
(

∇ψ1 + ∇⊥ψ2

)
= 0,

d〈Y1, Y2〉 � 2
[

∇ϕ1 · ∇ψ2 + ∇ϕ2 · ∇ψ1 − ∇ϕ1 · ∇⊥ψ1 + ∇ϕ2 · ∇⊥ψ2

]
= 2
(

∇ϕ1 − ∇⊥ϕ2

)
·
(

−∇⊥ψ1 + ∇ψ2

)
.

Thus, 〈Y1, Y2〉 = 0 implies

(5.11)
(

∇ϕ1 − ∇⊥ϕ2

)
·
(

∇⊥ψ1 − ∇ψ2

)
= 0.
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Note that
∇⊥ψ1 − ∇ψ2 = J

(
∇ψ1 + ∇⊥ψ2

)
,

where J denotes operation by the matrix
(

1
−1
)
. Therefore, (5.10) and

(5.11) imply that (∇ϕ1 − ∇⊥ϕ2) is perpendicular to both (∇ψ1 + ∇⊥ψ2) and
J(∇ψ1 + ∇⊥ψ2), which are perpendicular vectors of same norm. Thus, we
conclude that either ∇ϕ1 − ∇⊥ϕ2 = 0 or ∇ψ1 + ∇⊥ψ2 = 0 at every point.
This is equivalent to stating that either ϕ̄ or ψ satisfies the Cauchy–Riemann
equation. This proves the theorem. �

Proposition 5.2. Given L2 functions ϕ and ψ on R
2, suppose their heat

extensions ϕ(z, t) and ψ(z, t) satisfy the following condition: for each 0 < t <
T and z ∈ C, either ϕ(·, t) or ψ(·, t) is analytic at z. Then one of two functions
is identically 0.

Proof. Let ∂̄ = ∂x+i∂y

2 be the complex derivative operators. Then the con-
dition we require is that

∂̄ϕ · ∂̄ψ ≡ 0.

As these are real analytic functions, this is possible only if either ∂̄ϕ or ∂̄ψ is
identically 0. And as these arise from heat-extensions of L2 functions, this is
possible only if the corresponding ϕ or ψ is identically zero. �

There is another interesting fact that should be recorded: The spaces M1

and M2 are closed under multiplication in a generalized sense. Mi, being the
projection of M0 under the Ei operator, is a subspace of EiM̃ , where M̃ is
the general space of martingales given in (3.1). And this overlying subspace
is closed under multiplication.

Proposition 5.3. If X and Ȳ are both in M1 = E1M0 ⊂ E1M̃ , then their
product XȲ is also in E1M̃ .

Proof. Since Ȳ ∈ M1, it equals E1ϕ for some function ϕ. Moreover, Y =
E1ϕ = E2ϕ̄ and hence is in M2. By Theorem 5.3 and (5.8), we know therefore
that XȲ is indeed a conformal martingale. The product need not be in M1

or M2 or even in M1. However, it still belongs to the E1 projected class of
martingales, in particular is in E1M̃ .

To see this, consider the term C + iD in the proof of Proposition 5.1.
Changing the X1, etc. to a, b, etc., this is

C + iD = (ay1 + bx1 + cy2 + dx2) + i(−ay2 − dx1 + cy1 + bx2).

If X ∈ M1 and Y ∈ M2, then x2 = Jx1 and y2 = −Jy1 which means that

C + iD = C + iJC = (I + iJ)C.

Hence the projected space Mi is within the subspace EiM̃ and this is a space
closed under multiplication. �
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In algebra, a vector space (under +) that has a multiplication operation
and is closed under it is called a ring. If the ring however does not have an
identity element, then it is called a Rng. We have shown that the conformal
martingale space Mi has its multiplicative closure M i within EiM̃ ; as it does
not have an identity, M i is an example of a Rng.

We next seek to extend holomorphic decomposition to higher dimension.
The problem for even dimension is easier and is considered first.

5.3. Holomorphic decomposition for d = 2m. Following the same proce-
dure, we identify conformal planes in R

4m by explicitly presenting the span-
ning vectors. Define the extended vector

vj =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aj1

aj2

...
aj,2m

bj1

bj2

...
bj,2m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, wj =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cj1

cj2

...
cj,2m

dj1

dj2

...
dj,2m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

ajk =

{
1√
2
, k = 2j − 1,

0, otherwise,
bjk =

{
1√
2
, k = 2j,

0, otherwise,

cjk =

{
1√
2
, k = 2j − 1,

0, otherwise,
djk =

{
− 1√

2
, k = 2j,

0, otherwise.

Similarly v∗
j and w∗

j will have coordinates

a∗
jk =

{
− 1√

2
, k = 2j,

0, otherwise,
b∗
jk =

{
1√
2
, k = 2j − 1,

0, otherwise,
(5.12)

c∗
jk =

{
1√
2
, k = 2j,

0, otherwise,
d∗

jk =

{
1√
2
, k = 2j − 1,

0, otherwise.
(5.13)

Let Vj = span(vj , v
∗
j ) and Wj = span(wj ,w

∗
j ). Then

(5.14) R
4m = V1 ⊕ · · · ⊕ Vm ⊕ W1 ⊕ · · · ⊕ Wm

is an orthogonal decomposition into 2m conformal planes. Following our
rules and projecting onto them will give a holomorphic decomposition for any
martingale. We wish to associate these projections with martingale transforms
by fixed matrices. We deal with 2m × 2m matrices since the gradients of
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functions take values in C
2m. Let us partition the transform-matrix into 2 × 2

blocks as follows:

(5.15) A =

⎛⎜⎝ A11 · · · A1,m

...
. . .

...
Am,1 · · · Am,m

⎞⎟⎠ .

Let k ∈ {1,2}, i, j ∈ {1, . . . ,m}. Define the special 2m ×2m transform matrices

(5.16) Eij
k =

{
Alr = Ek, l = i, r = j,

Alr = 0 matrix, otherwise.

Here E1 = I+iJ
2 and E2 = I−iJ

2 as before; except that it occupies only the Aij

block of Eij
k (k ∈ {1,2}), which has all other blocks equal to 0. We will show

that these operators project (in an extended sense) a given martingale onto a
conformal component travelling in the Vi or Wi plane. First, let us redefine
the martingale spaces for d = 2m.

M0 =
{∫ t

0

∇Uϕ(Bs) · dZs : Uϕ heat-ext of ϕ ∈ L2
(
R

2m
)}

(5.17)
M1 =

(
E11

1 M0 + E11
2 M0

)
+ · · · +

(
Emm

1 M0 + Emm
2 M0

)
.

M1 is the sum all spaces Eij
k M0. We show next that left-action by these

matrices is equivalent to projection of the extended vector onto the conformal
planes Vj or Wj .

Lemma 5.2. Eij
1 and Eij

2 project (in an extended sense) onto Vi and Wi,
respectively.

By “extended sense” we mean for i �= j, the matrix operation involves a
permutation of coordinates before the usual projection.

Proof of Lemma 5.2. First, consider the case when i = j and k = 1. Then
letting

u =

⎛⎜⎝ x1 + iy1

...
x2m + iy2m

⎞⎟⎠ ,

we have

Eii
k u =

⎛⎜⎝ ũ1

...
ũ2m

⎞⎟⎠=

{(
ũ2i−1
ũ2i

)
= Ek

(
x2i−1+iy2i−1

x2i+iy2i

)
,

0, otherwise.

Thus if k = 1, (
ũ2i−1

ũ2i

)
=

1
2

(
x2i−1 + y2i + i(−x2i + y2i−1)
x2i − y2i−1 + i(x2i−1 + y2i)

)
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and if k = 2, (
ũ2i−1

ũ2i

)
=

1
2

(
x2i−1 − y2i + i(x2i + y2i−1)

x2i + y2i−1 + i(−x2i−1 + y2i)

)
.

Considering the extended versions of the transformed vectors, we see that
Eii

1 projects u (its extended vector in R
4m) into the plane Vi; similarly Eii

2

projects into Wi. Next, observe that

Eii
k · Eij

k = Eij
k ,

hence it follows that Eij
k also “project” the extended vectors to the same

planes as Eii
k . (However, here the projection follows some internal permuta-

tion of the vector coordinates.) �

Given a martingale X , it has a holomorphic decomposition X = X1 + · · · +
X2m where Xj = Proj(X;Vj) and Xm+j = Proj(X;Wj). Lemma 5.2 implies
that in fact Xj = Ejj

1 X and Xm+j = Ejj
2 X . Lemma 5.2 also implies that there

are m − 1 other projections onto each plane, so m − 1 alternate martingales
traveling on the same conformal plane. We encapsulate all this information
in the following theorem.

Theorem 5.5. Let d = 2m. Then M1 is the sum of m subspaces N1, . . . ,
Nm where each Nk is a 2m-dimensional space having holomorphic decompo-
sition:

M1 = N1 + · · · + Nm,

where for each k,

(5.18) Nk = Nk1 ⊕H · · · ⊕H Nk,2m.

Proof. For each 1 ≤ i ≤ m, there are m + m = 2m operators

Ei1
1 , . . . , Eim

1 , Ei1
2 , . . . , Eim

2

that project on Vi and Wi respectively. So we can partition the 2m2 operators
into m subcollections (multiple possibilities exist){

E
1,j(1,k)
1 , . . . ,E

m,j(m,k)
1 ,E

1,j(1,k)
2 , . . . ,E

m,j(m,k)
2

}
1≤k≤m

,

where for each i, j(i, ·) is a permutation of {1, . . . ,m}. For each 1 ≤ k ≤ m
and 1 ≤ l ≤ 2m, let

Nkl =

{
E

l,j(l,k)
1 M0, 1 ≤ l ≤ m,

E
l−m,j(l−m,k)
2 M0, m + 1 ≤ l ≤ 2m.

Let Nk = Nk1 + · · · + Nk,2m. By (5.14) and Lemma 5.2, we know that the
Nkj subspaces are mutually holomorphic and hence (5.18) follows. Since the
Nk subspaces together include all the projected subspaces, it is clear that
M1 = N1 + · · · + Nm as required. �
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Remark 5.2.
(1) Letting

j(l, k) =

{
k + l − 1, if k + l ≤ m + 1,

k + l − m − 1, if k + l > m + 1,

we can ensure that for each fixed k, j(l, k) �= j(r, k) whenever l �= r.
(2) By permuting coordinates, one can also see other projections into Vj but

these will evidently ‘overlap’ with our choices.

The proof of Theorem 5.5 suggests an alternate definition for dimension
which we record below.

Definition 5.1. The operator-dimension of a martingale space T is the
minimal number k of projection operators P1, . . . , Pk such that
(1) Pj T is 1-dimensional for each j.
(2) P1T + · · · + Pk T = T .

Then we see that the operator-dimension of M1 is ≤ 2m2. With a little
work, one can expect to show equality.

5.4. Decomposition into two conformal spaces. In the last subsection,
we showed that the martingale space M1 can be written as the sum of m
spaces Nk, each of which is holomorphically decomposed into 2m conformal
subspaces of dimension 1. Now we show that by properly dividing these
subspaces into two groups, M1 can be written as the holomorphic sum of just
two conformal spaces V and W . This is just as in Theorem 5.3 for dimension 2.
However, the decomposition is not unique for d > 2.

Theorem 5.6. There exists conformal spaces V and W ∈ R
4m, each closed

under the ⊥ operation, such that if V and W are the martingales in M1 that
travel in V and W respectively, then M1 = V ⊕H W .

Proof. In (5.14), R
4m is decomposed into 2m conformal planes that are

mutually orthogonal: as V1 ⊕ · · · ⊕ Wm. Each Vi is the projected space for
operators Eij

1 and each Wi for Ēij
1 . Moreover the nonzero coordinates of

vectors in Vi and Wi are only {2i − 1,2i}, so there is a disjointness in the
support of spaces corresponding to different i. In particular, if v ∈ Vi and
w ∈ Vj or Wj , for j �= i, then their sum v + w also satisfies the conformality
property. However, this is not true in general regarding vectors in Vi + Wi.
So to ensure conformality is preserved, we have to put Vi and Wi in different
groups for each i. It does not matter how the choice is made. For simplicity,
let

V = V1 + · · · + Vm and W = W1 + · · · + Wm.

Then

V =
m∑

i,j=1

Eij
1 M0, W =

m∑
i,j=1

Eij
2 M0
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are the martingales in M1 that travel in V and W , respectively. We know that
their mutual sum equals M1 by definition. Further they are conformal spaces
and mutually orthogonal since V and W are conformal vector spaces that
are mutually orthogonal. Finally by Proposition 5.1, V and W are mutually
holomorphic. �

Remark 5.3. When n = 1 and d > 2, the decomposition is not unique and
our analysis is dependent on our chosen bases of conformal vectors. A different
choice could lead to different subspaces and operators. It would be of interest
to classify all possible holomorphic decompositions of M1, as it would allow
classification of the complete transform operators (Section 8.1).

The utility of Theorem 5.6 is that for any permutation {j(1), . . . , j(m)}, the
martingales Xϕ =

∑
i E

i,j(i)
1 ϕ and X̄ϕ =

∑
i E

i,j(i)
2 ϕ are mutually orthogonal

and the sum of their quadratic variations equals that of I � ϕ. In particular,

by Theorem 11.2, we have ‖(Xϕ, X̄ϕ)‖p ≤
√

p2−p
2 ‖I � ϕ‖p. We will discuss

this further in Section 11 when we estimate norms of martingales and of their
associated singular integral operators.

6. n > 1 and d = 2m

Till now we dealt with the holomorphic decomposition of C-valued martin-
gales run on even dimensional Brownian motion. The question arises whether
we can obtain an orthogonal decomposition of a C

n-martingale into pairwise
or RI conformal n-martingales. It turns out that the same procedure we fol-
lowed for n = 1 can be used for n > 1 as well. The extended vectors will be
in R

2nd, but the algorithm for choosing the special basis{
v1, v

∗
1 , . . . , v∗

mn,w1,w
∗
1 , . . . ,w∗

mn

}
is exactly as before. In any of the corresponding spaces Vj and Wj , the R2nd

vectors when complexified into C
nd will satisfy the RI -conformality property,

that is, if
(
v1
v2

)
∈ V1, then |v1| = |v2| and v1 · v2 = 0. We conclude

Theorem 6.1. The martingale space M1 can be decomposed into the or-
thogonal sum of RI -conformal subspaces.

M1 = V1 ⊕ · · · ⊕ Vmn ⊕ W1 ⊕ · · · ⊕ Wmn

= V ⊕ W .

Note that many of the martingale subspaces consist of mutually indepen-
dent martingales since they run of independent Brownian motions.

We will not say anything further for the case n > 2. One can try to extend
other theorems, but the key point that emerges here is that RI -conformality
is a natural and useful generalization of conformality for C

n-martingales.
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7. On holomorphic decomposition for d = 2m + 1

What about when n = 1 and the martingales are run on odd dimensional
Brownian motion? The orthogonal decomposition in Section 3 made no dis-
tinction of odd and even dimension, so there is no change to the theory there.
However when we dealt with holomorphic decomposition, we always chose
d = 2m to be an even integer. Is this necessary?

Consider the case when d = 3. We ask whether there exists 3 vectors v1,
v2 and v3 in R

6 that satisfy the conformality condition (5.2) and such that
the spaces Vj = span{vj , v

∗
j } are mutually orthogonal. The question reduces

to solving the following linear system. Let A be a 6 × 3 matrix and AT be its
transpose.

A =

⎛⎜⎜⎜⎜⎜⎜⎝
a b c
d e f
x y z
u v w
α β γ
η δ μ

⎞⎟⎟⎟⎟⎟⎟⎠ .

The problem is the following. Can we find real numbers a, b, c, etc. such that

A · AT = B

where B is a 6 × 6 matrix whose coordinates are related as given below.

B =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 r s t l
0 1 s −r l −t
r s 1 0 p q
s −r 0 1 q −p
t l p q 1 0
l −t q −p 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Here r, s, t, l, p, and q are real-numbers.
It is easy to see that A · AT cannot have rank more than 3. However, the

author is unable to verify whether r, s etc. can be chosen so that B will have
rank = 3 and whether the system is solvable. If it can be solved, it will imply
something special for the odd-dimension case.

However based on the information we have from d = 2m case, we do not
believe that there can be a holomorphic decomposition when d is odd (for
our martingale spaces). Here are some heuristic arguments. A conformal
martingale is a time change of a complex Brownian motion Z, and if Z is
in the martingale space, so is its conjugate Z̄ (up to timechange). Z and Z̄
correspond (in the extended sense) to orthogonal spaces, like Vi and Wi which
together span a 4 dimensional subspace of R

2d. It follows that d should be
even dimensional.

Now if we carry out our algorithm of obtaining an orthogonal decomposi-
tion by working specifically with vectors satisfying (5.12) and (5.13), then we
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will obtain a decomposition into conformal planes for the 4m-dimensional sub-
space V ⊕ W ∼= R

4m × {0}. Then finally we have to choose for the last plane
span{v, v∗ } where v has coordinates that do not satisfy the conformality-
condition (5.2). So we have an orthogonal decomposition into planes, but
only 2m of them are also conformal planes, the last is not. In terms of the
underlying 2m + 1 Brownian motion, we may interpret that at most 2m can
contribute to the holomorphic structure of the martingale space, and there
will be the odd extra 1-dimensional Brownian motion tagged on.

For the projection operators, our algorithm will give a collection of 2m2 +1
operators {Eij

1 } ∪ {Eij
2 } ∪ {E}. However these will not allow us to cover all

the (2m+1)2 slots of the transform matrices, so if we wish to do this, we will
have to add more operators to cover left out entries.

Remark 7.1. These are just general observations on the odd Brownian
dimensional case which should be properly analyzed and classified in contrast
to the even dimensional case. We leave that to future mathematics.

8. The space of all martingale transforms of M0

Once again let n = 1 and d = 2m. Recall M1 is the space of martingale
transforms of M0 generated by the special projection operators Eij

k . It is
clear that M0 ⊂ M1. However, it is not clear how exactly M1 is embedded
in the space of all martingale transforms of M0 by constant matrices. Let

(8.1) M =
{∫ t

0

A∇Uϕ(Bs) · dZs : A is any d × d complex matrix
}

be the space of all martingale transforms of M0. Thus, we have

M0 ⊂ M1 ⊂ M.

We will prove the amazing theorem that in fact M1 = M, thus showing that
the Eij

k operators project M0 onto subspaces that generate all of M. We do
this by finding matrix operators T ij

k such that the joint collection{
Eij

k

}
∪
{
T ij

k

}
span the space of all operators; then we find operators Bj

k on L2(C) such that

T ij
k ϕ = Eij

k Bj
kϕ,

thus proving the main claim.

Theorem 8.1. M = M1.

Proof. Define the 2 × 2 matrices

(8.2) A1 =
(

1
−1

)
, A2 =

(
1

1

)
.
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Then

A∗
1 =

A1 + iA2

2
=

1
2

(
1 i
i −1

)
, A∗

2 =
A1 − iA2

2
=

1
2

(
1 −i

−i −1

)
are the well-known matrices associated with the Beurling–Ahlfors transform;
see Section 10 and [BaMH]. Recall the definition for Eij

k given in (5.16).
Following the same notation, define for k ∈ {1,2}, i, j ∈ {1, . . . ,m},

(8.3) T ij
k =

{
Alr = A∗

k, l = i, r = j,

Alr = 0 matrix, otherwise.

Thus the matrix A∗
k occupies the {2i − 1,2i} × {2j − 1,2j} slots of the matrix

A, with all other coordinates equaling 0. It is clear that the four matrices
E1,E2,A

∗
1 and A∗

2 span the space of 2 × 2 matrices, and similarly {Eij
k } ∪ {T ij

k }
span the space of all d × d matrices. Now consider the action of T ij

k on the
gradient ∇ϕ. Let

∂̄j =
∂x2j−1 + i∂x2j

2
, ∂j =

∂x2j−1 − i∂x2j

2
.

Then

T ij
k ∇ϕ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

a2i−1 + ib2i−1

a2i + ib2i

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

(8.4)
(

a2i−1 + ib2i−1

a2i + ib2i

)
=

⎧⎨⎩
1
2

( ∂̄jϕ

i∂̄jϕ

)
, if k = 1,

1
2

(
∂jϕ

−i∂jϕ

)
, if k = 2.

On the other hand, Eij
k ∇ϕ has the same form except

(8.5)
(

a2i−1 + ib2i−1

a2i + ib2i

)
=

⎧⎨⎩
1
2

(
∂jϕ
i∂jϕ

)
, if k = 1,

1
2

( ∂̄jϕ

−i∂̄jϕ

)
, if k = 2.

Define the Fourier-multiplier operators on L2(C):

(8.6) Bjϕ =
∂̄j

∂j
ϕ =

∂̄2
j

Δj
ϕ, B̄jϕ =

∂j

∂̄j
ϕ =

∂j
2

Δj
ϕ,
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where Δj = ∂2
x2j−1

+ ∂2
x2j

. Bj is a well-defined bounded operator on L2(C)
since its multiplier

B̂j(ξ) =
(ξ2j−1 + iξ2j)2

ξ2
2j−1 + ξ2

2j

has ‖B̂j ‖ ∞ = 1. Observe next that the definitions ensure

T ij
1 ∇ϕ = Eij

1 ∇Bjϕ,
(8.7)

T ij
2 ∇ϕ = Eij

2 ∇B̄jϕ.

This means that the martingale transforms generated by T ij
k are the same as

those generated by Eij
k . It follows that M1 = M. �

8.1. Complete transform operators. There is an important property
of certain sums of Eij

k and T ij
k that should be recorded. Later we will see

applications.

Definition 8.1. A martingale transform operator T is complete if d〈Tϕ〉t+
d〈T̄ϕ〉t = d〈I � ϕ〉t a.s., for each t ≥ 0.

As per Theorem 5.5 and Remark 5.2 (and some calculations), it is easy to
see that for each fixed k, the operators

(8.8) Ek :=
m∑

l=1

E
l,j(l,k)
1 , Ēk =

m∑
l=1

E
l,j(l,k)
2

are complete operators. Likewise the operators

(8.9) T k :=
m∑

l=1

T
l,j(l,k)
1 , T̄ k =

m∑
l=1

T
l,j(l,k)
2

are also complete operators. Thus, we have m operators projecting on V and
m operators projecting on W . For distinct k and j, Ek and Ej (similarly Ēk

and Ēj) are distinct operators in the sense that their matrices have disjoint
support in the coordinates. So one expects that this is characteristic for
martingale spaces of dimension 2m, that there should be exactly m+m = 2m
complete operators projecting to conformal and conjugate conformal spaces.
However, as stressed before, our options are determined by our choice of basis
for V and W , hence there can be other complete operators, except that their
matrices will no longer be disjoint from the present collections. The precise
nature of the classification is left for future research.

Next we note that among our complete operators, E1 =
∑m

l=1 Ell
1 and E2 =

Ē1 are special: they obtain the standard projections of M0 on V and W . In
particular, they give the holomorphic decomposition of the identity operator:

(8.10) E1 + Ē1 = I(Identity).

Thus, we conclude the following theorem.
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Theorem 8.2.
(1) Any martingale X ∈ M1 is the (holomorphic) sum of its standard projec-

tions in V and W , i.e. X = E1X + Ē1X .
(2) When d = 2, M = E1M0 + Ē1M0.

For the second assertion, just observe that the only Eij
r operator when

d = 2 is E11
r , and hence the only Ek operator is E1. Clearly the same is not

true for d > 2.
We have found complete transform operators {Ek } that project into V . In

fact, any family of operators

Gk =
m∑

l=1

G
l,j(l,k)
1 ,

where Gij
1 ∈ { ±Eij

1 , ±T ij
1 }, will be a complete family, that is, each Gk is

complete. This leads to the question: is there a family of m complete operators
{Gk } that map into V and such that (G1ϕ, . . . ,Gmϕ) is an orthogonal m-
martingale? The author is unable to verify this (for d = 4) as stated, and
it may be false in general. However, it may be of interest to find a possibly
more general context wherein this is true: such a family would provide in
some sense a complete/proper decomposition of V .

8.2. A recap of what has been done. We have characterized the space
of all martingale transforms as the holomorphic sum of conformal subspaces
V and W . These two spaces are conjugate spaces: X ∈ V if and only if
X̄ ∈ W . By Theorems 5.6 and 8.1, any martingale in M can be written as
the holomorphic sum of two conformal martingales in V and W : in particular,
the sum of the quadratic variations equals that of the original martingale. We
have also identified a family of operators {Eij

1 } and {Eij
2 } that project M0

onto V and W , respectively. Among sums of them are complete operators
that decompose a martingale X into two conformal martingales that run at
the same ‘quadratic-speed’ as X .

In the next section, we study the theory of projecting the martingale onto
functions on Rd.

9. Martingale and singular-integral

The subject matter of this section ties martingale theory with Fourier anal-
ysis. It has its historical roots in the work of Gundy and Varopolous [GuVa],
see also [GuSi]; however we shall focus on the material connected to our re-
search on the Beurling–Ahlfors transform. The background presented below
is developed in [BaWa] and [BaMH]. Recall that we are considering space–
time Brownian motion (Zs, T − s) started at (z0, T ). Let ϕ ∈ L2(Rd) and for
convenience let ϕ also denote its heat extension to R

d+1
+ . The space of martin-

gales M0 consists of martingales I � ϕt =
∫ t

0
∇ϕ(Zs, T − s) · dZs. It turns out
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that because we are dealing with heat-extensions, this is equal to ϕ(Zt, T −
t) − ϕ(z0, T ). By conditioning against ZT exiting at fixed point z, integrating
over all starting planar-points z0 and finally letting T → ∞, the value of the
martingale miraculously equals the value of the function at z. In other words,

(9.1) lim
T →∞

∫
Rd

E(z0,T )[I � ϕT |ZT = z]dz0 = ϕ(z).

We say that I �ϕ projects to the function ϕ. We are interested in knowing the
projected function for any given martingale in M, that is, for any martingale
transform A � ϕ for d × d constant matrix A.

Of course, the reason is not arbitrary; we know that these projections
correspond to singular-integral operators. Consider the case when d = 2 and
A =

(
1
0

0
0

)
. As shown in [BaMH], this martingale transform A � ϕ projects

to the function −R2
1ϕ where R1 is the well-known Riesz transform. The

Riesz transform is a basic singular integral operator, and its Fourier multiplier
R̂j(ξ) = i ξ1

|ξ| . The interested reader can look at [St], [Du], [Bas] for more
information on this operator. Likewise the general theory states that if A
has 1 in the (i, j) coordinate, then A � ϕ projects to −RiRjϕ; this is true for
higher dimensions as well.

Let us look at our projection transform-operators Eij
1 and T ij

1 . When d = 2,
we have i = j = 1 and these are operations by the matrices

1
2

(
1 −i
i 1

)
and

1
2

(
1 i
i −1

)
,

respectively. Our rule then shows that E1ϕ = E11
1 ϕ projects to ϕ

2 and A∗
1 �ϕ =

T 11
1 ϕ projects to Bϕ

2 , where

(9.2) B =
(
R2

2 − R2
1

)
− i2R1R2.

This is the Beurling–Ahlfors operator which will be the focus of the next
section. Just as A∗

1 is a complete transform operator, the projection B is a
‘complete’ operator in L2(C) in the sense that B is an L2 isometry.

For higher dimensions, there is a well-established analogue of the Beurling–
Ahlfors transform acting on differential forms; see [BaLi]. However, the ana-
logues of B that will be of interest to us will be the projections of complete
transform operators. Let m > 1 and d = 2m > 2. Eij

1 ϕ = T ij
1 B̄jϕ and T ij

1 ϕ =
Eij

1 Bjϕ are each martingale transforms of ϕ and of Bjϕ or B̄jϕ. However,
these martingale transforms do not actually project back to these functions
(when d > 2) in the sense that I �ϕ projects to ϕ, see (9.1). If I lr corresponds
to the matrix with 1 in coordinate (l, r) and 0 otherwise, then the martingale
transform I lr � ϕ projects to the function −RlRrϕ. Thus, we conclude that

E
[
2Eij

1 ϕ|ZT

]
=
(
(−R2i−1R2j−1 − R2iR2j) + i(R2i−1R2j − R2iR2j−1)

)
ϕ,

E
[
2Eij

2 ϕ|ZT

]
=
(
(−R2i−1R2j−1 − R2iR2j) − i(R2i−1R2j − R2iR2j−1)

)
ϕ,
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E
[
2T ij

1 ϕ|ZT

]
=
(
(−R2i−1R2j−1 + R2iR2j) + i(−R2i−1R2j − R2iR2j−1)

)
ϕ,

E
[
2T ij

2 ϕ|ZT

]
=
(
(−R2i−1R2j−1 + R2iR2j) − i(−R2i−1R2j − R2iR2j−1)

)
ϕ.

Denote these operators as Cij , C̄ij , Dij and D̄ij , respectively. Observe that
Cij = C̄ji, Dij = D̄ji, and

∑
i C

ii = I . From the author’s work with d = 4,
it does not seem that complete transform operators project to L2 isometries
when d > 2, other than the trivial case of identity.

10. Norm estimates for the Beurling–Ahlfors transform:
Introduction and background

We conclude the paper with an application to the problem of computing
the Lp norm of the Beurling–Ahlfors transform. Our primary focus is d = 2
although we give generalizations where possible. The operator B = ∂̄2

Δ given
in (9.2) is a singular integral operator defined alternatively as

Bϕ(z) =
1
π

p.v.
∫

C

ϕ(w)
(z − w)2

dm(w).

It is an L2-isometry that is a basic object of study in quasiconformal mapping
theory and knowing information about B will help solve other questions in
that subject. In recent years, the most prominent open problem regarding
B has been the computation of its Lp-norm, 1 < p < ∞. The conjecture of
Iwaniec [Iw] is that

‖B‖p = p∗ − 1, p∗ = max
{

p,
p

p − 1

}
,

and several papers have resulted in a gradual improvement in the upper esti-
mate; see [BaWa], [NaVo], [BaMH], [DV], [BaJa]. The lower bound is known;
see [Le]. The present best upper estimate in publication is 1.575(p∗ − 1) in
[BaJa].

The interest on B in this paper lies with the fact that Bϕ is the projection
on L2 of the martingale transform 2A∗

1 � ϕ; this is shown in the previous sec-
tion. Hence the question arises as to whether the norm of B can be estimated
by exploiting this martingale connection. The answer is yes as shown in the
papers cited above. Observe∫

C

Bϕ(z)ψ(z)dm(z)

=
∫

C

lim
T →∞

∫
C

E(z0,T )
[
2A∗

1 � ϕT |ZT = z
]
dm(z0)ψ(z)dm(z)

= lim
T →∞

∫
C

∫
C

E(z0,T )
[
2A∗

1 � ϕT ψ(ZT )|ZT = z
]
dm(z)dm(z0)

= lim
T →∞

∫
C

E(z0,T )
[
2A∗

1 � ϕT ψ(ZT )
]
dm(z0)
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≤ lim
T →∞

∫
C

(
E(z0,T )|2A∗

1 � ϕ|p
) 1

p
(
E(z0,T )|ψ(ZT )|p′) 1

p′ dm(z0)

≤
(

lim
T →∞

∫
C

E(z0,T )
∣∣2A∗

1 � ϕ
∣∣p dm(z0)

) 1
p

×
(

lim
T →∞

∫
C

E(z0,T )
∣∣ψ(ZT )

∣∣p′
dm(z0)

) 1
p′

=
(

lim
T →∞

∫
C

E(z0,T )
∣∣2A∗

1 � ϕ
∣∣p dm(z0)

) 1
p

‖ψ‖p′ .

The final step is to estimate the first term from above by C‖ϕ‖p; then C
is the upper estimate for ‖B‖p. But notice that the interior integral is an
expectation of |2A∗

1 �ϕ|p, that is, of a positive valued function of a martingale
transform of I � ϕ. Thus, it will suffice to know how martingale transforms
by constant matrices affect the Lp norm of the martingales. Let A be a 2 × 2
matrix, and denote the martingale transform of I � ϕ by A as

(10.1) A � ϕt =
∫ t

0

A∇ϕ(Zs, T − s) · dZs.

To estimate the constant in the inequality ‖A�ϕ‖p ≤ C‖I �ϕ‖p, Bañuelos and
Méndez (and earlier, Bañuelos–Wang [BaWa], and Nazarov–Volberg [NaVo])
rely on a fundamental theorem of D. L. Burkholder [Bu1], [Bu2], which when
adapted to the present setting (see [Wa], [BaMH]), is the following.

Theorem 10.1 (Burkholder). Let A be a d × d matrix with matrix norm
‖A‖. Let X =

∫ t

0
Hs · dZs be a C

n-valued martingale, and A � Xt =
∫ t

0
AHs ·

dZs. Then

(10.2) ‖A � X‖p ≤
(
p∗ − 1

)
‖A‖ ‖X‖p,

where p∗ = max{p, p
p−1 }. The constant p∗ − 1 is best possible.

10.1. The work of Burkholder. Since a generalization of Burkholder’s
theorem is a center piece of this paper, we will give a brief overview of his
approach to this and similar problems. Let Y = A � X denote the martingale
transform of X , where without loss of generality, we assume ‖A‖ = 1. We
wish to find the least constant C such that

(10.3) E
(

|Y |p − Cp|X|p
)

≤ 0.

As soon as we determine this condition involving the expectation of a certain
process involving X and Y , we are able to identify the obstacle function for
our problem. In this case, it is

V (x, y) = |y|p − Cp|x|p.
The least constant C that ensures (10.3) is determined by the special prop-
erties of Y , X and their mutual relationship. In the above problem, the
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relationship is simple: d〈Y 〉 ≤ d〈X〉. The obstacle function however is in gen-
eral not well-behaved, and one cannot directly use the properties of X and Y
to understand when EV (X,Y ) ≤ 0. Burkholder’s strategy is as follows: find
the least constant C > 0 such that there exists a function U satisfying
(1) U is a majorant of V : U ≥ V everywhere.
(2) U(0,0) = 0.
(3) U(Xt, Yt) is a supermartingale.
Then we have

EV (Xt, Yt) ≤ EU(Xt, Yt) ≤ EU(X0, Y0) = EU(0,0) = 0.

Burkholder usually solves this problem by finding U and then finds extremals
to prove that the constant is also a lower bound.

The approach is obviously quite general and can apply for a wide spec-
trum of problems. We have freedom in both the choice of obstacle and in
the relationships between the martingales. Yet beyond the formulation of a
strategy is the difficulty of getting all the ingredients to carry out the process.
In particular, how are we to find U so that U(X,Y ) is a supermartingale?
The specifications of X and Y have to give us the information on U . For
his problems, Burkholder carries out the analysis ground-up and finds specific
concavity conditions that U must satisfy, and then more analysis to bring
out magically the actual function U . The analysis is difficult to follow and
intimidating to repeat; the innovations and understanding that later research
has revealed however have their foundation and essence in Burkholder’s work.
(See [Bu3] for the generalization of this theory to Banach space setting.)

Finally, it should also be mentioned that Burkholder’s problem and solution
have been shown to belong within the field of Stochastic Optimal Control
theory, specifically baptized as the Bellman-function theory. For more on
this, the reader should see [NTV], [NT], [Vo], [VaVo2].

10.1.1. The use of Itô’s formula. The main innovation for our purpose is the
direct use of Itô’s formula on the process U(X,Y ), when X and Y are complex
martingales run on R

d-Brownian motion. This was first done in [BaWa]; see
also [Bu2] for a variant application. U(Xt, Yt) is a supermartingale precisely
when its quadratic process d〈U(Xt, Yt)〉 is non-positive everywhere. Itô’s for-
mula in turn reveals that the supermartingale condition is equivalent to re-
quiring that U is a supersolution for a certain partial differential equation.
For our problem, suppose X and Y are real-valued. Then it turns out that
the function U must be biconcave: Uxx ± 2Uxy + Uyy ≤ 0. Thus, Itô gives a
quick way to get the PDE whose supersolution U must be. That makes easy
the first part of the problem. Then how does one actually find this superso-
lution? This is the hard part and with no quick or decisive recipe. However
for this also, there has been progress in recent years; the reader can refer to
[VaVo], [BJV1], [BJV2], [BaOe].
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10.2. Burkholder’s function. Burkholder solves his problem and finds
that when C = p∗ − 1, the function

(10.4) U(x, y) = αp

(
|y| −

(
p∗ − 1

)
|x|
)(

|x| + |y|
)p−1

is the correct majorant satisfying all the required properties. He shows that
U is biconcave by proving that if G(t) = U(x + ht, y + kt), then (for p ≥ 2)

G′ ′(0) = −αp(A + B + C),

where

A = p(p − 1)
(

|h|2 − |k|2
)
(|x| + |y|)p−2,

B = p(p − 2)
[

|k|2 −
(
y′, k
)2]|y| −1(|x| + |y|)p−1,(10.5)

C = p(p − 1)(p − 2)
[(

x′, h
)
+
(
y′, k
)]2|x|

(
|x| + |y|

)p−3
.

Here y′ = y
|y| and x′ = x

|x| . We see that terms B and C are always positive,
and term A is also positive when |k| ≤ |h|. It follows that G′ ′(0) ≤ 0 whenever
|k| ≤ |h|; this implies the biconcavity of U . Thus, we have found the biconcave
majorant of V that we wanted, and the corresponding constant is p∗ − 1. This
is essentially the proof of Theorem 10.1.

10.3. Estimations of the norm of the Beurling–Ahlfors operator.
Recall that the martingale extension of Bϕ is

2A∗
1 � ϕ =

∫ t

0

(
1 i
i −1

)
∇Uϕ(Zs, T − s) · dZs.

The matrix 2A∗
1 has norm ‖2A∗

1‖ = 2 and hence by Burkholder’s theorem and
the earlier arguments of this section, we have

‖B‖p ≤ 2
(
p∗ − 1

)
.

This is the proof of Bañuelos and Méndez [BaMH]. The same result was proved
earlier by Nazarov and Volberg [NaVo] with slightly different methods that
also depend on Burkholder’s theorem.

10.3.1. Conformality and the proof of Burkholder’s theorem. The property

(10.6)
〈
2A∗

1 � ϕ
〉

≤ 4〈I � ϕ〉
has been used. Now the question is “what else”? We can search for other
properties of or relations between Y = 2A∗

1 � ϕ and X = I � ϕ. It does not
seem like there is any obvious way to relate X and Y beyond (10.6). In
fact, this is a point of suspense yet to be revealed. However, we do have
further information regarding Y itself. Y is a conformal martingale [BaWa,
p. 599], being a projection of 2A∗

1. If we follow Burkholder’s strategy taking
into account the conformality of Y , then we see that the obstacle is V (x, y) =
|y|p − cp|x|p where y,x ∈ C, and the PDEs whose common supersolution we
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seek are Uxx ± 2Uxy + Uyy + Uy

y = 0. Recent work [BJV1] deals with this
standard approach.

However we are still focused on Burkholder’s function for it accommodates
conformality and leads to an improvement in the constant. We follow [BaJa].
Let us suppose Y = Y1 + iY2 is conformal, that is, d〈Y1〉 = d〈Y2〉 and d〈Y1, Y2〉,
and that Y is differentially subordinate to X . In the three conditions of (10.5),
we said that B and C are always positive and A is positive when |k| ≤ |h|.
Generally, both B and C were discarded. With conformality, B also comes
into use. The term (y′, k)2 = (k1

y1
|y| )

2 + (k2
y2

|y| )
2 + 2k1k2

y2
1

|y|2
y2
2

|y|2 converts to

Y 2
1

|Y |2 d〈Y1〉 +
Y 2

2

|Y |2 d〈Y2〉 + 2
Y1

|Y |
Y2

|Y | d〈Y1, Y2〉

= d〈Y1〉 =
1
2
d〈Y 〉.

Since |Y | −1(|X| + |Y |) is greater than 1, the continuous version of B is
bounded below by

p(p − 2)
2

(
|X| + |Y |

)p−2
d〈Y 〉.

Therefore,

A + B ≥ p(p − 1)
(

|X| + |Y |
)p−2

(
d〈X〉 − p

2(p − 1)
d〈Y 〉

)
.

Thus, if X̃ =
√

p
2(p−1)X , then A + B ≥ 0 and we get

‖Y ‖p ≤ (p − 1)‖X̃‖p ≤
√

p2 − p

2
‖X‖p.

In other words, we have:

Theorem 10.2. [BaJa] If Y is conformal and differentially subordinate to
X (i.e., d〈Y 〉 ≤ d〈X〉), then for p ≥ 2,

(10.7) ‖Y ‖p ≤
√

p2 − p

2
‖X‖p.

How does this apply to Y = 2A∗
1 �ϕ? In this case, we know that 〈Y 〉 ≤ 4〈X〉,

and hence the constant becomes
√

2(p2 − p). Again by earlier arguments, we
then know

‖B‖p ≤
√

2
(
p2 − p

)
, 2 ≤ p < ∞.

By duality of the singular integral operator, the same estimate works for the
conjugate p′, that is, ‖B‖p′ = ‖B‖p. Finally, using interpolation with the
known fact ‖B‖2 = 1, Bañuelos and Janakiraman [BaJa] prove that ‖B‖p ≤
1.575(p∗ − 1).

The constant in Theorem 10.2 is not expected to be best possible, and
the problem remains open for p ≥ 2. When 1 < p′ < 2 and under the same
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conditions on the martingales, the best constant is shown in [BJV2] to equal
1√
2

zp′
1−zp′

, where zp′ is the least positive root of the bounded solution to the
corresponding Laguerre equation. The following improved asymptotic esti-
mate for ‖B‖p is also established in [BJV2]:

(10.8) lim
p→∞

‖B‖p

p − 1
� 1.3922.

This lowers the asymptote value to below
√

2 (the earlier best known value,
established in [DV] and which also follows from (10.7)).

11. Norm estimates for holomorphic martingale transforms and
the connections to BA transform

11.1. Burkholder’s theorem under conditions of orthogonality. The
general theory of orthogonality for C

n-valued martingales developed in this
paper is motivated by the following generalization of Theorem 10.2 and its
connections with the Beurling–Ahlfors martingales.

Let X and Y be two R
n valued martingales run against d-dimensional

Brownian motion. Assume that

Xj
t =
∫ t

0

Hj
s · dBs, Y j

t =
∫ t

0

Kj
s · dBs,

where Bt is d-dimensional Brownian motion and Hs and Ks are R
d-valued

processes adapted to its filtration. Let

K =
(
K1 K2 · · · Kn

)
denote the d × n matrix with columns Ki. Define the two norms of K:

(11.1) |K| = sup
|v|=1

|Kv| and ‖K‖ =

[
n∑

i=1

|Ki|2
] 1

2

.

Theorem 11.1. Suppose for X and Y as above,

(11.2) ‖K‖ ≤ ‖H‖ and |K| ≤ 1√
2

‖K‖,

then

(11.3) ‖Y ‖p ≤
√

p2 − p

2
‖X‖p, 2 ≤ p < ∞.

The first requirement states that the quadratic variation of Y is ≤ the qua-
dratic variation of X . The second is a nice geometric condition that effectively
generalizes the requirement of conformality between the coordinates of Y . It
should be of interest in higher dimensional theory to explore the geometric
implications of this condition more thoroughly.

We refer as necessary to the arguments in [Bu2] and [BaJa] as outlined in
the previous section.
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Proof of Theorem 11.1. Let Y ′
i = Yi

|Y | . Observe in (10.5), the quadratic
variation part of the B term in the A+B +C decomposition as it corresponds
to this setting is

〈Y 〉 −
n∑

i,j=1

Y ′
i Y ′

j d〈Yi, Yj 〉.

Since d〈Yi, Yj 〉 = Ki · Kj ,

n∑
i,j=1

Y ′
i Y ′

j d〈Yi, Yj 〉 =
n∑

i,j=1

Y ′
i Y ′

j Ki · Kj =

∣∣∣∣∣
n∑

i=1

Y ′
i Ki

∣∣∣∣∣
2

.

The last term is |K · Y ′ |2 where Y ′ is a unit vector, hence it is always controlled
by |K|2. Therefore

d〈Y 〉 −
n∑

i,j=1

Y ′
i Y ′

j d〈Yi, Yj 〉 ≥ ‖K‖2 − |K|2,

which by the hypothesis is bounded below by 1
2 ‖K‖2. The remaining proof

is along the same lines as before. �

Remark 11.1. Unlike in Theorem 10.1, we do not expect that the constant
in (11.3) is best possible; so while the same proof obtains a norm-estimate
under orthogonality, the majorant function for this problem will likely be
different from a trivial modification of the function U in (10.4) and yield a
smaller constant.

Clearly, Theorem 11.1 and its hypotheses are considerably general. How-
ever, it is not immediately clear where they fit into general martingale theory
and what applications can be realized for standard examples of martingales.
The next theorem states that an n-conformal martingale satisfies the hypothe-
ses of Theorem 11.1. In particular we have the following theorem.

Theorem 11.2. Let Yt =
∫ t

0
Ks · dZs be an n-conformal martingale, and let

X be any martingale such that 〈Y 〉 ≤ 〈X〉. Then Y satisfies
(1) |K| ≤ 1√

2
‖K‖,

(2) ‖Y ‖p ≤
√

p2−p
2 ‖X‖p,2 ≤ p < ∞.

The upper bound estimate (2) follows from (1) and Theorem 11.1. We
will prove (1) for the special case when Y is a 2-conformal martingale. The
general case follows in exactly the same manner.

Proof of Theorem 11.2. For n = 2. Let Y = (Y1 + iY2, Y3 + iY4) ∼= (Y1, Y2,
Y3, Y4). Since Y is 2-conformal, it follows that
(1) 〈Y1〉 = 〈Y2〉, 〈Y3〉 = 〈Y4〉,
(2) 〈Y1, Y2〉 = 〈Y3, Y4〉 = 0.
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In terms of the matrix K where Y =
∫

K · dZ, these facts may be equivalently
expressed as:
(1) |K1| = |K2| and |K3| = |K4|,
(2) K1 · K2 = K3 · K4 = 0.
Since the aim is to show that this martingale Y is a candidate for Theo-
rem 11.1, it is necessary to verify that it satisfies |K| ≤ 1√

2
‖K‖, as defined in

(11.1).
Let v ∈ R

4 be a unit vector. Then

|K · v|2 =
∣∣v1K

1 + v2K
2
∣∣2 +

∣∣v3K
3 + v4K

4
∣∣2

+ 2
(
v1K

1 + v2K
2
)

·
(
v3K

3 + v4K
4
)
.

By the orthogonality and quadratic variation relations, the first two terms in
the sum equal (v2

1 +v2
2)|K1|2 and (v2

3 +v2
4)|K3|2, respectively. The third term

is bounded above by

2
∣∣K1
∣∣∣∣K3

∣∣√v2
1 + v2

2

√
v2
3 + v2

4 .

These facts put together show that

|K · v|2 ≤
[∣∣K1

∣∣√v2
1 + v2

2 +
∣∣K3
∣∣√v2

3 + v2
4

]2
≤
[√∣∣K1

∣∣2 +
∣∣K3
∣∣2√v2

1 + v2
2 + v2

3 + v2
4

]2
=

1
2
(∣∣K1

∣∣2 +
∣∣K2
∣∣2 +

∣∣K3
∣∣2 +

∣∣K4
∣∣2)|v|2

=
1
2

‖K‖2.

This completes the proof since |K| = sup{ |K · v| : |v| = 1}. �

Remark 11.2. It is known and stated in [BJV1] that Theorem 10.2 has
a mirror result for 1 < p′ < 2 when X instead of Y is the conformal martin-
gale; the constant becomes

√
2

p′2−p′ . The corresponding result for 1 < p′ < 2
should hold for Theorem 11.2 as well, when X instead of Y is the n-conformal
martingale.

Although Theorem 11.2 is an interesting and important generalization of
Theorem 10.2, it does not quite bring to light the complex orthogonality that is
the main theme of this paper. The following theorem shows that Burkholder’s
theorem applies specially to pairwise conformal martingales.

Theorem 11.3. Let Y = (Y1, . . . , Yn) be a pairwise conformal n-martingale.
Suppose 〈Y 〉 ≤ 〈X〉. Then
(1) |K| ≤ 1√

n
‖K‖,

(2) ‖Y ‖p ≤
√

(p+n−2)(p−1)
n ‖X‖p, 2 ≤ p < ∞.
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The special case when Y is R
n-valued is given in [BaJa].

Proof of Theorem 11.3. Let

K = [ �K1 · · · �Kn] = [K1 + iK2 · · · K2n−1 + iK2n],

and

V =

⎛⎜⎝�v1

...
�vn

⎞⎟⎠=

⎛⎜⎝ v1 − iv2

...
v2n−1 − iv2n

⎞⎟⎠ ,

where |V | = 1. We need to estimate

v1K1 + · · · + v2nK2n.

This quantity is equal to the real part of K · V ,

Re(K · V ) = Re(�v1
�K1 + · · · + �vn

�Kn).

Thus ∣∣∣∣∣
2n∑

j=1

vjKj

∣∣∣∣∣ = ∣∣Re(K · V )
∣∣

≤ |K · V | =

∣∣∣∣∣∑
j

�vj
�Kj

∣∣∣∣∣
=
√∑

j

|�vj |2| �Kj |2

= | �K1| |V |

=
1√
n

‖K‖.

The third equality is because of pairwise orthogonality; the fourth and fifth
equalities follow from the equivalence of coordinates. The Lp estimate can
now be proved following the same arguments as in Theorem 11.1. �

An interesting corollary and corresponding questions are stated below.

Corollary 11.1. Let Y n denote a pairwise conformal n-martingale for
each n satisfying 〈Y n〉 ≤ 〈X〉. Then

(11.4) limsup
n→∞

‖Y n‖p ≤
√

p − 1‖X‖p.

Question 2. Does (11.4) gives the right asymptotics? What are
(1) sup{Y n } limsupn→∞ ‖Y n‖p,
(2) limp→∞ sup{Y n } limsupn→∞ ‖Y n‖p/

√
p,

where the sup is taken over all such families of n-martingales?
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11.2. Estimations for the Beurling–Ahlfors transform and related
operators. We give an application for Theorem 11.2. Consider the case d = 2
and 2 ≤ p < ∞. From Section 8.1, we know that A∗

1 �ϕ is a complete transform
operator, i.e. 〈(A∗

1 � ϕ,A∗
2 � ϕ)〉 = 〈I � ϕ〉. Since it is also a 2-conformal pair,

it follows from Theorem 11.2 that∥∥(A∗
1 � ϕ,A∗

2 � ϕ
)∥∥

p
≤
√

p2 − p

2
‖ϕ‖p.

Finally as 2(A∗
1 � ϕ,A∗

2 � ϕ) projects to (Bϕ, B̄ϕ), we can conclude

Corollary 11.2.
(1) ‖

√
|Bϕ|2 + |B̄ϕ|2‖p ≤

√
2(p2 − p)‖ϕ‖p.

(2)

‖Bϕ‖p ≤
[√

2
(
p2 − p

)p
− 1√

2(p2 − p)
p

] 1
p

‖ϕ‖p.

For the second estimate, observe that
√

|Bϕ|2 + |Bϕ̄|2p ≥ |Bϕ|p + |Bϕ̄|p
and the fact that

‖B̄ϕ‖p ≥ 1√
2(p2 − p)

‖ϕ‖p.

Now use the estimate for ‖(Bϕ,Bϕ̄)‖p. Alternatively, we could have proved
Corollary 11.2 by extending (Re(Bϕ̄) + i Im(Bϕ),Re(Bϕ) − i Im(Bϕ̄)) and
appealing to Theorem 11.3. In this case, the C

2 function extends to pairwise
conformal martingale with each coordinate having quadratic variation exactly
twice that of I � ϕ. Some minor improvements are possible using similar
methods. We also conjecture that:

Conjecture 3. ‖(B, B̄)‖p =
√

2(p∗ − 1).

In higher dimensions as well, one can identify complete transform operators
and their projected operators on Lp(Rd) will obtain the same estimates as in
Corollary 11.2. For example, when d = 4, two simple examples of complete
transform pairs are {T 11

1 − T 22
1 , T 12

1 + T 21
1 } and {T 11

1 + T 22
1 , T 12

1 − T 21
1 }. The

projected singular integral operators of the first pair (times factor of 2) are

S = R2
1 − R2

2 − R2
3 + R2

4 + i2(R1R2 − R3R4),

and
Q = 2(R1R3 − R2R4) + i2(R1R4 + R2R3).

Hence, we obtain that ‖(S, S̄)‖p and ‖(Q, Q̄)‖p are both bounded by√
2(p2 − p). A natural question is whether these norms are equal to one

another (and to
√

2(p∗ − 1)).

Remark 11.3. There is the question whether the ideas of this paper can
be used to obtain norm estimates for the Beurling–Ahlfors operator in higher
dimensions. This is a well-defined entity acting on differential k-forms, see
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[BaLi], [PSW], [Hy]. The author does not believe it will satisfy the hypothesis
|K| ≤ 1√

2
‖K‖ of (11.2); even if this is the case, whether one can reasonably

address special cases, or perhaps break the operator into pieces that satisfy
the hypotheses is worth investigating.

11.2.1. An inequality for gradients and related results. The following is an
interesting theorem that shows that the quadratic variation of I ∗ ϕ is bounded
above by the quadratic variation of (I ∗ Bϕ, I ∗ B̄ϕ).

Theorem 11.4. For complex valued ϕ ∈ L2 ∩ C∞(R2),

(11.5) | ∇ϕ|2 ≤ | ∇(Bϕ)|2 + | ∇(B̄ϕ)|2.

The estimate is optimal with ϕ(z) = e− |z|2
2 as an extremal.

The theorem immediately implies the following.

Corollary 11.3. ‖ϕ‖p ≤ (p∗ − 1)‖(Bϕ, B̄ϕ)‖p.

This is not optimal and cannot prove the conjecture ‖ϕ‖p ≤ (p∗ − 1)‖Bϕ‖p;
however, the optimality of the (11.5) suggests that it is the best possible
estimate that can be derived from quadratic variation comparison alone.

Proof of Corollary 11.3. The following facts are used from the theory of
orthogonality.

(1) 〈X〉 = 〈(E1X,E2X)〉.
(2) 〈(E1φ,E2η)〉 = 〈E1φ + E2η〉.
(3) 〈(E1(Bϕ),E2(B̄ϕ))〉 = 〈ϕ〉.
The quadratic variation expressions around functions refer to the heat exten-
sion martingales. This does not create problems since B commutes with the
heat kernel. 〈

(Bϕ, B̄ϕ)
〉

=
〈
(E1Bϕ,E2Bϕ,E1B̄ϕ,E2B̄ϕ)

〉
=
〈
(E1Bϕ,E2B̄ϕ,E2Bϕ,E1B̄ϕ)

〉
=
〈
(E1Bϕ,E2B̄ϕ)

〉
+
〈
(E2Bϕ,E1B̄ϕ)

〉
= 〈ϕ〉 + 〈E2Bϕ + E1B̄ϕ〉
= 〈ϕ〉 + 〈T1ϕ + J ∗ T2ϕ〉.

In particular, 〈ϕ〉 ≤ 〈(Bϕ, B̄ϕ)〉, which implies (11.5).
To show optimality, first recall that B = ∂2

Δ where ∂2 = ∂2
x − ∂2

y + i2∂2
xy .

Let ϕ(z) = e− |z|2
2 . Then

| ∇Δϕ(x + iy)|2 = e− |z|2[x6 + y6 − 8|z|2 + |z|2
(
3x2y2 + 16

)]
;

| ∇∂2ϕ(x + iy)|2 = e− |z|2[x6 + y6 − 4|z|4 + |z|2
(
3x2y2 + 8

)]
.
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Since ϕ is real valued, | ∇(∂2ϕ, ∂̄2ϕ)|2 = 2| ∇(∂2ϕ)|2. Analysis reveals
| ∇Δϕ|2 ≤ 2| ∇∂2ϕ|2 and

lim
x→0

| ∇Δϕ|2
2| ∇(∂2ϕ)|2 (x + i0) = 1,

confirming the optimality of (11.5). �

By considering the second part of the quadratic variation more carefully
(since T1ϕ + J ∗ T2ϕ = A1ϕ + 2J ∗ T2ϕ), the following corollary is proved.

Corollary 11.4. For ϕ real valued,

−4∇(T1ϕ) · ∇⊥(T2ϕ) ≤ | ∇ϕ|2,

and this estimate is optimal in general.

The gradient estimate (11.5) can also be proved directly as follows.

Proof of Theorem 11.4. Consider ϕ real valued. Let X1 = (∂3
xϕ,∂3

yϕ) and
X2 = (∂x∂2

yϕ,∂2
x∂y). Then

| ∇∂2ϕ|2 + | ∇∂̄2ϕ|2
2

=
∣∣X1
∣∣2 + 5

∣∣X2
∣∣2 − 2X1 · X2

and

| ∇Δϕ|2 =
∣∣X1
∣∣2 +

∣∣X2
∣∣2 + 2X1 · X2,

β

2
[∣∣∇∂2ϕ

∣∣2 +
∣∣∇∂̄2ϕ

∣∣2]− | ∇Δϕ|2

= (β − 1)
∣∣X1
∣∣2 + (5β − 1)

∣∣X2
∣∣2 − (2 + 2β)X1 · X2

≥
∣∣X1
∣∣2[(5β − 1)α2 − (2 + 2β)α + (β − 1)

]
,

where α = |X2|2
|X1|2 . The quadratic function of α acquires its minimum when

α = β+1
5β−1 , and this minimum equals 0 precisely when β = 2. This completes

the proof when ϕ is real valued.
For the complex case, observe that |(Bϕ, B̄ϕ)| =

√
2|(Bϕ1,Bϕ2)|, hence

the problem reduces to the real valued case. Therefore, the proof works in
general. �

11.2.2. Concluding remarks. Let us conclude by making some observations.
In the one-variable situation, a function f and its Hilbert transform Hf are
extended to the upper half space as conjugate harmonic functions u and v.
Their martingale analogue (I � u, I � v) is also (I � u,J � u) which is a basic
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conformal martingale; in particular ∇v = ∇⊥u. The following diagram shows
the process:

I ∗ u
J−−−−→ I ∗ v

Ext

0⏐⏐ ⏐⏐2Proj

f
H−−−−→ Hf

Since f and Hf are essentially the boundary values of the corresponding
martingales I ∗ u and I ∗ v, the extension and projection operations preserve
the norm. Hence, the norm of the Hilbert transform on real valued functions
equals that of the orthogonal martingale transform by matrix J . In the case of
the Beurling–Ahlfors transform, consider the (slightly different) commutative
diagram

2A∗
1 � ϕ 2E1(Bϕ)

Ext

0⏐⏐ ⏐⏐2Proj

ϕ
B−−−−→ Bϕ

Unlike the one dimensional case, the extension and projection are not norm-
preserving. From the theory of Section 8 and since A∗

1 = T 11
1 when d = 2, we

know that 2A∗
1 � ϕ = 2E1(Bϕ). Therefore, one can consider estimating ‖B‖p

by estimating each fraction in the decomposition, independently:

‖Bϕ‖p

‖ϕ‖p
=

‖Bϕ‖p

‖2E1(Bϕ)‖p

‖2A∗
1 � ϕ‖p

‖ϕ‖p

= F1(Bϕ)F2(ϕ).

If F ∗
j = sup‖ϕ‖p=1 Fj(ϕ), then we know F ∗

1 ≤ 1 and F ∗
2 ≤

√
2(p2 − p). We

expect that both F ∗
j are strictly less than these upper bounds, hence finding

them should obtain an improvement in the estimate of ‖B‖p. If in fact F ∗
1 F ∗

2 =
p∗ − 1, then the conjecture ‖B‖p = p∗ − 1 would follow; however there is
not sufficient information at present to suggest the equality. If instead we
take sup over real functions, then we get the upper bound F ∗

1 |R
≤ cos( π

2p ),
2 ≤ p < ∞; this can be proved by following Burkholder’s strategy as shown in
[BaWa], [BJV2]. We also know from [BaJa] that F ∗

2 |R
≤
√

p2 − p, 2 ≤ p < ∞.
However, we do not know these bounds for p > 2 when the sup is taken over
complex functions. Any serious attempt along these directions will require us
to find why these upper estimates for real-martingales also hold (presumably)
for the subclass of complex martingales generated from complex functions on
the plane.
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