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REPRESENTING MEASURES IN POTENTIAL THEORY AND
AN IDEAL BOUNDARY

PETER A. LOEB

For my friend Donald Burkholder, a great mathematician

Abstract. A primary motivating application of the author’s
work on measure theory was a nonstandard construction of stan-
dard representing measures for positive harmonic functions. That

work yielded new standard weak convergence methods for con-
structing such measures on spaces of extreme harmonic func-
tions in very general settings. The search for a Martin-type ideal

boundary for the placement of those measures resulted in a new

almost everywhere regular boundary that supported the repre-
senting measures for a large proper subclass of all nonnegative

harmonic functions. In this note, we outline the construction of

the rich measure spaces that are now called Loeb measure spaces

in the literature. We then review the application of these measure

spaces to the construction of representing measures. We finish

with the problem of constructing an appropriate boundary asso-
ciated with the nonstandard construction of general representing
measures that supports all of those measures.

1. Introduction

In 1975 [10], the author constructed a class of standard measure spaces
formed on nonstandard models. These spaces, now called “Loeb spaces” in
the literature, are very close to underlying “internal” spaces and share their
combinatorial properties. A motivating example, developed at the same time
as the basic measure theory, was the construction of representing measures in
potential theory and applications to ideal boundaries [12]. In this article, we
review the construction of representing measures and the resulting, weak-limit
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result valid for quite general potential theories. We then discuss the author’s
ongoing search for a Martin-type boundary appropriate for that construction.
We begin with a brief survey of basic nonstandard analysis and “Loeb” mea-
sure theory; the survey is an invitation to read and not a substitute for the
many articles and books published over the years on these subjects. See [16]
for more extensive background.

2. Basic nonstandard analysis

One thinks of a standard mathematical model as a world that exists in
some sense. For example, we think of the real numbers as having an existence
independent of what we may know about them. Theorems in an appropriate
formal language form correct statements about such a model. It is important
to recognize the distinction between the names of objects in a standard model
along with statements using such names in a formal language, and the objects
themselves. For example, the number five has many names such as 5 in
base ten, 101 in binary, V in Roman numerals. The reason to emphasize
this distinction is that for each standard mathematical model there are other
mathematical objects, called nonstandard models, for which all the names
and theorems for the standard model have a meaning and are correct for each
nonstandard model. Informally, if we fix a nonstandard model, what we have
are two worlds, the standard and the nonstandard, and the theorems about
the first are also correct statements about the second. The foundation for
the application of this fact to analysis, called nonstandard analysis, is due to
Abraham Robinson [18]. His nonstandard models for the real number system
contain infinitely large and infinitely small positive numbers together with all
of the numbers in the original real number system.

One way to explain Robinson’s result is to invoke a theorem of Kurt Gödel.
Take a name not use for anything in the standard number system—for ex-
ample, Bach. To the theorems about the standard real number system add
new statements: “Bach is bigger than 1,” “Bach is bigger than 2,” etc. Add
one such statement for each natural number. The standard number system
is not a model for the collection of theorems augmented by these statements
about Bach. There is no number simultaneously bigger than 1,2,3, etc. The
standard number system is, however, a model for any finite subset of the
augmented collection of statements. To see this, fix a finite subset of the
augmented collection. Find the biggest number named in these statements,
and let Bach be the name of a number that is even bigger. Since every finite
subset of our augmented collection of statements has a model, it follows from
a result of Gödel that the entire augmented collection of statements has a
model. That is there is a number system for which all the theorems about
the real numbers hold, but there is a number in that system, call it Bach,
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that is bigger than 1,2,3, etc. Bach’s reciprocal, 1 divided by Bach, is then a
positive infinitesimal number.

Another approach to understanding Robinson’s result is to construct a
simple number system with infinitesimals using sequences of real numbers
and a free ultrafilter U on the natural numbers. Two sequences represent
the same nonstandard number if they agree on a set U ∈ U . A constant
sequence represents an ordinary number. For example, the sequence 5,5,5, . . . ,
represents the number 5. On the other hand, a sequence of positive real
numbers tending to zero such as the sequence 1,1/2,1/3,1/4, . . . , becomes a
positive infinitesimal. A sequence of real numbers increasing to infinity such
as the sequence 1,2,3, . . . , becomes an infinitely large number.

Rather than thinking of constructions, however, it is better in practice to
work with the properties of the extended number system. In doing so, one
should keep in mind the fact that any theorem for the ordinary numbers is
also a theorem, when properly interpreted, for the enlarged number system.

What is meant by saying “when properly interpreted”? Briefly, when we
say “all” subsets of a given set, we can’t formally specify what we mean. Even
for the set of natural numbers, the idea of all subsets cannot be formalized.
Ordinary language, for example, can only describe at most countably many
subsets of the natural numbers. This inability to formalize the notion of “all
subsets” means that when interpreting theorems in the nonstandard model,
we can cheat. We don’t interpret the word “all” to really mean “all.” We
work instead with what are called internal sets, and interpret “all sets” to
mean all internal sets.

If A is a set in the standard model, then ∗A, called the nonstandard exten-
sion of A, is the set in the nonstandard model with the same name and formal
properties as A. Nonstandard extensions of standard sets and elements of non-
standard extensions of standard sets are internal sets. Any object that can
be described using only the names of known internal objects is also internal.
An object that is not internal is called external.

Important for applications is the fact that the set of natural numbers N =
{1,2,3, . . .} has been extended along with the real numbers. We use ∗

N to
denote the extended system of natural numbers. The theorem that says every
positive real number is within distance one of a natural number is still valid
for the extended number system. Since one can list the predecessors in N of
any standard natural number, the new elements of ∗

N are all greater than
any given standard natural number. We use ∗

N∞ to denote the set of new
members of ∗

N, all of which are larger than any ordinary natural number.
The set ∗

N∞ is clearly external, since every nonempty, internal subset of ∗
N

must have a first element. If ∗
N∞ were internal, then subtracting 1 from a

first element of ∗
N∞ would yield the last ordinary natural number. Since ∗

N∞
is external, it follows that the set of ordinary natural numbers is also external
since ∗

N∞ can be described as the complement of that set in ∗
N.
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It is also important to know that if ρ is an element of the extended real
number system, which we denote by ∗

R, and |ρ| ≤ n for some ordinary n ∈ N,
then there is a unique real-number r such that ρ = r + ε where ε is infinites-
imal, that is, ∀n ∈ N, |ε| < 1/n. The real number r is the supremum in R of
all ordinary real numbers smaller or equal to ρ. We call r the standard part
of ρ and write r = st(ρ). In general if ρ ∈ ∗

R and |ρ| ≤ n for some ordinary
n ∈ N, we will say ρ is limited ; otherwise, we will say ρ is unlimited.

To apply these facts to calculus, consider the problem of finding the area
above the x-axis and under the graph of the curve y = x2 between 0 and 1. If
we choose a natural number n and divide the interval between 0 and 1 into n
intervals of length 1/n, then the sum (1/n)2 · 1/n+(2/n)2 · 1/n+ · · · +12 ∗ 1/n
is an approximation to the area under the curve; the larger the value of n,
the better the approximation. If we take an unlimited natural number n, we
have a sum that equals the area except for an infinitesimal error. The area
under the curve is the standard part of that sum.

Here however, we come to the question “what is meant by the sum?” First
let’s consider the question “what is meant by a finite set?” In the standard
world, a set is finite if it can be enumerated with natural numbers finishing
with a largest natural number. Having extended the real numbers and the
natural numbers we have infinitely large, that is, unlimited natural numbers.
If there is an internal bijection from a set in the nonstandard model onto an
initial segment of ∗

N ending with an unlimited natural number, then the set
is called a hyperfinite set. Hyperfinite sets are infinite sets, but they have all
of the formal properties of finite sets. In particular, since we can sum any
finite set of real numbers, the summing function in the nonstandard model
also gives an answer for any hyperfinite subset of ∗

R.
Hyperfinite sets play a central role in the applications of nonstandard anal-

ysis, to many areas of mathematics beyond the calculus. In probability, for
example, it is easy to analyze a finite coin toss. It is harder to analyze an
infinite coin toss. Any particular outcome has zero probability. On the other
hand, in our nonstandard real number system there are unlimited natural
numbers. We can choose such a number, again call it Bach, and, at least in
our imagination, we can toss the coin Bach times. Now any particular out-
come has probability equal to one divided by two raised to the power Bach.
Moreover, this hyperfinite coin tossing space contains all standard infinite coin
tosses.

We will describe in the next section the author’s construction in [10] mak-
ing this nonstandard experiment and its generalizations, with probabilities
given by nonstandard real numbers, into ordinary probability spaces with
real probabilities. These pairs of spaces, one with nonstandard probabilities
and the other with ordinary probabilities, are examples of what are called
“Loeb spaces” in the literature. One can parametrize ordinary probability
experiments with these spaces. The underlying space of points is a set in a
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nonstandard model; the nonstandard space and the corresponding standard
probability space are very close.

As shown by Anderson [1], hyperfinite coin tosses can be used to form a
model for Brownian motion. One divides time up into infinitesimal intervals,
and at the beginning of each interval tosses a coin. If the toss is a head,
one moves to the right; if the toss is a tail, one moves to the left. The step
size is the square root of the time change. These random walks, one for each
hyperfinite coin tossing sequence, form a good underlying probability space
for Brownian motion. Anderson also showed that the corresponding Loeb
space generates Wiener measure.

Anderson’s construction of Brownian motion can be viewed as a nonstan-
dard formulation of Donsker’s theorem. (See, for example, [3].) Other non-
standard treatments of weak convergence of measures can be found in [2]
and [13]. We will discuss in a later section, the author’s use of nonstandard
analysis to produce a new, standard, weak-limit procedure for obtaining rep-
resenting measures for positive harmonic functions in rather general settings.

Hyperfinite sets and the corresponding Loeb spaces play an important role
in mathematical economics. A central problem in that subject is to study
equilibria in economies with a vary large number of individuals when each
individual has only a negligible influence on the economy. For this, it is quite
natural to consider an economy with a hyperfinite number of individuals, each
individual having only an infinitesimal influence on the economy.

A fundamental application of Loeb spaces to probability theory and to
mathematical economics is Yeneng Sun’s work constructing an appropriate
space to represent a continuum of independent random variables in probability
theory or independent agents in an economy. As Doob indicated in 1937, [6],
whatever way one approaches this problem, the usual measure-theoretic tools
fail. Sun has shown in Proposition 7.33 of [16] that no matter what kind of
measure spaces, even Loeb measure spaces, one might take as the parameter
space and sample space of a process, independence and joint measurability
with respect to the classical measure-theoretic product, i.e., formed using
measurable rectangles as in [19], are never compatible with each other except
for trivial cases. In [21], [22], [23], and Chapter 7 of [16], Sun has shown that
a construction overcoming these measure-theoretic problems is obtained by
forming the internal product of internal factors, and then taking not just the
Loeb space of each factor, but also the Loeb space of the internal product.

3. Nonstandard measure theory

We now briefly outline the construction of Loeb measure spaces. The prin-
cipal device used is ℵ1-saturation. This means that any ordinary sequence
taken from an internal set is the beginning of an internal sequence, using ∗

N,
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from that set. We will restrict our discussion to spaces formed using hyperfi-
nite sets. Working in an ℵ1-saturated nonstandard model, we can construct a
hyperfinite set Λ as the set of elementary outcomes in a conceptual experiment
in the “nonstandard world.” For coin tossing, for example, Λ can be the set
of internal sequences of −1’s and 1’s of length η ∈∗

N∞. Given such a hyperfi-
nite Λ, we will let C consist of all internal subsets of Λ. The collection C is an
internal σ-algebra, but it is also an algebra in the ordinary sense. Suppose P
is an internal probability measure on (Λ, C). For the coin tossing experiment,
for example, each internal set A with internal cardinality |A|, would be given
the probability P (A) = |A|/2η in ∗[0,1]. For a general internal probability
measure P on (Λ, C), we can form a finitely additive real-valued measure P̂

on (Λ, C) with values in the real interval [0,1] by setting P̂ (A) = st(P (A)).
The question is, “Can we extend P̂ to a countably additive measure on σ(C),
that is, the σ-algebra generated by C?” The answer is “Yes we can.” We can
extend P̂ to a measure μ defined on the measure completion Lμ(C) of σ(C),
and thus obtain a standard measure space (Λ,Lμ(C), μ) on Λ, by using the
standard Carathéodory Extension Theorem.

To apply this technique, we note that when a sequence 〈Ai : i ∈ N〉, indexed
by the ordinary natural numbers, consists of pairwise disjoint elements of
C and the union A is also in C then A is actually a finite union since all
but a finite number of the Ai’s are empty. Here is the simple proof: Using

ℵ1-saturation, we extend the sequence 〈Ai : i ∈ N〉 to an internal sequence
〈Ai : i ∈∗

N〉; the set {
m ∈ ∗

N : A ⊆
⋃

1≤i≤m

Ai

}
is internal and contains ∗N∞, so it must contain some standard natural num-
ber since ∗

N∞ is external. It now follows that P̂ (A) =
∑

i∈N P̂ (Ai). By
the Carathéodory Extension Theorem, the finitely additive measure P̂ has
a unique σ-additive extension μ defined on the completion Lμ(C) of the σ-
algebra σ(C).

When used in probability theory, the above general construction allows
one to tackle problems of continuous parameter stochastic processes using the
combinatorial tools available for discrete parameter processes. Examples are
the author’s construction of Poisson processes in [10] and Anderson’s repre-
sentation of Brownian Motion and the Itô integral in [1]. As demonstrated by
the work of Keisler [8], Fajardo and Keisler, Sun, and others, these measure
spaces and the non-hyperfinite generalizations have special closure proper-
ties not shared by even Lebesgue measure spaces. Their use has yielded new
standard-analysis results by many researchers in areas such as probability the-
ory, potential theory, mathematical economics and mathematical physics. As
noted in [15], they form the prototype for a class of rich measure spaces using
a technique originating in [7].
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4. Representing measures in potential theory

The first application after coin tossing of the measure theory described
above was a construction of representing measures for nonnegative harmonic
functions; that construction works for very general potential theories (see [11]).
To illuminate the construction, we start with harmonic functions on the unit
disk in the complex plane C. Let Dr denote the open disk {z ∈ C : |z| < r},
and let D = D1. Let Cr be the circle {z ∈ C : |z| = r}, and let C = C1. All
measures we consider will be Borel measures. Let P(z,x) be the Poisson
Kernel (|z|2 − |x|2)/|z − x|2, and let x0 denote the origin. We use H1 to de-
note the set of all positive harmonic functions on D taking the value 1 at x0.
The set H1 is convex and compact with respect to the topology of uniform
convergence on compact subsets of D, that is, the ucc topology.

It is well known that every continuous function on C has a harmonic ex-
tension on D and that not every harmonic function on D is obtained in this
way. On the other hand, by the Riesz–Herglotz Theorem there is for each
h ∈ H1 a probability measure νh on C such that

h =
∫

C

P(z, ·)νh(dz).

The mapping z 
→ P(z, ·) from C into H1 (with the ucc topology) is a homeo-
morphism. We may think of νh as a measure either on C or on the collection of
harmonic functions {P(z, ·) : z ∈ C}. The latter point of view is that of Mar-
tin boundary theory (see [5]) and Choquet theory. The simplest realization
of Choquet theory deals with a triangle. Each point inside and on a triangle
is represented by a unique affine weight on the extreme points of the triangle,
i.e., on the vertices. For the compact, convex set H1, the extreme points are
the functions {P(z, ·) : z ∈ C}, and each h ∈ H1 is represented by a unique
probability measure νh on this set. While the usual construction of νh is sim-
ple for the disk, it does not generalize without going to an ideal boundary.
The measure theory discussed above does yield a generalizable construction of
νh by extracting a measure from the function h that would otherwise be lost
on general domains. We give a brief description of that construction. More
details can be found in the original work [11], [12].

First, we recall that for each circle Cr and each point x ∈ Dr, there is
by the Riesz Representation Theorem a Borel measure μx

r , called harmonic
measure for x and r, that gives the value at x of the harmonic extension of
any continuous function on Cr. Moreover, the uniform probability measure
on Cr obtained from Lebesgue measure is the harmonic measure μr

x0
with

respect to the origin x0. Given h ∈ H1, the measures h · μr
x0

, 0 < r < 1, are
probability measures, and νh is the weak∗ limit as the radius r tends to 1.
This construction of νh does not work for more general domains and potential
theories, but the following modification is valid in these more general settings.
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Fix h ∈ H1. For each r < 1, let {Ar
i } form an interval partition of Cr,

and choose yr
i ∈ Ar

i . Let δyr
i

denote unit mass at the point yr
i . The net

of measures
∑

i h(yr
i )μr

x0
(Ar

i ) · δyr
i

converges in the weak∗ topology to the
measure νh on C. The direction for this net is given by letting r tend to 1
and refining the partitions {Ar

i }. To see that νh is in fact the weak∗ limit of
this net, note that the integral of any continuous function f with respect to
one of these measures with support in Cr is a Riemann sum approximation
to the integral of f with respect to the measure h · μr

x0
.

Instead of a finite combination of measures concentrated on the points of D,
we want a combination of point masses on the function space [0,+∞]D. Given
r and a partition {Ar

i } of Cr, the function x 
→ μr
x(Ar

i ) is a harmonic function
on Dr. It is the solution of the Dirichlet problem for the function that is 1
on Ar

i and 0 on the rest of Cr. When we divide by μr
x0

(Ar
i ), the new function

is equal to 1 at the origin x0. Let δr
i be unit mass on the function that is

equal to μr
x(Ar

i )/μr
x0

(Ar
i ) in Dr and is identically 0 on and outside Cr; the

point mass δr
i is a measure on the function space [0,+∞]D supplied with the

product topology. By equicontinuity (see [9]), the restriction of the product
topology is the ucc topology on the set of positive harmonic functions on Dr

taking the value 1 at x0. A nonstandard proof, given next, shows that νh is
the weak∗ limit as r approaches 1 and the partitions {Ar

i } are refined. The
limit measure is supported by the set{

P(z, ·) : z ∈ C
}

⊂ H1 ⊂ [0,+∞]D.

This weak limit construction of νh in [12] was new and extends to rather
general elliptic and parabolic differential equations on a locally compact, but
not compact, connected and locally connected domain W (see [11], [12], [14]).
It does not use the Martin boundary. For the generalization, one replaces the
disks Dr with an increasing sequence of relatively compact, Dirichlet regular,
domains Wi ⊂ W so that for each compact set K ⊂ W , there is an i with
K ⊂ Wi. For elliptic differential equations, a single point x0 plays the part of
the origin. The net of measures

∑
i h(yr

i )μr
x0

(Ar
i ) · δr

i have νh as a weak∗ limit
as r approaches 1 and the partitions {Ar

i } of ∂Wi are refined.
The proof in [12] that this construction works uses results from [2] and [13]

to interpret the construction of νh in [11] as a weak∗ limit. Here, specialized to
the case of the disk D, is that construction of νh from [11] and its subsequent
interpretation as a weak∗ limit.

We start with a circle Cr ⊂∗ D with r � 1, and an interval partition {Ar
i }

so fine that every standard harmonic function has infinitesimal variation on
each set Ar

i . Suppressing the superscript r, we have

∀x ∈ D h(x) =
∫ ∗

Cr

h(y)dμx(y) �
∗∑
i

h(yi)μx0(Ai)
μx(Ai)
μx0(Ai)

.
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The family of weights ∗h(yi)μx0(Ai) is made into an ordinary probability
measure μh using the general measure theory described above. The measure
μh is supported by the set of nonstandard harmonic functions μx(Ai)/μx0(Ai).
This is an internal set of positive, internal harmonic functions on Dr, with
each function taking the value 1 at x0. The mapping S on this set of functions
given by the formula

S(g)(x) = ◦(
g(x)

)
∀x ∈ D

is the standard part mapping with respect to H1 supplied with the ucc topol-
ogy. The measurability of S, established for this special case in [11], allows
one to project the measure μh onto H1. The process preserves affine com-
binations of harmonic functions and yields representing measures, so by a
corollary of a result by Cartier, Fell, and Meyer (see [11]), the final measure
is the unique representing measure νh on the extreme points {P(z, ·) : z ∈ C}
of H1. In [12], the projection of the measure μh using S is interpreted as
taking the weak∗ limit of the standard net of measures described above.

There remains the problem of finding a Martin type boundary associated
in a natural way with the above construction for a general domain W . What
is needed is a boundary that will support all representing measures, just as C
supports representing measures for the unit disk. An earlier effort in [11], later
joined by Jürgen Bliedtner in [4], resulted in a rich, almost everywhere regular
boundary associated with the space of uniform limits of positive, bounded
harmonic functions. These are called “sturdy harmonic functions” in [4]. The
boundary in [4] does not, however, support all representing measures.

5. New effort to form ∂W

Generalizing the setup outlined above for the unit disk D, we start, as
already noted, with a locally compact, noncompact, connected and locally
connected domain W and its nonstandard extension ∗W . We fix an inter-
nally Dirichlet regular and relatively compact domain U in ∗W containing
the extension of every standard compact subset of W . We choose a standard
point x0 ∈ W that plays the part played by the origin in D.

Fix a partition {Ai} of ∂U analogous to the partition of the circle Cr

for r � 1. That is, the variation of the extension of each standard, positive
harmonic function on W has infinitesimal variation Ai. We now have an
internal class of functions { μ·(Ai)

μx0 (Ai)
} each extended with 0 outside U . This

class projects to a family HP (W ) of standard functions P ( μ·(Ai)
μx0 (Ai)

) ⊂ H1(W ).

For each standard point x in W , P ( μ·(Ai)
μx0 (Ai)

)(x) = st( μx(Ai)
μx0 (Ai)

). The map P

is the standard part map with respect to the product topology, which is the
ucc topology when restricted to H1(W ). Since HP (W ) is the image of an
internal set, it follows from a result of W. A. J. Luxemburg [17] that HP (W )
is a compact subset of H1(W ) supplied with the ucc topology. As for the case
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of the unit disc, HP (W ) contains the extreme elements of H1(W ) supporting
representing measure νh for every h ∈ H1(W ). The problem is to Choose U
so that HP (W ) may be attached to W as at least part of a compactifying
boundary.

A simple case starts with the assumption that W already has a nice com-
pactifying boundary, ∂W , with nonstandard extension ∗∂W contractible to
∂U so that if Ai and Aj on ∂U are in the monad of the same z ∈ ∂W then
P ( μ·(Ai)

μx0 (Ai)
) = P ( μ·(Aj)

μx0 (Aj)
). By the Permanence Principle, the map from ∂W to

HP (W ) with the product topology is then continuous.
A counter example to this assumption is presented by a region W in 3-

space between a sphere of radius 1 and a larger sphere of radius 2 with the
two spheres touching only at one point z0. The point z0 is replaced by an
infinite number of extreme elements of H1(W ) in the Martin compactification
of W .

A principal weapon in the search for an appropriate compactification of W
uses the following fact noted by S. Salbany and T. Todorov in [20]: The space
∗W is compact when supplied with the S-topology. The S-topology is the
topology on ∗W generated by the nonstandard extensions of standard open
sets. Compactifications of W are obtained by taking quotients of this space.
Since W is locally compact, equivalence classes of near-standard points, i.e.,
points in the monads of standard points, form a homeomorphic image of W .
It is the equivalence classes of non-near-standard points that form the points
of the boundary, ∂W . The problem remains in the author’s ongoing research
to find the right equivalence relation for the non-near-standard points.
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