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SPECTRAL MULTIPLIERS FOR SCHRÖDINGER
OPERATORS

SHIJUN ZHENG

Abstract. We prove a sharp Hörmander multiplier theorem for
Schrödinger operators H = −Δ+V on R

n. The result is obtained

under certain condition on a weighted L∞ estimate, coupled with

a weighted L2 estimate for H, which is a weaker condition than

that for nonnegative operators via the heat kernel approach. Our

approach is elaborated in one dimension with potential V belong-
ing to certain critical weighted L1 class. Namely, we assume that∫
(1 + |x|)|V (x)| dx is finite and H has no resonance at zero. In

the resonance case, we assume
∫
(1 + |x|2)|V (x)| dx is finite.

1. Introduction

Let H = −Δ + V be a Schrödinger operator on R
n, where Δ =

∑n
j=1

∂2

∂x2
j

and V is real-valued. In this paper, we are concerned with proving a spectral
multiplier theorem on Lp spaces for H and we then consider potentials in
some critical class L1

1 in one dimension, where V may not be positive. As is
well known, spectral multiplier theorem plays a significant role in harmonic
analysis and PDEs [1, 2, 4, 5, 8, 10, 15, 16, 20, 25, 28].

For a Borel measurable function φ : R → C we define φ(H) =
∫

φ(λ)dEλ

by functional calculus, where H =
∫

λdEλ is the spectral resolution of the
selfadjoint operator H acting in L2(Rn). The spectral multiplier problem
is to find sufficient condition on a bounded function μ on R (with minimal
smoothness) so that μ(H) is bounded on Lp(Rn), 1 < p < ∞.

In the Fourier case, i.e., V = 0, Hörmander [21] essentially proved (for radial
multipliers) the multiplier theorem on Lp(Rn), under the condition that the
scaling-invariant local Sobolev norm on μ is finite for s > n/2,

‖μ‖W s
2,sloc

:= sup
t>0

‖μ(t·)χ‖W s
2 (R) < ∞.(1)
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Here χ ∈ C∞
0 (R \ {0}) is a fixed C∞-smooth function with compact support

away from zero and W s
2 denotes the usual Sobolev space endowed with the

norm ‖f ‖W s
2

= ‖(1 − Δ)s/2f ‖2. The proof in [21] mainly requires that the
kernel Kμ(x, y) of μ(−Δ) satisfy

(2)
∫

|x−ȳ|>2|y−ȳ|
|Kμ(x, y) − Kμ(x, ȳ)| dx ≤ C

for all y, ȳ (for the weak (1,1) estimate). However, the regularity condition
in (2) is invalid for H when V �= 0.

For V ≥ 0, Hebisch [20] proved a multiplier theorem with s > n+1
2 based on

heat kernel estimates. His approach was essentially to control the low energy
part of μ(H) by a pointwise decay of the kernel, see (5). This heat kernel
approach has been recently developed in proving sharp multiplier theorems
(with s > n/2) in various settings for positive elliptic operators on manifolds or
metric spaces [1, 7, 14], see [15] for a comprehensive survey and the references
therein.

The question remains open for general V where the heat kernel estimates
may not hold. In this paper, we formulate a Hörmander type spectral mul-
tiplier theorem (Theorem 1.2) for general H on Rn. We show that The-
orem 1.2 is true if the two weighted estimates in Assumption 1.1, namely
a weighted L2 estimate (in high energy) and an integral form of pointwise
decay estimate (in low energy), are satisfied for H . In Sections 3–5, we elab-
orate the approach in one dimension by considering potentials in the class
L1

γ := {f :
∫

(1 + |x|)γ |f(x)| dx < ∞}, γ = 1,2.
For a (continuous) function φ, let φ(H)(x, y) denote the kernel of φ(H),

x, y ∈ R
n and let λj = 2−j/2, j ∈ Z. By φ ∈ X(Ω), where Ω ⊂ R and X is a

function space on R, we mean that φ ∈ X and has support in Ω. Throughout
this paper, c or C will denote an absolute constant and χΩ the characteristic
function on the set Ω.

Assumption 1.1. Assume that H satisfies the following two estimates.

(a) (Weighted L2 estimate) There exists some s > n/2 so that for all j and
φ ∈ W s

2 ([ 14 ,1] ∪ [−1, − 1
4 ]),

(3) sup
y

∥∥|x − y|sφ(λ2
jH)(x, y)

∥∥
L2

x
≤ cλ

s−n/2
j ‖φ‖W s

2
.

(b) (Weighted L∞ estimate) There exist a finite measure dζ and 0 < ε ≤ 1
so that for all x, y, j and φ ∈ Wn+ε

2 ([−1,1]),

(4) |φ(λ2
jH)(x, y)| ≤ cλ−n

j

∫
Rn

(1 + λ−1
j |x − y − u|)−n−ε dζ(u),

where c = c(‖φ‖W n+ε
2

).
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The assumption is intrinsic in the sense that it only depends on H and
does not depend on the multiplier μ. Note that when V ≥ 0, Hebisch [20]
essentially used in the proof the following pointwise decay

(5) |φ(λ2
jH)(x, y)| ≤ cλ−n

j (1 + λ−1
j |x − y|)−n−ε,

which is implied by the upper Gaussian bound for e−tH(x, y). Assump-
tion 1.1(b) is a much weaker condition than (5). When V is negative, the
decay in (5) does not hold, not even for V being a Schwartz function, cf. [24,
37].

Theorem 1.2. Suppose H satisfies Assumption 1.1 for some s > n/2. If
‖μ‖W s

2,sloc
< ∞, then μ(H) is bounded on Lp(Rn), 1 < p < ∞, and has weak

type (1,1). Moreover,

(6) ‖μ(H)‖L1→weak-L1 ≤ c‖μ‖W s
2,sloc

.

That the critical exponent n
2 is sharp is well-known in the literature [6, 15,

29]. Note that the condition in (1) implies μ ∈ L∞ by Sobolev embedding

(7) ‖μ‖∞ ≤ c‖μ‖W s
2,sloc

whenever s > 1/2. Also, note that one has an equivalent norm for ‖ · ‖W s
2,sloc

if in (1) χ is replaced with any other ϕ in C∞
0 (R \ {0}).

Remark 1.3. From the proof given in Section 2, we easily observe that
Theorem 1.2 actually holds for any self-adjoint operator L in place of H that
satisfies Assumption 1.1(a) and

(b′) There exist dζk ∈ M , k ∈ Z, M the set of finite measures, with 0 <
ε ≤ 1 and

∑
k ‖ζk ‖M < ∞, so that for all x, y, j

(8) |Φ(λ2
jL)(x, y)| ≤ c

∑
k,±

λ−n
k (1 + λk

−1| · |)−n−ε ∗ dζk(±x ± y),

where Φ ∈ C∞([−1,1]) is given as in (10), f ∗ dζ(x) =
∫

f(x − u)dζ(u) is the
usual convolution.

Applying Theorem 1.2 to the one dimensional HV := −d2/dx2 + V , we
obtain the following theorem.

Theorem 1.4. Suppose V is in L1
1(R) and assume that there is no res-

onance at zero. If for some s > 1/2, ‖μ‖W s
2,sloc

is finite, then the conclu-
sions of Theorem 1.2 hold. Furthermore, the conclusions also hold true for all
V ∈ L1

2(R).

A typical example for μ is μγ(ξ) = |ξ|iγ , γ ∈ R. Hence, Hiγ
V is bounded on

Lp, 1 < p < ∞, and maps L1 to weak-L1.
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Let {Φ, ϕj } ∈ C∞
0 (R) be a dyadic system satisfying suppΦ ⊂ {x : |x| ≤ 1},

suppϕ ⊂ {x : 1
4 ≤ |x| ≤ 1} and

∞∑
j=− ∞

ϕj(x) = 1 ∀x �= 0,(9)

Φ(x) +
∞∑

j=1

ϕj(x) = 1 ∀x,(10)

where ϕj(x) = ϕ(2−jx), and note that Φ(x) ≡ 1 on [− 1
2 , 1

2 ].
Using the dyadic system above, we will make the high and low energy

cutoffs of μ(H) in the proof of Theorem 1.2. As in [12, 22, 35], we can also
define Bα,q

p (H) and Fα,q
p (H), the Besov spaces and Triebel–Lizorkin spaces

associated with H . We can show that the sharp spectral multiplier theorem
also hold on these spaces, see the statement in Theorem 2.3.

1.1. Weighted estimates for the kernel of φ(2−jHV ). Let V ∈ L1
1(R)

and assume 0 is not a resonance or let V ∈ L1
2(R) in general. From [13] or

Section 3, HV has resonance at 0 means that the Wronskian vanishes at 0,
that is, ν := W (0) = 0. From Theorem 1.2 and the remark that follows, we
know that the main technical difficulty in proving Theorem 1.4 is to verify
the two weighted estimates in Assumption 1.1(a), (b′).

The proofs of (3) and (8) for HV require some new and refined formulas
and asymptotic estimates for m±(x,k), the modified Jost functions, and t(k),
r±(k), the associated transmission and reflection coefficients. The main tools
are Volterra integral equations for m±(x,k) as well as its Fourier transforms.
These are motivated by and developed from the treatment in [13].

For the L∞ estimates in (8) for the low energy, we use Wiener’s lemma
in order to prove the existence of finite measures dζk, which are actually
L1 functions up to a delta measure, see [19] for a similar treatment when
considering the dispersive estimates for HV .

For the L2 estimates in (3) for the high energy, we prove (3) for 1/2 < s < 1
by interpolating between the cases s = 0 and s = 1, which can be viewed as
Plancherel formula for Dsφj with respect to the Fourier transform associated
to HV .

The remaining of the paper is organized as follows. In Section 2, we prove
the weak (1,1) estimate for general H under the hypothesis in Assumption 1.1.
Sections 3–5 are devoted to the proof of Theorem 1.4, which is quite long
verification of the estimates in (3) and (8) in one dimension. In certain cases,
it involves delicate and subtle technicalities.

2. Proof of weak-(1,1) boundedness

In this section, we mainly give the proof of Theorem 1.2. Since μ ∈ L∞,
μ(H) is bounded on L2. Hence by interpolation and duality it is sufficient
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to show that μ(H) has weak type (1,1), which will follow from Lemma 2.1,
Lemma 2.2 and Calderón–Zygmund decomposition. The proof is a modifica-
tion of the arguments in [20] and [14]. Let {Φ, ϕj } be as in (9), (10). Write
μj = μϕj , Φj(x) = Φ(2−jx), j ∈ Z.

Lemma 2.1. Let H satisfy Assumption 1.1(a) with s > n/2. Let y ∈ I ,
I ⊂ R

n a cube with length t = �(I) = 2−jI/2, jI ∈ Z. Then

(a) For all j ≥ jI ,∫
|x−y|≥2t

∣∣(μj(1 − ΦjI
)
)
(H)(x, y)

∣∣dx ≤ c(2j/2t)
n
2 −s‖μ‖W s

2,sloc
.

(b) ∫
|x−y|≥2t

∞∑
j=− ∞

∣∣(μj(1 − ΦjI
)
)
(H)(x, y)

∣∣dx ≤ c‖μ‖W s
2,sloc

.

Proof. Inequality (a) is consequence of Assumption 1.1(a) and Schwarz
inequality. Let μ̃j = μj(1 − ΦjI

). We have for s > n/2, j ≥ jI ,∫
|x−y|≥2t

|μ̃j(H)(x, y)| dx

=
∫

|x−y|≥2t

|x − y| −s|x − y|s|μ̃j(H)(x, y)| dx

≤ cn,s(2j/2t)n/2−s‖μ‖W s
2,sloc

.

(b) is an easy consequence of (a). Note that since suppϕj ⊂ {2j−2 ≤ |ξ| ≤
2j } and supp(1 − ΦjI

) ⊂ {|ξ| ≥ 2jI −1}, it follows that μ̃j(ξ) = 0 if j ≤ jI − 1.
�

Lemma 2.2. Let H satisfy Assumption 1.1(b) with some finite measure dζ
and ε ∈ (0,1]. Let y ∈ I , I a cube with length t = �(I) = 2−jI/2, jI ∈ Z and
volume |I|. Then for all x and all y ∈ I

|ΦjI
(H)(x, y)| ≤ c|I| −1

∫
u∈Rn

∫
z∈I

2jIn/2(1 + 2jI/2|x − z − u|)−n−ε dz dζ(u).

Proof. Since Φ ∈ C∞([−1,1]) ⊂ Wn+ε
2 ([−1,1]), according to (4),

ΦjI
(H)(x, y) is dominated by

c

∫
Rn

λ−n
j (1 + λ−1

j |x − y − u|)−n−ε dζ(u)

≤ c|I| −1

∫
Rn

∫
z∈I

2jIn/2(1 + 2jI/2|x − z − u|)−n−ε dz dζ(u),

∀x ∈ R
n, y ∈ I,
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where λj = 2−jI/2 and we observed that for all x and t = �(I)

sup
y∈I

(1 + |x − y|/t)−n−ε ≤ cmin
y∈I

(1 + |x − y|/t)−n−ε

≤ c

|I|

∫
I

(1 + |x − z|/t)−n−ε dz.

�
2.1. Proof of the weak-(1,1). Let f ∈ L1 ∩ L2. For any given α > 0, apply
the C–Z decomposition to obtain that f = g + b for some g ∈ L1 ∩ L2, and
b ∈ L1 with b =

∑
k bk, where supp bk ⊂ Ik, Ik being disjoint cubes in R

n with
lengths �(Ik) equal to integer powers of

√
2 and:

(i) |g(x)| ≤ cα a.e. x,

(ii) |Ik | −1

∫
Ik

|f(x)| dx ≤ cα,

(iii)
∑

k |Ik | ≤ cα−1‖f ‖1.

We will prove that there exists a constant C such that ∀f ∈ L1 ∩ L2,∣∣{x : |μ(H)f(x)| > α}
∣∣ ≤ Cα−1‖f ‖1(‖μ‖W s

2,sloc
+ ‖μ‖2

∞ + 1).(11)

Since μ ∈ L∞, Chebeshev inequality gives∣∣{x : |μ(H)g(x)| > α/2}
∣∣ ≤ (α/2)−2‖μ(H)g‖2

2

≤ c‖μ‖2
∞α−1‖f ‖1.

The main task is to deal with the “bad” function b. Let Φ be as in (10),
Φj(x) = Φ(2−jx). Write

μ(H)b(x) =
∑

k

μ(H)
(
1 − Φjk

(H)
)
bk(x) +

∑
k

μ(H)Φjk
(H)bk(x),

where 2−jk = �(Ik)2. Denote by I∗
k the cube having length 5

√
n times the

length of Ik with the same center as Ik. We need to show∣∣∣∣
{

x ∈ R
n
∖⋃

k

I∗
k : |μ(H)b(x)| > α/2

}∣∣∣∣
≤

∣∣∣∣
{

x ∈ R
n
∖⋃

k

I∗
k :

∑
k

∣∣μ(H)
(
1 − Φjk

(H)
)
bk(x)

∣∣ > α/4
}∣∣∣∣

+
∣∣∣∣
{

x ∈ R
n
∖⋃

k

I∗
k :

∣∣∣∣∑
k

μ(H)Φjk
(H)bk(x)

∣∣∣∣ > α/4
}∣∣∣∣

≤ c‖μ‖W s
2,sloc

α−1‖f ‖1.

(a) High energy cut-off. If x /∈
⋃

k I∗
k , then Ik ⊂ {y : |y − x| > 2

√
ntk },

tk = 2−jk/2. We have

μ(H)
(
1 − Φjk

(H)
)
bk(x) =

∫
|y−x|>2tk

(
μ(1 − Φjk

)
)
(H)(x, y)bk(y)dy.
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Applying Lemma 2.1(b) for s > n/2, we obtain∣∣∣∣
{

x /∈
⋃

I∗
k :

∣∣∣∣∑
k

(
μ(1 − Φjk

)
)
(H)bk(x)

∣∣∣∣ > α/4
}∣∣∣∣

≤ c(α/4)−1

∫
Rn \

⋃
I∗

k

∣∣∣∣∑
k

(
μ(1 − Φjk

)
)
(H)bk(x)

∣∣∣∣dx

≤ cα−1

∫ ∑
k

|bk(y)| dy

∫
|y−x|>2tk

∣∣(μ(1 − Φjk
)
)
(H)(x, y)

∣∣dx

≤ c‖μ‖W s
2,sloc

α−1‖f ‖1,

where we note that∫
|x−y|>2tk

∣∣(μ(1 − Φjk
)
)
(H)(x, y)

∣∣dx

≤
∫

|x−y|>2tk

∑
j

∣∣(μj(1 − Φjk
)
)
(H)(x, y)

∣∣dx ≤ c‖μ‖W s
2,sloc

.

(b) Low energy cut-off. Since μ(H) is bounded on L2, the proof is complete
if we can show

(12)
∫ ∣∣∣∣∑

k

Φjk
(H)bk(x)

∣∣∣∣2 dx ≤ cα‖f ‖1.

To show this, let ρj = 2jn/2(1 + 2j/2| · |)−n−ε. According to Lemma 2.2,
∀h ∈ L2,∣∣∣∣

〈∑
k

Φjk
(H)bk, h

〉∣∣∣∣
=

∣∣∣∣∑
k

∫
h(x)dx

∫
y∈Ik

Φjk
(H)(x, y)bk(y)dy

∣∣∣∣
≤

∑
k

|Ik | −1

∫
|bk(y)| dy

∫
|h(x)| dx

∫
z∈Ik

∫
u

ρj(x − z − u)dζ(u)dz

≤ cα

∫ ∑
k

χIk
(z)dz

∫
(MHLh)(z + u)dζ(u)

≤ cα

∥∥∥∥∑
k

χIk

∥∥∥∥
2

‖MHLh ∗ dζ̃‖2

(
dζ̃ = dζ(−·) a finite measure

)

≤ cα

(∑
k

|Ik |
)1/2

‖h‖2 ≤ cα1/2‖f ‖1/2
1 ‖h‖2,
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which proves (12) by duality. We have used the fact that if ρt = t−nρ(x/t) is
any approximation to the identity so that ρ ∈ L1(Rn) is positive and decreas-
ing, then

sup
t>0

|ρt ∗ f(x)| ≤ MHLf(x),

where MHL denotes the Hardy–Littlewood maximal function on R
n.

Therefore, (11) is established. In view of (7), the weak-(1,1) bound in (6)
follows via the same argument above if, for given α > 0, instead of decompos-
ing f at height α, one decomposes f at height α/max(‖μ‖W s

2,sloc
, ‖μ‖ ∞), see

for example, [9] for details.

2.2. Besov and Triebel–Lizorkin spaces. For a general selfadjoint op-
erator acting on L2(Rn), one can define the associated Besov and Triebel–
Lizorkin spaces [17, 22, 25]. Let H = −Δ + V on R

n. Under the same condi-
tions for H and μ as in Theorem 1.2, we can show that μ(H) is bounded on
these generalized spaces (cf. Theorem 2.3, where W s

2 is replaced with an ab-
stract space). Like in the Fourier case [3, 32], the spectral multiplier theorems
on them are closely related to some of the main results in Littlewood–Paley
theory for H (interpolation, embedding and identification) [12, 18, 22, 24, 36].

Let α ∈ R and 1 ≤ p, q ≤ ∞. The homogeneous Besov space associated with
H , denoted by Ḃα,q

p (H), is defined to be the completion of the Schwartz class
S(Rn), where the norm ‖ · ‖Ḃα,q

p (H) is given by

(13) ‖f ‖Ḃα,q
p (H) =

( ∞∑
j=− ∞

2jαq ‖ϕj(H)f ‖q
p

)1/q

.

Similarly, the homogeneous Triebel–Lizorkin space Ḟα,q
p (H) is defined by

the norm

‖f ‖Ḟ α,q
p (H) =

∥∥∥∥∥
( ∞∑

j=− ∞
2jαq |ϕj(H)f |q

)1/q∥∥∥∥∥
p

.

For s ∈ R let Xs ⊂ S ′(R) be a Banach space endowed with a norm ‖ · ‖Xs ,
where S ′(R) is the space of tempered distributions on R. Further assume that
{Xs}s∈R satisfies the following properties.

(a) C∞
0 (R) ⊂ Xs, ∀s,

(b) X1/2+ε ⊂ L∞(R) ∩ C(R), ∀ε > 0,
(c) ‖uv‖Xs ≤ c‖u‖Xs ‖v‖Xs , ∀u, v ∈ Xs, s > n/2.

Examples of Xs include W s
p (R), p ∈ (1, ∞), and Bs,q

p (R), p, q ∈ (1, ∞), the
classical Sobolev and Besov spaces, see [3, Section 6.8] or [32].

Theorem 2.3. Suppose H = −Δ + V verifies Assumption 1.1(a), (b) with
Xs,Xn+ε replacing W s

2 , Wn+ε respectively. Let μ satisfy for some s > n/2

‖μ‖Xs
∗ := sup

t>0
‖μ(t·)χ‖Xs < ∞,
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where χ is a fixed function in C∞
0 (R \ {0}). Then μ(H) extends to a bounded

operator on Ḃα,q
p (H) for 1 < p < ∞, 1 ≤ q ≤ ∞, α ∈ R and Ḟα,q

p (H) for 1 <
p < ∞, 1 < q < ∞, α ∈ R.

Note that Theorem 1.2 holds under the same hypothesis in Theorem 2.3
with the same proof given in this section. The statement for Bα,q

p (H) follows
immediately from (13). To show the statement for Fα,q

p (H), we need to prove,
as a key step, that the operator Tμ := {μj(H)} maps L1(�q) continuously to
weak-L1(�q), where μj = μϕj and Tμ is given by {fj } �→ {μj(H)fj }. This can
be achieved by a vector-valued version of the proof in Section 2.1. The details
are presented in [26].

Under additional smoothness condition on V , one can identify Fα,q
p (H) =

F 2α,q
p (Rn), which allows us to obtain the boundedness of μ(H) on Fα,q

p and
Bα,q

p spaces on R
n according to Theorem 2.3, cf. [25, 32].

Remark 2.4. We would like to mention that the boundedness of μ(H) on
Lp, 1 < p < ∞, can also be obtained from wave operator method [11, 33, 34].
However our results give the endpoint estimate L1 → weak-L1 and also the
boundedness for Fα,q

p spaces (including Sobolev space), which consequently
lead to interpolation and embedding results. The reason is that wave oper-
ator method can transfer the integrability but somehow lose the pointwise
information.

3. Weighted L∞ estimates: High energy

Let V ∈ L1(R). Then HV has the form domain W 1
2 (R), whose abso-

lute continuous spectrum σac(HV ) = [0, ∞) and singular continuous spec-
trum is empty. The pure point spectrum σpp(HV ) is finite provided that∫

(1 + |x|)|V | dx < ∞. Let Hpp and Hac denote the projections of HV onto
the pure point and absolute continuous subspaces of L2(R), respectively.
From [30, Section C.3], we know that the eigenfunctions have exponential
decay � e−c|x|, c > 0.1 It follows that ‖μ(Hpp)f ‖ ≤ c‖f ‖p, 1 ≤ p ≤ ∞. Hence,
in view of the remark following Theorem 1.2, it suffices to verify (3) and (8)
for Hac in place of H . As we will show, (8) is a result of Lemma 3.5 and
Lemma 4.3, and (3) is a result of interpolation between Lemmas 5.1 and 5.2.

3.1. Kernel formula. Let RV (z) = (HV − z)−1 be the resolvent of HV ,
z ∈ C \ [0, ∞). For φ ∈ C(R), φ(H) has the resolvent expression [27, Sec-
tion XIII.6]

φ(Hac)f(x) =
1
π

∫ ∞

0

φ(λ)�RV (λ + i0)f dλ(14)

=
1

2πi

∫ ∞

0

φ(λ)[RV (λ + i0) − RV (λ − i0)]f dλ.

1 A � B stands for the usual notion A ≤ cB for some absolute constant c.
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Let W (λ) be the Wronskian of f+, f−, then for λ �= 0

RV (λ2 ± i0)(x, y) =

{
f+(x,±λ)f−(y,±λ)

W (±λ) , x > y,
f+(y,±λ)f−(x,±λ)

W (±λ) , x < y,

where f±(x, z) are the Jost functions that solve for �z ≥ 0

(15) −f ′ ′
±(x, z) + V (x)f±(x, z) = z2f±(x, z)

and satisfy the asymptotics

f±(x, z) →
{

e±izx, x → ±∞,
1

t(z)e
±izx + r∓(z)

t(z) e∓izx, x → ∓∞,

t(z), r±(z) being the transmission and reflection coefficients respectively, see
[13, 19].

Let m±(x, z) = e∓izxf±(x, z) be the modified Jost functions. We obtain,
from formula (14) of the spectral measure of Hac, that

(16) φ(Hac)(x, y) =
1
2π

∫ ∞

− ∞
φ(λ2)m+(x,λ)m−(y,λ)t(λ)eiλ(x−y) dλ,

where t(λ) = −2iλ/W (λ), see e.g. [19, 25].2

3.2. Fourier transforms of m±(x,k). The following lemma for m±, t, r±
are basically recorded from [13], see also [25]. Let B±(x, y) be the pair of
functions satisfying the Marchenko equations in (28), (29).

Lemma 3.1. Let V ∈ L1
1. Then

m+(x,k) = 1 +
∫ ∞

0

B+(x, y)e2iky dy,

m−(x,k) = 1 +
∫ 0

− ∞
B−(x, y)e−2iky dy,

t(k)−1 = 1 − 1
2ik

∫ ∞

− ∞
V (t)m±(t, k)dt

= 1 − ν

2ik
− 1

2ik

∫ ∞

− ∞
V (t)dt

∫ ∞

0

B+(t, y)(e2iky − 1)dy

= 1 − ν0

2ik
− 1

2ik

∫ ∞

− ∞
V (t)dt

∫ ∞

0

B+(t, y)e2iky dy,

r±(k)t(k)−1 =
1

2ik

∫ ∞

− ∞
e∓2iktV (t)m∓(t, k)dt,

2 Since the kernel formula coincides with the one using Lippmann–Schwinger scattering

eigenfunctions, (16) is valid for both x > y and x < y.
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where ν0 =
∫ ∞

− ∞ V (t)dt and

(17) ν := W (0) =
∫ ∞

− ∞
V (t)m+(t,0)dt =

∫ ∞

− ∞
V (t)dt

(
1 +

∫ ∞

0

B+(t, y)dy

)
,

see [13, Remark 9, p. 152].

Let f̂(k) =
∫

f(x)e−ikx dx and g∨(x) =
∫

g(k)eikx dk. The following lemma
gives estimates on the Fourier transforms of m±, which is an easy consequence
of Lemmas 3.1 and 4.6(c).

Lemma 3.2. Let V ∈ L1
1. Let x > 0, y < 0. Then there exists a constant

c = c(‖V ‖L1
1
) independent of x, y such that ∀u

|m+(x, ±·)∨(u)| ≤ 2πδ + cχ{ ±u<0}ρ+(∓u/2) ∈ R+δ + L1(R∓),

|m−(y, ±·)∨(u)| ≤ 2πδ + cχ{ ±u<0}ρ−(±u/2) ∈ R+δ + L1(R∓),

where δ is the Dirac measure at zero, ρ+(u) =
∫ ∞

u
|V (t)| dt, ρ−(u) =∫ u

− ∞ |V (t)| dt, R+ = (0, ∞) and R− = (−∞,0).

The next lemma provides series expansions for t(k), r±(k) in the high
energy, whose proofs will be postponed till the end of this section.

Lemma 3.3. Let V ∈ L1
1, then there are a±(R), b ∈ L1(R−) such that for

|k| > k0 := k0(‖V ‖L1
1
) > 1

t(k) = 1 +
∞∑

n=1

(2ik)−n
(
ν0 + b̂(k)

)n
,

r±(k) =
(

−ν0 + â±(k)
) ∞∑

n=1

(2ik)−n
(
ν0 + b̂(k)

)n−1
,

where ν0 =
∫

V (t)dt and k0 is a fixed constant depending on ‖V ‖L1
1
and ‖a± ‖1,

‖b‖1 ≤ c(‖V ‖L1
1
).

We will also need the relations between m+ and m− [13, Ch. 2, p. 144].

Lemma 3.4. Let V ∈ L1
1.

t(k)m−(x,k) = e2ikxr+(k)m+(x,k) + m+(x, −k),

t(k)m+(x,k) = e−2ikxr−(k)m−(x,k) + m−(x, −k).

3.3. High energy cutoff for Φj(Hac)(x, y). We are ready to prove (8) for
the high energy.

Lemma 3.5. Let V ∈ L1
1 and Φ ∈ C∞([−1,1]) as in (10). Then there ex-

ists a finite measure dζhigh in R+δ + L1 such that for all x, y and j ≥ j0 :=
j0(‖V ‖L1

1
),∣∣((1 − Φj0)Φj

)
(Hac)(x, y)

∣∣ ≤
∑

±
(ρ0 + ρj) ∗ dζhigh(±x ± y),(18)
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where j0 is a fixed number depending on ‖V ‖L1
1

only, 0 ≤ ρ0(x) ≤ cN (1 +
|x|)−N , 0 ≤ ρj(x) ≤ cN2j/2(1 + 2j/2|x|)−N , ∀N .

Proof. In the following we always assume x > y. The estimates for x < y
follow by symmetry. We divide the discussions into three cases. (a) x > 0, y <
0, (b) x > 0, y > 0, and (c) x < 0, y < 0.

Let ψ̃j(k) = (1 − Ψj0(k))Ψj(k), Ψj(k) = Φj(k2). Let j0 := max(2 +
[2 log2 k0],2 log2 ‖dσ‖M ), dσ = |ν0|δ + |b|, where k0, b are the same as in
Lemma 3.3.

Case (a). x > 0, y < 0. According to (16) and Lemma 3.3, we have for
j ≥ j0,

2π
(
(1 − Φj0)Φj

)
(Hac)(x, y)

=
∞∑

n=0

(1/2i)n

∫
ψ̃j(k)k−n

(
ν0 + b̂(k)

)n
m+(x,k)m−(y, k)ei(x−y)k dk

:=
∞∑

n=0

In(x, y).

By Lemma 3.2, if x > 0, y < 0,

|m+(x, ·)∨ ∗ m−(y, ·)∨(u)| ≤ dζ0 := cδ + ρ1 ∈ R+δ + L1(R−).

If n = 0,

|I0(x, y)| =
1

4π2

∣∣∣∣
∫

ψ̃∨
j (x − y − u)m+(x, ·)∨ ∗ m−(y, ·)∨(u)du

∣∣∣∣
≤

∫
|ψ̃∨

j (x − y − u)| dζ0(u),

where since Ψ ∈ C∞
0 , we have

|ψ̃∨
j (x)| ≤ 2j0/2(1 + 2j0/2|x|)−N + 2j/2(1 + 2j/2|x|)−N

by writing

ψ̃∨
j (η) = Ψ∨

j (η) − Ψ∨
j0(η)(19)

= 2j/2Ψ∨(2j/2η) − 2j0/2Ψ∨(2j0/2η).

For n = 1, observe that

(ψ̃j(k)k−1)∨(ξ) =
1
2i

(∫ ∞

ξ

ψ̃∨
j (u)du −

∫ ξ

− ∞
ψ̃∨

j (u)du

)
(20)

= −i

∫ ∞

ξ

ψ̃∨
j (u)du = i

∫ ξ

− ∞
ψ̃∨

j (u)du,
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where
∫

ψ̃∨
j (u)du = 2πψ̃j(0) = 0. It is easy to see from (20) and (19) that for

each N ∈ N there exists a constant cN > 0 such that for all j ≥ j0,∫ ∞

ξ

|ψ̃∨
j (η)| dη ≤ cN (1 + |ξ|)−N ∀ξ.

Thus,

|I1(x, y)| =
∣∣∣∣
∫

ψ̃j(k)k−1
(
ν0 + b̂(k)

)
m+(x,k)m−(y, k)ei(x−y)k dk

∣∣∣∣
≤

∫
|(ψ̃jk

−1)∨(x − y − u)|(|ν0|δ + |b|) ∗ dζ0(u)

≤ cN

∫
(1 + |x − y − u|)−N dζ1(u),

where dζ1 = (|ν0|δ + |b|) ∗ dζ0 is in R+δ + L1(R−).
If n ≥ 2, we have by integration by parts: for j ≥ j0, N ≥ 1,∣∣∣∣(1 + ξN )

∫
ψ̃j(k)k−neikξ dk

∣∣∣∣
=

∣∣∣∣
∫

2(j0−1)/2≤ |k|≤2j/2
eikξ(1 + iN∂N

k )[ψ̃j(k)k−n]dk

∣∣∣∣
≤ cj0,NnN −12−(j0−1)n/2 ∀ξ.

Hence, with dσ = |ν0|δ + |b(u)|,

∞∑
n=2

|In(x, y)|

≤ cN

∞∑
n=2

nN −12−j0n/22−n/2

∫
(1 + |x − y − u|)−N

n︷ ︸︸ ︷
dσ ∗ · · · ∗ dσ ∗ dζ0(u)

≤ cN

∫
(1 + |x − y − u|)−N dζ̃(u),

where by our choice j0 > 2 log2 ‖dσ‖M − 1 so that

dζ̃ :=
∞∑

n=2

nN −12−j0n/22−n/2

n︷ ︸︸ ︷
dσ ∗ · · · ∗ dσ ∗ dζ0(u)

is a finite measure in R+δ + L1. Combining the the above estimates for
In(x, y), n = 0,1 and ≥ 2, we thus establish (18) in Case (a).
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Case (b). x > y > 0. By (16) and Lemma 3.4

2π
(
(1 − Φj0)Φj

)
(Hac)(x, y)

=
∫

ψ̃∨
j (x + y − u)(r+(·)m+(x, ·)m+(y, ·))∨(u)du

+
∫

ψ̃∨
j (x − y − u)(m+(x, ·)m+(y, −·))∨(u)du.

Similar to Case (a), using Lemma 3.2 and the formula for r+(k) in
Lemma 3.3 we obtain that there exists some finite measure dζ2 ∈ R+δ +L1 so
that for all x > 0, y > 0 and j ≥ j0,∣∣((1 − Φj0)Φj

)
(Hac)(x, y)

∣∣
≤

∫
|ψ̃∨

j (x − y − u)| dζ2(u) + cN

∑
±

∫
(1 + |x ± y − u|)−N dζ2(u).

Case c. 0 > x > y. Similar to Case (b), we obtain that there exists some
finite measure dζ3 ∈ R+δ + L1 so that for all 0 > x > y and j ≥ j0,∣∣((1 − Φj0)Φj

)
(Hac)(x, y)

∣∣
≤ cN

∫
(1 + |x + y + u|)−N dζ3(u) +

∫
|ψ̃∨

j (x − y − u)| dζ3(u). �

3.4. Proof of Lemma 3.3. By Lemma 3.1, if |k| > k0 = k0(‖V ‖L1
1
) large

enough, we have a geometric series expansion

t(k) =
(

1 − ν0

2ik
− 1

2ik

∫
V (t)dt

∫ ∞

0

B+(t, y)e2iky dy

)−1

=
∞∑

n=0

(2ik)−n

(
ν0 +

∫
V (t)dt

∫ ∞

0

B+(t, y)e2iky dy

)n

=
∞∑

n=0

(2ik)−n
(
ν0 + b̂(k)

)n
,

where b̂(k) = β̂(−2k) and β(y) =
∫

V (t)χ(0,∞)(y)B+(t, y)dt, which is in
L1(R+) by Lemma 4.6(a).

Let

(21) α±(k) =
(
1 + r±(k)

)
t(k)−1,

then there exist a± ∈ L1(R) such that

α±(k) = 1 − ν0

2ik
+

1
2ik

â±(k) ∀k �= 0.(22)
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Indeed, similar to the way we deal with t(k), write

α+(k) = 1 +
1

2ik

∫
(e−2ikt − 1)V (t)m−(t, k)dt

= 1 +
1

2ik

∫
(e−2ikt − 1)V (t)dt

+
1

2ik

∫
(e−2ikt − 1)V (t)dt

∫ 0

− ∞
B−(t, y)e−2iky dy

= 1 − ν0

2ik
+

1
2ik

V̂ (2k)

+
1

2ik

[(
χ(− ∞,∞)(y)

∫ ∞

y

V (t)B−(t, y − t)dt

)∧
(2k)

−
(

χ(− ∞,0)(y)
∫

V (t)B−(t, y)dt

)∧
(2k)

]
.

It is easy to see from Lemma 4.6(a) that the last two functions of y in the
parentheses are in L1 if V ∈ L1

1. Thus, (22) holds for α+(k) with some a+ ∈ L1,
and so

r+(k) = α+(k)t(k) − 1

=
(

−ν0 + â+(k)
) ∞∑

n=1

(2ik)−n
(
ν0 + b̂(k)

)n−1
.

Similarly, we obtain the formulas for α−(k) and r−(k).

4. Weighted L∞ estimates: Low energy

In this section, we prove (8) for Φj(Hac)(x, y) for j < j0, where j0 is taken to
be the same number as in Lemma 3.5. Recall that Ψj(k) = Φj(k2) = Φ(2−jk2).
The following lemma gives Fourier transform formulas of t, r± for the low
energy.

Lemma 4.1. (a) Let V ∈ L1
1 and ν �= 0. Then there exist f1, g1,± ∈ L1 such

that for all j < j0,
(Ψj(k)t(k))∨(u) = Ψ∨

j ∗ f1(u),
(Ψj(k)r±(k))∨(u) = Ψ∨

j ∗ (g1,± − δ)(u),

equivalently,
Ψj(k)t(k) = Ψj(k)f̂1(k),

Ψj(k)r±(k) = Ψj(k)
(
ĝ1,±(k) − 1

)
.

(b) Let V ∈ L1
2 and ν = 0. Then there exist f, g± in L1 such that

t(k) = 1 + f̂(k),
r±(k) = ĝ±(k).
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We postponed the proof till Sections 4.2 and 4.3. Combining Lemma 4.1
and Lemma 3.2, we readily obtain the following lemma.

Lemma 4.2. (a) Let V ∈ L1
1 and ν �= 0. Then there exist positive functions

h1, h2 and h3 in L1 independent of x, y such that:
(i) ∀x > 0, y < 0,

|(Ψj(k)t)∨ ∗ m+(x, ·)∨ ∗ m−(y, ·)∨(u)| � |Ψ∨
j | ∗ (δ + h1)(u),

(ii) ∀x > 0, y > 0,

|(Ψj(k)r+)∨ ∗ m+(x, ·)∨ ∗ m+(y, ·)∨(u)| � |Ψ∨
j | ∗ (δ + h2)(u),

(iii) ∀x < 0, y < 0,

|(Ψj(k)r−)∨ ∗ m−(x, ·)∨ ∗ m−(y, ·)∨(u)| � |Ψ∨
j | ∗ (δ + h3)(u).

(b) Let V ∈ L1
2 and ν = 0. Then there exist positive functions f1, f2 and

f3 in L1, independent of x, y, such that:
(i) ∀x > 0, y < 0,

|t∨ ∗ m+(x, ·)∨ ∗ m−(y, ·)∨(u)| � δ + f1(u),

(ii) ∀x > 0, y > 0,

|r∨
+ ∗ m+(x, ·)∨ ∗ m+(y, ·)∨(u)| � δ + f2(u),

(iii) ∀x < 0, y < 0,

|r∨
− ∗ m−(x, ·)∨ ∗ m−(y, ·)∨(u)| � δ + f3(u).

Thus, the estimate in (8) for the low energy cutoff follows from Lemma 4.2
by proceeding the way similar to (but much simpler than) the high energy
case in Section 3.3.

Lemma 4.3. Let V ∈ L1
1 and HV has no resonance at zero or V ∈ L1

2. Then
there exist a finite measure dζlow ∈ R+δ + L1 such that for all j < j0

|Φj(Hac)(x, y)| ≤ c
∑

±

∫
|Ψ∨

j (±x ± y − u)| dζlow(u).

The detail of the proof is straightforward and hence omitted.

4.1. Fourier transforms of t(k), r±(k). Lemma 4.1 tells that in the cases
of V ∈ L1

1, ν �= 0 and V ∈ L1
2, low energy cut-offs of t(k), r±(k) are the Fourier

transforms of L1 functions up to cδ. We will show that this is true by Wiener’s
lemma [23, Lemma 6.3].

Lemma 4.4 (Wiener). Let f,h ∈ L1(R). Suppose supp f̂ is compact and ĥ

is nonzero on suppf . Then there exists some g ∈ L1(R) such that f̂ = ĥĝ or
f̂/ĥ = ĝ.
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The following variant of Wiener’s lemma can be found in, for example, [31,
Ch. V, S3].

Lemma 4.5. Let g ∈ L1(R) such that ĝ(x) + 1 is nonzero for all x. Then
there exists a function f ∈ L1(R) such that

f̂(x) + 1 =
1

ĝ(x) + 1
.

Recall from [13, Theorem 1] that (i) if ν = 0, then t(k) �= 0, ∀k. (ii) if ν �= 0,
then t(0) = 0 but t(k) �= 0, ∀k �= 0 (cf. also Lemma 4.8).

Since W (k) = −2ik/t(k), by Lemma 3.1

W (k) = −2ik

(
1 − ν

2ik
−

∫
V (t)dt

∫ ∞

0

B+(t, y)
e2iky − 1

2ik
dy

)
(23)

= −2ik

(
1 − ν0

2ik
−

∫
V (t)dt

∫ ∞

0

B+(t, y)
e2iky

2ik
dy

)
.(24)

4.2. Proof of Lemma 4.1(a). In this case ν = W (0) �= 0, hence W (k) �= 0,
∀k. Write

Ψj0(k)t(k) =
−2ikΨj0(k)
χ(k)W (k)

,(25)

where we take χ ∈ C∞
0 with χ(x) = 1 on suppΨj0 . From (24), we have

W (k) = −2ik + ν0 +
(

χ(0,∞)(·)
∫

V (t)B+(t, ·)dt

)∨
(2k),

where we note that in terms of Lemma 4.6(a), the function y �→ χ(0,∞)(y) ×∫
V (t)B+(t, y)dt is in L1 provided V ∈ L1

1. Thus, we find that χW , which
is nonzero on the support of Ψj0 , is the Fourier transform of an L1 function.
According to Wiener’s lemma (Lemma 4.4),

(26) Ψj0(k)t(k) = f̂1(k)

for some f1 ∈ L1. Hence, for j < j0

(Ψj(k)t(k))∨ = cΨ∨
j ∗ (Ψj0t(k))∨ = Ψ∨

j ∗ f1,

where note that Φj0(k) ≡ 1 on support of Φj(k).
Let α±(k) = (1 + r±(k))t(k)−1, then

Ψj(k)r±(k) = Ψj(k)α±(k)t(k) − Ψj(k).

It is sufficient to deal with the first term. By (22), there exist a± ∈ L1 such
that

2ikα±(k) = 2ik − ν0 + â±(k).
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Thus, Ψj0(k)(−2ik)α±(k) = ĝ0,±(k) for some g0,± ∈ L1. We have for j < j0,

(Ψj(k)α±(k)t(k))∨ = cΨ∨
j ∗

(
Ψj0(k)

t(k)
−2ik

)∨
∗ (Ψj0(k)(−2ik)α±(k))∨

= cΨ∨
j ∗

(
Ψj0(k)
W (k)

)∨
∗ g0,±

= Ψ∨
j ∗ g1,±, g1,± = cf0 ∗ g0,±,

where in view of (25), the same way as showing (26) we see that Ψj0 (k)

W (k) = f̂0

for some f0 ∈ L1. This proves that for j < j0

Ψj(k)r±(k) = Ψj(k)
(
ĝ1,±(k) − 1

)
.

4.3. Proof of Lemma 4.1(b). First, we observe the following formula when
ν = 0,

t(k)−1 − 1 = −
∫

V (t)dt

∫ ∞

0

(∫ ∞

ξ

B+(t, y)dy

)
e2ikξ dξ(27)

= −
(

χ(0,∞)(ξ)
∫

V (t)dt

∫ ∞

ξ

B+(t, y)dy

)∨
(2k).

Indeed, since ν = 0, we have by (23)

t(k)−1 = 1 −
∫

V (t)dt

∫ ∞

0

B+(t, y)
e2iky − 1

2ik
dy.

Then (27) follows by using e2iky −1
2ik =

∫ y

0
e2ikξ dξ and Fubini theorem.

Since V ∈ L1
2, Lemma 4.6(b) implies that the function given by ξ �→

χ(0,∞)(ξ)
∫

V (t)dt
∫ ∞

ξ
B+(t, y)dy belongs to L1. Hence, t(k)−1 − 1 = ĝ0(k)

for some g0 ∈ L1.
Now by Lemma 4.5 there exists h ∈ L1 (evidently 1 + ĝ0(k) = t(k)−1 �= 0,

∀k) so that

t(k) =
1

1 + ĝ0(k)
= 1 + ĥ(k).

A similar argument shows that there exists some ω± ∈ L1 so that α±(k) =
(1+r±(k))t(k)−1 = 1+ ω̂±(k) by applying Lemma 4.6. Therefore, r± = α±t −
1 = ω̂± + ĥ + ω̂±ĥ are in (L1)∧.

4.4. Marchenko equation. From Lemma 3.1, we know that for each x,
B±(x, y) are the Fourier transforms of m±(x, ±k) − 1. They are real-valued,
supported in R± and belong to L2(R±) [13, 33]. Moreover, B±(x, y) satisfy
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the Marchenko equations

B+(x, y) =
∫ ∞

x+y

V (t)dt +
∫ y

0

dz

∫ ∞

t=x+y−z

V (t)B+(t, z)dt,(28)

B−(x, y) =
∫ x+y

− ∞
V (t)dt +

∫ 0

y

dz

∫ t=x+y−z

− ∞
V (t)B−(t, z)dt.(29)

The following lemma is mainly on certain weighted L1 inequalities for B±,
which contributes to several kernel estimates as we have seen.

Lemma 4.6. (a) If V ∈ L1
1, then there exists c = c(‖V ‖L1

1
) so that for all

x ∈ R

(30)
∫ ∞

− ∞
|B±(x, y)| dy ≤ c

(
1 + max(0, ∓x)

)
.

(b) If V ∈ L1
2, then there exists c = c(‖V ‖L1

2
) so that for all x ∈ R

(31)
∫ ∞

− ∞
|y| |B±(x, y)| dy ≤ c

(
1 + max(0, ∓x)

)2
.

(c) Let V ∈ L1
1, then for all x, y ∈ R

|B±(x, y)| ≤ eγ±(x)ρ±(x + y),(32)

where γ+(x) =
∫ ∞

x
(t − x)|V (t)| dt, γ−(x) =

∫ x

− ∞(x − t)|V (t)| dt, ρ± are as in
Lemma 3.2.

Estimate (c) is known, see, for example, [13] or [19]. The estimates in (a),
(b) were obtained in [11, Lemma 3.2, Lemma 3.3] using Gronwall’s inequality.
See also [25, Lemma 4.5] for a generalized version of these inequalities for
n ∈ N0 = {0,1,2, . . . }

(33)
∫ ∞

− ∞
|y|n|B±(x, y)| dy ≤ c

(
1 + max(0, ∓x)

)n+1
,

c = c(‖V ‖L1
n+1

), which follows from direct iterations of (28) and (29).

4.5. Modified Jost functions. Let h(x,k) = e2ikx −1
2ik . It is well known that

m±(x,k) satisfy the equations

m+(x,k) = 1 +
∫ ∞

x

h(t − x,k)V (t)m+(t, k)dt,(34)

m−(x,k) = 1 +
∫ x

− ∞
h(x − t, k)V (t)m−(t, k)dt.(35)

Lemma 4.7. Let V ∈ L1
1. Then

|m±(x,k)| ≤ c
(
1 + max(0, ∓x)

)
,

|ṁ±(x,k)| ≤ c
1 + max(0, ∓x)

|k| ∀k �= 0,
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where c = c(‖V ‖L1
1
).

Lemma 4.8. (a) Let V ∈ L1
1. Then: (i) |t(k)| ≤ 1, |r±(k)| ≤ 1. (ii) ṫ(k) =

O(1/k), ṙ±(k) = O(1/k) as |k| → ∞. (iii) If ν �= 0, then t(k) = O(k) as k → 0.
(b) Let V ∈ L1

1 and ν �= 0 or V ∈ L1
2. Then

ṫ(k) = O(1/k), ṙ±(k) = O(1/k) as k → 0.

The asymptotics in Lemmas 4.7 and 4.8(a) are known, see [13, Lemma 1,
p. 130] or [33]. We will give the proof of Lemma 4.8(b) below.

4.6. Proof of Lemma 4.8(b). (A) Let V ∈ L1
1 and ν �= 0. By Lemma 3.1,

we have

t(k)−1 = 1 − 1
2ik

∫
V (t)m+(t, k)dt.

Taking derivative in k and applying Lemma 4.7 give

|∂k(t(k)−1)| ≤ c/k2 ∀k �= 0,

thus,

ṫ(k) = −t(k)2∂k(t(k)−1) =

{
O(1), |k| < 1,

O(1/k2), |k| ≥ 1,
(36)

where we used t(k) = O(k), k → 0 if ν �= 0, by Lemma 4.8(a). From (21) and
Lemma 3.1, we see

r±(k) = t(k)
(

1 +
∫

h(∓t, k)V (t)m±(t, k)dt

)
− 1.

Now the estimate
|ṙ±(k)| ≤ c/|k|

can be established by using (36), the estimates

|h(t, k)| ≤ min(|t|,1/|k|),

|ḣ(t, k)| ≤ 2
|t|

|k| ,

Lemma 4.7 and Lemma 3.4.
(B) Let V ∈ L1

2 and ν = 0. By (27), integrating by parts we have

k∂k(t(k)−1) = −
∫

V (t)dt

∫ ∞

0

(∫ ∞

ξ

B+(t, η)dη

)
ξ dξ(e2ikξ)

=
∫

V (t)dt

∫ ∞

0

e2ikξ

(∫ ∞

ξ

B+(t, η)dη − ξB+(t, ξ)
)

dξ,
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where note that |ξ
∫ ∞

ξ
B+(t, η)dη| ≤

∫ ∞
ξ

|ηB+(t, η)| dη → 0 as ξ → ∞ by virtue
of Lemma 4.6(b). Then Fubini theorem and again Lemma 4.6(b) give

|k∂k(t(k)−1)| ≤
∫

|V (t)| dt

(∫ ∞

0

(∫ ∞

ξ

|B+(t, η)| dη + ξ|B+(t, ξ)|
)

dξ

)

≤ c

∫
(1 + |t|)2|V (t)| dt.

Thus,

ṫ(k) = −t(k)2∂k(t(k)−1) = O(1/k).(37)

Finally, the estimate ṙ±(k) = O(1/k) follows from those routine asymptotics
for ḣ(t, k), ṁ±(x,k) and (37).

Remark 4.9. The proof in Part A actually has shown the asymptotics for
t(k), r±(k) for both k → 0 and |k| → ∞, for the latter we only require V ∈ L1

1.

5. Weighted L2 estimates

We will prove (3) for Hac with s = 1 and s = 0 (Lemmas 5.1 and 5.2).
Then the case 1/2 < s < 1 follows via interpolation. The case s = 1 requires
certain improved asymptotics for k-derivatives of m±(x,k) t(k), r±(k) than
[13, p. 134]. In the most difficult (and subtle) case (Case c), we use the Volterra
type expansions for ṁ±(x,k)3 in order to deal with the inconsistency of the
weight and distorted phase.

In the following, we use the abbreviations Hs = W s
2 , Ḣs = Ẇ s

2 , and so,

‖f ‖Hs(R) = ‖(1 + |ξ|2)s/2f̂ ‖2,(38)
‖f ‖Ḣs(R) = ‖ |ξ|sf̂ ‖2 ≈ ‖(−Δ)sf ‖2.

Lemma 5.1. Let V ∈ L1
1, ν �= 0 or V ∈ L1

2. Then for all y, j ∈ Z and
φ ∈ H1([ 14 ,1]),

‖(x − y)φj(Hac)(x, y)‖L2
x

≤ c2−j/4‖φ‖H1([ 14 ,1]).(39)

Proof. Let ψj(k) := φj(k2) = φ(2−jk2). By symmetry, we will only need to
show (39) in the following three cases:

∀y < 0,
∥∥χ{x>0}(x − y)φj(H)(x, y)

∥∥
L2

x
≤ c2−j/4‖φ‖H1([ 14 ,1]),(39a)

∀y > 0,
∥∥χ{x>y}(x − y)φj(H)(x, y)

∥∥
L2

x
≤ c2−j/4‖φ‖H1([ 14 ,1]),(39b)

∀y < 0,
∥∥χ{y<x<0}(x − y)φj(H)(x, y)

∥∥
L2

x
≤ c2−j/4‖φ‖H1([ 14 ,1]).(39c)

Case (a) x > 0, y < 0. Using the formula in Lemma 3.1

m+(x,k) = 1 +
∫ ∞

0

B+(x,u)e2iku du,(40)

3 We will follow the convention that ḟ(k) = ∂kf(k).
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we write

2πφj(Hac)(x, y) =
∫

ψj(k)t(k)m−(y, k)ei(x−y)k dk

+
∫

ψj(k)t(k)m−(y, k)ei(x−y)k dk

∫ ∞

0

B+(x,u)e2iku du

:= Ia
1 (x, y) + Ia

2 (x, y).

In view of (38), we have

‖(x − y)Ia
1 (x, y)‖L2

x
= ‖ψj(k)t(k)m−(y, k)‖Ḣ1

k
≤ c2−j/4‖φ‖H1([ 14 ,1]),

where we have used the following estimates by Lemmas 4.7 and 4.8: For
i = 0,1, ⎧⎪⎨

⎪⎩
‖∂i

kψj ‖L2 ≤ c2− j
2 (i− 1

2 )‖φ‖H1([ 14 ,1]),

∂i
kt(k) = O(1/ki),

∂i
km−(y, k) = O(1/ki), ∀y < 0.

Applying Minkowski inequality and Lemma 4.6(c) for x > 0, we obtain by
(38) that for each y < 0,

‖χ{x>0}(x − y)Ia
2 (x, y)‖L2

x

=
∥∥∥∥
∫ ∞

0

B+(x,u)du(x − y)
∫

ψj(k)t(k)m−(y, k)ei(x−y+2u)k dk

∥∥∥∥
L2

{x>0}

≤
∫ ∞

0

ρ+(u)du

∥∥∥∥(x − y + 2u)
∫

ψj(k)t(k)m−(y, k)ei(x−y+2u)k dk

∥∥∥∥
L2

{x>0}

≤
∫ ∞

0

ρ+(u)du ‖ψj(k)t(k)m−(y, k)‖Ḣ1
k

≤ c2−j/4‖φ‖H1([ 14 ,1]).

So combining the estimates for Ia
1 and Ia

2 gives (39a).
Case (b) x > y > 0. By Lemma 3.4, we write

2πφj(Hac)(x, y) =
∫

ψj(k)r+(k)m+(x,k)m+(y, k)ei(x+y)k dk

+
∫

ψj(k)m+(x,k)m+(y, −k)ei(x−y)k dk.

By (40), we see that (39b) can be proved as in Case a by applying Lemmas
4.6(c), 4.7 and 4.8.

Case (c) y < x < 0. Using Lemma 3.4, we write

2πφj(Hac)(x, y) =
∫

ψj(k)r−(k)m−(x,k)m−(y, k)e−i(x+y)k dk

+
∫

ψj(k)m−(x, −k)m−(y, k)ei(x−y)k dk

:= Ic
1(x, y) + Ic

2(x, y).
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The term Ic
1 can be dealt with in a way similar to Case (a) or (b). We can

estimate ‖χ{y<x<0}(x − y)Ic
1(x, y)‖2 by writing

m−(x,k) = 1 +
∫ 0

− ∞
B−(x,u)e−2iku du

(cf. Lemma 3.1, [13, p. 137] or [33]) and using Lemma 4.6(c) and the estimates
for m−(y, k), r−(k) in Lemmas 4.7 and 4.8, where we have observed if y <
x < 0, then |x − y| ≤ |x + y| and

|x − y| ≤ |x + y + 2u| ∀u < 0.

For Ic
2 , if following the same line one would have to require for all y < x < 0

and u < 0

|x − y| ≤ |x + y − 2u|,

which is unfortunately not valid. Here, we proceed by exploiting the expansion
of m−(x, −k) as follows. Iterating (35), we write with t0 = x

m−(x, −k) = 1 +
∞∑

n=1

∫ t0

− ∞
h(t0 − t1, −k)V (t1)dt1

×
∫ t1

− ∞
h(t1 − t2, −k)V (t2)dt2 · · ·

×
∫ tn−1

− ∞
h(tn−1 − tn, −k)V (tn)dtn

:=
∞∑

n=0

M −
n (x,k).

Observe that

h(x − t, −k) =
∫ x−t

0

e−2iku du,(41)

∂kh(x − t, −k) =
1
k

(
(x − t)e−2ik(x−t) −

∫ x−t

0

e−2iku du

)
.(42)

We have by integration by parts

−i(x − y)Ic
2(x, y) =

∞∑
n=0

∫
∂k[ψj(k)m−(y, k)M −

n (x,k)]ei(x−y)k dk

:=
∞∑

n=0

A−
n (x, y).
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For y < 0, j ∈ Z it is easy to see from Lemma 4.7 that

‖A−
0 (x, y)‖L2

x
= ‖ψj(k)m−(y, k)‖Ḣ1

k
≤ c2−j/4‖φ‖H1([ 14 ,1]).

For n ≥ 1 using (41) and exchanging order of integration give that

A−
n (x, y) =

∫ t0

− ∞
V (t1)dt1

∫ t0−t1

0

du1 · · ·
∫ tn−1

− ∞
V (tn)dtn

∫ tn−1−tn

0

dun

×
∫

∂k[ψjm−(y, k)]ei(x−y−2u1− · · · −2un)k dk

+
∫

ψj(k)m−(y, k)∂kM −
n (x,k)ei(x−y)k dk := Π1(x, y) + Π2(x, y),

where

∂kM −
n (x,k)

=
∫

t0>t1>t2>···>tn

∂k

(
h(t0 − t1, −k) · · · h(tn−1 − tn, −k)

)
× V (t1) · · · V (tn)dt1 · · · dtn := J −

n,1 + J −
n,2 + · · · + J −

n,n,

J −
n,i denoting the integral involving ∂kh(ti−1 − ti, −k), i = 1, . . . , n.
We estimate by Minkowski inequality∥∥χ{y<x<0}Π1(x, y)

∥∥
L2

x

≤
∫ 0

− ∞
|V (t1)| dt1

∫ −t1

0

du1 · · ·
∫ tn−1

− ∞
|V (tn)| dtn

∫ −tn

0

dun

×
∥∥∥∥
∫

∂k[ψjm−(y, k)]ei(x−y−2u1−···−2un)k dk

∥∥∥∥
L2

x

≤ c2−j/4‖φ‖H1([ 14 ,1])

∫ 0

− ∞
(−t1)|V (t1)| dt1 · · ·

∫ tn−1

− ∞
(−tn)|V (tn)| dtn

≤ c2−j/4‖φ‖H1([ 14 ,1])

(‖tV ‖1)n

n!
.

For Π2 we estimate the first term by using (42), Minkowski inequality and
Plancherel theorem to obtain∥∥∥∥χ{y<x<0}

∫
ψj(k)m−(y, k)J −

n,1(x,k)ei(x−y)k dk

∥∥∥∥
L2

x

≤
∫ 0

− ∞
(−t1)|V (t1)| dt1

∫ t1

− ∞
|V (t2)| dt2

∫ t1−t2

0

du2 · · ·

×
∫ tn−1

− ∞
|V (tn)| dtn

∫ tn−1−tn

0

dun

×
∥∥∥∥
∫

ψj(k)
k

m−(y, k)e−i(x+y−2t1+2u2+···+2un)k dk

∥∥∥∥
L2

x
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+
∫ 0

− ∞
|V (t1)| dt1

∫ −t1

0

du1

∫ t1

− ∞
|V (t2)| dt2

∫ t1−t2

0

du2 · · ·

×
∫ tn−1

− ∞
|V (tn)| dtn

∫ tn−1−tn

0

dun

×
∥∥∥∥
∫

ψj(k)
k

m−(y, k)ei(x−y−2u1−2u2−··· −2un)k dk

∥∥∥∥
L2

x

≤ c2−j/4‖φ‖L2([ 14 ,1])

(‖tV ‖1)n

n!
.

The same estimate holds for other terms involving J −
n,i, i = 2, . . . , n. And so,∥∥χ{y<x<0}A−

n (x, y)
∥∥

2
≤ c2−j/4(1 + n)

(‖tV ‖1)n

n!
‖φ‖H1([ 14 ,1]).

It follows that for all j ∈ Z∥∥χ{y<x<0}(x − y)Ic
2(x, y)

∥∥
2

≤ c2−j/4e‖tV ‖1 ‖φ‖H1([ 14 ,1]),

which proves (39c). �

Lemma 5.2. Let V ∈ L1
1. Then for all y, j ∈ Z and φ ∈ L2([ 14 ,1])

‖φj(Hac)(x, y)‖L2
x

≤ c2j/4‖φ‖L2([ 14 ,1]).

The proof is straightforward and follows the same line as in the weighted
case s = 1 but much simpler, where we only need Lemma 4.6(a) and the
following asymptotics in Lemma 4.7 and Lemma 4.8: If V ∈ L1

1, then⎧⎪⎨
⎪⎩

|m±(y, k)| ≤ c
(
1 + max(0, ∓y)

)
,

t(k) = O(1),
r+(k) = O(1).

We omit the details.
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[16] J. Dziubański, A spectral multiplier theorem for H1 spaces associated with Schrödinger
operators with potentials satisfying a reverse Hölder inequality, Illinois J. Math. 45
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