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SOLID SEQUENCE F -SPACES OF L0-TYPE OVER
SUBMEASURES ON N

LECH DREWNOWSKI AND IWO LABUDA

Abstract. We study solid sequence F -spaces λ0(η), nonsepa-
rable in general, and their closed separable subspaces λ00(η).

The space λ0(η) is associated with a strictly positive submeasure

η on N and equipped with the topology of convergence in submea-
sure. While λ0(η)’s may be viewed as analogs of usual L0-spaces,

the relation between λ00(η) and λ0(η) often resembles that be-
tween c0 and l∞. For many η’s, the weak topology of these spaces

coincides with that of coordinate-wise convergence, they are not

locally pseudoconvex and yet have the Bounded Multiplier Prop-
erty. Further, in agreement with the analogy to L0 = L0[0,1],

they possess copies of lp for 0 < p ≤ 2, and yet in contrast to L0

they contain a lot of well-located copies of c0 and l∞; also, the

quotient λ0(η)/λ00(η) contains a copy of L0. All of this happens

already for the spaces λ0 = λ0(d̄) and λ00 = λ00(d̄) with d̄ being

a submeasure closely related to the standard density d, in which

case, moreover: (1) There is a series in λ00 all of whose subseries

of density zero are convergent, and yet its partial sums are un-
bounded. (2) The Orlicz–Pettis theorem fails in λ0. (3) λ00 can

be used to show that some earlier constructed normed barrelled
spaces are not ultrabarrelled.

0. Introduction

Our object of investigation are solid nonseparable F -spaces λ0(η) of scalar
sequences that are curious in many respects. On the one hand, they are
analogs of F -spaces L̃0(μ) (L̃0(μ) consists of those measurable functions that
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are bounded outside a set of finite measure; see Section 1.G) over infinite
positive measure spaces (S,Σ, μ), equipped with the topology of convergence
in measure μ on all of S. In our setting, however, the basis for the definition
of λ0(η) and its topology is a strictly positive submeasure η on N. On the
other hand, we distinguish in each of the spaces λ0(η) a closed separable
subspace λ00(η), and observe that the relation between λ00(η) and λ0(η) is
very much like that between c0 and l∞.

In the very beginning, we studied a particular pair of spaces, λ0 and λ00

in the present notation. Actually, we dealt with two variants of these spaces.
The first variant of λ0 was defined as the space of all scalar sequences x = (ξj)
such that �tx� → 0 as t → 0, where

�x� := sup
n

�x�n and �x�n :=
1
2n

∑
j∈Dn

min(1, |ξj |),

and equipped with the F -norm �· �; λ00 was understood as the space of all
those x with �x�n → 0; Dn := {j ∈ N : 2n ≤ j < 2n+1} for n = 0,1,2, . . . .

For the second, the definitions were similar using

‖x‖ := sup
n

‖x‖n and ‖x‖n :=
1
n

n∑
j=1

min(1, |ξj |).

These two definitions turned out to be equivalent, yielding the same linear
spaces with equivalent F -norms.

We obtained the first variant of λ0 as a sequential version of a naturally-
looking example of an F -space of measurable functions over the half-line [0, ∞)
that was constructed while working on [13]. One of the objectives of that
paper was to study topological vector spaces that have the Zero-density Con-
vergence Property (ZCP), that is, those in which a series must be subseries
convergent provided it is known that all its subseries of density zero are con-
vergent. (‘Subseries of density zero’ means subseries over the sets of indices
of density zero.) The example just mentioned showed that, in general, such a
series need not even have bounded partial sums (while it has to in any locally
pseudoconvex space or in ‘usual’ L0-spaces). By construction, it remained to
be so in the sequence spaces λ0 and λ00.

The second variant of λ0 came up as a result of an effort to make its
definition visibly related to the definition of the standard density d in N,

d(A) := limsup
n→∞

1
n

|A ∩ {1, . . . , n}|.

(Density zero sets are just those on which d vanishes.) At this point, we were
also able to identify the duals of these spaces as consisting of all finite linear
combinations of coordinate functionals, and by means of a very simple series,∑

n en, show that the Orlicz–Pettis theorem fails in λ0. However, in many
situations the first variant of λ0 and λ00 has still an important advantage over
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the second one; one sees at once that these spaces are the l∞- and c0-sums of
finite-dimensional spaces L0(Dn) (n ≥ 0), respectively.

Since the motivating example, as well as its sequential counterparts, dis-
appeared from the final version of [13], we describe it briefly now. For every
measurable function f on [0, ∞) with Lebesgue measure λ, set

‖f ‖k =
∫

Ik

min(1, |f |)dλ and ‖f ‖ = sup
k

‖f ‖k,

where Ik = [k, k + 1) (k = 0,1,2, . . . ). Next, define Y to be the space of all f
with limt→0 ‖tf ‖ = 0. Then Y = (Y, ‖·‖) is an F -space, and it is isometric
to the l∞-sum of the spaces L0(Ik) 	 L0([0,1]). If n ∈ N and n = 2k + j for
some k ≥ 0 and 0 ≤ j < 2k, let fn be the characteristic function of the interval
Ik,j = [k + j2−k, k + (j + 1)2−k) ⊂ Ik. Next, for every x = (ξn) ∈ ω, the space
of all sequences, let

hx =
∞∑

n=1

ξnfn

(the pointwise ‘disjoint’ sum). Now, and this is what was important, it turns
out that in Y the series

∑∞
n=1 ξnfn has all its subseries of density zero conver-

gent, but if |ξn| → ∞, the sequence of partial sums of the series is unbounded.
Note that all this involves only countably simple functions of the type hx. For
such functions, the formula giving ‖hx‖k can be written as

‖hx‖k =
1
2k

∑
n∈Dk

min(1, |ξn|).

Therefore, replacing hx by x = (ξn), we may define ‖ · ‖k and ‖ · ‖ in the space ω
and proceed to obtain a solid sequence F -space λ0.

As the investigation of λ0 and λ00 went on, we realized that these spaces
are related to the standard density d in a much closer way than expected. In
fact, they are determined by d because

λ0 =
{

x ∈ ω : lim
r→∞

d(s(x, r)) = 0
}

and
λ00 = {x ∈ ω : s(x, r) ∈ Z, ∀r > 0}

where s(x, r) = {j : |ξj | > r}, and Z = {A ⊂ N : d(A) = 0}. Moreover, their
topology is simply the topology of convergence in submeasure d̄, that is defined
on N by

d̄(A) := sup
n

1
n

|A ∩ {1, . . . , n}|,

and d can be derived from d̄ by means of the formula

d(A) = inf{d̄(A \ F ) : F ⊂ A, |F | < ∞}.
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This prompted us to consider the truly general case. As the starting point,
we take a strictly positive submeasure η on N, like d̄ above, and next define the
core η• of η so that η• is related to η as d to d̄ above. By using equalities like
those above, we define the spaces λ0(η) and λ00(η) endowing them with the
topology τη of convergence in submeasure η. Actually, an additional condition
of lower semicontinuity (lsc) is imposed on η, and the topology τη is defined
in all of ω; then λ0(η) is introduced as the largest topological vector subspace
of (ω, τη), and it is shown that λ0(η) = {x ∈ ω : limr→∞ η(s(x, r)) = 0}.

We now describe the contents of the paper.
Section 1 is preliminary. The terminology and notation as well as a few less

known concepts are explained. Some information concerning spaces L0(μ) is
provided including a few technical facts used later in Section 5.

In Section 2, L0-like and quasi-L0-like topological vector spaces are intro-
duced together with a few basic facts about them.

Section 3 is devoted to submeasures on a set S. Here the core η• of a sub-
measure η is defined and discussed, as are the notions of (strongly) nonatomic
and core-nonatomic submeasures.

Section 4 is concerned with submeasures of special types, namely d̄μ and dμ,
that are sup’s and limsup’s of sequences μ = (μn) of finite measures on N.
This class includes, in particular, d̄ and d (the standard density). Under a
mild condition (A) on μ, one has dμ = (d̄μ)•.

In Section 5, for an admissible sequence μ = (μn), a related sequence
(‖·‖0

μn
) of L0(μn)-F -seminorms, and the FG-norm ‖·‖0

μ = supn ‖ · ‖0
μn

are de-
fined in ω and briefly discussed. In particular, it is shown that if the sequence
μ is uniformly bounded, then the FG-norm convergence and the convergence
in submeasure d̄μ coincide (Corollary 5.3).

In Section 6, the F -space λ0(μ) is introduced as the largest vector subspace
of ω on which ‖ · ‖0

μ is an F -norm, together with its closed subspace λ00(μ)
defined to consist of all x ∈ ω for which ‖x‖0

μn
→ 0. Then, for μ uniformly

bounded, a characterization of λ0(μ) and λ00(μ) is given in terms of the
submeasure dμ (Proposition 6.4), and the uniform boundedness is shown to
be necessary for that (Proposition 6.5).

In Section 7, inspired by Corollary 5.3 and Proposition 6.4 just mentioned,
we finally reach the general setting. For an arbitrary strictly positive sub-
measure η on N that is lower semi-continuous (i.e., η(An) → η(A) whenever
An ↑ A), we introduce in ω the topology τη of convergence in submeasure η,
together with an FG-norm ‖·‖η defining it, and then distinguish λ0(η) as the
largest vector subspace of ω on which τη is a vector topology (and ‖ · ‖η is an
F -norm). We go on to characterize λ0(η), and introduce its closed subspace
λ00(η), in full agreement with what we had previously in Proposition 6.4.

A systematic investigation of the F -spaces λ0(η) and λ00(η) follows. Propo-
sition 7.13 shows that the dual of λ00(η) consists merely of finite linear com-
binations of coordinate functionals iff η(n) → 0. In the particular case of
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the space λ00 = λ00(d̄), Corollary 7.12 shows that there exists a series in λ00

whose subseries of density zero converge, and yet the sequence of partial sums
of the series is unbounded. Theorem 7.16 describes how our spaces depend
on whether or not η• 
= 0, and on the behavior of the sequence (η(n)). For
instance, if η• 
= 0 and η(n) → 0, λ00(η) is not locally pseudoconvex. At
the end of the section, we use the space λ00 to prove that certain barrelled
normed sequence spaces are not ultrabarrelled (Proposition 7.18). Also, in
Remark 7.19, we clarify the relations between the two types of spaces: those
based on sequences μ vs. those based on submeasures η.

Section 8 deals with what we call simple embeddings into λ00(η) and λ0(η).
It is shown, for instance, that if η• 
= 0, then there exist isomorphic embed-
dings T : l∞ → λ0(η) such that λ00(η) ∩ T (l∞) = T (c0), as well as such that
λ00(η) ∩ T (l∞) = {0} (Corollary 8.3). In consequence, λ00(η) is then uncom-
plemented in λ0(η) (Corollary 8.4).

In Section 9, the quotient λ0(η)/λ00(η) is considered. It is shown to be
L0-like (and hence have a zero dual) if η is core-nonatomic (Theorem 9.2),
and to contain an isomorphic copy of l∞/c0 if η• 
= 0 (Theorem 9.3).

In Section 10, in the core-nonatomic case, the duals of λ00(η) and λ0(η)
are identified as consisting of finite linear combinations of the coordinate func-
tionals (Theorem 10.1). As a consequence, the Orlicz–Pettis theorem is shown
to fail in λ0(η) provided η• 
= 0 (Corollary 10.4).

In Section 11, again for η core-nonatomic, the results of the preceding
section are considerably strengthened by proving that λ00(η) and λ0(η) are
quasi-L0-like (Theorem 11.1). In consequence, their complemented locally
pseudoconvex subspaces are precisely those that are of finite dimension or
isomorphic to ω (Corollary 11.5).

Section 12 concerns (topologically or metrically) bounded subsets of λ0(η).
For instance, for any bounded set in λ0(η), its closure in ω is again a bounded
set in λ0(η) (Proposition 12.1).

In Section 13, we return to spaces λ0(μ) and λ00(μ), but mostly in the
special case of μn’s having pairwise disjoint supports. In this case, the spaces
are isometrically isomorphic to the l∞- and c0-sums of the spaces L0(μn)
(n ∈ N), respectively. Here, we first verify rigorously that the two variants
of λ0 and λ00 which we discussed earlier are indeed identical with equivalent
F -norms. Then we prove that in any c0-sum of F -spaces which have no
nontrivial locally bounded subspaces, any closed locally bounded subspace of
infinite dimension contains a copy of c0 that is ‘extendable’ to a copy of l∞ in
the respective l∞-sum (Theorem 13.3). In particular, this result is applicable
to λ00(μ) and λ0(μ) for μ as specified above, but we also find a way to extend
it to general μ’s (Theorem 13.8).

From this point on, we consider a still more special case of the sequence μ
of probability measures with pairwise disjoint supports. The three main re-
sults are Theorems 13.12, 13.13, and 13.15. In the first, it is shown that, for
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each 0 < p ≤ 2, λ00(μ) contains an isomorphic copy of the c0-sum (
∑

n lnp )0
which, in addition, is ‘extendable’ to an isomorphic copy of the l∞-sum
(
∑

n lnp )∞ in λ0(μ); in particular, λ0(μ) contains a copy of lp. In the second,
λ0(μ)/λ00(μ) is proved to contain a copy of L0[0,1]. In the third, a Schwartz
locally convex subspace with a Schauder basis that is not isomorphic to ω is
exhibited in λ00(S) = λ00(μ) for μ consisting of uniform probability measures
determined by a sequence S = (Sn) of disjoint finite sets with union N and

|Sn| → ∞.
In Section 14, we show that all the spaces λ0(μ) as well as their quotients

λ0(μ)/λ00(μ) have the Bounded Multiplier Property. That is, whenever a
series

∑
n zn in a space is unconditionally convergent, so is the series

∑
n tnzn

for all bounded sequences (tn) of scalars.
In Section 15, we gather our main results in the case of spaces λ0 and λ00.

1. Some terminology, notation and facts

Our terminology and facts used are mostly standard: see [19] for topologi-
cal vector spaces; [27] and [21] for F -spaces and p-Banach spaces, (Schauder)
bases, basic sequences and their block sequences (also see [6]); and [1] for
locally solid Riesz spaces. For the reader’s convenience, we recall some fre-
quently used notions and facts, and fix some notation.

1.A. General notation. Given a set S, we let F (S) stand for the family
of all finite subsets of S, and P (S) for the power set of S. For a finite
set A, we denote by |A| the number of its elements. We write F and P
when S = N = {1,2, . . . }. If m,n ∈ N, then [m,n] := {k ∈ N : m ≤ k ≤ n} and
[n] = [1, n]; other types of intervals in N, like [m,n) or [m, ∞) are understood
likewise.

Whenever we speak about a set function, say μ, on a set S, it is defined on
the σ-algebra P (S), and we write μ(s) instead of μ({s}) for each s ∈ S.

For a scalar function f defined on a set S, we denote its support by s(f),
and its support at level r > 0 by s(f, r):

s(f) := {s ∈ S : f(s) 
= 0} and s(f, r) := {s ∈ S : |f(s)| > r}.

Likewise, if μ is a positive measure on S, then its support s(μ) is defined as

s(μ) = {s ∈ S : μ(s) > 0}.

1.B. Topological vector spaces. tvs stands for topological vector space.
An F -space is a complete metrizable tvs, i.e., one whose topology can be
defined by a complete F -norm. A p-Banach space is a complete p-normed
space. To avoid any ambiguity, we include some additional explanations.

Let X be a vector space and q : X → [0, ∞). Then q is an F -seminorm
[F -norm] if q(x+ y) ≤ q(x)+ q(y), q(tx) ≤ q(x) whenever |t| ≤ 1, q(tx) → 0 as
t → 0 [and q(x) = 0 only when x = 0]. If 0 < α ≤ 1 and, instead of the second
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and third conditions, q satisfies a stronger condition q(tx) = |t|αq(x), it is an
α-seminorm [α-norm]; we say simply seminorm [norm] when α = 1. In each
of these cases (including that of FG-norms below), (x, y) → q(x − y) is the
translation invariant semimetric [metric] associated with q.

Given a family Q of F -seminorms (α-seminorms; seminorms), it converts X
into a tvs (resp., locally α-convex space; locally convex space), see e.g., [19,
Sections 2.7 and 6.5]. If each q ∈ Q is an α-seminorm for some α = α(q), then
the resulting space is locally pseudoconvex, see [19, p. 109] or [27, Sec. 3.1].
For the converse results, see [19, Prop. 2.7.3 and Th. 6.5.1] and [27, Th. 3.1.4].

We shall constantly deal with sequence F -spaces continuously included in
the space ω of all scalar sequences. The following consequence of the closed
graph theorem is therefore worth keeping in mind.

Fact 1.1. If X and Y are F -spaces that are continuously contained in a
Hausdorff tvs Z, and X ⊂ Y , then the inclusion is continuous. In particular,
if X = Y , then their F -norms are equivalent.

An F -lattice is a complete metrizable topological Riesz space (or vector
lattice); thus its topology can be defined by a complete monotone F -norm. In
an F -lattice, every disjoint sequence (un) of nonzero elements is an uncondi-
tional Schauder basic sequence. In fact, it is even a bounded multiplier basic
sequence: if a series

∑
n ξnun converges, so does

∑
n αnξnun for all (αn) ∈ l∞.

1.C. The space ω. We denote by ω the locally convex F -lattice of all
scalar sequences equipped with the product (or coordinate-wise convergence)
topology. If A ⊂ N, its characteristic function eA is viewed as a sequence of
0’s and 1’s (so that eA ∈ ω). In particular, en := e{n} for n ∈ N are the unit
vectors in ω. For each x = (ξj) ∈ ω, its support s(x), and its support s(x, r) at
level r > 0 are understood as explained earlier, and its nth section xn (n ∈ N)
is defined as

xn :=
n∑

j=1

ξjej = xe[n].

Here, for x ∈ ω and A ⊂ N, xeA is the coordinate-wise product of x and eA.
A solid sequence space is a solid vector subspace (or an ideal) in ω equipped

with a locally solid Riesz topology. This class of spaces includes, in particular,
solid sequence F -spaces and Banach spaces. Standard examples are c0, l∞,
and lp for 0 < p < ∞, with the norms denoted ‖ · ‖ ∞ and ‖·‖p, respectively.

1.D. Fω-spaces and spaces with poor duals. Let X = (X,τ) be an
infinite-dimensional metrizable tvs (F -normed space) with separating (or to-
tal) dual X ′. Its Mackey topology μ(X,X ′) coincides with the strongest lo-
cally convex topology τ c ≤ τ . Hence, it is metrizable, because the absolutely
convex hulls of τ -neighborhoods of zero form a base for the τ c-neighborhoods
at zero. Further, dimX ′ = ℵ0 iff the weak topology σ(X,X ′) is metrizable
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iff σ(X,X ′) = τ c iff (X,τ c) is isomorphic to a (dense) subspace of ω. If this
happens and X is an F -space, we call it an Fω-space (see [7]).

We shall say that a tvs X has poor dual, or that its dual X ′ is poor, if X ′

is separating and dimX ′ = ℵ0.

Fact 1.2. Let X be a Hausdorff solid sequence space containing all the unit
vectors en, and let X0 be their closed linear span in X . Then both X and X0

have separating duals, and the following hold:
(a) the dual X ′

0 is poor iff X ′
0 = lin(e′

n), and
(b) the dual X ′ is poor and (X/X0)′ = {0} iff X ′ = lin(e′

n),
where (e′

n) is the sequence of coordinate functionals on X0 or X , respectively.

Proof. Let Y stand for either X or X0. Since the projections PA : x →
xeA (A ⊂ N) are (equi-) continuous on Y , the inclusion Y ⊂ ω is continuous.
Hence, lin(e′

n) ⊂ Y ′ and thus Y ′ is separating.
The ‘if’ direction is obvious in either of (a) and (b).
To verify the converse implications, assume that dimY ′ = ℵ0, and take any

x′ ∈ Y ′. We claim that the set M = {n : x′(en) 
= 0} is finite. Suppose it is not
so, and let (Mi)i∈I be a family of cardinality 2ℵ0 consisting of almost disjoint
infinite subsets of M . Then the functionals x′

i = x′ ◦ PMi on Y are obviously
continuous and, moreover, they are linearly independent. In fact, let i1, . . . , ik
be distinct indices in M such that α1x

′
i1

+ · · · + αkx′
ik

= 0 for some scalars
α1, . . . , αk. Given any j ∈ [k], there is nj ∈ Mij that belongs to no other of
the sets Mi1 , . . . ,Mik

. Then 0 = (α1x
′
i1

+ · · · + αkx′
ik

)(enj ) = αjx
′
ij

(enj ) =
αjx

′(enj ) so that αj = 0. It follows that dimX ′
0 ≥ 2ℵ0 , contradicting the

assumption, and proving the claim.
Let y′ =

∑
n∈M x′(en)e′

n. Then (x′ − y′)(en) = 0 for all n, hence x′ − y′ = 0
on X0 (because (en) is a Schauder basis of X0). If the dual of X/X0 is trivial,
then we also conclude that x′ − y′ = 0 on X . This completes the proof. �

1.E. Topological vector groups. A (locally balanced) topological vector
group (tvg) (cf. [9] and references therein) is a vector space X with a topol-
ogy τ such that the addition (x, y) → x + y is continuous, while the scalar
multiplication (t, x) → tx is required to be continuous only at point (0,0).
Then, for each scalar t, the map x → tx in X is continuous, but the maps
t → tx (x ∈ X) need not be continuous (at zero). In other terms, the topology
of a tvg X is required to be compatible with the group structure of (X,+)
and have a base for the neighborhoods of zero consisting of balanced sets (but
they need not be absorbing). If X = (X,τ) is a tvg, then

v(X) = v(X,τ) :=
{

x ∈ X : lim
t→0

tx = 0
}

is easily seen to be the largest vector subspace of X which, in the induced
topology, is a tvs. Moreover, v(X) is a closed subspace of X .
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Fact 1.3. Let a tvg X = (X,τ) have a base for the neighborhoods of zero
consisting of sets that are closed in another topological vector group topology ρ
on X . Then the ρ-closure of any bounded subset B of v(X) = v(X,τ) is again
a bounded subset of v(X).

Proof. Let U be a ρ-closed τ -neighborhood of zero in X . Then aB ⊂ U
for some a > 0. Since the map x → ax is an autohomeomorphism of (X,ρ),
aB

ρ
= aB

ρ ⊂ U . This also shows that B
ρ ⊂ v(X). �

The case most important for us is when X is an FG-normed space, that is,
has a topology determined by an FG-norm ‖ · ‖ : X → [0, ∞] (note that the
value ∞ is allowed) that satisfies all but the third condition in the definition
of an F -norm. Then, obviously,

v(X) = v(X, ‖·‖) =
{

x ∈ X : lim
t→0

‖tx‖ = 0
}

,

and ‖ · ‖ on v(X) is an F -norm. Hence, if the FG-normed space (X, ‖·‖) is
complete, v(X) is an F -space.

Many FG-norms arise as suprema of sequences of F -seminorms.

Fact 1.4. If (‖ · ‖n) is a total sequence of F -seminorms on a vector space X ,
then ‖·‖ := supn ‖ · ‖n is an FG-norm on X , and

v0(X) :=
{

x ∈ X : lim
n→∞

‖x‖n = 0
}

is a closed subspace of v(X) = v(X, ‖·‖).

Proof. Simply note that the FG-seminorm limsupn ‖·‖n is ≤ ‖ ·‖, hence
continuous on (X, ‖·‖), and that v0(X) is its kernel. �

1.F. l∞- and c0-sums of F -spaces. Given a sequence (Fk) of F -spaces
Fk = (Fk, ‖·‖k), the formula

‖x‖ = sup
k

‖xk ‖k for x = (xk)

defines a complete FG-norm ‖ · ‖ in the product F of the Fk’s, and v(F ) =
{x ∈ F : ‖tx‖ → 0 as t → 0} is the largest subspace of F on which ‖·‖ is an
F -norm. (Note of caution: condition ‖tx‖ → 0 as t → 0 is used here, not the
weaker condition that ‖x‖ < ∞!) Equipped with this F -norm, E∞ = v(F ) is
an F -space, called the l∞-sum of the sequence (Fk). The closed subspace E0

of F consisting of all x = (xk) with limk ‖xk ‖k = 0 is automatically a closed
subspace of E∞ (Fact 1.4), hence an F -space, and is called the c0-sum of
the sequence (Fk). These l∞- and c0-sums are often denoted (

∑
k Fk)∞ and

(
∑

k Fk)0, respectively.
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1.G. L0(μ) spaces. Let (S,Σ, μ) be a positive measure space. L0(μ) ≡ L0(S)
is the space of all (Σ-) measurable scalar functions on S (with the usual
identification of functions that are equal μ-almost everywhere). We equip
L0(μ) with the topology τμ of convergence in measure μ on S. It converts
L0(μ) into a complete metrizable tvg. A base of balanced neighborhoods of
zero for τμ is given by the sets

{f ∈ L0(μ) : μ(s(f, ε)) ≤ ε}, ε > 0.

Alternatively, τμ is determined by the monotone FG-norm ‖ · ‖μ defined by

‖f ‖μ = inf{ε > 0 : μ(s(f, ε)) ≤ ε}.

Note that |fn| ↑ |f | implies ‖fn‖μ ↑ ‖f ‖μ.

L̃0(μ) := v(L0(μ), ‖ · ‖μ) =
{

f ∈ L0(μ) : lim
t→0

‖tf ‖μ = 0
}

with the F -norm ‖ · ‖μ is an F -space, by Section 1.E. Moreover, as easily seen,
if f ∈ L0(μ), then

f ∈ L̃0(μ) ⇐⇒ lim
r→∞

μ(s(f, r)) = 0,

which in turn is equivalent to the existence of an r > 0 with μ(s(f, r)) < ∞;
that is, f is bounded outside a set of finite μ measure. Note that the spaces
Lp(μ) for 0 < p ≤ ∞ are continuously embedded in L̃0(μ).

If the measures space (S,Σ, μ) is finite, L̃0(μ) = L0(μ). In this case, some
‘integral’ F -norms defining τμ and thus equivalent to ‖·‖μ (see Fact 1.6 below)
are often used, e.g.,

‖f ‖0
μ =

∫
S

min(1, |f |)dμ.

Note that
max(‖f ‖μ, ‖f ‖0

μ) ≤ μ(s(f)) ≤ μ(S).
We stress that, for us, ‖·‖0

μ is the standard F -norm in all of the L0-spaces
over finite measures that will enter the scene in the course of the paper.

Fact 1.5. If μ is a finite measure, then for all f ∈ L0(μ) and scalars
r, t > 0,

(a) μ(s(f, r)) ≤ ‖r−1f ‖0
μ, and

(b) ‖tf ‖0
μ ≤ μ(s(f, r)) + min(1, tr)μ(S).

Proof. This is easy:

μ(s(f, r)) =
∫

s(f,r)

min(1, |r−1f |)dμ ≤ ‖r−1f ‖0
μ

and

‖tf ‖0
μ =

∫
s(f,r)

min(1, |tf |)dμ +
∫

S\s(f,r)

min(1, |tf |)dμ

≤ μ(s(f, r)) + min(1, tr)μ(S). �
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Fact 1.6. If μ(S) ≤ m < ∞, then for every f ∈ L0(μ),

1
m

(‖mf ‖μ)2 ≤ ‖f ‖0
μ ≤

(
1 + μ(S)

)
‖f ‖μ,

where one may replace m with 1 when m ≤ 1.

Proof. If ‖f ‖μ < ε, then from (b) above with r = ε and t = 1 one gets
‖f ‖0

μ ≤ (1 + μ(S))ε. From this the second inequality follows.
To verify the other inequality, assume first that m ≤ 1, and take any ε > 0

such that ‖f ‖0
μ ≤ ε2 ≤ m. Then s(f, ε) ⊂ {s : min(1, |f(s)|) ≥ ε} and, there-

fore, μ(s(f, ε)) ≤ ε−1‖f ‖0
μ ≤ ε. It follows that (‖f ‖μ)2 ≤ ‖f ‖0

μ.
In the general case, let ν = m−1μ. Then, by the case already proved,

(‖f ‖ν)2 ≤ ‖f ‖0
ν . But, as easily verified, ‖f ‖0

ν = m−1‖f ‖0
μ and ‖f ‖ν = m−1 ×

‖mf ‖μ. Substituting this into the previous inequality, one gets the first in-
equality of the fact. �

If S is a finite nonempty set, then it is usually considered with its uniform
probability measure μS . Thus, μS(A) = |A|/|S| for all A ⊂ S and

‖f ‖0 =
∫

S

min(1, |f |)dμS =
1

|S|
∑
s∈S

min(1, |f(s)|)

is the standard F -norm in L0(S). In the case S ⊂ N, we shall usually treat
μS as a measure on N by setting

μS(A) = μS(A ∩ S) =
|A ∩ S|

|S| for A ⊂ N.

Finally, let us note the following.

Fact 1.7. If μ is a finite positive measure on N, and S := s(μ) is its
support, then the F -space L0(μ) = L0(S,μ), with its standard F -norm ‖x‖0

μ =∫
N

min(1, |x|)dμ, is either finite dimensional or isomorphic to ω, depending
on whether S is finite or not.

Note. For each x ∈ ω, the equivalence class [x] ∈ L0(μ) is represented by
x|S ∈ L0(S,μ).

2. Quasi-L0-like spaces

Let E = (E,τ) be a tvs. We shall say that E (or its topology τ ) is

• L0-like if for every neighborhood U of zero in E there is an m ∈ N such
that E ⊂ U (m) := U + · · · + U (m summands);

• quasi-L0-like if for every neighborhood U of zero in E there is a finite-
codimensional subspace L in E and an m ∈ N such that L ⊂ U (m). (Since
L ⊂ L + U , and hence L ⊂ U (m+1), L may be assumed closed.)



634 L. DREWNOWSKI AND I. LABUDA

Note that for E to be L0-like is the same as to be an additively bounded subset
of itself, see [30, Sec. 0.3.10]; sometimes, as in [13, p. 56] or as in Section 12
of this paper, additively bounded sets are also called metrically bounded.

If μ is a finite atomless positive measure, L0(μ) is L0-like. Many of the
F -spaces discussed later in this paper are quasi-L0-like, but not L0-like.

Fact 2.1. If a tvs E is (quasi-) L0-like, so is E equipped with any weaker
vector topology, and so is each quotient space of E.

The following is a fairly known fact, at least for the L0(μ) spaces mentioned
above. It can be shown by simplifying the proof of our next result.

Proposition 2.2. Let p be a subadditive functional on an L0-like tvs E.
If p is bounded in a neighborhood of zero, then it is bounded on E.

In consequence, if p is a continuous α-seminorm on E, then p = 0.

Proposition 2.3. Let E be a quasi-L0-like tvs, and p a subadditive func-
tional on E. If p is bounded in a neighborhood U of zero, and a subspace
L ⊂ X of finite-codimension is such that L ⊂ U (m) for some m, then p is
bounded on L. In particular, if p is an α-seminorm, then p = 0 on L.

In consequence, if p is a continuous α-seminorm on E, then kerp is of
finite codimension and, therefore, p is equivalent to a seminorm.

Proof. By the assumption, there is a constant c > 0 such that |p(x)| ≤ c
whenever x ∈ U . If x ∈ L, then x = x1 + · · · + xm for some x1, . . . , xm ∈ U
and, therefore,

p(x) ≤
m∑

i=1

p(xi) ≤ mc and −p(x) ≤ p(−x) − p(0) ≤ mc + c

so that |p(x)| ≤ (m + 1)c. If p is an α-seminorm, then p(tx) = tαp(x) ≤
(m + 1)c for all t > 0, whence p(x) = 0. This proves the main assertion.

Now, if p is a continuous α-seminorm then, by the previous part, kerp is of
finite codimension and, of course, closed. Let M ⊂ E be a finite-dimensional
subspace complementary to kerp, and P : E → M the associated (continuous)
projection. To get a required seminorm q, choose any norm r on M and then
extend it to all of E by setting q(x) = r(Px) for x ∈ E. �

Corollary 2.4. For a tvs E = (E,τ), let τpc denote the finest locally
pseudoconvex topology in E that is weaker than τ .

(a) If E is L0-like, then E′ = {0} and τpc is the trivial topology.
(b) If E is quasi-L0-like, then τpc = σ(E,E′).

Proof. (a) follows from Proposition 2.2.
(b) τpc is determined by the family of all continuous α-seminorms p,

where α may depend on p. By Proposition 2.3, each of those p’s is equiv-
alent to a seminorm with a finite-codimensional kernel. Hence, τpc is lo-
cally convex and σ(E,E′) ≤ τpc. The converse inequality holds because if
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q is a continuous seminorm on E with a finite-codimensional kernel, then
q ≤ max{|x′

1|, . . . , |x′
k | } for some x′

1, . . . , x
′
k in E′, by the Hahn–Banach theo-

rem. �
Corollary 2.5. Let E = (E,τ) by an infinite-dimensional metrizable

quasi-L0-like tvs with separating dual. Then E has poor dual, σ(E,E′) =
τ c = τpc is metrizable, and (E,σ(E,E)) is isomorphic to a dense subspace
of ω.

Proof. This follows from the assumptions and Corollary 2.4(b), using the
facts collected in Section 1.D. For future reference, in the proof of Corol-
lary 11.3, we give a direct argument showing that dimX ′ = ℵ0.

Let (Un) be a base for the neighborhoods of zero in E, and (Ln) a sequence
of finite-codimensional closed subspaces of E such that Ln ⊂ U

(mn)
n for some

mn (n ∈ N). For each n, choose a finite set Fn ⊂ E′ such that Ln is the
intersection of the kernels of the functionals in Fn. Now, if x′ ∈ E′ then, by
Proposition 2.3, kerx′ ⊃ Ln for some n, and hence x′ ∈ linFn. Therefore, E′

is the linear span of the union of the Fn’s, hence dimE′ = ℵ0. �
Corollary 2.6. Let E = (E,τ) be a quasi-L0-like F -space with separating

dual. Then a locally pseudoconvex closed subspace Z of E is complemented iff
it is either finite-dimensional or isomorphic to ω.

Proof. Since E′ is separating, all finite-dimensional subspaces of E are com-
plemented. So let Z be an infinite-dimensional locally pseudoconvex closed
subspace of E.

Before proceeding, recall from Corollary 2.5 that τpc = σ(E,E′) and that
(E,τpc) is isomorphic to a dense subspace of ω. Hence, the completion F of
(E,τpc) is isomorphic to ω.

Assume that there is a continuous linear projection P from E onto Z. Then
P is also continuous when E is considered with the topology τpc, hence P has
an extension to a continuous linear operator P̃ from F onto Z. Thus, Z is
isomorphic to a quotient of ω and, consequently, Z is isomorphic to ω itself
(see [2, Th. 4]).

Conversely, assume that Z is isomorphic to ω. Then Z is a minimal space
(see [6, Prop. 3.1(c)] and its proof for more information), hence τ |Z = τpc|Z.
It follows that there is a continuous linear projection Q from F onto Z, and
then Q|E is automatically a continuous projection from E onto Z. �

Corollary 2.7. A quasi-L0-like F -space with separating dual is an Fω-
space.

By essentially the same proof as for Corollary 2.6, one shows the following
corollary.

Corollary 2.8. In an Fω-space, a locally convex closed subspace is com-
plemented iff it is either finite-dimensional or isomorphic to ω.
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3. General submeasures on a set

Let S be an arbitrary set. A set function η : P (S) → [0, ∞] is a submeasure
on S if it is subadditive, nondecreasing, and η(∅) = 0; we let

Z(η) := {A ⊂ S : η(A) = 0}
stand for the ideal of all η-zero sets. We shall often assume that η is lower
semicontinuous (lsc), that is,

(lsc) η(An) ↑ η(A) whenever An ↑ A.

It is easy to see that if S is countable, this condition is implied by its ap-
parently weaker form in which the sets An are assumed to be finite. Also, it
follows from (lsc) that η is countably subadditive. (For more information on
submeasures on rings of sets, see [3].)

A submeasure η on S is said to be strongly nonatomic if for every ε > 0
there is a finite partition A1, . . . ,Ak of S such that η(Aj) < ε for each j. Then,
obviously, F (S) ⊂ Z(η) and η(S) < ∞. (See [17, Sec. 6] for more information
and other notions of nonatomicity for submeasures.)

From now on, we shall abbreviate strongly nonatomic to nonatomic.
The following fact is implicit in [17] as an immediate consequence of Propo-

sitions 3.1, 3.4, and 6.3 stated in that paper, but the proof given below is
straightforward.

Fact 3.1. If a submeasure η on S is nonatomic, then every infinite set
A ⊂ S contains an infinite set B ∈ Z(η).

Proof. Assume A /∈ Z(η) and apply the nonatomicity of η to produce a
decreasing sequence (An) of subsets of A such that 0 < η(An) < 1/n. Next,
choose a sequence of distinct points (cn) such that cn ∈ An, and then define
Bn = An ∪ {c1, . . . , cn}. Since η(Bn) = η(An) < 1/n, B =

⋂
n Bn ∈ Z(η) and

cn ∈ B for all n. �

For every submeasure η on S, we define its core submeasure η• by

η•(A) := inf{η(A \ F ) : F ∈ F (A)};

it will play an important role in what follows. It can be viewed as the inverse
image of the quotient submeasure η̂ on the algebra P (S)/F (S). Note that
η• ≤ η and F (S) ⊂ Z(η•), and that η• is the largest submeasure satisfying
these two conditions. Hence, η• = η iff F (S) ⊂ Z(η); in particular, (η•)• = η•.

Remark 3.2. The core of a submeasure, without giving it any name, has
already been used implicitly or explicitly in some earlier works, see e.g., [28]
or [29] (the definition of Exh(φ)), or [18] (where ‖A‖φ stands for our φ•(A)).

Fact 3.3. Let η be a submeasure on S. If

(∗) inf
s∈S\F

η(s) > 0 for some F ∈ F (S),
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then Z(η•) = F (S). Conversely, if Z(η•) = F (S) and η is countably subaddi-
tive, then η satisfies condition (∗).

Proof. The first statement is obvious. To prove the other one, suppose
(∗) is false. Then there is an infinite set A = {an : n ∈ N} ⊂ S such that
η(an) → 0, and we may of course assume that

∑
n η(an) < ∞. Then, using

countable subadditivity of η, it is easily seen that η(A \ {a1, . . . , an}) → 0 as
n → ∞. Hence, A ∈ Z(η•), which is impossible. �

Fact 3.4. Let η be a submeasure on S and let A ⊂ S. Then η•(A) = 0
iff there is a countable set A0 ⊂ A such that η(A \ A0) = 0 and η is order
continuous on A0, that is, whenever An ⊂ A0 and An ↓ ∅, then η(An) → 0.

In particular, if the set A is countable, then η•(A) = 0 iff η is order con-
tinuous on A.

Proof. ‘Only if.’ Let η•(A) = 0. Then there is an increasing sequence (Fn)
in F (A) such that η(A \ Fn) → 0. Let A0 be the union of the Fn’s. Then
η(A \ A0) ≤ η(A \ Fn) for each n, hence η(A \ A0) = 0. Now, if An ⊂ A0 and
An ↓ ∅, then for each n choose a maximal mn such that Fmn ⊂ A0 \ An. Then
η(An) ≤ η(A0 \ Fmn) → 0 because mn → ∞.

‘If.’ Let (Fn) be an increasing sequence in F (A0) with union A0. Then
η(A \ Fn) ≤ η(A \ A0) + η(A0 \ Fn) = η(A0 \ Fn) → 0 because η(A \ A0) = 0
and A0 \ Fn ↓ ∅. It follows that η•(A) = 0. �

Fact 3.5. Let η be a submeasure on S, and let An ↓ ∅. Then

lim
n→∞

η•(An) = lim
n→∞

η(An).

In consequence, for every scalar function f on S,

lim
r→∞

η•(s(f, r)) = lim
r→∞

η(s(f, r)).

Proof. Evidently, the limits exist in [0, ∞]. Now, take any a > limn η•(An)
and fix k such that η•(Ak) < a. By the definition of η•, there is a finite set
F ⊂ Ak with η(Ak \ F ) < a. Since An ↓ ∅, there is m > k for which Am ⊂
Ak \ F , and then η(Am) < a. This proves the inequality ≥ between the two
limits. Since η ≥ η•, the other inequality is obvious. �

We shall say that a submeasure η on S is core-nonatomic if its core η• is
nonatomic. Note that then η(S \ F ) < ∞ for some F ∈ F (S).

From Fact 3.1 and the relevant definitions, one easily gets the following.

Corollary 3.6. If a submeasure η on S is core-nonatomic, then in every
infinite set A ⊂ S one can find a decreasing sequence (An) of its infinite subsets
such that η(An) → 0 as n → ∞. In consequence, η(sn) → 0 as n → ∞ for every
sequence (sn) of distinct points in S.

A direct characterization of core-nonatomicity is very simple.
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Fact 3.7. A submeasure η on S is core-nonatomic iff for every ε > 0 there
is a finite partition A0,A1, . . . ,Ak of S such that A0 ∈ F (S) and η(Aj) < ε
for each 1 ≤ j ≤ k.

Proof. ‘If.’ Defining B1 = A0 ∪ A1 and Bj = Aj for j > 1, one has η•(Bj) =
η•(Aj) ≤ η(Aj) < ε for all 1 ≤ j ≤ k.

‘Only if.’ Assume η• is nonatomic. Thus, given ε > 0, there is a partition
B1, . . . ,Bk of S with η•(Bj) < ε for each j. By the definition of η•, for each j
there is Fj ∈ F (Bj) with η(Bj \ Fj) < ε. Then A0 := F1 ∪ · · · ∪ Fk ∈ F (S), and
η(Aj) < ε, where Aj := Bj \ Fj , for j = 1, . . . , k. �

If η and γ are submeasures on a set S, then γ is said to be η-continuous,
denoted γ � η, if for each ε > 0 there is δ > 0 such that γ(A) < ε whenever
η(A) < δ. If also η � γ, then η and γ are called equivalent, denoted η ∼ γ.

Fact 3.8. For any submeasures η and γ on a set S, if γ � η, then γ• � η•.
In consequence, if η ∼ γ, then also η• ∼ γ•.

Proof. Let ε > 0 and δ > 0 be as in the definition above. If η•(A) < δ, then
η(A \ F ) < δ for some F ∈ F (A). Hence, γ•(A) ≤ γ(A \ F ) < ε. �

If η is a submeasure on a countable set S, then the definition of η• can be
equivalently given in the form

η•(A) = lim
n→∞

η(A \ Fn),

where (Fn) is any fixed increasing sequence of finite sets with union S. Hence,
η• = 0 iff η(S \ Fn) → 0 iff η is order continuous, that is, η(An) → 0 whenever
An ↓ ∅ (see Fact 3.4).

Fact 3.9. Let η be a lsc submeasure on a countable set S, and let A ⊂ S.
(a) If η•(A) > a > 0, then A is the union of a disjoint sequence (Ak) of finite

sets with infk η(Ak) ≥ a.
(b) If A is the union of a sequence (Ak) of sets with infk η(Ak) > a > 0, and

every F ∈ F (A) is disjoint from some Ak, then η•(A) > a.

Proof. (a) We may assume that S = N. Fix any b such that a < b < η•(A).
As η ≥ η• and η is lsc, there is m1 ∈ N such that η(A ∩ [1,m1)) > b. Since
then, by the definition of η•, η(A \ [1,m1)) > b, there is m2 > m1 with η(A ∩
[m1,m2)) > b. But again, η(A \ [1,m2)) > b, hence there exists m3 > m2

such that η(A ∩ [m2,m3)) > b. We continue in this manner to find 1 = m0 <
m1 < · · · with η(A ∩ [mk−1,mk)) > b for all k ≥ 1, and then the sets Ak :=
A ∩ [mk−1,mk) are as required.

(b) Fix any b with a < b < infk η(Ak). Take any F ∈ F (A) and next select k
so that Ak ⊂ A \ F ; then b < η(Ak) ≤ η(A \ F ). From this it follows that
η•(A) > a. �
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Remark. If S = N, the extra assumption on (Ak) in (b) can be written as
supk minAk = ∞.

4. Submeasures on N defined by sequences of measures

Let μ = (μn) be a sequence of finite positive measures on N. It gives rise
to the submeasures (or densities) dμ and d̄μ on N defined by

dμ(A) = limsup
n→∞

μn(A) and d̄μ(A) = sup
n

μn(A).

Clearly, dμ ≤ d̄μ and d̄μ (but not dμ, in general) is lsc, that is,

d̄μ(An) ↑ d̄μ(A) whenever An ↑ A;

consequently, it is countably subadditive.
We will sometimes assume one or more of the following conditions on μ.

(A) For each k ∈ N, μn(k) → 0 as n → ∞ or, equivalently, F ⊂ Z(dμ).
(Ā) supk μn(k) → 0 as n → ∞.
(B) The sequence μ is uniformly bounded, that is, d̄μ(N) < ∞.
(C) For each k ∈ N, d̄μ(k) = supn μn(k) → 0 as k → ∞.
It is not hard to see that (Ā) is equivalent to (A) & (C).

The fact below, though very simple, is quite useful.

Fact 4.1. (d̄μ)• ≤ dμ ≤ d̄μ, hence (d̄μ)• = (dμ)•, and (d̄μ)• = dμ iff μ
satisfies condition (A).

Proof. Take any A ⊂ N and a > dμ(A). Then there is k such that μn(A) < a
for all n > k. Next, by the countable additivity of the μn’s, there is F ∈ F (A)
such that μn(A \ F ) < a for all n ≤ k. Hence μn(A \ F ) < a for all n and thus
d̄μ(A \ F ) ≤ a. In consequence, (d̄μ)•(A) ≤ dμ(A). The other inequality is
trivial.

If (A) is assumed, A ⊂ N and F ∈ F (A), then dμ(F ) = 0 so that dμ(A) =
dμ(A \ F ) ≤ d̄μ(A \ F ). Hence dμ(A) ≤ (d̄μ)•(A). On the other hand, if
dμ ≤ (d̄μ)•, then F ⊂ Z((d̄μ)•) ⊂ Z(dμ), and μ must satisfy (A). �

The result below is a strengthened version of Fact 3.9(a) for the special
case of η = d̄μ and μ satisfying (A). It can be proved by an easy induction.

Fact 4.2. Assume that μ = (μn) satisfies condition (A), and let A ⊂ N

with dμ(A) > 0. Then, given sequences dμ(A) > ak ↑ dμ(A) and 0 < εk ↓ 0,
there exist sequences 1 ≤ n1 < n2 < · · · and 1 = m0 < m1 < · · · in N such that
for every k ≥ 1,

μnk

(
A ∩ [mk−1,mk)

)
> ak and μnk

(
N \ [mk−1,mk)

)
< εk.

Consequently, A is the union of the disjoint finite sets Ak := A ∩ [mk−1,mk)
satisfying d̄μ(Ak) > ak for each k ≥ 1.
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It is worthwhile to note the following fact. Its first assertion is implicit in
[17, Props. 6.3 and 5.2].

Fact 4.3. If dμ is nonatomic, then μ satisfies conditions (Ā) and (B); in
consequence, (d̄μ)• = dμ, and d̄μ is core-nonatomic. Conversely, if μ satisfies
condition (A) and d̄μ is core-nonatomic, then dμ is nonatomic.

Note. In general, ‘dμ is nonatomic’ is a stronger requirement than ‘d̄μ is
core-nonatomic’, see Remark 4.4(f).

Proof of Fact 4.3. If (Ā) fails, then one can easily find strictly increasing
sequences (nk) and (mk) in N such that, for some ε > 0, μnk

(mk) ≥ ε for every
k. Let A := {mk : k ∈ N}. Then dμ(B) ≥ ε for every infinite subset B of A
which is impossible in view of Fact 3.1. As for (B), since dμ is nonatomic,
dμ(N) < ∞, and hence d̄μ(N) < ∞. To finish, appeal to Fact 4.1. �

Remarks 4.4. (a) As an important special case, let us point out that every
sequence F = (Fn) of finite nonempty subsets of N determines densities dF

and d̄F on N by the formulas

dF(A) = limsup
n→∞

|A ∩ Fn|
|Fn| = limsup

n→∞
μFn(A)

and

d̄F(A) = sup
n

|A ∩ Fn|
|Fn| = sup

n
μFn(A).

Clearly, d̄F(N) = 1, and d̄F is strictly positive iff (Fn) covers N. If |Fn| → ∞,
then the sequence (μFn) satisfies conditions (Ā), (B) and (C), and thus in this
case dF = (d̄F)•.

(b) In particular, if Fn = [n] for each n ∈ N, then dF is the standard (upper)
density on N. In this case, we write simply dn, d, d̄, and Z instead of μFn ,
dF, d̄F, and Z(d), respectively, and refer to the sets A ∈ Z as sets of density
zero. Note that if A = {n1 < n2 < · · · }, then d(A) = limsupk→∞(k/nk).

(c) Another particular case is when Fn = [2n−1,2n) for n ∈ N. Then,
writing δn, δ and δ̄ instead of μFn , dF and d̄F, one can easily verify that
1
2δ ≤ d ≤ 2δ and 1

2 δ̄ ≤ d̄ ≤ 2δ̄. (This follows also from the relations between the
F -norms ‖·‖ and �· � established in the proof of Proposition 13.1.) Thus the
densities d and δ are equivalent. In particular, Z = Z(δ) (cf. [13, Prop. 3.2]).

(d) By using arithmetic progressions Aj = {j + (k − 1)r : k ∈ N}, where
r ∈ N and j = 1, . . . , r, one easily sees that the standard density d is nonatomic
(and d̄ is core-nonatomic). Hence, so is the density δ, but for this case a more
general result is easily available: The density dF determined by a disjoint
sequence F = (Fn) is nonatomic iff |Fn| → ∞ as n → ∞. For a more advanced
result that can be applied in the case of densities dμ, see [17, Th. 6.8]. A very
general (in fact, best possible) result that characterizes those sequences F
which, irrespectively of any set-theoretical interrelations between their terms,
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determine a nonatomic density, was established in [14]: If there is a constant
γ ≥ 0 such that | {n : |Fn| = m} | ≤ 2γm for each m ∈ N, then dF is nonatomic.

(e) One of our major open problems is that we do not know if there exists
a strictly positive lsc submeasure η on N, preferably core-nonatomic, that is
not equivalent to a submeasure of type d̄μ.

This is possible for a general submeasure η on N (the reader is referred to
[17] for the necessary explanations): Let L be the ideal generated by lacunary
sets, and ν any strictly positive finite measure on N. Define a submeasure η
by η(A) = ν(A) if A ∈ L, and η(A) = 1 + ν(A) otherwise. Then Z(η•) = L
has (ASP) but not (NP) by [17, Ex. 4.2], so it also fails to have (AP) by [17,
Th. 3.5]. Suppose there is a μ with η ∼ d̄μ. Then η• ∼ (d̄μ)• so that L =
Z((d̄μ)•). However, since d̄μ is lsc and, consequently, countably subadditive,
the ideal Z((d̄μ)•) has (AP), by [29], proof of the implication (iii) =⇒ (i) on
p. 59 (see also [15]). A contradiction.

(f) With every strictly positive σ-finite measure μ on N one may associate a
sequence μ = (μn) of finite measures by letting μn(A) := μ(A ∩ [1, n]). Then μ
fails to satisfy (A), and is uniformly bounded iff μ is finite. Furthermore, d̄μ =
dμ = μ, and (d̄μ)•(A) = 0 if μ(A \ F ) < ∞ for some F ∈ F , and (d̄μ)•(A) = ∞,
otherwise. In particular, if μ is finite, then (d̄μ)• = 0; thus d̄μ is trivially core-
nonatomic, while dμ = μ is not nonatomic.

5. FG-norms in ω determined by sequences of measures

Let μ = (μn) be a sequence of finite positive measures on N such that

0 < d̄μ(k) = sup
n

μn(k) < ∞ for each k ∈ N

or, equivalently, such that 0 < d̄μ(F ) < ∞ for all ∅ 
= F ∈ F . We shall refer to
such μ’s as admissible.

In the present section, only the strict positivity of d̄μ is of importance.
We use μ to define two sequences of F -seminorms in ω, and associate a ‘sup’
FG-norm to each of them.

For every x = (ξj) in ω, let (cf. Section 1.G)

‖x‖0
μn

=
∫

N

min(1, |x|)dμn and ‖x‖0
μ = sup

n
‖x‖0

μn

as well as

‖x‖μn = inf{ε > 0 : μn(s(x, ε)) ≤ ε} and ‖x‖μ = sup
n

‖x‖μn .

It is not hard to check that

‖x‖μ = ‖x‖d̄μ
,

where ‖·‖d̄μ
is the FG-norm

‖x‖d̄μ
= inf{ε > 0 : d̄μ(s(f, ε)) ≤ ε}
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defining in ω the topology τd̄μ
of convergence in submeasure d̄μ. Thus, for

any sequence (xk) in ω, ‖xk ‖d̄μ
→ 0 iff d̄μ(s(xk, ε)) → 0 for each ε > 0.

It is also easily seen that the sequence of F -seminorms (‖ · ‖0
μn

) determines
the topology of ω, and that ‖ · ‖0

μ is a monotone FG-norm on ω. Thus, ‖ · ‖0
μ

is subadditive, vanishes only at zero, and ‖x‖0
μ ≤ ‖y‖0

μ whenever x, y ∈ ω and
|x| ≤ |y|. Evidently, the topology τ0

μ defined by ‖·‖0
μ is stronger than the usual

topology of ω.
Moreover, since each ‖·‖0

μn
is a continuous function on ω, the FG-norm

‖·‖0
μ is lower semicontinuous on ω. That is, if xk → x in ω, then ‖x‖0

μ ≤
lim infk ‖xk ‖0

μ; in other terms, closed ‖·‖0
μ-balls are closed in ω. It follows

that (ω, ‖·‖0
μ) is complete (by [19, Th. 3.2.4] adapted to tvg’s).

The same is true for the F -seminorms ‖·‖μn , the FG-norm ‖ · ‖μ and its
topology τμ, and thus also (ω, ‖·‖μ) is a complete tvg.

Note that in the case of μ = (dn),

‖x‖0
dn

=
1
n

n∑
j=1

min(1, |ξj |).

We now give a few simple facts concerning the F -seminorms and FG-norms
defined above. First, note that directly from the definitions it follows that

‖x‖0
μn

≤ μn(s(x)), ‖x‖0
μ ≤ d̄μ(s(x))

and
‖x‖0

μn
≤ μn(N)‖x‖∞, ‖x‖0

μ ≤ d̄μ(N)‖x‖∞.

Likewise for ‖·‖μn and ‖ · ‖μ, but with μn(N) and d̄μ(N) replaced by 1.
Moreover, for any scalar t and set A ⊂ N, one has

‖teA‖0
μn

= min(1, |t|)μn(A) and ‖teA‖0
μ = min(1, |t|)d̄μ(A).

Next, as direct consequences of Facts 1.5 and 1.6, we have the following.

Fact 5.1. For each x ∈ ω, r, t > 0, and n ∈ N,

(a) μn(s(x, r)) ≤ ‖r−1x‖0
μn

, and
(b) ‖tx‖0

μn
≤ μn(s(x, r)) + min(1, tr)μn(N)

whence

(a′) d̄μ(s(x, r)) ≤ ‖r−1x‖0
μ, and

(b′) ‖tx‖0
μ ≤ d̄μ(s(x, r)) + min(1, tr)d̄μ(N).

Fact 5.2. If μn(N) ≤ m, then for every x ∈ ω,

1
m

(‖mx‖μn)2 ≤ ‖x‖0
μn

≤
(
1 + μn(N)

)
‖x‖μn ,

where one may replace m with 1 when m ≤ 1.



SOLID SEQUENCE F -SPACES OF L0-TYPE 643

Hence, if μ is uniformly bounded and μn(N) ≤ m < ∞ for all n, then
1
m

(‖mx‖μ)2 ≤ ‖x‖0
μ ≤ (1 + m)‖x‖μ.

The corollary below follows easily from Fact 5.1, while its second part is
also immediate from Fact 5.2.

Corollary 5.3. τμ = τd̄μ
≤ τ0

μ, that is, ‖·‖μ = ‖ · ‖d̄μ
is weaker than ‖ · ‖0

μ,
and the converse relation holds provided μ is uniformly bounded.

Thus, if μ is uniformly bounded, then τμ = τd̄μ
= τ0

μ, that is, ‖ · ‖0
μ and

‖·‖μ = ‖·‖d̄μ
are equivalent.

Fact 5.4. Each of the F -seminorms or FG-norms ‖·‖ considered here has
the property that ‖xk ‖ ↑ ‖x‖ whenever |xk | ↑ |x|.

In particular, if x = (ξj) ∈ ω and xk =
∑k

j=1 ξjej (k ∈ N), then

‖x‖0
μn

= sup
k

‖xk ‖0
μn

(n ∈ N) and ‖x‖0
μ = sup

k
‖xk ‖0

μ.

Likewise for ‖·‖μn and ‖ · ‖μ = ‖ · ‖d̄μ
.

We finish with a simple consequence of Facts 3.5 and 4.1.

Fact 5.5. For each x ∈ ω,

lim
r→∞

dμ(s(x, r)) = lim
r→∞

d̄μ(s(x, r)).

6. The F -lattices λ0(μ) and λ00(μ)

Let μ = (μn) be an admissible sequence of measures on N, and (ω, ‖·‖0
μ)

the complete FG-normed space from Section 5. Then, as we know from
Section 1.E,

λ0(μ) := v(ω, ‖·‖0
μ) =

{
x ∈ ω : lim

t→0
‖tx‖0

μ = 0
}

is the largest linear subspace on which ‖·‖0
μ induces a vector topology, and

λ0(μ) is closed in (ω, ‖·‖0
μ). Thus, λ0(μ), equipped with the F -norm ‖ · ‖0

μ, is
an F -space whose topology is stronger than the topology of coordinate-wise
convergence. By Fact 1.4,

λ00(μ) := v0(ω, ‖·‖0
μ) =

{
x ∈ ω : lim

n→∞
‖x‖0

μn
= 0

}
is a closed subspace of λ0(μ). Moreover, both λ0(μ) and λ00(μ) are solid
subspaces (or ideals) in ω, and the F -norm ‖ · ‖0

μ is monotone. Thus, λ0(μ)
and λ00(μ) are F -lattices. Far more important than λ00(μ) is the Lebesgue
subspace λc

0(μ) of λ0(μ) (the largest one on which the F -norm ‖ · ‖0
μ is order

continuous); it can be defined as

λc
0(μ) :=

{
x ∈ λ0(μ) : lim

m→∞
‖x − xm‖0

μ = 0
}
.
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Note that for a set A ⊂ N, eA is in λ0(μ) (resp., λ00(μ)) iff d̄μ(A) < ∞
(resp., dμ(A) = 0). Hence, by the admissibility of μ, eA ∈ λ0(μ) for each
A ∈ F . In particular, all the unit vectors ek are in λ0(μ), and the support
of λ0(μ) is all of N. On the other hand, ek ∈ λ00(μ) iff dμ(k) = 0, and
λ00(μ) 
= {0} iff such k exist.

Proposition 6.1. The sequence (ek) of unit vectors is a basis for λc
0(μ),

and its subsequence (ek)k∈K , where K = {k : dμ(k) = 0}, is a basis for λ00(μ).
In consequence, λ00(μ) = λc

0(μ) iff μ satisfies condition (A).

Proof. The first assertion is obvious. To verify the other one, take any
x in λ00(μ) and note that s(x) ⊂ K. Given ε > 0, choose k ∈ N so that
‖x‖0

μn
≤ ε for all n > k. Next, select m ∈ N with μn((m, ∞)) ≤ ε for n ≤ k.

Then ‖x − xm‖0
μn

≤ ‖x‖0
μn

≤ ε for n > k, and ‖x − xm‖0
μn

≤ μn((m, ∞)) ≤ ε

for n ≤ k. Hence, ‖x − xm‖0
μ ≤ ε, which completes the proof. �

If μ = (dn), the sequence defining the standard density d (Remark 4.4(b)),
we simplify the notation λ0(μ) and λ00(μ) to

λ0 and λ00 = λc
0.

Remark 6.2. We do not discuss here the analogous F -spaces arising from
(ω, ‖·‖μ) because for μ uniformly bounded, the most interesting case, we
would get the same spaces, with equivalent F -norms ‖·‖μ and ‖·‖0

μ, by
Fact 5.2. For the general case, see Remark 7.19. (Note of caution: The space
v0(ω, ‖·‖μ) is not the same as λ00(d̄μ), defined in the next section.)

Given two admissible sequences μ = (μn) and ν = (νn) of measures on N, it
is natural to call them equivalent if λ0(μ) = λ0(ν), and strictly equivalent if,
in addition, λ00(μ) = λ00(ν). In either case, also the F -norms ‖·‖0

μ and ‖ · ‖0
ν

have to be equivalent (Fact 1.1), hence the submeasures d̄μ and d̄ν as well,
because d̄μ(A) = ‖eA‖0

μ and d̄ν(A) = ‖eA‖0
ν .

Note that if ν is obtained from μ by repeating each μn infinitely many
times, then μ and ν are equivalent, but not strictly.

Proposition 6.3. For every admissible sequence μ = (μn), there is a strict-
ly equivalent admissible sequence ν = (νn) such that, for each n, νn has a finite
support and νn(N) = μn(N). Moreover, ν can be chosen so that the νn’s have
pairwise disjoint supports provided it is so for the μn’s.

Proof. Fix any sequence εn → 0 in (0,1) and for each n choose a finite
subset Mn of Sn := s(μn) so that

μn(Sn \ Mn) < εn min(1, μn(Sn)) =: rn.

Note that μn(Sn) < (1 − εn)−1μn(Mn). Next, arrange N \
⋃

n Mn in a sequence
k1 < k2 < · · · and assume, for instance, that it is infinite. Then for each n
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define a measure νn on N by

νn(A) = cn

(
μn(A ∩ Mn) + rnγn(A)

)
where γn is the Dirac measure at point kn and

cn :=
μn(Sn)

μn(Mn) + rn
.

It is easily seen that (1 + εn)−1 ≤ cn ≤ (1 − εn)−1 for each n.
Clearly, ν = (νn) is admissible and νn(N) = μn(N) for each n.
Now, for each x ∈ ω and n ∈ N,

‖x‖0
νn

= cn

(∫
Mn

min(1, |x|)dμn + rn min(1, |ξkn |)
)

≤ cn(‖x‖0
μn

+ εn)

and, on the other hand,

‖x‖0
νn

= cn

(∫
Sn

min(1, |x|)dμn −
∫

Sn \Mn

min(1, |x|)dμn + rn min(1, |ξkn |)
)

≥ cn(‖x‖0
μn

− εn).

Thus,
1

1 + εn
(‖x‖0

μn
− εn) ≤ ‖x‖0

νn
≤ 1

1 − εn
(‖x‖0

μn
+ εn).

It follows that λ00(μ) = λ00(ν) and, using a simple argument, that λ0(μ) =
λ0(ν). The ‘moreover’ assertion is obvious from the construction. �

We now show that when μ is uniformly bounded, there is an alternative
description of the space λ0(μ), and its subspaces λc

0(μ) and λ00(μ). Let us
point out that the assumption of uniform boundedness of μ, i.e., d̄μ(N) < ∞,
is used only for the ‘if’ parts of the characterizations.

Proposition 6.4. Let μ be uniformly bounded. Then for any x ∈ ω,
(a) x ∈ λ00(μ) iff s(x, r) ∈ Z(dμ) for all r > 0;
(b) x ∈ λc

0(μ) iff s(x, r) ∈ Z((d̄μ)•) for all r > 0;
(c) x ∈ λ0(μ) iff limr→∞ dμ(s(x, r)) = 0.

Moreover, a subset B of λ0(μ) is bounded iff

lim
r→∞

sup
x∈B

d̄μ(s(x, r)) = 0.

Proof. (a) follows from parts (a)–(b) of Fact 5.1, and (c) from its parts
(a′)–(b′).

The latter are also used to verify part (b) of the proposition. Take any
x ∈ λc

0(μ), r > 0, and m ∈ N, and note that s(x, r) \ [m] = s(x − xm, r). Hence,
d̄μ(s(x, r) \ [m]) ≤ ‖r−1(x − xm)‖0

μ. Letting m → ∞ we get (d̄μ)•(s(x, r)) = 0.
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To prove the converse implication in (b), take any 0 < ε < 1 and next choose
m so that d̄μ(s(x, ε) \ [m]) < ε. Then

‖x − xm‖0
μ ≤ d̄μ

(
s(x, r) \ [m]

)
+ min(1, ε)d̄μ(N) <

(
1 + d̄μ(N)

)
ε.

Thus, ‖x − xm‖0
μ → 0 as m → ∞, and x ∈ λc

0(μ).
The last assertion follow from Fact 5.1(a′)–(b′), and Fact 5.5. �

Observe that the condition in (c) (to the right of ‘iff’) holds for all x ∈ l∞,
while those in (a) and (b) hold for all x ∈ c0 provided μ satisfies (A). With
the latter proviso, we now show that the uniform boundedness assumption
of μ is also necessary for the above characterizations to be true.

Proposition 6.5. If c0 ⊂ λ0(μ), then μ is uniformly bounded, while if
c0 ⊂ λ00(μ), then μ satisfies also condition (A).

Proof. Assume c0 ⊂ λ0(μ) and suppose μ is not uniformly bounded, or
dμ(N) = ∞. Apply Fact 4.2 to find a strictly increasing sequence (nk) in N,
and a sequence (Ak) of disjoint intervals in N with 1 < αk := μnk

(Ak) → ∞.
Let x =

∑
k α

−1/2
k eAk

(coordinate-wise). Then x ∈ c0, and yet x /∈ λ0(μ) be-
cause ‖x‖0

μnk
≥ α

−1/2
k αk = α

1/2
k → ∞, hence ‖x‖0

μ = ∞.
If c0 ⊂ λ00(μ), then (en) ⊂ λ00(μ); that is, (A) has to be satisfied. �

Remarks 6.6. (a) Part (a) of Proposition 6.4 can be interpreted as saying
that λ00(μ) consists precisely of those sequences x = (ξj) that converge to
zero along the filter-base Z(dμ)c = {N \ A : A ∈ Z(dμ)}. Likewise for (b).

(b) For μ uniformly bounded, there are some striking analogies between
the construction of the space λ0(μ) together with its description in Proposi-
tion 6.4(c) and the construction of L̃0(μ) together with its characterization in
Section 1.G. In our framework, (ω, ‖·‖0

μ) plays the role of (L0(μ), ‖ · ‖0
μ) and

λ0(μ) that of L̃0(μ); a counterpart for λc
0(μ) is somewhat hidden—it is the

largest Lebesgue subspace of L̃0(μ) (cf. Remark 7.9). Also, in view of Corol-
lary 5.3, the topology in (ω, ‖·‖0

μ) or λ0(μ) corresponds to that of convergence
in μ measure.

7. A generalization: The F -lattices λ0(η) and λ00(η)

Proposition 6.4 and Corollary 5.3 (or Fact 5.2) are somewhat surprising.
They say that, for μ uniformly bounded, the spaces λ0(μ), λc

0(μ) and λ00(μ)
along with their topologies depend only on the densities dμ and d̄μ, re-
spectively, while these densities (or equivalent densities) may, a priori, come
from different sequences μ = (μn). Furthermore, if also condition (A) is as-
sumed, then λc

0(μ) = λ00(μ) and everything depends ultimately on d̄μ, be-
cause dμ = (d̄μ)• as shown in Fact 4.1.

Following up this observation, we consider a generalization of λ0(μ)
and λ00(μ) for μ uniformly bounded and satisfying (A), in which the roles
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of d̄μ and dμ are taken up by a submeasure η and its core η•. The relation-
ship between arbitrary spaces λ0(μ) and λ00(μ) and those to be introduced
is discussed in a greater detail at the end of the section, in Remark 7.19.

In what follows

η is a strictly positive submeasure on N

satisfying

(lsc) η(An) ↑ η(A) whenever An ↑ A.

We will sometimes refer to such submeasures as admissible. In particular, any
submeasure of type d̄μ, as well as any strictly positive (but not necessarily
finite) measure on N can serve as η (for the latter case, see Example 7.15 and
Remark 4.4(f)).

Then we use the FG-norm

‖x‖η := inf{ε > 0 : η(s(x, ε)) ≤ ε}
to define in ω the topology τη of convergence in η-submeasure. (Recall that
s(x, ε) = {j : |ξj | > ε}; we will often write η(|x| > ε) in place of η(s(x, ε)).)
Using (lsc) one easily checks that the inf in the definition of ‖x‖η is attained.
In consequence,

‖x‖η ≤ ε ⇐⇒ η(s(x, ε)) ≤ ε.

We go on to collect some simple facts concerning ‖ · ‖η .

Fact 7.1. For each x ∈ ω, scalar t and set A ⊂ N,

‖x‖η ≤ min(η(s(x)), ‖x‖ ∞) and ‖teA‖η = min(|t|, η(A)).

In consequence, τη is stronger than the topology of coordinate convergence,
and weaker than the topology of uniform convergence on N.

Proof. If ε > η(s(x)), then η(|x| > ε) ≤ η(s(x)) < ε; hence ‖x‖η ≤ η(s(x)).
If ε > ‖x‖∞, then η(|x| > ε) = η(∅) < ε; hence ‖x‖η ≤ ‖x‖∞. This proves
the first inequality. In consequence, we also have the inequality ≤ between
the quantities in the other relation. Suppose that the inequality is strict,
and let ‖teA‖η < ε < min(|t|, η(A)). Then η(A) = η(|teA| > ε) ≤ ε < η(A);
a contradiction. To finish, note that min(|ξj |, η(j)) ≤ ‖x‖η ≤ ‖x‖∞ for each
x ∈ ω and j ∈ N. �

Next, using the condition (lsc), one easily gets an analog of Fact 5.4.

Fact 7.2. The FG-norm ‖·‖η has the property that ‖xk ‖η ↑ ‖x‖η whenever
|xk | ↑ |x|. In particular, if x ∈ ω and xk = xe[k], then ‖xk ‖η ↑ ‖x‖η .

Fact 7.3. The FG-norm ‖·‖η is lower semicontinuous on ω and hence the
FG-normed space (ω, ‖·‖η) is complete.
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Proof. Let xk → x in ω, and let δ < ‖x‖η . Then, by the previous fact,
there is m ∈ N with ‖xe[m]‖η > δ. Next, as xk → x coordinate-wise, there is
k0 such that, for k ≥ k0, η(|xke[m]| > δ) = η(|xe[m]| > δ) and hence ‖xk ‖η ≥
‖xke[m]‖η > δ. It follows that lim infk ‖xk ‖η ≥ ‖x‖η . �

We refer the reader to [16] for a study of connectedness type properties of
the topological vector-lattice group ω(η) = (ω, ‖·‖η). We will not need them
in what follows; nonetheless, it may be of some interest to compare Fact 7.4
below with [16, Th. 5].

We now introduce the F -lattice

λ0(η) := v(ω, ‖·‖η) =
{

x ∈ ω : lim
t→0

‖tx‖η = 0
}

.

An analog of Proposition 6.4(c) is easy to verify:

Fact 7.4. If x ∈ ω, then

x ∈ λ0(η) iff lim
r→∞

η(s(x, r)) = 0,

where, by Fact 3.5, η(s(x, r)) may be replaced with η•(s(x, r)).

Next, motivated by Proposition 6.4(b), we define the subspace

λ00(η) = {x ∈ ω : s(x, r) ∈ Z(η•), ∀r > 0}
of λ0(η). Note that λ00(η) = λ0(η) = ω when η• = 0.

Fact 7.5. λ00(η) is a closed subspace of λ0(η), and thus it is an F -space.

Proof. Suppose that (xk) ⊂ λ00(η), x ∈ λ0(η), and ‖x − xk ‖η → 0. Fix r > 0
and any 0 < ε < r, and next choose k0 such that ‖x − xk ‖η < ε for k ≥ k0.
Then

η•(s(x, r)) ≤ η•(
s(xk, r − ε)

)
+ η•(|x − xk | > ε)

≤ η(|x − xk | > ε) < ε.

It follows that η•(s(x, r)) = 0. Thus, x ∈ λ00(η). �
Remark 7.6. Let also γ be an admissible submeasure on N. If η ∼ γ, then

η• ∼ γ•, by Fact 3.8. It follows that then λ0(η) = λ0(γ) and λ00(η) = λ00(γ),
and that the FG-norms ‖·‖η and ‖ · ‖γ are equivalent. Conversely, if λ0(η) =
λ0(γ), then η ∼ γ. In fact, the F -norms ‖·‖η and ‖·‖γ must be equivalent, by
the closed graph theorem. From this, using Fact 7.1, one easily deduces that
η ∼ γ. Also note that if μ is any finite positive measure on N, then μ � η
and, in consequence, η ∼ η + μ.

Fact 7.7. l∞ ⊂ λ0(η), c0 ⊂ λ00(η), and the inclusions are continuous.

Proof. The first inclusion and the continuity of both follow from the in-
equality ‖ · ‖η ≤ ‖· ‖∞. The other inclusion follows from the definition of λ00(η)
and the inclusion F ⊂ Z(η•). Alternatively, use Fact 1.1. �
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Fact 7.8. The sequence (en) of unit vectors is a Schauder basis of λ00(η).

Proof. If x ∈ λ00(η), and ε > 0 is given, then η•(s(x, ε)) = 0, hence one can
choose m ∈ N with η(s(x, ε) \ [m]) < ε. Then ‖x − xn‖η < ε for all n ≥ m, thus
proving that (en) is a Schauder basis for λ00(η). �

Remark 7.9. In view of Fact 7.8, λ00(η) could as well be defined as the
closed linear span of (en) in λ0(η), or as the largest subspace of λ0(η) which
has the Lebesgue property (or has order continuous F -norm).

In view of Facts 7.7 and 7.8, c0 is a dense subspace of λ00(η). An analogous
relation holds between l∞ and λ0(η) as well.

Fact 7.10. l∞ is a dense subspace of λ0(η).

Proof. Take any x ∈ λ0(η) and ε > 0. By Fact 7.4, there exists m ∈ N with
η(s(x,m)) < ε. Denote B = s(x,m), C = N \ B, and let y = xeB , z = xeC .
Then z ∈ l∞ and ‖x − z‖η = ‖y‖η ≤ η(B) < ε. �

A familiar relation between the basis (en) of c0 and the space l∞ has an
analog in the present setting.

Fact 7.11. If x = (ξj) ∈ ω, then the series
∑

j ξjej in λ00(η) has bounded
partial sums iff x ∈ λ0(η).

Proof. Let x = (ξj) and xn =
∑n

j=1 ξjej (n ∈ N). Then, by Fact 7.2,
‖δx‖η = supn ‖δxn‖η for every δ > 0, and from this the assertion follows. �

The following result says, in particular, that λ00 (as well as λ0) does not
have the Zero-density Convergence Property (see the Introduction), in a very
strong sense.

Corollary 7.12. For each x = (ξj) ∈ ω, the series
∑

j ξjej in λ00(η) has
all its subseries of η•-zero density convergent. However, if x /∈ λ0(η), then the
sequence of partial sums of the series is unbounded.

Proof. Let A ∈ Z(η•). Given ε > 0, there is F ∈ F (A) with η(A \ F ) < ε. If
B ∈ F (A \ F ), then ‖xeB ‖η ≤ η(B) < ε. Hence, the series

∑
j∈A ξjej converges

unconditionally in λ00(η). To conclude, apply Fact 7.11. �

As in [7], a sequence (xn) in a tvs is said to be irregular if tnxn → 0 for
every sequence (tn) of scalars.

Proposition 7.13. The following are equivalent.
(a) η(n) → 0 as n → ∞.
(b) The basis (en) of λ00(η) is irregular.
(c) λ00(η) is an Fω-space.
(d) λ00(η) has poor dual.
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Proof. The equivalence of (a) and (b) follows from the equality ‖tnen‖η =
min(|tn|, η(n)), while the mutual equivalence of (b), (c), and (d) is a direct
consequence of [7, Prop. 2.2]. �

Remark 7.14. Since η is countably subadditive, it is clear that if η(n) → 0,
then every infinite set B ⊂ N has an infinite subset A on which η is order
continuous, and hence η•(A) = 0 (cf. Fact 3.4). Using this observation, one
can prove that (a) implies (d) by the same argument as in the first part of
the proof of Theorem 10.1 below.

Example 7.15. Let η be a positive measure on N such that η(N) = ∞,
0 < η(n) < ∞ for all n, and η(n) → 0 as n → ∞. If A ⊂ N, then it is clear
that η•(A) = 0 if η(A) < ∞, and η•(A) = ∞ otherwise. Thus, Z(η•) = {A ⊂
N : η(A) < ∞}. It now follows from the definition of λ00(η) and Fact 7.4
(recalling that η is a measure, cf. the characterization of L̃0(μ) in Section 1.G)
that

λ00(η) = {x ∈ ω : η(s(x, r)) < ∞ for all r > 0},

λ0(η) = {x ∈ ω : η(s(x, r)) < ∞ for some r > 0}.

Moreover, by Proposition 7.13 (see also Remark 7.14), the dual of λ00(η) is
poor (and thus λ00(η) is an Fω-space). We are going to show that it is not
so for the dual of λ0(η).

Take any set N ⊂ N with η(N) = ∞. Then, evidently, the family BN =
{B ⊂ N : η(N \ B) < ∞} is a filter-base in N. Let UN be an ultrafilter in N

containing it. Note that if x ∈ λ0(η), then x is bounded on some set B ∈ BN .
Hence, we may define a linear functional uN on λ0(η) by

uN (x) = lim
UN

x.

If x ∈ λ0(η) and ‖x‖η < ε, then {j ∈ N : |ξj | ≤ ε} ∈ BN so that |uN (x)| ≤ ε.
Hence, uN ∈ λ0(η)′. Clearly, uN (eN ) = 1, uN (x) = 0 for all x ∈ λ0(η) with
s(x) ⊂ N \ N , and uN = 0 on λ00(η). In consequence, uN (eK) = 0 if K ⊂ N is
almost disjoint from N , i.e., |N ∩ K| < ∞.

Now, consider a partition of N into finite sets Fn with η(Fn) > 1 (n ∈ N),
and a family (Mi)i∈I of cardinality 2ℵ0 consisting of almost disjoint infinite
subsets of N. For each i ∈ I , let Ni =

⋃
n∈Mi

Fn, and denote by ui a functional
constructed as above for N = Ni. Then ui(eNj ) = 1 if i = j, and 0 otherwise.
It follows easily that the family of functionals (ui)i∈I in λ0(η)′ is linearly
independent so that dimλ0(η)′ ≥ 2ℵ0 .

Finally, if μn(A) := η(A ∩ [n]) and μ = (μn), then η = d̄μ = dμ 
= η• (cf. Re-
mark 4.4(f)) and λ00(μ) = {0}. �

Given a solid sequence F -space X and a set A ⊂ N, we denote

X(A) = {x ∈ X : s(x) ⊂ A},
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and consider the subspace X(A) with the F -norm and topology induced
from X . Clearly, X(A) is a closed ideal in X , and it is the range of the
(continuous) natural projection x → xeA in X .

A feeling one gets from part (c) of the next result is that the spaces λ00(η)
and λ0(η) are most interesting and L0-like when η• 
= 0 and η(n) → 0. It will
become even stronger when we come later to the spaces over core-nonatomic
submeasures η with η• 
= 0 (then η(n) → 0 automatically).

Theorem 7.16. Let A be an infinite subset of N.

(a) If η•(A) = 0, then λ00(η)(A) = ω(A) and the topology τη in λ00(η)(A)
coincides with that induced from ω.

(b) If η•(A) > 0, then both the inclusions λ00(η)(A) ⊂ λ0(η)(A) ⊂ ω(A) are
proper, the topology τη in λ00(η)(A) is strictly stronger than that induced
from ω, and the subspace λ0(η)(A) is nonseparable.

(c) If η•(A) > 0 and η(n) → 0 as A � n → ∞, then the subspace λ00(η)(A) is
not locally pseudoconvex, and its Schauder basis (en)n∈A is irregular.

(d) If η•(A) > 0 and infn∈A η(n) > 0, then λ00(η)(A) = c0(A) and λ0(η)(A) =
l∞(A), and the topology τη on λ0(η)(A) is the one induced from l∞.

Proof. We may assume without loss of generality that A = N.
(a) It was already noted earlier that if η•(N) = 0, then λ00(η) = ω and η is

order continuous (see Fact 3.4 or the paragraph before Fact 3.9). In view of
Fact 7.1, it remains to show that τη is weaker than the topology of ω. To see
this, take any ε > 0, and next choose m ∈ N so that η(N \ [m]) < ε. Now, if
x ∈ ω and |xe[m]| ≤ ε, then

η(|x| > ε) = η
(∣∣xe(m,∞)

∣∣ > ε
)

≤ η(N \ [m]) < ε.

Hence, ‖x‖η ≤ ε, and we are done.
(b) Since eN ∈ λ0(η) \ λ00(η), and x = (j)j∈N /∈ λ0(η), the inclusions are

proper. Next, by Fact 3.9(a), there is a sequence (Fk) of disjoint finite sets
with ε := infk η(Fk) > 0. Clearly, the sequence yk := eFk

(k ∈ N) is in λ00(η)
and converges to zero coordinate-wise, but not in τη because, by Fact 7.1,
‖yk ‖η ≥ min(1, ε) for all k. Finally, for each N ⊂ N let F (N) :=

⋃
k∈N Fk;

note that eF (N) ∈ λ0(η) (Fact 7.7). If M,N ⊂ N and M 
= N , then ‖eF (M) −
eF (N)‖η ≥ ‖yk ‖η ≥ min(1, ε) for some k. It follows that λ0(η) is nonseparable.

(c) By Proposition 7.13, xn := 2nen → 0 in λ0(η). Let (yk) be the sequence
used above. Then (yk) ⊂ λ00(η) and ‖yk ‖η 
→ 0. Note that yk =

∑
j∈Fk

2−jxj .
Now, if p is any continuous α-seminorm on λ00(η)(A), then

p(yk) ≤
∑
j∈Fk

2−αjp(xj) ≤ (1 − 2−α)−1 max
j∈Fk

p(xj),

hence p(yk) → 0 as k → ∞. From this the assertion follows.
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(d) Since δ := infn∈N η(n) > 0, Z(η•) = F and hence λ00(η) = c0. More-
over, it follows from Fact 7.1 that min(‖x‖∞, δ) ≤ ‖x‖η ≤ ‖x‖∞ for all x ∈ ω.
Therefore, λ0(η) = l∞, and ‖·‖η and ‖·‖ ∞ are equivalent. �

Remarks 7.17. (a) For the space λ00 = λ00(d̄), part (c) is also a conse-
quence of Corollary 7.12 and [13, Cor. 4.7]. Moreover, if η is core-nonatomic
(which implies that η(n) → 0, see Fact 3.7), then it will be shown in Corol-
lary 11.2 that every continuous α-seminorm on λ00(η) or λ0(η) is equivalent
to a seminorm and has a finite-codimensional kernel. This will enable us to
give part (c) a much stronger form (see Corollary 11.4).

(b) The last assertion in part (b) will be considerably strengthened in
Corollary 8.3.

(c) In part (c), the assumption about (η(n))n∈A cannot be replaced by
infn∈A η(n) = 0. For, to prove non-pseudoconvexity of λ00(η), we need a
sequence (mn) ⊂ A with η(mn) → 0 and such that η•({mn : n ∈ N}) > 0, and
there is no way to achieve this using the weaker assumption.

(d) Since η is strictly positive, infn η(n) > 0 iff Z(η•) = F , by Fact 3.3.
(e) The role played by η• may become clearer when calculating the quotient

F -norm of λ0(η)/λ00(η) in Proposition 9.1(a).

We now give an application of λ00 to a different type of problems. For a
solid sequence Banach space E, consider its subspace

E(Z) := {x ∈ E : s(x) ∈ Z }.

It was shown in [10, Thm. 2] and, with a different proof in [11, Thm. 5.1], that
E(Z) is barrelled. In fact, as was observed in [11, Remark after Thm. 5.1],
the space E(Z) is even p-barrelled for every 0 < p ≤ 1. That is, every closed-
graph linear operator from E(Z) into any p-Banach space is continuous.
The F -space λ00 (or λ0) allows us to show the following proposition.

Proposition 7.18. If E is an infinite-dimensional solid sequence Banach
(or F -) space, then E(Z) is not ultrabarrelled. Thus, a closed-graph linear
operator from E(Z) to an F -space need not be continuous.

Proof. We assume, as we may, that E contains all the unit vectors en.
Fix an element a = (αn) ∈ E with all αn 
= 0 and define a linear operator
T : E(Z) → λ00 by

Ty = (nα−1
n ηn) for y = (ηn) ∈ E(Z).

Note that Ty ∈ λ00 because suppTy ∈ Z ; see Proposition 6.4(a). Since the co-
ordinates on E are continuous, the map T is continuous when λ00 is taken with
the topology induced from ω. Hence, T has closed graph. However, it is not
continuous when λ00 is considered with its F -norm topology: The sequence
an =

∑n
j=1 αjej in E(Z) is bounded, while the sequence Tan =

∑n
j=1 jej is

not bounded in λ00 (see Fact 7.11). �
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Undoubtedly, it is highly desirable to have a clear view of the relations
between spaces based on sequences of measures μ and those based on sub-
measures η. Hopefully, it is provided by the following.

Remark 7.19. If μ = (μn) is an admissible sequence of measures on N, then
λ0(μ) ⊂ λ0(d̄μ) = v(ω, ‖·‖μ) and λc

0(μ) ⊂ λ00(d̄μ), with continuous inclusions.
The inclusions were shown in Proposition 6.4(b) and (c) (where d̄μ(N) < ∞
was not needed for that), while their continuity follows from the first part of
Corollary 5.3 (or from Fact 1.1). Moreover,

(a) λ0(μ) = λ0(η) or/and λc
0(μ) = λ00(η) for an admissible submeasure η

iff μ is uniformly bounded.
‘If’: This follows from Corollary 5.3 with η = d̄μ. ‘Only if’: In either case,

c0 ⊂ λ0(μ); apply Proposition 6.5.
(b) λ00(μ) = λ00(η) for an admissible submeasure η iff μ is uniformly

bounded and satisfies condition (A).
‘If’: In view of Fact 4.1, dμ = (d̄μ)• so that λc

0(μ) = λ00(μ) = λ00(η) with
η = d̄μ, by Proposition 6.4(a) or (b). ‘Only if’: c0 ⊂ λ00(μ); apply Proposi-
tion 6.5.

Thus, if μ is uniformly bounded and satisfies condition (A), then

λ0(μ) = λ0(d̄μ) and λc
0(μ) = λ00(μ) = λ00(d̄μ)

with equivalent F -norms ‖ · ‖0
μ and ‖ · ‖μ = ‖ · ‖d̄μ

. In particular,

λ0 = λ0(d̄) and λ00 = λ00(d̄).

Consequently, for such μ’s, all the results that we prove about general spaces
λ0(η) and λ00(η) are valid also for the spaces λ0(μ) and λ00(μ).

Let us also note that, for this setting, the most interesting situation pointed
out before Theorem 7.16 (η• 
= 0 and η(k) → 0) arises when, additionally,
dμ(N) > 0 and μ satisfies condition (C). By Fact 4.3, all these requirements
are met when dμ is nonatomic and dμ(N) > 0.

In other cases, one has to carefully distinguish between the spaces λ0(μ)
and λc

0(μ) or λ00(μ), and their counterparts λ0(d̄μ) and λ00(d̄μ).

Examples 7.20. (a) Let μ = (μn), where μn is the measure of mass n
concentrated at the point n ∈ N. Then μ satisfies (A), but is not uniformly
bounded. Further, d̄μ(A) = supA if A 
= ∅, (d̄μ)• = dμ vanishes on F and
is ∞ elsewhere. One easily sees that λ0(μ) = {x ∈ ω : supn n|ξn| < ∞} and
λ00(μ) = {x ∈ ω : limn n|ξn| = 0}, and that their F -norm is equivalent to the
norm ‖x‖ := supn n|ξn|. On the other hand, λ0(d̄μ) = l∞ and λ00(d̄μ) = c0,
and their F -norm is equivalent to the sup norm ‖·‖ ∞. Clearly, the inclu-
sions λ0(μ) ⊂ λ0(d̄μ) and λc

0(μ) ⊂ λ00(d̄μ) are both proper, and neither is an
isomorphic embedding.
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(b) Let μ = (μn) be associated with the counting measure μ on N in the
sense of Remark 4.4(f). Then λ0(μ) = λc

0(μ) = l1 and λ00(μ) = {0}, while
λ0(d̄μ) = l∞ and λ00(d̄μ) = c0.

8. Simple embeddings into λ00(η) and λ0(η)

We recall that the notation X(A) was introduced before Theorem 7.16.

Theorem 8.1. Let (Ak) be a disjoint sequence of nonempty sets in N with
union A. Denote yk = eAk

(k ∈ N), and define an injective linear operator
T : ω → ω by

Tx =
∞∑

k=1

ξkyk (coordinate-wise sum) for x = (ξk) ∈ ω.

(a) If A ∈ Z(η•), then T is an isomorphic embedding of ω into λ00(η). If,
moreover, the Ak’s are singletons, then T is an isomorphism of ω onto
λ00(η)(A) = λ0(η)(A).

(b) If δ = infk η(Ak) > 0 (so that η•(A) > 0, by Fact 3.9(b)), then T maps
l∞ into λ0(η) isomorphically; moreover, if Ak ∈ Z(η•) for all k, then

λ00(η) ∩ T (l∞) = T (c0),

and if Ak /∈ Z(η•) for all k, then

λ00(η) ∩ T (l∞) = {0}.

Proof. Note that the sequence (yk) is basic in λ0(η). Take any x ∈ ω, and
denote Tx = y = (ηj).

(a) Since s(y) ⊂ A ∈ Z(η•), we have y ∈ λ00(η) by the definition. Next, as
the series

∑
j ηjej converges unconditionally to y (Fact 7.8), so does the series∑

k ξkyk. In consequence, T establishes equivalence of the basis (ek) of ω and
the basic sequence (yk) in λ00(η). Therefore, T is an isomorphism from ω
onto lin(yk) in λ00(η). To finish, appeal to Theorem 7.16(a).

(b) Let x ∈ l∞. Then y ∈ λ0(η) and ‖y‖η ≤ ‖y‖∞ = ‖x‖ ∞ so that T maps
l∞ into λ0(η) continuously. If ‖x‖∞ = 1, choose k so that |ξk | ≥ 1

2 . Then
‖y‖η ≥ ‖ξkyk ‖η = min(|ξk |, η(Ak)) ≥ min(1

2 , δ). Thus, also the inverse map
(T |l∞)−1 is continuous.

Now assume also that Ak ∈ Z(η•) for all k. Then yk ∈ λ00(η) for all k,
hence T (c0) ⊂ λ00(η). If x /∈ c0, then |ξk | > ε for some ε > 0 and all k in
an infinite set K ⊂ N. Then s(y, ε) ⊃

⋃
k∈K Ak, where the latter set is of

positive η• density (see Fact 3.9(b)). Hence, by definition, y /∈ λ00(η). Thus
T (c0) = λ00(η) ∩ T (l∞).

The other subcase of (b) follows directly from the definition of λ00(η). �
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Remark 8.2. The argument used while proving part (b) is of standard
character and, under suitable assumptions, works in general topological Riesz
spaces, see for instance [1, Th. 10.7] and [12, Th. 2.7].

Corollary 8.3. If A ⊂ N and η•(A) > 0, then there exist isomorphic em-
beddings T : l∞ → λ0(η)(A) such that λ00(η)(A) ∩ T (l∞) = T (c0), as well as
such that λ00(η)(A) ∩ T (l∞) = {0}.

Proof. By Fact 3.9(a), one can find a partition of A into a sequence (Fk)
of finite sets with infk η(Fk) > 0. Then part (b) of the theorem applies when
Ak := Fk (Ak ∈ Z(η•)), as well as when Ak :=

⋃
m∈Mk

Fm (Ak /∈ Z(η•)) for
all k, where (Mk) is any disjoint sequence of infinite subsets of N. �

Corollary 8.4. If η• 
= 0, then λ00(η) is uncomplemented in λ0(η).

Proof. By the previous corollary, there is an isomorphism T : l∞ → λ0(η)
with T (c0) ⊂ λ00(η). Suppose there exists a continuous linear projection P
of λ0(η) onto λ00(η). Then PT : l∞ → λ00(η) is a continuous operator with
PTen = Ten 
→ 0. In consequence, by [5] or [4], λ00(η) contains an isomorphic
copy of l∞, which is absurd because λ00(η) is separable (Fact 7.8). �

Our next result is a complement to Theorem 8.1 for the case where the Ak’s
are singletons and the spaces considered are λ0 = λ0(d̄) and λ00 = λ00(d̄). Its
extension to general spaces λ0(η) and λ00(η) is likely to require the map
k → nk to have some special properties relevant to η.

Theorem 8.5. Let A = {n1 < n2 < · · · } be an infinite subset of N, and
define an injective linear operator T : ω → ω by setting

Tx =
∞∑

k=1

ξkenk
(coordinate-wise sum) for x = (ξk) ∈ ω.

(a) T maps λ0 into λ0(A) (resp., λ00 into λ00(A)) continuously;
(b) T maps λ0 onto λ0(A) (resp., λ00 onto λ00(A)) isomorphically iff the

lower density of A is positive, that is, δ := lim infn→∞ dn(A) > 0.

Proof. We will use the F -seminorms ‖·‖n = ‖·‖0
dn

(n ∈ N) and the F -norm
‖·‖ = ‖·‖0

μ of Section 5 for μ = (dn) (see Remark 4.4(b)).
(a) Assume x = (ξk) is in λ0 (resp., λ00), and denote Tx = y = (ηj).

Given n, let mn = max{k : nk ≤ n}. Then

‖y‖n =
1
n

n∑
j=1

min(1, |ηj |) =
mn

n

1
mn

mn∑
k=1

min(1, |ξk |)

=
mn

n
‖x‖mn = dn(A) · ‖x‖mn ≤ ‖x‖mn .

This implies that y ∈ λ0 (resp., y ∈ λ00), and that ‖y‖ ≤ ‖x‖, and (a) follows.
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(b) The ‘if’ part. Assume δ > 0. Take any y = (ηj) in λ0(A) (resp., λ00(A)),
and denote T −1y = x = (ξk). Fix n0 so that dm(A) > 1

2δ for m ≥ n0. Then,
for m ≥ n0,

1
2
δ‖x‖m ≤ dnm(A) · ‖x‖m =

m

nm

1
m

m∑
k=1

min(1, |ξk |)

=
1

nm

nm∑
j=1

min(1, |ηj |) = ‖y‖nm .

It follows that x is in λ0 (resp., λ00), and that ‖y‖ ≥ 1
2δ supm≥n0

‖x‖m. Since
‖x‖m ≤ n0‖x‖n0 for m < n0, we have in fact ‖y‖ ≥ 1

2δn−1
0 ‖x‖. Hence, T −1

maps λ0(A) (resp., λ00(A)) into λ0 (resp., λ00) continuously.
The ‘only if’ part. Assume δ = 0. We claim that then the map (T |λ00)−1 is

not continuous at zero. Fix ε > 0. Since δ = 0, there is p such that dnp(A) =
p/np < ε. If 0 ≤ q ≤ p, then

dnp+q (A) =
p + q

np+q
≤ 2p

np
< 2ε.

It follows that ds(A) < 2ε for np ≤ s ≤ n2p. Let y be the characteristic function
of the set {nk : p < k ≤ 2p}. Then y ∈ λ00(A) and

‖y‖ ≤ max{ds(A) : np < s ≤ n2p} < 2ε.

Clearly, x = T −1(y) is simply the characteristic function of the interval (p,2p].
Hence, x ∈ λ00, and ‖x‖ = 1

2 . Thus, our claim has been verified. �

Corollary 8.6. For every r ∈ N, each of the spaces λ0 and λ00 is isomor-
phic to the direct sum of r copies of itself. Moreover, λ00 admits an infinite
Schauder decomposition into subspaces each of which is isomorphic to λ00.

Proof. The sets Ai := {i + (k − 1)r : k ∈ N} (i ∈ [r]) form a partition of N,
and each Ai satisfies the condition from Theorem 8.5(b) with δ = 1/(r + 1).
Hence λ0(Ai) ≈ λ0 and λ0 = λ0(A1) ⊕ · · · ⊕ λ0(Ar) (topologically). Likewise
for the case of λ00.

To prove the ‘moreover’ part, it is enough to construct a partition of N into
an infinite sequence of sets Ak ⊂ N with a positive lower density. This can be
done, e.g., as follows. Given an infinite set A = {n1 < n2 < · · · } in N, let A′ :=
{n2j−1 : j ∈ N}. Then define A1 = N

′, A2 = (N \ A1)′, A3 = (N \ (A1 ∪ A2))′,
and so on. �

9. The quotient space λ0(η)/λ00(η)

As will be seen from Theorem 9.2 below (combined with Corollary 2.4(a)),
in many cases the quotient λ0(η)/λ00(η) turns out to be highly non-locally
pseudoconvex, in particular, its dual is trivial.
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It is not hard to get a formula for the quotient F -norm in λ0(η)/λ00(η); in
the proposition below we also treat the case of λ0(μ)/λ00(μ).

Proposition 9.1.
(a) The quotient F -norm on λ0(η)/λ00(η) is given by the formula

‖x̂‖ = ‖x‖η• , where x̂ = x + λ00(η).

Consequently, ‖x̂‖ ≤ η•(s(x)) for every x ∈ λ0(η).
(b) If an admissible sequence μ = (μn) of measures on N satisfies condi-

tion (A), then the quotient F -norm on λ0(μ)/λ00(μ) is given by the
formula

‖x̂‖ = limsup
n→∞

‖x‖0
μn

, where x̂ = x + λ00(μ).

Consequently, ‖x̂‖ ≤ dμ(s(x)) for every x ∈ λ0(μ).

Proof. Observe that ‖x̂‖ is the limit of the decreasing sequence (‖x − xn‖η),
resp., (‖x − xn‖0

μ), where xn = xe[n] for n ∈ N.
(a) First, note that s(x − xn, ε) = s(x, ε) \ [n] for all ε > 0 and n ∈ N.
Now, given ε > 0, there is n such that ‖x̂‖ < ε =⇒ ‖x − xn‖η < ε =⇒

η(s(x, ε) \ [n]) < ε =⇒ η•(s(x, ε)) < ε =⇒ ‖x‖η• ≤ ε. Also the converse
implications hold for some n provided, we start with ‖x‖η• < ε and in the last
two inequalities of the chain replace < by ≤. From this the desired equality
follows.

(b) Choose a strictly increasing sequence (mn) so that

εn := max{μk(N \ [mn]) : k ∈ [n]} → 0 as n → ∞.

Then

‖x̂‖ = lim
n→∞

‖x − xmn ‖0
μ

= lim
n→∞

max
(

max
1≤k≤n

∥∥xe[mn+1,∞)

∥∥0

μk
, sup
k>n

∥∥xe[mn+1,∞)

∥∥0

μk

)
≤ lim

n→∞
max

(
εn, sup

k>n
‖x‖0

μk

)
= limsup

n→∞
‖x‖0

μn
.

Thus, ‖x̂‖ ≤ limsupn ‖x‖0
μn

.
To prove the converse inequality, take any constants a, b with ‖x̂‖ < a < b.

Then ‖x − xm‖0
μ < a for some m. In view of condition (A), there is n such

that μk([m]) < b − a for all k > n. It follows that for all k > n,

‖x‖0
μk

=
∥∥xe[m]

∥∥0

μk
+ ‖x − xm‖0

μk
< (b − a) + ‖x − xm‖0

μ < b.

Hence, limsupn ‖x‖0
μn

≤ b, and the desired converse inequality follows. �

Theorem 9.2. If η is core-nonatomic, then λ0(η)/λ00(η) is L0-like.
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Proof. Define an F -seminorm p on λ0(η) by p(x) = ‖x̂‖. By Proposi-
tion 9.1, p(x) ≤ η•(s(x)) for every x ∈ λ0(η). In view of Fact 2.1, it is enough
to show that the F -seminormed space (λ0(η), p) is L0-like.

Fix ε > 0 and let U = {x ∈ λ0(η) : p(x) < ε}. Since η• is nonatomic, there
is a partition A1, . . . ,Am of N with η•(Aj) < ε for j ∈ [m]. Now, take any x
in λ0(η) and, for j ∈ [m], let xj = xeAj . Then p(xj) ≤ η•(s(xj)) ≤ η•(Aj) < ε

for each j, and x = x1 + · · · + xm. Thus, λ0(η) ⊂ U (m). �

Nevertheless, the quotient space λ0(η)/λ00(η), if nonzero (which means
that η• 
= 0), contains a lot of isomorphic copies of Banach spaces, in partic-
ular, all separable Banach spaces. This is shown in the following theorem.

Theorem 9.3. If η• 
= 0, then λ0(η)/λ00(η) contains isomorphic copies
of l∞ and l∞/c0.

Proof. We prove each of the cases independently, despite the known fact
that l∞ ⊂ l∞/c0 isomorphically.

Let p be as in the proof of Theorem 9.2, and let

Q : λ0(η) → λ0(η)/λ00(η)

be the quotient map. By Fact 3.9(a), there is a disjoint sequence (Fk) in F
such that η(Fk) > ε for every k and some ε > 0.

(a) Let (Mk) be any disjoint sequence of infinite subsets of N, and let Ak :=⋃
m∈Mk

Fm for each k ∈ N. Then the operator T defined as in Theorem 8.1
maps l∞ into λ0(η) isomorphically, and λ00(η) ∩ T (l∞) = {0}. Take any x =
(ξj) ∈ l∞ with ‖x‖∞ ≤ 1, and denote Tx = y = (ηj). Then it is obvious that
p(y) ≤ ‖x‖∞. On the other hand, if ‖x‖∞ = 1 and k is such that |ξk | ≥ 1

2 , then
for every finite set B ⊂ N there is m ∈ Mk with B ∩ Fm = ∅ and, therefore,

‖y − yeB ‖η ≥ ‖ξkeFm ‖η = min(|ξk |, η(Fm)) ≥ min
(

1
2
, ε

)
.

Hence, p(y) ≥ min( 1
2 , ε). Thus QT : l∞ → λ0(η)/λ00(η) is an isomorphic em-

bedding.
(b) Let T be as in (a) with the sets Ak = Fk. Then T maps l∞ into

λ0(η) isomorphically, and T (c0) = λ00(η) ∩ T (l∞). Take any x = (ξj) ∈ l∞
with ‖x‖ ∞ ≤ 1, and denote Tx = y = (ηj). Then for every m, denoting ym =∑

j≤m ξjeFj and xm =
∑

j≤m ξjej ,

p(y) = p(y − ym) ≤ ‖y − ym‖η ≤ ‖y − ym‖ ∞ = ‖x − xm‖ ∞.

As m → ∞, this yields

p(y) ≤ limsup
j→∞

|ξj | =: q(x),

where q thus defined is the inverse image of the quotient norm in l∞/c0.
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On the other hand, if q(x) > 2
3 , then |ξm| > 1

2 for all m in an infinite
set M of indices. Note that |ηj | = |ξm| > 1

2 whenever j ∈ Fm, m ∈ M . Hence,
calculations like those in (a) will show that p(y) ≥ min(1

2 , ε).
It follows that the operator that assigns to each element x+ c0 of l∞/c0 the

corresponding element Tx + λ00(η) of λ0(η)/λ00(η) (x ∈ l∞) is an isomorphic
embedding of l∞/c0 into λ0(η)/λ00(η). �

10. The duals of λ00(η) and λ0(η)

They are, of course, separating, because λ0(η) ⊂ ω continuously, but often
poor, as was already seen in Proposition 7.13. For a general result related to
the theorem below, see Fact 1.2.

Theorem 10.1. Let η be core-nonatomic. Then the dual space λ00(η)′ is
poor; in fact, a linear functional on λ00(η) is continuous iff it is a finite linear
combination of the coordinates. Hence, the weak and Mackey topologies of
λ00(η) coincide with the topology induced from ω.

The same is true for the F -space λ0(η), and thus both λ00(η) and λ0(η)
are Fω-spaces.

Proof. Let u ∈ λ00(η)′ and denote tj = u(ej). Then, clearly, u(x) =∑∞
j=1 tjξj for every x = (ξj) ∈ λ00(η). If the set {j : tj 
= 0} were infinite,

then it would contain an infinite set A ∈ Z(η•) (see Fact 3.1). Then the se-
quence x = (ξj), where ξj = j/tj for j ∈ A, and ξj = 0 otherwise, would belong
to λ00(η), and we would have u(x) = ∞!

Alternatively, note that η(n) → 0 as n → ∞, by Corollary 3.6, and appeal
to Proposition 7.13.

Let now u ∈ λ0(η)′. By the first part of the proof applied to u|λ00(η), the
set S = {j : u(ej) 
= 0} is finite. Define a functional v ∈ λ0(η)′ by

v(x) = u(x) −
∑
j∈S

u(ej)ξj .

Clearly, v|λ00(η) = 0. From Theorem 9.2 and Corollary 2.4(a) it now follows
that v = 0, which completes the proof. �

Remarks 10.2. (a) We will prove later, in Theorem 11.1, that λ0(η) and
λ00(η) in Theorem 10.1 are in fact quasi-L0-like, from which the theorem itself
will easily be deduced (see Corollary 11.3).

(b) For η• 
= 0 nonatomic, the Fω-spaces λ0(η), as seen from Corollary 8.3,
provide a negative answer to the question at the end of [7] whether an
Fω-space must have a basis or at least be separable.

(c) The dual of λ0(η) is not always poor, see Example 7.15.

As a straightforward consequence of Theorem 10.1 and Corollary 2.8, we
have the following result. (It will be strengthened in Corollary 11.5 below.)
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Corollary 10.3. Let η be core-nonatomic. Then, in either of the spaces
λ0(η) and λ00(η), a locally convex closed subspace is complemented iff it is
either finite-dimensional or isomorphic to ω. In particular, no copy of l∞ in
λ0(η), and no copy of c0 in λ00(η) is complemented.

Using Theorem 10.1, we now show that the Orlicz–Pettis theorem fails in
λ0(η) when η is core-nonatomic and η• 
= 0.

Corollary 10.4. Let η be core-nonatomic and η• 
= 0. Then the series∑∞
n=1 en is subseries convergent in λ0(η) with its weak topology, but is not

convergent in λ0(η) with its original topology.

Proof. We have the subseries weak convergence because it is the same as
the subseries coordinate convergence. Next, if (Fn) is a sequence provided
by Fact 3.9(a) for A = N and any 0 < a < min(1, η•(N)), then ‖

∑
j∈Fn

ej ‖η =
‖eFn ‖η = min(1, η(Fn)) > a for all n. �

Remark 10.5. For some time, it was open (see [21, p. 222]) whether the
Orlicz–Pettis theorem is valid for an F -space E with separating dual, i.e.,
whether every series in E that is subseries σ(E,E′)-convergent must be con-
vergent. Examples answering the problem in the negative have been provided
in [25] and [26]. The spaces λ0(η) in the corollary above, the simplest of which
is λ0 = λ0(d̄), are a new class of examples which seem to be more elementary
and simpler than the previous ones.

11. Quasi-L0-like spaces λ0(η) and λ00(η)

In all of this section, we assume that η is core-nonatomic.

Theorem 11.1. Each of the spaces λ0(η) and λ00(η) is quasi-L0-like. In
fact, for every zero-neighborhood U in λ0(η) there are m,k ∈ N such that
λ0(η)([k, ∞)) ⊂ U (m). Likewise for the space λ00(η).

Proof. Consider, for instance, λ0(η).
Fix any ε > 0 and let U = {x ∈ λ0(η) : ‖x‖η < ε}. By the core-nonatomicity

of η, see Fact 3.7, there is a finite partition A0,A1, . . . ,Am of N such that
A0 ∈ F and η(Aj) < ε for j ∈ [m]. Clearly, we may assume that A0 = [1, k)
for some k ∈ N.

Let L = λ0(η)([k, ∞)). If x ∈ L, then x = x1 + · · · + xm, where xj = xeAj

and ‖xj ‖η ≤ η(Aj) < ε. Therefore, L ⊂ U (m). (Actually, L = (L ∩ U)(m).) �

From Theorem 11.1 one deduces the following (cf. Proposition 2.3).

Corollary 11.2. Let p be a subadditive functional on λ0(η) (or λ00(η)).
If p is bounded in a neighborhood of zero, then there exists k such that p
restricted to the subspace λ0(η)([k, ∞)) (resp., λ00(η)([k, ∞))) is bounded.
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In consequence, if p is a continuous α-seminorm on λ0(η) (or λ00(η)), then
p = 0 on λ0(η)([k, ∞)) (resp., λ00(η)([k, ∞))) for some k so that kerp is of
finite codimension and, therefore, p is equivalent to a seminorm.

We now can provide an alternative proof of Theorem 10.1.

Corollary 11.3. Every continuous linear functional on λ0(η) (or λ00(η))
is a finite linear combination of the coordinates.

Proof. For the space λ0(η). We proceed as in the proof of Corollary 2.5. Let
x′ ∈ λ0(η)′. Then, by Corollary 11.2, kerx′ ⊃ Lk := λ0(η)([k, ∞)) for some k.
Since Lk is the intersection of the kernels of the coordinate functionals e′

i for
1 ≤ i < k, it follows that x′ is a linear combinations of those functionals. �

We also can give Theorem 7.16(c) a much stronger form (but note that also
the assumption on η• is stronger).

Corollary 11.4. In each of the spaces λ0(η) and λ00(η), the finest locally
pseudoconvex topology that is weaker than the original topology τη coincides
with the weak topology of the space, and in case η• 
= 0 it is strictly weaker
than τη .

Proof. All of this follows from Theorem 11.1 and Corollary 2.4(b), except
for the last assertion which can be verified using a sequence (Fn) as in the
proof of Corollary 10.4. �

In consequence, as a particular case of Corollary 2.6, we have a considerable
strengthening of Corollary 10.3:

Corollary 11.5. In each of the spaces λ0(η) and λ00(η), a locally pseudo-
convex closed subspace is complemented iff it is either finite-dimensional or
isomorphic to ω.

12. Bounded subsets of λ0(η)

We give here a few simple results on bounded and metrically bounded
subsets of λ0(η). The first is a direct consequence of Facts 1.3 and 7.3.

Proposition 12.1. For every bounded subset B of λ0(η), its closure B
ω

in ω is a bounded subset of λ0(η). In particular, the F -lattice λ0(η) has the
Levi property.

One might think that the result above holds because λ0(η) has a base for
the neighborhoods of zero consisting of sets which are closed in ω. In general,
it is not so, as shown by the following.

Example 12.2. Take an admissible sequence μ = (μn) of probability mea-
sures on N that have pairwise disjoint supports Sn = s(μn) and satisfy con-
dition (Ā) (see p. 639). (For example, one may take μ = (μSn), where (Sn)
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is any disjoint sequence of finite nonempty sets covering N and |Sn| → ∞, see
Remark 4.4(a).) Then the space λ0(μ) does not have a base at zero consist-
ing of sets that are closed in ω. That is, for every neighborhood U of zero
in λ0(μ), its closure in ω is not a subset of λ0(μ). Below, we write ‖·‖n

and ‖ · ‖ for ‖ · ‖0
μn

and ‖ · ‖0
μ, respectively.

It is enough to verify this when U = {x ∈ λ0(μ) : ‖x‖ < ε}, where 0 < ε < 1.
Applying Fact 4.2, we can find a strictly increasing sequence (nk) and a
sequence (Fk) of finite sets such that Fk ⊂ Snk

, μnk
(Fk) > ε, and μnk

(N \
Fk) < 1

4ε for all k. In view of condition (Ā), this can be done so that
μnk

(j) < 1
4ε for all k and j. Using this, it is now easy to select sets Ak ⊂ Fk

so that 1
4ε < μnk

(Ak) ≤ 1
2ε for each k. Then x :=

∑
k keAk

/∈ λ0(μ). In fact,
for every m ∈ N, ‖m−1x‖ ≥ ‖m−1x‖nm ≥ ‖eAm ‖nm = μnm(Am) > 1

4ε, hence
‖m−1x‖ 
→ 0 as m → ∞. However, for every r, if xr =

∑
k≤r keAk

, then
‖xr ‖m = μm(

⋃
k≤r Ak) = 0 if m > nr or m /∈ {n1, n2, . . . }, and is < 1

2ε + 1
4ε

if m = nj ≤ nr. Thus, ‖xr ‖ < ε. Therefore, (xr) ⊂ U , xr → x in ω, and
nevertheless x /∈ λ0(μ).

Recall that a set B in a topological vector space is said to be metrically
(or additively) bounded if each continuous F -seminorm is bounded on B.

Proposition 12.3. Let η be core-nonatomic. Then a subset of λ0(η) is
metrically bounded iff it is coordinate-wise bounded (or weakly bounded).

Proof. The ‘only if’ part is obvious.
‘If’: Assume a set B ⊂ λ0(η) is coordinate-wise bounded, and let p be a

continuous F -seminorm on λ0(η). By Corollary 11.2, there exist k ∈ N and
C > 0 such that p(x) ≤ C for all x ∈ λ0(η) with Qk(x) = 0, where Qk is the
natural projection onto the subspace λ0(η)([k]). By the assumption on B, p is
bounded on Qk(B). Hence, supx∈B p(x) ≤ supx∈B p(Qk(x)) + C < ∞. �

Remark 12.4. For a general admissible submeasure η, the ‘if’ part if the
above result is false. To see this, let η be as in Example 7.15, and let B be the
set of all elements xn :=

∑n
k=1 kek (n ∈ N). Then B ⊂ λ0(η) is bounded in ω.

However, for each m ∈ N there is n > m such that η((m,n]) > m and then
η(s(xn,m)) > m so that ‖xn‖η > m. Thus, the F -norm ‖·‖η is not bounded
on B.

Corollary 12.5. If η is core-nonatomic, then the closure in ω of a met-
rically bounded set B ⊂ λ0(η) needs not be a subset of λ0(η).

Proof. Given any x = (ξj) ∈ ω, the sequence (xn) in λ00(η) is metrically
bounded by Proposition 12.3, and xn → x in ω. �
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13. λ0(μ) and λ00(μ) as l∞- and c0-sums

In this section, we mostly deal with the special case of an admissible se-
quence μ = (μn) consisting of measures on N with pairwise disjoint supports

Sn = s(μn);

note that the union of the Sn’s is all of N. Then for all n ∈ N and x ∈ ω(Sn)
one has

‖x‖ = ‖x‖n =
∫

Sn

min(1, |x|)dμn,

where we write ‖·‖n and ‖·‖ in place of ‖·‖0
μn

and ‖·‖0
μ, respectively. It is

therefore evident that λ0(μ) and λ00(μ) can be isometrically viewed as the
l∞- and c0-sum of the spaces L0(μn) = L0(Sn):

λ0(μ) =
(∑

n

L0(Sn)
)

∞
and λ00(μ) =

(∑
n

L0(Sn)
)

0

.

(See Section 1.F for l∞- and c0-sums.) Note that in the case considered,
μ satisfies condition (A) and that d̄μ = μn and dμ = 0 on P (Sn) for each n.

13.A. The two variants of λ0 and λ00 are isomorphic. For a general
admissible sequence μ = (μn), it is as yet unclear when λ0(μ) and/or λ00(μ)
can be represented isomorphically as λ0(ν) and/or λ00(ν), respectively, for
an admissible sequence ν = (νn) of measures having disjoint supports. It is
so, however, for the spaces λ0 and λ00.

Proposition 13.1. λ0 = λ0(δ) and λ00 = λ00(δ), where δ = (δk). Thus,
λ0 and λ00 are isomorphic to the l∞- and c0-sum of the sequence (L0(Dk))
of finite-dimensional L0-spaces, respectively, where each of the intervals Dk =
[2k,2k+1) ⊂ N is considered with its uniform probability measure δk (k ≥ 0).

Proof. We keep the notation ‖·‖k = ‖ · ‖0
dk

and ‖·‖ = ‖ · ‖0
μ for the original

FG-(semi)norms that were used in Sections 5 and 6 in the case of μ = (dn)
to define λ0 and λ00, and have to distinguish them from those related to the
l∞- and c0-sums in question. Thus, for each x = (ξj) ∈ ω, set

�x�k =
∫

Dk

min(1, |x|)dδk =
1

|Dk |
∑

j∈Dk

min(1, |ξj |) for k ≥ 0,

and �x� = supk �x�k. Clearly, �· � is a monotone FG-norm on ω, and one
of our tasks will be to show it is equivalent to the FG-norm ‖ · ‖; from this
the part concerning λ0 will follow. To prove the part concerning λ00, we will
need to establish suitable relations between the F -seminorms ‖ · ‖n and �· �k

in order to see that ‖x‖n → 0 iff �x�k → 0.
Let x ∈ ω. As easily seen,

(∗) �x�k ≤ (2 − 2−k)‖x‖2k+1−1 ≤ 2‖x‖2k+1−1
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whence �x� ≤ 2‖x‖. On the other hand, given n ∈ N, let m be the least
integer with n < 2m+1. Then for 0 ≤ p ≤ m,

‖x‖n ≤ 1
2m

2m+1−1∑
j=1

min(1, |ξj |) =
1

2m

(
2p −1∑
j=1

+
2m+1−1∑

j=2p

)
min(1, |ξj |)

≤ 2p − 1
2m

+
1

2m

m∑
k=p

2k �x�k ≤ 2p − 1
2m

+ 2 max
p≤k≤m

�x�k .

Thus,

(∗∗) ‖x‖n ≤ 2p − 1
2m

+ 2 max
p≤k≤m

�x�k .

Taking p = 0 gives ‖x‖n ≤ 2maxk≤m �x�k. It follows that ‖x‖ ≤ 2 �x�.
Therefore,

1
2

�x� ≤ ‖x‖ ≤ 2 �x�,

so that the FG-norms ‖·‖ and �· � are indeed equivalent. In consequence,

λ0 =
{

x ∈ ω : lim
t→0

�tx� = 0
}
,

and �· � is an equivalent F -norm for λ0. Moreover, in view of (∗) and (∗∗),

λ00 =
{

x ∈ ω : lim
k→∞

�x�k = 0
}

.

From this, the assertion follows. �

13.B. Isomorphic copies of l∞ and c0. The forthcoming Theorem 13.3
about ‘well-located’ copies of l∞ and c0 is of general character, and the type
of argument used in its proof is rather standard, with a slight possibility of a
new idea in the part where the operators R and T enter into play. It is ap-
plied, in particular, to the spaces λ0(μ) and λ00(μ) determined by sequences
μ of measures with disjoint supports. In fact, with the help of a trick, the dis-
jointness of supports can eventually be dropped. We first prove the following
lemma.

Lemma 13.2. If F1, . . . , Fn are F -spaces none of which contains a locally
bounded subspace of infinite dimension, then neither does their topological
direct sum F = F1 ⊕ · · · ⊕ Fm.

Proof. For 1 ≤ m ≤ n, let Pm denote the natural projection of F onto Fm.
Suppose Y is a closed infinite-dimensional locally bounded subspace of F .
Then, for each m, Pm|Y is a strictly singular operator from Y into Fm ⊂ F ;
that is, its restriction to any infinite-dimensional subspace of Y is not an
isomorphism. It follows that also their sum, which is the identity operator
on Y , is strictly singular (cf. [8, Cor. 4.5]), and this is absurd. �
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Theorem 13.3. Let E∞ and E0 be the l∞- and c0-sums, respectively, of
a sequence of F -spaces Fk = (Fk, ‖·‖k) (k ∈ N) none of which contains a lo-
cally bounded subspace of infinite dimension. Then for every closed infinite-
dimensional locally bounded subspace Y of E0 there is an isomorphic em-
bedding T : l∞ → E∞ such that T (c0) = E0 ∩ T (l∞) ⊂ Y . In particular, Y
contains an isomorphic copy of c0.

Proof. We denote the (sup) F -norm of the spaces E∞ and E0 by �· �.
For every m ∈ N, let Pm be the natural projection of E∞ onto its sub-

space Fm. Also, let Qm = P1 + · · · + Pm and Rm = I − Qm (I is the iden-
tity operator on E∞), and set Q0 = 0. Thus, for each x ∈ E0, Qmx → x
and Rmx → 0 as m → ∞. Since Y is locally bounded, it has an equivalent
p-norm ‖ · ‖ for some 0 < p ≤ 1. Let SY denote the unit sphere in (Y, ‖·‖), and
3ε := inf{ �y� : y ∈ SY } > 0.

Choose any y1 ∈ SY . Since Qmy1 → y, there is m1 with �Qm1y1� > 2ε
and �Rm1y1� < ε/24. Next, as Qm1 |Y is not an isomorphic embedding (by
the lemma), there is y2 ∈ SY with �Qm1y2� < ε/25. But Qmy2 → y2, hence
there is m2 > m1 with �Qm2y2� > 2ε and �Rm2y2� < ε/25. Continuing in
this manner, we find a strictly increasing sequence (mn) in N and a sequence
(yn) in SY such that �Qmn−1yn� < ε/2n+3, �Qmnyn� > 2ε, and �Rmnyn� <
ε/2n+3 for each n ≥ 1. Hence if

un := (Qmn − Qmn−1)yn, then �un� > ε and
∞∑

n=1

�yn − un� <
1
4
ε.

Clearly, (un) is a bounded basic sequence in E0. By [6, Th. 2.8], there is
n0 such that the sequence (yn)n≥n0 is basic and equivalent to (un)n≥n0 . Of
course, we may assume n0 = 1.

Now, let u :=
∑

n un (coordinate-wise sum). Then

�tu� = sup
m

‖tu‖m = sup
n

sup
mn−1<m≤mn

‖Pm(tu)‖m = sup
n

�tun�,

and since the sequence (un) is bounded, we see that �tu� → 0 as t → 0.
Hence, u ∈ E∞.

Since the sequence (un) is formed by pairwise disjoint ‘pieces’ of u with
�un� > ε, it is easy to see that the operator

S : (αn) →
∑

n

αnun (coordinate-wise sum)

is an isomorphic embedding of l∞ into E∞. In fact, if a = (αn) ∈ l∞ and
‖a‖ ∞ ≤ δ, then �Sa� ≤ �δu�, and the continuity of S follows. On the other
hand, if ‖a‖ ∞ = 1 and n is chosen so that |αn| ≥ 1

2 , then �Sa� ≥ �αnun� ≥
� 1

2un� > 1
2ε. In consequence, S is as required.
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We next observe that the operator R : l∞ → E0 defined by the equality

Ra =
∞∑

n=1

αn(yn − un) (convergence in E0)

is continuous and that �Ra� ≤ 1
4ε whenever ‖a‖ ∞ ≤ 1.

It follows that also the operator T := R + S : l∞ → E∞ is continuous, and
that it can be given by the formula

Ta =
∞∑

n=1

αnyn,

where the series on the right-hand side is convergent coordinate-wise.
Now, if a ∈ l∞ and ‖a‖∞ = 1, then

�Ta� ≥ �Sa� − �Ra� >
1
2
ε − 1

4
ε =

1
4
ε;

hence T is an isomorphic embedding.
Obviously, T (c0) ⊂ Y . Suppose Ta ∈ E0 for some a ∈ l∞. Then also Sa =

Ta − Ra ∈ E0, hence �anun� → 0 which is impossible if a /∈ c0. �

Corollary 13.4. If E0 has a locally bounded subspace of infinite dimen-
sion, then E0 is uncomplemented in E∞.

Proof. As for Corollary 8.4. �

The simplest (and possibly known) case of the theorem is the following.

Corollary 13.5. Every closed infinite-dimensional subspace Y of c0 con-
tains a copy of c0 that has an ‘extension’ to a copy of l∞ in l∞. More
precisely, there is an isomorphic embedding T : l∞ → l∞ such that T (c0) =
c0 ∩ T (l∞) ⊂ Y .

From Theorem 13.3, taking into account Fact 1.7, one obtains the following
corollary.

Corollary 13.6. Let μ = (μn) be an admissible sequence of measures on N

having pairwise disjoint supports. Then for every closed infinite-dimensional
locally bounded subspace Y of λ00(μ) there is an isomorphic embedding
T : l∞ → λ0(μ) with T (c0) = λ0(μ) ∩ T (l∞) ⊂ Y .

Surprisingly, the disjointness of supports is superfluous. To get rid of it,
we need a proposition along with the isometry constructed in its proof.

Proposition 13.7. For every admissible sequence μ = (μn) of measures
on N there is an admissible sequence ν = (νn) of measures on N having dis-
joint supports, and a linear isometric embedding V : λ0(μ) → λ0(ν) such that
V (λ00(μ)) = V (λ0(μ)) ∩ λ00(ν).
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Proof. For the sequence (Sn) of the supports of μn’s, let (S′
n) be a parti-

tion of N such that |S′
n| = |Sn| for all n. Next, for each n, choose a bijection

ϕn : S′
n → Sn and define a measure νn on N by νn(A) = μn(ϕn(A ∩ S′

n)). Triv-
ially, the sequence ν = (νn) is admissible and the measures νn have pairwise
disjoint supports S′

n. Now, define a linear map V : ω → ω by V x = (x◦ϕn)n∈N;
that is, V x ∈ ω is such that (V x)|S′

n = (x|Sn)◦ϕn for each n. Clearly, V is
injective. Moreover, for each n,

‖x‖0
μn

=
∫

Sn

min(1, |x|)dμn =
∫

S′
n

min(1, |V x|)dνn = ‖V x‖0
νn

and, consequently, ‖x‖0
μ = ‖V x‖0

ν . It follows that V is as required. �

Theorem 13.8. Let μ = (μn) be an arbitrary admissible sequence of mea-
sures on N. Then for every closed infinite-dimensional locally bounded sub-
space Z of λ00(μ) there is an isomorphic embedding R : l∞ → λ0(μ) such that
R(c0) = λ00(μ) ∩ R(l∞) ⊂ Z.

Proof. We use the notation introduced in the previous proposition and its
proof. Clearly, Y := V (Z) ⊂ V (λ00(μ)) is a locally bounded closed subspace
of λ00(ν).

By the proof of Theorem 13.3, there is a sequence (zn) in Z such that
if yn := V (zn), then the operator T : l∞ → λ0(ν) defined by Ta =

∑
n αnyn

(coordinate-wise sum) is an isomorphic embedding and, moreover, T (c0) =
λ00(ν) ∩ T (l∞) ⊂ Y . Now, if a = (αn) ∈ l∞ then, for each k, (Ta)|S′

k =∑
n αn(yn|S′

k) =
∑

n αn((zn|Sk) ◦ ϕk) so that the series
∑

n αnzn converges
coordinate-wise on each of the sets Sk, hence on N. Let Ra :=

∑
n αnzn

(coordinate-wise) for a ∈ l∞. By the above, (Ta)|S′
k = ((Ra)|Sk) ◦ ϕk for each

k and, consequently, T = V ◦ R. Since V is injective, R is an isomorphic em-
bedding of l∞ into λ0(μ). It is now easy to finish the proof. �

13.C. Setting for what follows. In the remaining part of this section,
we restrict attention to admissible sequences μ = (μn) of probability measures
on N having pairwise disjoint supports (Sn) and such that (see p. 639)

(Ā) limn→∞ supj μn(j) = 0.

Then, obviously, μ satisfies conditions (A), (B), and (C), and |Sn| → ∞. In
consequence, dμ = (d̄μ)• (Fact 4.1), and it is not hard to see that d̄μ is core-
nonatomic. Thus, all of our previous results about spaces λ0(μ) = λ0(d̄μ) and
λ00(μ) = λ00(d̄μ) hold in the present situation.

Let μ be as specified above. Then μ can be represented over the interval
[0,1] by a sequence I = (In) where, for each n, In = (In,j : j ∈ Sn) is a family
of disjoint intervals with union [0,1] chosen so that λ(In,j) = μn(j) for all
j ∈ Sn. (Here, λ denotes Lebesgue measure.) We shall say that a function g
on [0,1] is In-simple if it is constant on each In,j (j ∈ Sn), and denote by Ω(I)
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the linear space of all sequences (fn) such that, for each n, fn is an In-simple
function.

Recall that the F -space L0 = L0[0,1] is considered with its standard
F -norm ‖f ‖ =

∫ 1

0
min(1, |f |)dλ. For the following to be true, condition (Ā)

is essential (but not the disjointness of the s(μn)’s).

Fact 13.9. If I = (In) is a representation of μ, then for every f ∈ L0 there
is (fn) ∈ Ω(I) such that ‖f − fn‖ → 0.

Proof. Since μ satisfies (Ā), rn := supj μn(j) → 0 as n → ∞.
Let f ∈ L0, and fix a sequence of reals 0 < εk → 0. Then there exists a

sequence (gk) of continuous functions on [0,1] such that ‖f − gk ‖ < εk (k ∈ N).
For each k, let δk > 0 be such that |gk(t) − gk(t′)| < εk whenever t, t′ ∈ [0,1] and
|t − t′ | < δk. Choose a strictly increasing sequence (nk) in N so that rn < δk

for all n ≥ nk (k ∈ N). Now, define a sequence (fn) of functions on [0,1] as
follows. If 1 ≤ n < n1, let fn = 0. If nk ≤ n < nk+1 for some k, pick any points
tn,j ∈ In,j (j ∈ Sn), and let fn(t) = gk(tn,j) for t ∈ In,j (j ∈ Sn). Then, for
each n, the function fn is In-simple, and ‖f − fn‖ ≤ ‖f − gk ‖ + ‖gk − fn‖ < 2εk

for all n ∈ [nk, nk+1), k ∈ N. �

Fix a representation I = (In) of μ, and write Ω = Ω(I). Then, for each
x ∈ ω and n ∈ N, let fx,n denote the In-simple function with fx,n|In,j = ξj for
all j ∈ Sn. Clearly, the map x → (fx,n) is a linear bijection of ω onto Ω, and
it is obvious that

‖x‖0
μn

= ‖fx,n‖ (n ∈ N) and ‖x‖0
μ = sup

n
‖fx,n‖.

Hence, x → fx,n is an isometry of L0(μn) = L0(Sn, μn) into L0 (n ∈ N).
The equalities above suggest considering Ω with the F -seminorms (‖ · ‖n)

and the FG-norm ‖·‖ defined by

‖(fn)‖n = ‖fn‖ (n ∈ N) and ‖(fn)‖ = sup
n

‖fn‖.

Denote by Ωb, Ωc, and Ω0 the closed subspaces of Ω consisting of sequences
(fn) that are, respectively, bounded, convergent, or convergent to zero in L0.
Obviously, Ωb = v(Ω, ‖ · ‖), Ω0 = v0(Ω, ‖·‖), and Ω0 ⊂ Ωc ⊂ Ωb. Let us also
define a closed subspace λ0c(μ) of λ0(μ) as consisting of all x with (fx,n) ∈ Ωc.
(Of course, λ0c(μ) depends on the chosen representation I of μ.) Trivially,
λ00(μ) ⊂ λ0c(μ) ⊂ λ0(μ).

Fact 13.10. The map x → (fx,n) is a linear isometry of λ0(μ), λ0c(μ) and
λ00(μ) onto Ωb, Ωc and Ω0, respectively.

13.D. Non-normable locally bounded subspaces of λ0(μ) and λ00(μ).
The sequence μ = (μn) and its representation I = (In) over the interval [0,1]
are as explained in the previous subsection.
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In view of Theorem 13.8, one might be tempted to think that λ00(μ) and
λ0(μ) have no ‘genuine,’ that is, non-normable, locally bounded subspaces.
It turned out not to be so, as will be seen in Theorem 13.12 below. Before
proceeding, we explain some notation concerning spaces lp.

For each 0 < p < 1 and n ∈ N, we consider the p-Banach space lp and its
n-dimensional version lnp with their usual p-norm ‖ · ‖p, and we view lnp as
subspace of lp via the natural isometric embedding. We denote by Bp and Sp

(resp., Bn
p and Sn

p ) the closed unit ball and the unit sphere in lp (resp., lnp ).
The same notation will be used in the case of the Banach spaces lp and lnp for
p ≥ 1. (There is a slight conflict in denoting the spheres Sp and the supports
Sn of μn’s in a similar way, but hopefully it will not cause any confusion.)

In the theorem below, we shall make a crucial use of the following.

Proposition 13.11. For each 0 < p ≤ 2, there is an isomorphic embedding
J : lp → L0.

This is commonly considered a standard fact, though in the literature usu-
ally only embeddings of lp into Lq for 0 < q < p ≤ 2 are discussed, see e.g., [31]
(for embeddings of Lp into Lq see e.g., [22] and [23, p. 197], and for general
results of this type, including case q = 0, see [20, Prop. 7.1, Th. 7.2]). Since
it is the case of q = 0 that is of importance here, we indicate how it can be
simply deduced from the more familiar case of q > 0.

Now, if q > 0, then one can obtain even an isometric embedding of lp into
Lq as follows (see [31, III.16]): Take a sequence (fn) of independent p-stable
functions (the characteristic function of each is exp(−|x|p) when p < 2) on
the unit interval [0,1] with Lebesgue measure λ as the underlying probability
space (cf. the final paragraph in [22]). Then for each finitely nonzero sequence
a = (αn) ∈ lp with a ∈ Sp one shows that f :=

∑
n αnfn is in Lq and is p-stable

so that ‖f ‖q = Cq (a constant). It follows that one may define an operator
J : lp → Lq by Ja = cq

∑
n αnfn (with a suitable constant cq > 0) and that it

is a desired embedding.
Now, J is also continuous as an operator from lp into L0, and since all

the functions Ja for a ∈ Sp have the same distribution, there exist ε > 0 and
δ > 0 such that for each a ∈ Sp one has λ(|Ja| > ε) > δ or, in terms of the L0’s
F -norm, ‖Ja‖ > min(1, ε)δ. In consequence, J is an isomorphic embedding
of lp into L0. (Note, by the way, that J is the same linear operator for all
0 ≤ q < p, so also the ranges of these formally different operators are the same
and have the same topology.)

In what follows, we will be concerned with the l∞-sum Fp, and the c0-sum
Ep, of the spaces lnp for n ∈ N and 0 < p ≤ 2. Thus,

Fp =

( ∞∑
n=1

lnp

)
∞

and Ep =

( ∞∑
n=1

lnp

)
0

,
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and both Fp and Ep are p-Banach spaces if 0 < p < 1 (resp., Banach spaces if
1 ≤ p ≤ 2), under the p-norm (resp., norm) ‖·‖ defined by the formula

‖(an)‖ = sup
n

‖an‖p for all (an) in Fp or Ep.

Note that if a = (αi) ∈ lp and an = (α1, . . . , αn) for n ∈ N, then ‖a‖p =
supn ‖an‖p = ‖(an)‖. Hence, the map U : a → (an) is a linear isometric em-
bedding of lp into Fp. (By Theorem 13.3, Ep cannot contain a copy of lp.)

Let us also note that, for 0 < p < 1, the spaces Ep and Fp are not locally
convex, hence not normable. To see this it is enough to check that the convex
hull C of the closed unit ball B of Ep is not bounded. It is indeed so because,
for every n, if xn is the arithmetic mean of the unit vectors in lnp , then xn ∈ C

and ‖xn‖ = ‖xn‖p = n1−p → ∞ as n → ∞.

Theorem 13.12. For each 0 < p ≤ 2, there is an isomorphic embedding
T : Fp → λ0(μ) such that T (Ep) ⊂ λ00(μ), and hence there is also an isomor-
phic embedding V : lp → λ0(μ).

Proof. For each n, write L0(Sn) instead of L0(Sn, μn).
Choose an isomorphic embedding J : lp → L0 (see Proposition 13.11).

Thus, J is a linear operator from lp into L0 with J(Bp) bounded so that

β(r) := sup
a∈Bp

‖rJa‖ = sup
a∈Sp

‖rJa‖ → 0 as r → 0,

and such that for some δ ∈ (0,1) one has

‖Ja‖ > δ ∀a ∈ Sp.

For a moment, fix n ∈ N. Then, by Fact 13.9, there is k = kn ∈ N such that
for i ∈ [n] one can find an Ik-simple function fi = fn,i with

‖Jei − fi‖ < δ/(2n)2.

Define an operator Tn : lnp → L0 by

Tna =
n∑

i=1

αifi, where a = (α1, . . . , αn) ∈ lnp .

Then for each a ∈ Sn
p one has

‖Ja − Tna‖ ≤
n∑

i=1

‖Jei − fi‖ < δ/(2n) < 1/n

and

‖Tna‖ ≥ ‖Ja‖ − ‖Ja − Tna‖ >
1
2
δ.

Thus, Tn is an isomorphic embedding. Moreover, for 0 < r < 1 and all a ∈ Bn
p ,

‖rTna‖ ≤ ‖rJa‖ + ‖r(Ja − Tna)‖ ≤ β(r) + 1/n.
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By identifying each function fi = fn,i with the element un,i in λ0(μ)(Sk) =
L0(Sk) such that fn,i|Ik,j = un,i(j) for j ∈ Sk, and recalling that k = kn, what
we have got above leads to the following: There is an isomorphic embedding
Tn : lnp → L0(Skn),

Tna =
n∑

i=1

αiun,i, where a = (α1, . . . , αn) ∈ lnp ,

such that
‖Tna‖ >

1
2
δ for all α ∈ Sn

p

and
‖rTna‖ ≤ β(r) + 1/n for 0 < r < 1 and all a ∈ Bn

p .
Of course, we may assume that the sequence (kn) is strictly increasing.

Now, let us define an operator T : Fp → ω as follows: if a = (an) ∈ Fp, then

Ta =
∞∑

n=1

Tnan (coordinate-wise).

Thus, Ta is the element of ω whose coordinates with indices in Skn coincide
with those of Tnan (n ∈ N), and all the other coordinates are zero.

We first show that T maps Fp into λ0(μ) and is continuous, or equivalently,
that T maps the unit ball B of Fp to a bounded subset of λ0(μ). To this aim,
take any ε > 0, and next choose ρ ∈ (0,1) so that β(ρ) < 1

2ε, and m ∈ N so
that 1/m < 1

2ε. Let a = (an) ∈ B. Then an ∈ Bn
p for each n, and

‖ρTnan‖ ≤ β(ρ) + 1/n < ε for all n ≥ m.

Now, for the finite number of bounded sets Tn(Bn
p ) (n < m), we can choose

0 < r < ρ so that ‖rTna‖ < ε whenever n < m and a ∈ Bn
p . Then for each

a ∈ B one has ‖rTnan‖ < ε for all n and, consequently, ‖rTa‖ ≤ ε. Thus,
T (B) is indeed a bounded subset of λ0(μ).

We next verify that T is an isomorphism. Take any a = (an) ∈ Fp with
‖a‖ = 1; then ‖am‖p ≥ 1

2 for some m, whence

‖Ta‖ ≥ ‖Tmam‖ >
1
4
δ,

and we are done. (We would get > 1
2δ if (an) ∈ Ep.)

Finally, we show that T (Ep) ⊂ λ00(μ). Let a ∈ Ep. For each n, denote
rn = ‖an‖p and choose sn ∈ Sn

p so that an = r
1/p
n sn. (Replace 1/p with 1 if

1 ≤ p ≤ 2.) Since rn → 0, for all sufficiently large n one has

‖Tnan‖ = ‖r1/p
n Tnsn‖ ≤ β(r1/p

n ) + 1/n,

and hence ‖Tnan‖ → 0. Thus, Ta ∈ λ00(μ).
To prove the second assertion it is enough to set V := TU , where U is the

natural isometric embedding of lp into Fp defined earlier. �
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13.E. Copies of L0 in λ0(μ)/λ00(μ). Again, the sequence μ = (μn) and
its representation I = (In) over [0,1] are as explained in Section 13.C.

Theorem 13.13. There exists a linear isometric embedding of L0 = L0[0,1]
into the quotient space λ0(μ)/λ00(μ).

Proof. Let Q : λ0(μ) → λ0(μ)/λ00(μ) be the quotient map. By Propo-
sition 9.1(b), if x ∈ λ0(μ), then ‖Qx‖ = limsupn ‖x‖n, where ‖x‖n is the
F -norm of x|Sn ∈ L0(Sn).

We first give a proof avoiding the formalities from Section 13.C.
By Fact 13.9, given f ∈ L0, we may find a sequence (fn) in L0 so that each

fn is In-simple and ‖f − fn‖ → 0. Denote by xf the element of ω such that
xf (j) = the (constant) value of fn on the interval In,j (j ∈ Sn, n ∈ N). Since

‖txf ‖n = ‖tfn‖ ≤ ‖tf ‖ + ‖t(f − fn)‖,

it is clear that ‖txf ‖ = supn ‖txf ‖n → 0 as t → 0. Thus, xf ∈ λ0(μ). Let (f ′
n)

be another sequence satisfying the same requirements as (fn). Then ‖fn −
f ′

n‖n → 0. In consequence, if x′
f denotes the element of λ0(μ) determined

by (f ′
n), then xf − x′

f ∈ λ00(μ). Define a map T : L0 → λ0(μ)/λ00(μ) by
setting Tf = Qxf for each f ∈ L0. It is easy to check that T is linear. Since

‖f ‖ − ‖f − fn‖ ≤ ‖xf ‖n ≤ ‖f ‖ + ‖f − fn‖, it follows that

‖Tf ‖ = ‖Qxf ‖ = limsup
n→∞

‖xf ‖n = ‖f ‖

for all f ∈ L0.
Alternatively, consider the closed subspace λ0c(μ) of λ0(μ) introduced

before Fact 13.10. By Fact 13.9, the linear map R : λ0c(μ) → L0 defined
by Rx = limn fx,n is onto and kerR = λ00(μ). Since ‖Rx‖ = limn ‖fx,n‖ =
limn ‖x|Sn‖ = ‖Qx‖ ≤ ‖x‖, it is continuous, and R̂ : λ0c(μ)/λ00(μ) → L0,
where R̂ ◦ (Q|λ0c(μ)) = R, is a linear isometry onto. �

Remarks 13.14. (a) Don’t expect too much. The quotient λ0(μ)/λ00(μ)
cannot be isomorphic to L0 because it is nonseparable (or because L0 contains
no copies of c0, see [13, Th. 2.4], and the paragraph preceding it for references,
while the quotient has them in abundance, as seen from Theorem 9.3).

(b) As both λ00(μ) and L0 are separable, so is λ0c(μ). Moreover, the dual
λ0c(μ)′ is poor, as follows from Proposition 7.13 (or Theorem 10.1) and the
fact that the dual of L0 is trivial.

(c) However, one should not think that if a closed subspace F of λ0(μ)
contains λ00(μ), then F ′ is poor. To see this, let a subspace L of λ0(μ)
be isomorphic to lp for some 0 < p ≤ 2 (Theorem 13.12). Then, in view of
Corollary 13.6 (or Theorem 13.8), L and λ00(μ) are totally incomparable,
that is, they have no isomorphic subspaces of infinite dimension. Therefore,
dim(L ∩ λ00(μ)) < ∞, and we as well may assume that L ∩ λ00(μ) = {0}.
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Then, by [6, Th. 4.1], the subspace F := λ00(μ)+L is closed, and F = λ00(μ) ⊕
L (topologically). Since L′ is not poor, neither is F ′.

13.F. A locally convex Schwartz subspace of λ00(S). A very special
case of the sequences μ = (μn) considered in the preceding two subsections
arises when we fix a sequence S = (Sn) of disjoint finite nonempty sets with
union N and |Sn| → ∞, each Sn being taken with its uniform probability
measure μn = μSn . Then the spaces λ0(μ) and λ00(μ) we are interested in
can be represented as

λ0(S) :=
(∑

n

L0(Sn)
)

∞
and λ00(S) :=

(∑
n

L0(Sn)
)

0

.

Of course, as far as isomorphic (or even isometric) properties are concerned, we
may assume with no loss of generality, that (Sn) is a sequence of consecutive
intervals in N. Let us assume this, and denote mn = minSn, σn = |Sn|,

rn = nσn and zn =
σn∑
i=1

niemn+i−1.

Obviously, (zn) is an unbounded basic sequence in λ00(S). Before proceed-
ing, recall that a tvs X is Schwartz if for each zero-neighborhood U there is
a zero-neighborhood V such that for any ε > 0 one can find a finite set A ⊂ X
with V ⊂ A + εU (see e.g., [27, Sec. 6.3]). We are going to show the following
theorem.

Theorem 13.15. The subspace Z = lin(zn) of λ00(S) is a locally convex
Schwartz space that is non-isomorphic to ω. In particular, it has no normable
subspaces of infinite dimension.

The following will be of key importance in the proof of the theorem.

Proposition 13.16. For any sequence of scalars (αn), the following are
equivalent.

(a) The series
∑

n αnzn converges in λ00(S).
(b) αnzn → 0 in λ00(S) (i.e., ‖αnzn‖ = ‖αnzn‖n → 0).
(c) The sequence (αnzn) is bounded in λ00(S).
(d) lim infn→∞(− ln |αn|/ln rn) ≥ 1.

Proof. Statements (a) and (b) are equivalent because λ00(S) =
(
∑

n L0(Sn))0 and zn ∈ L0(Sn). That (b) implies (c) is trivial.
(c) =⇒ (d): Suppose (d) is false. Then for some c < 1 and an infinite set

K ⊂ N, |αn|rc
n > 1 for all n ∈ K. Fix ε > 0 such that c + ε < 1, and for each

n ∈ N set
tn = r−ε

n and Jn = {i ∈ N : (c + ε)σn ≤ i ≤ σn}.
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Note that for n ∈ K and i ∈ Jn, tn|αn|ni ≥ |αn|rc
n ≥ 1. Now tn → 0, but for

all n ∈ K

‖tnαnzn‖n ≥ σ−1
n

∑
i∈Jn

min(1, tn|αn|ni)

≥ σ−1
n

(
σn − (c + ε)σn

)
= 1 − (c + ε) > 0,

contradicting (c).
(d) =⇒ (b): Fix ε > 0 and next choose n0 so that |αn|r1−ε

n ≤ 1 for all
n ≥ n0. For such n, let in denote the largest integer ≤ (1 − ε)σn. If 1 ≤ i < in,
then |αn|ni ≤ n−1. Therefore, as easily seen,

‖αnzn‖n ≤ n−1 + 2σ−1
n + ε for all n ≥ n0.

It follows that ‖αnzn‖n → 0 as n → ∞. �

Proof of Theorem 13.15. As easily seen, condition (d) in Proposition 13.16
is equivalent to each of the following:

(d′) For every c < 1 there is n0 such that |αn|rc
n ≤ 1 for all n ≥ n0.

(d′ ′) For every c < 1, supn |αn|rc
n < ∞.

Denote by W the space of all scalar sequences a = (αn) satisfying these con-
ditions. Equipped with the sequence of norms [·]k defined by

[a]k = sup
n

|αn|rck
n , where ck = k/(k + 1) (k ∈ N),

W becomes a Fréchet space. By Proposition 13.16, the basis (en) of W and
the basic sequence (zn) in λ00(S) are equivalent. In consequence, the spaces
W and Z ⊂ λ00(S) are isomorphic. Thus, Z is locally convex and Z 
≈ ω
because all the bases of ω are equivalent (see [2, Th. 5]). Finally, denoting
ak,n = rck

n , it is clear that ak,n/ak+1,n → 0 as n → ∞. Hence, Z is Schwartz,
by [27, Prop. 6.3.3], and a fortiori a Montel space (see [27, Prop. 6.3.2]).
Therefore, it has no normable subspaces of infinite dimension. (Note: For the
proof of [27, Prop. 6.3.3] to be correct one needs am,n > 0; otherwise the set
KL may fail to be compact.) �

Remark 13.17. That Z has no nontrivial normable subspaces can also be
shown directly as follows. First, note that every bounded block sequence (un)
of the basic sequence (zn) converges to zero. In fact, by the monotonicity
of the F -norm ‖ · ‖, also the sequence of all the terms αnzn that occur in the
blocks un has to be bounded. Then, by Proposition 13.16, the series

∑
n αnzn

converges and, consequently, un → 0.
Now suppose a subspace Y ⊂ Z is normable and dimY = ∞. Then, as in

the proof of Theorem 13.3, one can produce a bounded block sequence (un)
of (zn) with infn ‖un‖ > 0, thus contradicting the first part.
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14. Bounded multiplier property in λ0(μ)

We recall that an F -space X = (X, ‖·‖) is said to have the Bounded Mul-
tiplier Property (BMP), if whenever a series

∑
n xn in X is unconditionally

(or subseries) convergent, also each of the series
∑

n tnxn, where (tn) ∈ l∞,
is convergent. Not every F -space has this property, as shown by an example
due to Rolewicz and Ryll–Nardzewski, see [27, Th. 3.8.3]. Also recall that
a series

∑
n xn in an F -space is unconditionally convergent iff it satisfies the

following Cauchy type condition: for every ε > 0 there is m ∈ N such that
‖
∑

n∈F εnxn‖ ≤ ε for every F ∈ F (N) disjoint from [m] and all εi = ±1.
It is known that all the spaces L0(μ), with the topology of convergence in

measure on sets of finite μ measure, as well as all spaces of Orlicz type, have
the (BMP) (see [24] for this and references to the literature). Below, we will
need the following special case of [24, Lemma 2].

Proposition 14.1. If (S,Σ, μ) is a finite measure space, f1, . . . , fn ∈ L0(μ)
and |ti| ≤ 1 for i ∈ [n], then∥∥∥∥∥

n∑
i=1

tifi

∥∥∥∥∥
0

μ

≤ cmax
(εi)

∥∥∥∥∥8
n∑

i=1

εifi

∥∥∥∥∥
0

μ

,

where c = 8 in the real case, and c = 16 in the complex case.

In what follows, μ = (μn) is an admissible sequence of measures on N,
and F is a closed ideal in λc

0(μ). Thus, F = lin{ek : k ∈ K} for some K ⊂ N.

Proposition 14.2. If z1, . . . , zn ∈ λ0(μ) and |ti| ≤ 1 for i ∈ [n], then∥∥∥∥∥
n∑

i=1

tizi

∥∥∥∥∥
0

μ

≤ cmax
(εi)

∥∥∥∥∥8
n∑

i=1

εizi

∥∥∥∥∥
0

μ

,

where c = 8 in the real case, and c = 16 in the complex case.
Likewise for sequences in the quotient space λ0(μ)/F .

Proof. The case of λ0(μ) is immediate from the preceding proposition, so
let us proceed to the ‘quotient case.’ First of all observe that if x ∈ λ0(μ),
then for the element x̂ = x + F of the quotient space one has

(∗) ‖x̂‖ = lim
m→∞

∥∥x − xeK∩[m]

∥∥0

μ
= lim

m→∞

∥∥xeN\K∩[m]

∥∥0

μ
.

We first show that if z1, . . . , zn ∈ λ0(μ)/F , then for every ε > 0 there is a
sequence y1, . . . , yn in λ0(μ) such that zi = ŷi for i ∈ [n] and∥∥∥∥∥

n∑
i=1

εiyi

∥∥∥∥∥
0

μ

≤
∥∥∥∥∥

n∑
i=1

εizi

∥∥∥∥∥ + ε for all (εi) ∈ {−1,1}n.
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Choose x1, . . . , xn ∈ λ0(μ) such that zi = x̂i for each i. Since there are only
finitely many sequences (εi) ∈ { −1,1}n, using (∗) we can find m so large that∥∥∥∥∥

n∑
i=1

εixieN\K∩[m]

∥∥∥∥∥
0

μ

=

∥∥∥∥∥
(

n∑
i=1

εixi

)
eN\K∩[m]

∥∥∥∥∥
0

μ

≤
∥∥∥∥∥

n∑
i=1

εizi

∥∥∥∥∥ + ε

for each (εi). Then yi := xieN\K∩[m] (i ∈ [n]) are as required.
Now, again let z1, . . . , zn ∈ λ0(μ)/F . Take any ε > 0 and apply what was

just shown to the sequence 8z1, . . . ,8zn, denoting the resulting elements in
λ0(μ) by 8y1, . . . ,8yn. Then∥∥∥∥∥

n∑
i=1

tizi

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

tiyi

∥∥∥∥∥
0

μ

≤ cmax
(εi)

∥∥∥∥∥8
n∑

i=1

εiyi

∥∥∥∥∥
0

μ

≤ cmax
(εi)

∥∥∥∥∥8
n∑

i=1

εizi

∥∥∥∥∥ + cε

and the desired inequality follows by allowing ε → 0. �

Theorem 14.3. The spaces λ0(μ) and λ0(μ)/F have the (BMP).

Proof. Let
∑

n zn be an unconditionally convergent series in either of the
spaces, and let ‖(tn)‖∞ ≤ 1. Then from Proposition 14.2 it follows that the
series

∑
n tnzn is Cauchy, hence convergent. �

Remarks 14.4. (a) The results that have been proved above remain valid
for the space λ0(d̄μ) with the F -norm ‖ · ‖μ (see Sections 5 and 6, and Re-
mark 7.19). In fact, for each n ∈ N the definition of the F -seminorm ‖ · ‖μn

can be written in the form ‖x‖μn = inf{ε > 0 : ρn(x/ε) ≤ ε}, where ρn(x) :=
μn(|x| > 1) is a monotone disjointly additive modular on L0(μn) (see [24,
p. 652]). Now, by [24, Lemma 2], an exact analog of the estimate in Propo-
sition 14.1 holds for ρn replacing ‖ · ‖0

μ, and this in turn leads to the estimate
‖
∑

i tizi‖μn ≤ cmax(εi) ‖
∑

i εizi‖μn for a constant c > 0 (see [24, Th. 2] and
its proof for details). We may then continue as before.

(b) We do not know whether the general spaces λ0(η) have the (BMP);
this may be related to the question in Remark 4.4(e). In fact, we do not
know whether every solid sequence F -space has it, but this seems to be very
unlikely.

(c) A quotient of an F -space with (BMP) need not have it. If E is an
F -space, then there exists an F -space X of Orlicz type, and thus having the
(BMP), with E being isomorphic to a quotient of X (see [30, Prop. 0.3.11],
and [27, Sec. 2.5] for this and other related results). Taking for E the F -space
of Rolewicz and Ryll–Nardzewski mentioned above, one verifies the claim.

15. Conclusion

We finish the paper by summarizing its main results in the case of our
‘model’ spaces λ0 and λ00. (For some of the results, take Proposition 13.1
into account.) The following hold:
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(a) λ00 and λ0 are quasi-L0-like, in particular, non-locally pseudoconvex, and
their duals are poor.

(b) The Orlicz–Pettis theorem fails in λ0.
(c) λ00 contains copies of c0 that are extendable to copies of l∞ in λ0, and

λ00 is not complemented in λ0.
(d) Every infinite-dimensional locally bounded closed subspace of λ00 con-

tains a copy of c0 that is extendable to a copy of l∞ in λ0.
(e) The quotient λ0/λ00 is L0-like and contains copies of l∞/c0 and L0.
(f) λ0 contains a copy of the space lp for each 0 < p ≤ 2.
(g) λ00 has a closed Schwartz subspace of infinite dimension that is non-

isomorphic to ω.
(h) λ0 and λ0/λ00 have the Bounded Multiplier Property.
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the Nikodym property, Proceedings of the 1st international workshop on functional
analysis at Trier University, Sept. 26–Oct. 1, 1994, de Gruyter, Berlin–New York,

1996, pp. 143–152. MR 1420444
[12] L. Drewnowski and I. Labuda, Copies of c0 and l∞ in topological Riesz spaces, Trans.

Amer. Math. Soc. 350 (1998), 3555–3570. MR 1466947
[13] L. Drewnowski and I. Labuda, Vector series whose lacunary subseries converge, Studia

Math. 138 (2000), 53–80. MR 1750322
[14] L. Drewnowski and T. �Luczak, On nonatomic submeasures on N, Arch. Math. 91

(2008), 76–85. MR 2420899
[15] L. Drewnowski and T. �Luczak, On nonatomic submeasures on N. II, J. Math. Anal.

Appl. 347 (2008), 442–449. MR 2440341

http://www.ams.org/mathscinet-getitem?mr=2011364
http://www.ams.org/mathscinet-getitem?mr=0110015
http://www.ams.org/mathscinet-getitem?mr=0306432
http://www.ams.org/mathscinet-getitem?mr=0385626
http://www.ams.org/mathscinet-getitem?mr=0423116
http://www.ams.org/mathscinet-getitem?mr=0500065
http://www.ams.org/mathscinet-getitem?mr=0537113
http://www.ams.org/mathscinet-getitem?mr=0551995
http://www.ams.org/mathscinet-getitem?mr=1304356
http://www.ams.org/mathscinet-getitem?mr=1260818
http://www.ams.org/mathscinet-getitem?mr=1420444
http://www.ams.org/mathscinet-getitem?mr=1466947
http://www.ams.org/mathscinet-getitem?mr=1750322
http://www.ams.org/mathscinet-getitem?mr=2420899
http://www.ams.org/mathscinet-getitem?mr=2440341


678 L. DREWNOWSKI AND I. LABUDA

[16] L. Drewnowski and M. Nawrocki, Connectedness in some topological vector-lattice
groups of sequences, Math. Scand. (2010) in print.
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