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LEFSCHETZ ELEMENTS OF ARTINIAN GORENSTEIN
ALGEBRAS AND HESSIANS OF HOMOGENEOUS

POLYNOMIALS

TOSHIAKI MAENO AND JUNZO WATANABE

Abstract. We give a characterization of the Lefschetz elements
in Artinian Gorenstein rings over a field of characteristic zero in

terms of the higher Hessians. As an application, we give new

examples of Artinian Gorenstein rings which do not have the
strong Lefschetz property.

0. Introduction

The Lefschetz property is a ring-theoretic abstraction of the Hard Lefschetz
Theorem for compact Kähler manifolds (see e.g., [7]). The following are fun-
damental problems on the study of the Lefschetz property for Artinian graded
algebras:

Problem 0.1. For a given graded Artinian algebra A, decide whether or
not A has the strong (or weak) Lefschetz property.

Problem 0.2. When a graded Artinian algebra A has the strong Lefschetz
property, determine the set of Lefschetz elements in A1.

In [16], it was shown that “most” Artinian Gorenstein algebras have the
strong Lefschetz property. However, it is a difficult problem to know whether
a given graded Artinian algebra has the strong (or weak) Lefschetz property.
In principle, if a graded Artinian algebra A over a field k is given with a pre-
sentation

A = k[x1, . . . , xn]/(f1, . . . , fm),
we have an algorithm to answer the above problems since it is sufficient to
compute the determinants of the matrix expression of the multiplication map

Received October 17, 2008; received in final form July 6, 2009.
The first author is supported by Grant-in-Aid for Scientific Research.

2000 Mathematics Subject Classification. Primary 13E10. Secondary 13H10.

591

c©2010 University of Illinois

http://www.ams.org/msc/


592 T. MAENO AND J. WATANABE

by a general element of A1 with respect to an arbitrary homogeneous linear
basis of A. In particular, the complement of the set of Lefschetz elements in A1

has a structure of the algebraic set defined by certain determinants. However,
it is hard in general to carry out the computation based on this algorithm
even with the help of computer.

In the present paper, we give a simple criterion to answer these prob-
lems for Artinian Gorenstein algebras over a field k of characteristic zero. It
is known that a graded Artinian Gorenstein algebra is characterized by the
“Poincaré duality” which holds for the cohomology ring of the compact ori-
ented manifolds. Hence, graded Artinian Gorenstein algebras with the strong
Lefschetz property are a natural class of commutative algebras comparable to
the cohomology ring of compact Kähler manifolds.

A typical example of graded Artinian Gorenstein algebras is the coinvariant
algebra of finite Coxeter groups. In fact, the coinvariant algebra of the Weyl
group is isomorphic to the cohomology ring of the corresponding flag variety.
In [11] and [12], it has been shown that the coinvariant algebra of any finite
Coxeter group has the Lefschetz property and that the set of the Lefschetz
elements is the complement of the union of the reflection hyperplanes except
for type H4 case. The determination of the set of the Lefschetz elements is
still open for H4 because of the computational complexity.

Let us consider the polynomial ring R = k[x1, . . . , xn] and the algebra of
differential operators

Q = k

[
∂

∂x1
, . . . ,

∂

∂xn

]
.

Every graded Artinian Gorenstein algebra has the presentation

A ∼= Q/AnnQ F, AnnQ F = {ϕ(∂1, . . . , ∂n) ∈ Q|ϕ(∂1, . . . , ∂n)F (x) = 0}

for some homogeneous polynomial F ∈ k[x1, . . . , xn]. We introduce the higher
Hessians Hess(d) F, 1 ≤ d ≤ [degF/2], of the polynomial F in order to describe
the condition for an element L ∈ A1 to be a strong Lefschetz element. The set
of the strong Lefschetz elements of A is a Zariski open set in A1, which is given
as the complement of all the zero loci of the higher Hessians. We will discuss
the explicit description of the set of Lefschetz elements of A = Q/AnnQ F for
the Fermat type polynomial F =

∑n
i=1 xn

i − n(n − 1)s
∏n

i=1 xi.
When one of the higher Hessians of F is identically zero, the algebra

Q/AnnQ F does not have the strong Lefschetz property. In [8], [10] and [17],
examples of Artinian Gorenstein algebras which do not have the strong Lef-
schetz property are given. The examples in [8] and [17] are based on the
polynomials with the zero Hessian. In the last section, we give some poly-
nomials F such that HessF �= 0 and Hess(2) F = 0 to get new examples of
Artinian Gorenstein algebras which do not have the strong Lefschetz prop-
erty.
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1. Lefschetz properties

Definition 1.1. Let A =
⊕D

d=0 Ad, AD �= 0, be a graded Artinian algebra.
(1) We say that A has the strong Lefschetz property if there exists an

element L ∈ A1 such that the multiplication map

×Ld : Ai → Ai+d

is of full rank (i.e., injective or surjective) for all 0 ≤ i ≤ D and 0 ≤ d ≤ D − i.
We call L ∈ A1 with this property a strong Lefschetz element.

(2) If we assume the existence of L ∈ A1 such that

×L : Ai → Ai+1

is of full rank for i = 0, . . . ,D − 1, we say that A has the weak Lefschetz
property.

If a graded Artinian algebra A over a field k is generated by A1 as a
k-algebra, we say that A has the standard grading. The weak Lefschetz
property implies the unimodality of the Hilbert function, provided that the
k-algebra A has the standard grading.

Definition 1.2. Let A =
⊕D

d=0 Ad, AD �= 0, be a graded Artinian algebra.
We say that A has the strong Lefschetz property in the narrow sense if there
exists an element L ∈ A1 such that the multiplication map

×LD−2i : Ai → AD−i

is bijective for i = 0, . . . , [D/2].

If a graded Artinian k-algebra A has the strong Lefschetz property in the
narrow sense, then the Hilbert function of A is unimodal and symmetric.
When a graded Artinian k-algebra A has a symmetric Hilbert function, the
notion of the strong Lefschetz property on A coincides with the one in the
narrow sense. Our main interest in this paper is to consider Artinian Goren-
stein algebras, so the strong Lefschetz property will be used in the narrow
sense in the subsequent sections. Throughout this paper, graded Artinian
k-algebras A =

⊕D
d=0 Ad are assumed to satisfy the conditions A0

∼= k and
dimk A1,dimk AD > 0.

2. Artinian Gorenstein algebra

Throughout, k denotes a field.

Definition 2.1 (See [13, Section 6.5]). A finite-dimensional graded k-
algebra A =

⊕D
d=0 Ad is called the Poincaré duality algebra if dimk AD = 1

and the bilinear pairing

Ad × AD−d → AD
∼= k

is non-degenerate for d = 0, . . . , [D/2].
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The following is a well-known fact (see e.g., [4]).

Proposition 2.1. A graded Artinian k-algebra A is a Poincaré duality
algebra if and only if A is Gorenstein.

Proof. Assume that A =
⊕D

d=0 Ad is a Poincaré duality algebra. For any
element f ∈ A \ {0} of degree less than D, there exisits an element g ∈ A \ A0

such that fg �= 0. Hence, the socle ideal Soc(A) of A coincides with a one-
dimensional k-subspace AD. This means that A is Gorenstein. Conversely,
if A is Gorenstein, the socle ideal Soc(A) is the one-dimensional k-vector
space. Since the maximal degree part AD is contained in Soc(A), we have
that AD = Soc(A) and dimk AD = 1. We will prove the following claim by
induction on d:

(∗)d if f ∈ AD−d satisfies fg = 0 for all g ∈ Ad, then f = 0.

If f ∈ AD−1 satisfies fg = 0 for all g ∈ A1, then fg = 0 for all g ∈ A>0 for
degree reasons. This implies that f ∈ AD−1 ∩ Soc(A) = 0, so (∗)1 follows.
Let us assume that a nonzero element f ∈ AD−d \ {0}, d > 1, satisfies fg = 0
for all g ∈ Ad, and that there exists an element h ∈ Ai, 1 ≤ i < d, such that
ϕ := fh �= 0. By the induction hypothesis (∗)d−i, we can find an element h′ ∈
Ad−i such that ϕh′ �= 0 for the nonzero element ϕ ∈ AD−d+i. Then we have
ϕh′ = f(hh′) �= 0, which is a contradiction since hh′ ∈ Ad. We have proved that
if f ∈ AD−d satisfies fg = 0 for all g ∈ Ad, then we have f = 0 by contradiction.
Now the claim (∗)d is proved. The claims (∗)d for d = 1, . . . ,D imply that the
pairing Ad × AD−d → AD is non-degenerate for d = 1, . . . , [D/2]. �

Remark 2.1. (1) The above proposition shows that the even part of the
cohomology ring Heven(M,k) with coefficient in a field k of characteristic zero
of any compact orientable manifold M of even dimension is Gorenstein.

(2) The Poincaré duality algebra is an abstraction of the property of the co-
homology ring of compact orientable manifolds, whereas the strong Lefschetz
property is inspired by the Hard Lefschetz Theorem for compact Kähler man-
ifolds. Though the Kähler manifold is always oriented, the strong Lefschetz
property does not imply the Poincaré duality. In other words, there exist ex-
amples of graded Artinian non-Gorenstein algebras with the strong Lefschetz
property. For example, A = k[x, y]/(x2, xy, y3) is a non-Gorenstein algebra
with the strong Lefschetz property. At the same time, the Poincaré duality
does not imply the strong Lefschetz property. See Example 2.1 and Section 5.

For simplicity, we assume that the characteristic of the field k to be zero in
the rest of this paper, though our main results hold also when the characteris-
tic of k is greater than the socle degree D of the Gorenstein algebra A. Let us
regard the polynomial algebra R := k[x1, . . . , xn] as a module over the algebra
Q := k[X1, . . . ,Xn] via the identification Xi = ∂/∂xi. For a polynomial F ∈ R,
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we define the ideal AnnQ F of Q by

AnnQ F := {a(X1, . . . ,Xn) ∈ Q|a(∂1, . . . , ∂n)F = 0}.

The following theorem is a well-established fact among the experts. In fact,
it is immediate if the theory of the inverse system is taken for granted ([2], [3],
[6]). However, the theory of inverse system does not seem to be well-known
to nonspecialists, so we give a direct proof for it.

Theorem 2.1. Let I be an ideal of Q = k[X1, . . . ,Xn] and A = Q/I the
quotient algebra. Denote by m the maximal ideal (X1, . . . ,Xn) of Q. Then√

I = m and the k-algebra A is Gorenstein if and only if there exists a poly-
nomial F ∈ R = k[x1, . . . , xn] such that I = AnnQ F.

Proof. Assume that I = AnnQ F for some polynomial F ∈ R. Since F is
annihilated by differential operators of sufficiently high order, AnnQ F con-
tains ml for sufficiently large l. Since we are working over a field k of char-
acteristic zero, it is clear that there exists a polynomial G ∈ Q such that
G(X)F (x) ∈ k×. We will show in the following that I : m = I + k · G. Since
G(X)F (x) is a constant, it immediately follows that

∂iG(∂1, . . . , ∂n)F (x1, . . . , xn) = 0, i = 1, . . . , n.

This shows that G ∈ I : m. Now let a(X1, . . . ,Xn) ∈ I : m be any element. By
definition of the ideal I : m, we have Xia(X1, . . . ,Xn) ∈ I = AnnQ F for all
i = 1, . . . , n. This means that

∂ia(∂1, . . . , ∂n)F (x1, . . . , xn) = 0, i = 1, . . . , n.

Hence, we have that a(X)F (x) is a constant. As we have already seen that
G(X)F (x) is a nonzero constant, we have that a(X) − cG(X) ∈ AnnQ F for
some constant c ∈ k. We have shown that I : m = I + k · G. In other words,
the k-vector space (I : m)/I is one-dimensional. Thus, A = Q/AnnQ F is a
Gorenstein algebra (see e.g., [2]).

Now let us prove the converse implication. Assume that A = Q/I is an
Artinian Gorenstein algebra. Then we have the isomorphism Homk(A,k) ∼= A
as an A-module. The Q-module Homk(Q,k) is identified with the ring of
formal power series R̂ = k[[x1, . . . , xn]] regarded as a Q-module. From the
exact sequence Q → A → 0, we have the exact sequence of Q-modules:

0 → Homk(A,k) ∼= A
θ→ Homk(Q,k) ∼= k[[x1, . . . , xn]].

Define F ∈ k[[x1, . . . , xn]] as the image of 1 ∈ A by the homomorphism θ.
From the assumption that I contains ml for l 
 0, the image of θ annihilates
polynomials in Q of sufficiently large degrees, so F is a polynomial in R.
Finally, we have that

AnnQ F = {a ∈ Q|ab ∈ I, ∀b ∈ Q} = I,

so A = Q/AnnQ F. �
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Remark 2.2. Let k be the field C of complex numbers. In this case, for a
polynomial

F =
∑

ci1···inxi1
1 · · · xin

n , ci1···in ∈ C,

we can choose the complex conjugate

F =
∑

ci1···inXi1
1 · · · Xin

n

as a generator of the socle of A = Q/AnnQ F.

Remark 2.3. When I is a homogeneous ideal (i.e., A is graded), the con-
dition

√
I = m is satisfied. In this case, we can choose F as a homogeneous

polynomial.

Example 2.1. Stanley [14] gave an example of Artinian Gorenstein algebra
with a non-unimodal Hilbert function. Let us take the polynomial

F (u, v,w,x1, . . . , x10) =
10∑

i=1

xiMi(u, v,w) ∈ k[u, v,w,x1, . . . , x10],

where M1(u, v,w), . . . ,M10(u, v,w) are monomials in u, v and w of degree 3
in an arbitrary ordering. Stanley’s example is given as A = Q/AnnQ F corre-
sponding to the polynomial F defined above. The algebra A has the Hilbert
function (1,13,12,13,1), so it does not have the strong or weak Lefschetz
property. More generally, it is shown in [1] and [9] that there exist Artinian
Gorenstein algebras A with a non-unimodal Hilbert function for dimA1 ≥ 5.
In Section 5, we will construct Artinian Gorenstein algebras with a unimodal
Hilbert function which do not have the strong Lefschetz property.

3. Characterization of Lefschetz elements

In this section, we discuss the set of the Lefschetz elements for graded Ar-
tinian Gorenstein rings A = k[X1, . . . ,Xn]/AnnQ F with the standard grad-
ing.

Definition 3.1. Let G be a polynomial in k[x1, . . . , xn]. When a family
Bd = {α

(d)
i }i of homogeneous polynomials of degree d > 0 is given, we call the

polynomial

det
((

α
(d)
i (X)α(d)

j (X)G(x)
)#Bd

i,j=1

)
∈ k[x1, . . . , xn]

the dth Hessian of G with respect to Bd, and denote it by Hess(d)
Bd

G. We
denote the dth Hessian simply by Hess(d) G if the choice of Bd is clear.

When d = 1 and α
(1)
j (X) = Xj , j = 1, . . . , n, the first Hessian Hess(1) G

coincides with the usual Hessian:

Hess(1) G = HessG := det
(

∂2G

∂xi ∂xj

)
ij

.
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Let us consider the case A = Q/AnnQ F and the higher Hessians of F

with respect to a k-linear basis Bd = {α
(d)
i } of Ad. Note that if we change

the k-linear basis of Ad, the corresponding higher Hessians Hess(d)
Bd

are just
multiplied by nonzero scalars in k×.

Theorem 3.1 ([17, Theorem 4]). Fix an arbitrary k-linear basis Bd of Ad

for d = 1, . . . , [D/2]. An element L = a1X1 + · · · + anXn ∈ A1 is a strong Lef-
schetz element of A = Q/AnnQ F if and only if F (a1, . . . , an) �= 0 and(

Hess(d)
Bd

F
)
(a1, . . . , an) �= 0

for d = 1, . . . , [D/2].

Proof. Define the identification [·] : AD →̃ k by [ω(X)] := ω(X)F (x) for any
ω(X) ∈ AD. Note that ω(X)F (x) ∈ k, because degω = degF = D. Since A is
a Poincaré duality algebra, the necessary and sufficient condition for L =
a1X1 + · · · + anXn ∈ A1 to be a strong Lefschetz element is that the bilinear
pairing

Ad × Ad → AD
∼= k,

(ξ, η) 
→ LD−2dξη 
→ [LD−2dξη]

is non-degenerate for d = 0, . . . , [D/2]. Therefore, L is a Lefschetz element if
and only if the matrix (

LD−2dα
(d)
i (X)α(d)

j (X)F (x)
)
ij

has nonzero determinant. For a homogeneous polynomial G(x1, . . . , xn) ∈
k[x1, . . . , xn] of degree d, we have the formula

(a1X1 + · · · + anXn)dG(x1, . . . , xn) = d!G(a1, . . . , an),

so

LD−2dα
(d)
i (X)α(d)

j (X)F (x)

= (D − 2d)!α(d)
i (X)α(d)

j (X)F (x)|(x1,...,xn)=(a1,...,an). �

Corollary 3.1. (1) The algebra A = Q/AnnQ F has the strong Lefschetz
property if and only if all the higher Hessians Hess(d)

Bd
F with respect to a

k-linear basis Bd of Ad, d = 1, . . . , [D/2], are nonzero polynomials.
(2) Assume that the socle degree of A is less than 5. An element L =

a1X1 + · · · + anXn is a strong Lefschetz element if and only if

F (a1, . . . , an) �= 0 and HessF (a1, . . . , an) �= 0.

Here, HessF is the first Hessian of F with respect to a linear basis of A1.
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4. Set of Lefschetz elements

In this section, we discuss the set of Lefschetz elements for some simple
examples of Gorenstein algebras with the strong Lefschetz property based on
Corollary 3.1.

Example 4.1. Let us consider the Gorenstein ring A = k[X1, . . . ,Xn]/
AnnQ F associated to the Fermat type polynomial

F =
n∑

i=1

xn
i − n(n − 1)s

n∏
i=1

xi,

where s ∈ k is a parameter. One can check that A has the strong Lefschetz
property for any s ∈ k as follows. For s = 0, it is easy to see that A has the
strong Lefschetz property. When s �= 0, the monomials α1 := xd

1, . . . , αn := xd
n

and
αI :=

∏
i∈I

xi, I ⊂ {1, . . . , n},#I = d

form a linear basis Bd of Ad for d > 1. The matrix M (d) = (αβF )α,β∈Bd
is of

form

M (d) =

(
M

(d)
1 0
0 M

(d)
2

)
,

where M
(d)
1 is a diagonal matrix of size n with detM

(d)
1 �= 0, and M

(d)
2 is

a matrix of size
(
n
d

)
. Let us consider the monomial G := x1 · · · xn and the

corresponding algebra A′ := Q/AnnQ G. Then we have

A′ ∼= k[X1, . . . ,Xn]/(X2
1 , . . . ,X2

n),

so A′ has the strong Lefschetz property. Thus, the dth Hessian Hess(d) G with
respect to the linear basis {αI |#I = d} is nonzero. Since

detM
(d)
2 =

(
−n(n − 1)s

)(n
d) · Hess(d) G �= 0,

we have Hess(d)
Bd

F �= 0. Hence, A has the strong Lefschetz property.
We give the explicit condition for the Lefschetz element for n = 3,4. For

n = 3 and F = x3 + y3 + z3 − 6s · xyz, A has the following structure:

Case s3 �= 0,1, A ∼= k[X,Y,Z]/(sX2 + Y Z, sY 2 + XZ,sZ2 + XY ),
Case s = 0, A ∼= k[X,Y,Z]/(X3 − Y 3,X3 − Z3,XY,Y Z,XZ),
Case s3 = 1, A ∼= k[X,Y,Z]/(X2 + Y Z,Y 2 + XZ,Z2 + XY,XZ2, Y Z2).

Note that A is a complete intersection for s3 �= 0,1. The Hilbert function of A
is Hilb(A) = (1,3,3,1) for all s ∈ k. The condition for L = aX + bY + cZ ∈ A1

to be a strong Lefschetz element is that

a3 + b3 + c3 − 6s · abc �= 0
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and
s2a3 + s2b3 + s2c3 − (1 − 2s3)abc �= 0.

It is remarkable that the above condition is described by a single condition

a3 + b3 + c3 − 6s · abc �= 0

for s = 1/2, (−1 ±
√

−3)/4. This is exactly when F decomposes into the prod-
uct of three linear forms.

For n = 4 and F = x4 +y4 + z4 +w4 − 12s · xyzw, the Hilbert function of A
is as follows:

Hilb(A) = (1,4,4,4,1) for s = 0,

Hilb(A) = (1,4,10,4,1) for s �= 0.

In this case, the condition for L = aX + bY + cZ + dW ∈ A1 to be a strong
Lefschetz element is that

a4 + b4 + c4 + d4 − 12s · abcd �= 0

and

(1 − 2s3 − s4)a2b2c2d2 − 2s3 · symm(a5bcd) − s2 · symm(a4b4) �= 0,

where symm(·) means the symmetrization of the indicated monomial.

Example 4.2. Stanley [15] studied the strong Lefschetz property of the
coinvariant algebra of finite Coxeter groups to show the Sperner property
for the Bruhat ordering on finite Coxeter groups. In [11], the set of the
Lefschetz elements for the coinvariant algebra of the finite Coxeter group is
determined except for type H4. Let V be the standard reflection representation
of the finite irreducible Coxeter group W. Then W acts on the polynomial
ring R = SymR V ∗ and the W -invariant subalgebra RW is generated by the
fundamental W -invariants f1, . . . , fr, r = dimV. The coinvariant algebra RW

is defined as the quotient algebra R/(f1, . . . , fr). It is known that RW is
Gorenstein (see e.g., [13, Theorem 7.5.1]). When W is crystallographic, RW is
isomorphic to the cohomology ring of the corresponding flag variety. In [11], it
was shown that the set of Lefschetz elements in V ∗ = (RW )1 is the complement
of the union of the reflection hyperplanes. For crystallographic case, their
argument is based on the ampleness criterion for the R-divisors on the flag
variety, so it is applicable only when the field k of coefficients is the field R
of real numbers.

Let us consider the case W = S3 and

RW = R[X,Y,Z]/(X + Y + Z,XY + Y Z + ZX,XY Z).

The algebra RW is also given by RW = R[X,Y,Z]/AnnΔ with Δ = (x −
y)(x − z)(y − z). The degree one part (RW )1 has a linear basis B1 = {X,Y }.
Then we have

Hess(1)B1
Δ = −4(x2 + y2 + z2 − xy − yz − zx),
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which is a negative definite quadratic form. Hence, the set of the Lefschetz
elements is given by

{(x, y, z)|Δ(x, y, z) �= 0} ⊂ V ∗.

If we work in V ∗
C, we have to take care of the condition x2 + y2 + z2 − xy −

yz − zx �= 0, too.

5. Gorenstein algebras which do not have the strong
Lefschetz property

The result in Section 3 shows that a polynomial F gives an example
of Gorenstein algebra which does not have the strong Lefschetz property
if one of the higher Hessians of F is identically zero. In [8, Section 4]
and [17], some examples of F with the zero Hessian are discussed. In [5],
it is proved, among other things, that the Hessian of a polynomial in 4 vari-
ables does not vanish, unless a variable can be eliminated by means of a
linear transformation of the variables. The polynomial F = x0u

2 + x1uv +
x2v

2 is the simplest example whose Hessian vanishes, but no variables can
be eliminated by a linear transformation of the variables (see [17, Exam-
ple 1]).

Here, we give examples of forms F such that HessF �= 0 and Hess(2) F = 0.
By using these forms, we can also give examples of Gorenstein algebras A =
Q/AnnQ F which do not satisfy the strong Lefschetz property.

Example 5.1. Let us consider the polynomial

F :=
n∑

j=0

x2
ju

n−jvj ∈ k[u, v, x0, . . . , xn]

and the corresponding algebra A = Q/AnnQ F, where Q = k[U,V,X0, . . . ,Xn],
U = ∂/∂u, V = ∂/∂v and Xi = ∂/∂xi. Linear bases of A1 and A2 are given in
the following table:

Linear basis
dimA1 = n + 3 U,V,X0, . . . ,Xn

dimA2 = 3n + 4 α1 := U2, α2 := UV,α3 := V 2,
α4 := UX0, . . . , αn+3 := UXn−1,
αn+4 := V X1, . . . , α2n+3 := V Xn,
α2n+4 := X2

0 , . . . , α3n+4 := X2
n

It is easy to see that dimA0 = dimAn+2 = 1, dimA1 = dimAn+1 = n + 3
and dimAd = (d + 1)n − d2 + 2d + 4 for 2 ≤ d ≤ n. The Hessian of F with
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respect to the basis above is expressed as follows:

HessF = 2n+1(uv)
n(n−1)

2

×
{(

n−1∑
j=0

(n − j)(n − j + 1)x2
ju

n−j−1vj

)(
n∑

j=1

j(j + 1)x2
ju

n−jvj−1

)

− uv

(
n−1∑
j=1

j(n − j)x2
ju

n−j−1vj−1

)2}
�= 0.

On the other hand, we have

X2
i U2F = 2(n − i)(n − i − 1)un−i−2vi,

X2
i UV F = 2(n − i)iun−i−1vi−1,

X2
i V 2F = 2i(i − 1)un−ivi−2

and X2
i αj(X)F = 0 for i = 0, . . . , n and j ≥ 4, so the vectors


ξi := (X2
i α1(X)F,X2

i α2(X)F, . . . ,X2
i α3n+4(X)F ), i = 0, . . . , n,

are linearly dependent. Hence, we can see that the second Hessian is identi-
cally zero, i.e., Hess(2) F = 0 in k[u, v,x0, . . . , xn]. This means that the alge-
bra A does not have the strong Lefschetz property.

For n = 3, the algebra A = Q/AnnQ F has the Hilbert function (1,6,13,13,
6,1). Since the multiplication map ×L : A2 → A3 cannot be bijective for all
L ∈ A1, A does not have the weak Lefschetz property either.

Example 5.2. There exists an example of a polynomial F of degree 5
with 5 variables such that HessF �= 0 and Hess(2) F = 0. Let us choose

F = x2u3 + xyu2v + y2uv2 + z2v3 ∈ k[u, v,x, y, z].

Then
U,V,X,Y,Z ∈ A = k[U,V,X,Y,Z]/AnnQ F

are linearly independent. So we have

HessF = 48u3v3(u5x4 + 8u4vx3y + 16u3v2x2y2 + 19u2v3x2z2

+ 9u2v3xy3 + 13uv4xyz2 + 2uv4y4 + 4v5y2z2) �= 0.

The monomials

α1 = U2, α2 = V 2, α3 = UV, α4 = X2,

α5 = Y 2, α6 = Z2, α7 = XY, α8 = UX,

α9 = UY, α10 = V X, α11 = V Y, α12 = V Z

form a linear basis of A2. We have

(α4α1F,α4α2F,α4α3F ) = (12u,0,0),
(α5α1F,α5α2F,α5α3F ) = (0,4v,4u),
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(α6α1F,α6α2F,α6α3F ) = (0,0,12v),
(α7α1F,α7α2F,α7α3F ) = (2v,2u,0)

and αiαjF = 0 for i = 4,5,6,7 and j ≥ 4. Hence, the vectors


ξi = (αiα1F, . . . , αiα12F ), j = 4,5,6,7,

are linearly dependent and Hess(2) F = 0. The algebra A = Q/AnnQ F has the
Hilbert function (1,5,12,12,5,1). Since we have Hess(2) F = 0, the algebra A
does not have the weak Lefschetz property.

Example 5.3. The following example is due to Ikeda [10]. Let us choose
the polynomial F = w3xy+wx3z +y3z2. Then the corresponding algebra A =
Q/AnnQ F has the Hilbert function (1,4,10,10,4,1). We choose the linear
bases X,Y,Z,W of A1 and

α1 = W 2, α2 = X2, α3 = Y 2, α4 = Z2, α5 = WX,

α6 = WY, α7 = WZ, α8 = XY, α9 = XZ, α10 = Y Z

of A2. The Hessian is given as follows:

HessF = 8(3w7xy4 + 8w6x6 − 27w5x3y3z + 27w4y6z2

− 45w3x5y2z2 − 54w2x2y5z3 + 9wx7yz3 + 27x4y4z4).

It is easy to check that the four vectors (α6αiF )i, (α7αiF )i, (α8αiF )i, (α9αiF )i

are linearly dependent, so the second Hessian Hess(2) F is identically zero.

Remark 5.1. In the above examples, we see that dimA1 takes each value
greater than 3. It is known that if dimA1 = 2, the Artinian Gorenstein alge-
bra A with the standard grading has the strong Lefschetz property [8, Propo-
sition 4.4], [9, Theorem 2.9]. It is still open whether the Artinian Gorenstein
algebra with dimA1 = 3 has the strong (or weak) Lefschetz property.

Acknowledgments. The first author would like to thank Akihito Wachi
for informing of Proposition 2.1 and for useful comments. The authors are
grateful to Tadahito Harima and Anthony Iarrobino for their suggestions and
comments.

References

[1] D. Bernstein and A. Iarrobino, A nonunimodal graded Gorenstein Artin algebra in
codimension five, Comm. Algebra 20 (1992), 2323–2336. MR 1172667

[2] W. Bruns and J. Herzog, Cohen–Macauley rings, Cambridge Studies in Advanced
Mathematics, vol. 39, Cambridge Univ. Press, Cambridge, 1993. MR 1251956

[3] A. V. Geramita, Inverse systems of fat points: Waring’s problem, secant varieties of

Veronese varieties and parameter spaces for Gorenstein ideals, The curves seminar at
Queen’s, vol. X, Queen’s Papers in Pure and Appl. Math., vol. 102, Queen’s Univ.,

Kingston, ON, 1996, pp. 2–114. MR 1381732

[4] A. V. Geramita, T. Harima, J. C. Migliore and Y. S. Shin, The Hilbert function of

a level algebra, Mem. Amer. Math. Soc. 186 (2007) vi+139. MR 2292384

http://www.ams.org/mathscinet-getitem?mr=1172667
http://www.ams.org/mathscinet-getitem?mr=1251956
http://www.ams.org/mathscinet-getitem?mr=1381732
http://www.ams.org/mathscinet-getitem?mr=2292384


LEFSCHETZ ELEMENTS OF GORENSTEIN ALGEBRAS 603
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