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LORENTZ HYPERSURFACES IN E4
1 SATISFYING Δ �H = α �H

A. ARVANITOYEORGOS, G. KAIMAKAMIS AND M. MAGID

Abstract. A hypersurface M3
1 in the four-dimensional pseudo-

Euclidean space E4
1 is called a Lorentz hypersurface if its normal

vector is space-like. We show that if the mean curvature vec-

tor field of M3
1 satisfies the equation Δ �H = α �H (α a constant),

then M3
1 has constant mean curvature. This equation is a natural

generalization of the biharmonic submanifold equation Δ �H =�0.

1. Introduction

Let x : Mn
r → Em

s be an isometric immersion of an n-dimensional connected
submanifold Mn

r of a pseudo-Euclidean space Em
s . We denote by �H,Δ the

mean curvature vector field and the Laplace operator of Mn
r respectively, with

respect to the induced Riemannian metric. A submanifold of Em
s is said to

have proper mean curvature vector field if it satisfies the equation

(1) Δ �H = α �H (α constant).

If α = 0 the above equation reduces to Δ �H =�0, and the submanifold is called
biharmonic. Biharmonic submanifolds have been studied by several authors.
A well known conjecture of Chen [5] states that the only biharmonic subman-
ifolds of Euclidean spaces are the minimal submanifolds, that is when H = 0.

Equation (1) was first appeared in [3] where surfaces in E3 satisfying (1)
were classified. In [4], it was shown that a submanifold M of a Euclidean
space satisfies (1) if and only if M is biharmonic or of 1-type or a null 2-type.
Hypersurfaces in E4 satisfying (1) with the additional condition of confor-
mal flatness were classified by Garray in [14]. In [10], Defever proved that
every hypersurface of E4 satisfying (1) has constant mean curvature. Other
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results about submanifolds satisfying (1) have been obtained by Chen ([8],
[6]), Ekmekci and Yaz [11], and Inoguchi ([15], [16]).

The study of equation (1) for submanifolds in pseudo-Euclidean spaces was
originated by Ferrández and Lucas in [12] and [13]. Among other results, they
showed that if the minimal polynomial of the shape operator of a hypersurface
Mn−1

r (r = 0,1) in En
1 is at most of degree two, then Mn−1

r has constant
mean curvature. Also, in [7] various classification theorems for submanifolds
in a Minkowski space–time were obtained. In a recent work, the first two
authors and Defever [2] proved that if M3

r (r = 0,1,2,3) is a nondegenerate
hypersurface of the pseudo-Euclidean space E4

s satisfying equation (1) and
the shape operator is diagonal, then M3

r has constant mean curvature.
Even though Chen’s conjecture is not true in general for submanifolds in

pseudo-Euclidean spaces, there is evidence (see e.g., the main result in [1]
and references therein) that the conjecture is in fact true for hypersurfaces in
pseudo-Euclidean spaces. It would be reasonable to believe that submanifolds
satisfying equation (1) must have constant mean curvature. Towards this
direction, in the present article we consider Lorentz hypersurfaces in E4

1 whose
shape operator is not diagonal and we prove the following theorem.

Theorem. Let M3
1 be a nondegenerate Lorentz hypersurface of the

4-dimensional pseudo-Euclidean space E4
1 satisfying Δ �H = α �H . Then M3

1

has constant mean curvature.

The headlines of the proof are as follows: we use [9] to express equation
Δ �H = α �H as a system of equations

S(∇H) = −ε
3H

2
(∇H),

ΔH + εH trS2 = αH.

According to Petrov [19] and Magid [17] the shape operator of a Lorentz
hypersurface M3

1 in E4
1 can be put in four possible canonical forms. We prove

that for each nondiagonal canonical form of the shape operator, the mean
curvature of M3

1 is constant (cf. Propositions 1, 2, 3, and 4). We remark that
Propositions 2 and 3 in particular show that M3

1 is minimal.

2. Preliminaries

Lorentz hypersurfaces in E4
1 . Let M3

1 be a Lorentz hypersurface of the
pseudo-Euclidean space E4

1 . Let �ξ denote a unit normal vector field with
〈�ξ, �ξ〉 = 1. Denote by ∇ and ∇̃ the Levi–Civita connections of M3

1 and E4
1

respectively. For any vector fields X,Y tangent to M3
1 , the Gauss formula is

given by

(2) ∇̃XY = ∇XY + h(X,Y )�ξ,
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where h is the scalar-valued second fundamental form. If we denote by S the
shape operator of M3

1 associated to �ξ, then the Weingarten formula is given
by

(3) ∇̃X
�ξ = −S(X),

where 〈S(X), Y 〉 = h(X,Y ). If H = 1
3 trS, then the mean curvature vector

�H = H�ξ is a well defined normal vector field to M3
1 in E4

1 . The Codazzi
equation is given by

(4) (∇XS)Y = (∇Y S)X,

and the Gauss equation by (cf. [18])

(5) R(X,Y )Z = 〈S(Y ),Z〉S(X) − 〈S(X),Z〉S(Y ).

We assume that the mean curvature vector field satisfies the equation

(6) Δ �H = α �H.

Condition (6) is equivalent to (cf. [9])

(7) Δ �H = 2S(∇H) + 3H(∇H) + {ΔH + H trS2}�ξ = α �H.

By comparing the vertical and horizontal parts of (7), this is equivalent to the
conditions

S(∇H) = − 3H

2
(∇H),(8)

ΔH + H trS2 = αH,(9)

where the Laplace operator Δ acting on scalar-valued function f is given by
(e.g., [9])

(10) Δf = −
3∑

i=1

εi(eieif − ∇eieif).

Here, {e1, e2, e3} is a local orthonormal frame of TpM
3
1 with 〈ei, ei〉 = εi = ±1.

The shape operator of a hypersurface in E4
1 . Consider the real

4-dimensional vector space R
4 with the standard basis {ei, i = 1, . . . ,4}. Let

〈·, · 〉 denote the indefinite inner product on R
4 whose matrix with respect to

the standard basis is diag(−1,1,1,1). This is called the Lorentz metric on R
4.

The space R
4 with this metric is called the 4-dimensional pseudo-Euclidean

space, and is denoted by E4
1 .

A vector X ∈ E4
1 is called time-like, space-like, or light-like according to

whether 〈X,X〉 is negative, positive, or zero, respectively. A nondegener-
ate hypersurface M3

r (r = 0,1) of the pseudo-Euclidean space E4
1 can itself

be endowed with a Riemannian or a Lorentzian metric structure, according
to whether the metric induced on M3

r from the Lorentzian metric on E4
1 is
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(positive) definite or indefinite. In the former case, a normal vector to M3
r is

time-like, and in the latter case a normal vector to M3
r is space-like.

The shape operator of a Riemannian submanifold is always diagonalizable,
but this is not the case for the shape operator of a Lorentzian submanifold.
It is known [19, pp. 50–55] that a symmetric endomorphism of a vector space
with a Lorentzian inner product can be put into four possible canonical forms.
In particular, the matrix representation G of the induced metric on M3

1 is of
Lorentz type, so the shape operator S of M3

1 can be put into one of the
following four forms with respect to frames {e1, e2, e3} at TpM

3
1 [17]:

S =

⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3,

⎞
⎠ , G =

⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ ,(I)

S =

⎛
⎝λ 0 0

1 λ 0
0 0 λ3

⎞
⎠ , G =

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ ,(II)

S =

⎛
⎝λ 0 0

0 λ 1
1 0 λ

⎞
⎠ , G =

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ ,(III)

S =

⎛
⎝μ −ν 0

ν μ 0
0 0 λ3

⎞
⎠ , G =

⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ , ν �= 0.(IV)

The matrices G for cases (I) and (IV) are with respect to an orthonormal
basis of TpM

3
1 , whereas for cases (II) and (III) are with respect to a pseudo-

orthonormal basis. This is a basis {e1, e2, e3} of TpM
3
1 satisfying 〈e1, e1〉 =

〈e2, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0, and 〈e1, e2〉 = 〈e3, e3〉 = 1. In [2], the first
two authors and Defever proved that every nondegenerate hypersurface M3

r

(r = 0,1,2,3) in E4
s (s = 0, . . . ,4) with shape operator of type (I) satisfying (6),

has constant mean curvature. In the present work, we study the same problem,
where the shape operator has one of the forms (II), (III), and (IV).

3. Proof of the main theorem

In what follows, we assume constant multiplicity and algebraic type for
each shape operator. Let M3

1 be a Lorentz hypersurface in E4
1 satisfying

condition (6), or equivalently relations (8) and (9). We will consider each case
for the shape operator S separately.

The shape operator S has the canonical form (II). Suppose that H is
not constant.

Since H is not constant ∇H �=�0. As the shape operator has the canonical
form (II) (with respect to a pseudo-orthonormal basis {e1, e2, e3} of TpM

3
1 ),
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then S(e1) = λe1 +e2, S(e2) = λe2, and S(e3) = λ3e3. Therefore, by using (8),
we conclude that ∇H can be considered either in the direction of e3, or in
the direction of e2. In the first case, ∇H is space-like (it cannot be time-like
as 〈e3, e3〉 = 1), and λ3 = − 3H

2 . In the second case, ∇H is light-like, and
λ = − 3H

2 .

Proposition 1. Let M3
1 be a Lorentz hypersurface of the pseudo-Euclidean

space E4
1 satisfying (6) with shape operator of type (II), and ∇H be space-like.

Then M3
1 has constant mean curvature.

Proof. We assume that H is not constant and we will end up to a con-
tradiction. Since ∇H �= �0, the vectorial equation (8) shows that ∇H is an
eigenvector of S with corresponding eigevalue − 3H

2 .
We write ∇eiej =

∑3
k=1 ωk

ijek, we take into account the action of S on
the basis {e1, e2, e3}, and use the Codazzi equations (4). Then the following
relations

〈(∇e1S)e2, e1〉 = 〈(∇e2S)e1, e1〉, 〈(∇e2S)e3, e3〉 = 〈(∇e3S)e2, e3〉,
〈(∇e1S)e3, e3〉 = 〈(∇e3S)e1, e3〉, 〈(∇e2S)e3, e2〉 = 〈(∇e3S)e2, e2〉,
〈(∇e1S)e2, e3〉 = 〈(∇e2S)e1, e3〉, 〈(∇e1S)e3, e2〉 = 〈(∇e3S)e1, e2〉,
〈(∇e2S)e3, e1〉 = 〈(∇e3S)e2, e1〉

imply that ω1
21 = ω2

22, ω3
32 = ω3

31 = ω1
23 = 0, ω3

12 = ω3
21, e3(λ) = (λ3 − λ)ω1

13,
e3(λ) = (λ3 − λ)ω2

23. From the last two equations we obtain that ω1
13 = ω2

23,
as from trS = 3H = 2λ + λ3, it follows that λ = 3H

4 �= λ3.
Further, the conditions

∇ep 〈e1, e1〉 = ∇ep 〈e2, e2〉 = ∇ep 〈e3, e3〉 = ∇ep 〈e1, e3〉 = ∇ep 〈e2, e3〉 = 0

for p = 1,2,3 imply that ω2
p1 = ω1

p2 = ω3
p3 = 0, and ω3

p1 = −ω2
p3, ω3

p2 = −ω1
p3.

As a consequence, we also obtain that ω1
33 = ω2

33 = ω3
22 = 0. Therefore, the

covariant derivatives ∇eiej simplify to the following:

∇e1e1 = ω1
11e1, ∇e1e2 = ω2

12e2 + ω3
12e3, ∇e1e3 = ω1

13e1 + ω2
13e2,

∇e2e1 = ω3
21e3, ∇e2e2 = 0, ∇e2e3 = ω2

23e2,

∇e3e1 = 0, ∇e3e2 = ω2
32e2, ∇e3e3 = 0.

Next, we construct an orthonormal basis {X1,X2,X3} from the pseudo-
orthonormal basis {e1, e2, e3} such that

X1 =
e1 + e2√

2
, X2 =

e1 − e2√
2

, X3 = e3.

Then the shape operator S with respect to this new basis takes the form

S =

⎛
⎜⎝

λ + 1
2

1
2 0

− 1
2 λ − 1

2 0
0 0 λ3

⎞
⎟⎠ .
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Note that X3 is still in the direction of ∇H , and that λ3 = − 3H
2 . Therefore,

since ∇(H) = X1(H)X1 + X2(H)X2 + X3(H)X3, then

(11) X1(H) = X2(H) = 0, X3(H) �= 0.

Since M3
1 is a Lorentz hypersurface, trS = 3H , λ = 9H

4 , and trS2 = 99H2

8 .
By expressing the Laplace operator (10) in terms of the basis {X1,X2,X3},
equation (9) reduces to

−
(
X1X1(H) − ∇X1X1(H)

)
+

(
X2X2(H) − ∇X2X2(H)

)

−
(
X3X3(H) − ∇X3X3(H)

)
+ H

(
99H2

8

)
= αH,

which by use of (11) becomes

(12) ∇X1X1(H) − ∇X2X2(H) − e3e3(H) +
99H3

8
= αH.

On the other hand, an easy computation shows that

∇X1X1 =
1
2
[ω1

11e1 + ω3
11e3 + ω2

12e2 + ω3
12e3 + ω3

21e3]

and similarly for ∇X2X2, thus obtaining

∇X1X1(H) =
1
2
[ω3

11 + ω3
12 + ω3

21]e3(H) and

∇X2X2(H) =
1
2
[ω3

11 − ω3
12 − ω3

21]e3(H).

Hence, equation (12) simplifies to

(13) e3e3(H) − 2ω3
12e3(H) − 99H3

8
= αH.

Substituting λ = 9H
4 into e3(λ) = (λ3 − λ)ω1

13, we obtain

(14) e3(H) = − 5H

3
ω1

13 =
5H

3
ω3

12.

We evaluate Gauss equation (5) for 〈R(e3, e1)e2, e3〉 and equate the left-hand
side by using the definition of the curvature tensor to obtain

(15) e3(ω3
12) = (ω3

12)
2 − 27H2

8
.

Applying e3 on both sides of equation (14) and using (15) we get

e3e3(H) =
40H

9
(ω3

12)
2 − 45H3

8
.

Substituting this equation to (13) and by use of (14), we obtain

(16)
10
9

(ω3
12)

2 − 9H2 = α.
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Acting now with e3 on (16) and using expressions (14) and (15) we simulta-
neously obtain that

20
9

(ω3
12)

2 − 225H2

6
= 0.

Therefore, H must be constant. �

Proposition 2. Let M3
1 be a Lorentz hypersurface of the pseudo-Euclidean

space E4
1 with shape operator of type (II) satisfying (6), and ∇H be light-like.

Then M3
1 is minimal.

Proof. By hypothesis ∇H is along the vector e2, and λ = − 3H
2 . Since

trS = 3H then λ3 = 6H . As the basis {e1, e2, e3} is pseudo-orthonormal, it
follows that ∇(H) = e2(H)e1 + e1(H)e2 + e3(H)e3. Therefore,

(17) e2(H) = e3(H) = 0, e1(H) �= 0.

By writing ∇eiej =
∑3

k=1 ωk
ijek, we obtain that

0 = ∇ei 〈ej , ek 〉 = 〈∇eiej , ek 〉 + 〈ej , ∇eiek 〉
= ω1

ij 〈e1, ek 〉 + ω2
ij 〈e2, ek 〉 + ω3

ij 〈e3, ek 〉
+ ω1

ik 〈ej , e1〉 + ω2
ik 〈ej , e2〉 + ω3

ik 〈ej , e3〉.

By assigning i, j, k any values from {1,2,3}, certain of the ωk
ij vanish, and

others satisfy simple relations. In particular we obtain:

∇e1e3 = −ω3
12e1 + ω2

13e2, ∇e3e1 = ω1
31e1 + ω3

31e3,(18)
∇e2e3 = −ω3

22e1 − ω3
21e2, ∇e3e2 = −ω1

31e2 + ω3
32e3.(19)

Using relations (17) we get that [e2, e3](H) = e2e3(H) − e3e2(H) = 0. Also,
since [e2, e3](H) = ∇e2e3(H) − ∇e3e2(H) it follows that ω3

22 = 0, so rela-
tions (19) simplify to

(20) ∇e2e3 = −ω3
21e2, ∇e3e2 = −ω1

31e2 + ω3
32e3.

We use the Codazzi equations to obtain that

〈(∇e1S)e3, e3〉 = 〈(∇e3S)e1, e3〉, 〈(∇e2S)e3, e3〉 = 〈(∇e3S)e2, e3〉,

which, by using (18) and (20), imply that

e1(λ3) = ω3
32 and(21)

e2(λ3) = (λ − λ3)ω3
32,(22)

respectively. Using (17) and that λ3 = 6H , relation (22) implies that (λ −
λ3)ω3

32 = 0. If ω3
32 = 0, then from (21) it follows that e1(λ3) = 0, which con-

tradicts (17). If λ = λ3, then − 3H
2 = 6H , i.e. H = 0. �
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The shape operator S has the canonical form (III). Suppose that H
is not constant.

Then ∇H �=�0, and the vectorial equation (8) shows that ∇H is an eigenvec-
tor of S with corresponding eigenvalue − 3H

2 . Since the shape operator has the
canonical form (III) (with respect to a pseudo-orthonormal basis {e1, e2, e3}),
then S(e1) = λe1 + e3, S(e2) = λe2, and S(e3) = e2 + λe3 (with respect to a
pseudo-orthonormal basis {e1, e2, e3} of TpM

3
1 ). Hence, ∇H is in the direction

of e2, i.e., it is light-like, and λ = − 3H
2 . We will prove the following:

Proposition 3. Let M3
1 be a Lorentz hypersurface of the pseudo-Euclidean

space E4
1 satisfying (6), with shape operator of type (III) and ∇H be light-like.

Then M3
1 is minimal.

Proof. The shape operator S, with respect to the orthonormal basis {X1,
X2,X3} of TpM

3
1 considered in Proposition 1, takes the form

S =

⎛
⎜⎝

λ 0 1√
2

0 λ − 1√
2

1√
2

1√
2

λ

⎞
⎟⎠ .

Since trS = 3H , it follows that 3λ = − 9H
2 = 3H , so H = 0. �

The shape operator S has the canonical form (IV). Let H be noncon-
stant.

Since the shape operator, with respect to an orthonormal basis {e1, e2, e3}
of TpM

3
1 , has the canonical form (IV), then S(e1) = μe1 +νe2, S(e2) = −νe1 +

μe2, and S(e3) = λ3e3. This means that ∇H is in the direction of e3, i.e., it
is space-like.

The following proposition is proved along the same lines as Proposition 1.

Proposition 4. Let M3
1 be a Lorentz hypersurface of the pseudo-Euclidean

space E4
1 , satisfying (6), with shape operator of type (IV) and ∇H be space-

like. Then M3
1 has constant mean curvature.

Proof. We assume that H is not constant and we will end up to a contra-
diction. Then ∇H �= �0 and the vectorial equation (8) shows that ∇H is an
eigenvector of S with corresponding eigenvalue − 3H

2 . Then λ3 = − 3H
2 , and

e1(H) = e2(H) = 0, e3(H) �= 0.

From the equation trS = 3H , it follows that μ = 9H
4 . Next, we try to ob-

tain simplified expressions for ∇eiej =
∑3

k=1 ωk
ijek. We apply the Codazzi

equations (4) for

〈(∇e1S)e3, e1〉, 〈(∇e2S)e3, e2〉, 〈(∇e1S)e3, e2〉,
〈(∇e1S)e3, e3〉, 〈(∇e2S)e3, e3〉
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and obtain that

e3(H) = − 5H

3
ω1

13, e3(H) = − 5H

3
ω2

23, e3(ν) = −νω1
13,

15H

4
ω3

31 + νω3
32 = 0,

15H

4
ω3

32 − νω3
31 = 0,

respectively. Therefore, ω1
13 = ω2

23, and since H and ν are not zero, ω3
31 =

ω3
32 = 0. Taking into account the condition ωk

ij = −εjεkωj
ik, the previous

relations give ω1
33 = ω2

33 = 0. Finally, since [e1, e2](H) = 0, it follows that
∇e1e2(H) − ∇e2e1(H) = 0, thus ω3

12 = ω3
21 = 0.

Next, we use Gauss equation (5) and the definition of the curvature tensor
for 〈R(e1, e3)e1, e3〉 and 〈R(e3, e2)e3, e2〉 to obtain

(23) e3(ω3
11) = −(ω1

13)
2 +

27H2

8
and e3(ω2

23) = −(ω2
23)

2 +
27H2

8
.

Hence, in view of (10), and taking into account the relations ω3
11 = −ε1ε3ω

1
13 =

ω1
13, ω3

22 = −ε2ε3ω
2
23 = −ω2

23, and ω1
13 = ω2

23, equation (9) reduces to

(24) e3e3(H) + 2ω1
13e3(H) − H

(
99H2

8
− 2ν2

)
= αH.

Applying e3 on both sides of equation e3(H) = − 5H
3 ω1

13, and using (23) we
get

e3e3(H) =
40H

9
(ω1

13)
2 − 45H3

8
,

so equation (24) becomes

(25)
10
9

(ω1
13)

2 + 2ν2 − 18H2 = α.

Acting with e3 on (25), we obtain

20
9

(ω1
13)

2 + 4ν2 − 135H2

2
= 0.

Then the two last equations imply that H must be constant which is a con-
tradiction. �

The theorem stated in the Introduction now follows from Propositions 1,
2, 3, and 4.
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