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A PARABOLIC VERSION OF CORONA DECOMPOSITIONS

JORGE RIVERA-NORIEGA

Abstract. Let E be a subset in (n + 1)-dimensional Euclid-
ian space with parabolic homogeneity, codimension 1, and with

an appropriate surface measure σ associated to it. We define

a parabolic version of Corona decomposition of E and establish

two results on sufficient conditions for the existence of parabolic

Corona decomposition for E. Both results are parabolic versions
of well-known results due to G. David and S. Semmes.

1. Introduction

The monograph [2] deals with the question of finding conditions on a set
E ⊂ R

n, n ≥ 3, with Hausdorff dimension d < n, so that Calderón–Zygmund
operators with nice kernels are bounded in the spaces L2(E,dHd), where Hd

denotes the d-dimensional Hausdorff measure. The main theorem in that
work establishes the equivalence of several conditions with this L2 bounded-
ness, some conditions of geometric nature and some more described through
analytical properties.

Our motivation for this work is to explore a parabolic version of portions of
that theorem for sets in R

n+1 with parabolic homogeneity and codimension 1.
Besides [2], [3], our source of motivation for focusing on parabolic problems
is the theory developed in [5], [6], [8], [9], [10] for parabolic singular integrals,
and parabolic uniformly rectifiable sets.

The fundamental works [2], [3] include many ideas, techniques and con-
structions that could be easily adapted to the parabolic setting. However,
when trying to obtain appropriate parabolic versions of those results, there
are some adaptations to be carefully considered:
(a) For the so called Corona decompositions of [2], [3], one uses Lipschitz

graphs for a local approximation to the set E. In parabolic problems
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some more specific regularity for the approximating graphs is required, as
it was essentially addressed in [5], [7].

(b) In the constructions of [2], [3], some planes are used as a reference for
the aforementioned approximation process. The good planes in parabolic
problems must include lines parallel to the time axis, as observed in [8], [9].
This suggests that considerations about planes in some arguments of [2]
should be adapted accordingly.

(c) The construction of the approximating Lipschitz graphs in [2], [3] is per-
formed using a condition on the angle between planes. However, it is not
clear that this condition is explicitly needed in parabolic constructions,
as noted for instance in [8], [11], where parabolic Lipschitz graph are con-
structed through Whitney type extensions, and n-dimensional planes in
R

n+1 parallel to R
n.

These and some other remarks are considered in constructions of subsequent
sections of this paper.

In view of this, we focused on arguments that required adjustments beyond
considerations on the parabolic homogeneity, and still providing the important
steps to prove a parabolic version of the main theorem in [2], including only
some of the several conditions addressed therein. To be more precise in our
statements, we introduce some notations.

For (X, t) ∈ R
n × R ≡ R

n+1, denoted by Cr(X, t) the cylinder of radius r > 0
and centered at (X, t) given by {(Y, s) ∈ R

n+1 : |X − Y | < r, |t − s| < r2}. The
parabolic distance between (X, t), (Y, s) ∈ R

n+1 is defined by d(X, t;Y, s) =
|X − Y | + |t − s|1/2 ≡ ‖X − Y, t − s‖. This last expression defines what is
called the parabolic norm of points in R

n+1, i.e., ‖X, t‖ = d(X, t;�0). By ex-
tension, we define the parabolic distance between sets E and F as d(E;F ) =
inf{d(X, t;Y, s) : (X, t) ∈ E, (Y, s) ∈ F }, where E and F are either both in
R

n+1 or both in R
n, and containing the variable t.

In some cases, we denote points in R
n+1 by (x0, x, t) ∈ R × R

n−1 × R, to
stress that in graph coordinates x0 is the variable depending on (x, t). From
time to time, especially in certain parts of this work where the t variable is
irrelevant, we use the notation X for points in R

n+1.
To start the description of the type of hypersurfaces considered, we define

once and for all the appropriate adaptation of surface measure. Given a
Borel set F ⊂ R

n+1, let σ(F ) =
∫

F
dσt dt, where σt is the (n − 1)-dimensional

Hausdorff measure of Ft ≡ F ∩ R
n × {t}.

In the remaining, we denote by Hd the Hausdorff measure of dimension
0 < d < n + 2. Also, to shorten notations, if P is any n-dimensional plane
containing a line parallel to the t axis then it will be called a t-plane. Notice
now that if P is any t-plane through (X, t) ∈ R

n+1 then σ(Cr(X, t) ∩ P ) =
αnrn+1, for certain dimensional constant αn. This is indeed the behavior we
want for a surface measure with parabolic homogeneity.
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If we now fix a subset E in R
n+1, let d(X, t) = d(X, t;E) and define

(1) γ(Z, τ ; r) = inf
P

[
1

rn+3

∫
E∩Cr(Z,τ)

d((Y, s), P )2 dσ(Y, s)
]
,

where the infimum is taken over all t-planes P . Finally, define the measure

(2) dν(Z, τ ; r) = γ(Z, τ ; r)dσ(Z, τ)
dr

r
.

Definition 1.1. We say that E ⊂ R
n+1 is uniformly rectifiable in the para-

bolic sense (URPS), or that E is parabolic uniformly rectifiable, if the following
conditions hold:

• For some M ≥ 1 and R > 0, E satisfies an (M,R) Ahlfors condition for
0 < ρ ≤ R and (X, t) ∈ E

(3) ρn+1M −1 ≤ σ
(

Cρ(X, t) ∩ E
)

≤ Mρn+1.

• For every (X, t) ∈ E and Cρ(X, t) ⊂ CR(X, t), the following Carleson mea-
sure condition holds:

(4) ν
(
[Cρ(X, t) ∩ E] × (0, ρ)

)
≤ Cρn+1

for some constant C.

The smallest constant for which (4) holds will be denoted by ‖ν‖+. In
general, when a measure μ defined on Borel sets of E × (0, ∞) satisfies an
estimate as (4) then one says that μ is a Carleson measure and ‖μ‖+ is
referred to as the Carleson norm of μ.

From now on, given E ⊂ R
n+1 satisfying an (M,R) Ahlfors condition, we

let Δr(X, t) denote the surface cube Cr(X, t) ∩ E. Also, to shorten notation,
we call E ⊂ R

n+1 a parabolic hypersurface if it satisfies an (M,R) Ahlfors
condition as (3) and R

n+1 \ E has exactly two connected components. These
components will be denoted by Ω1 ≡ Ω1(E) and Ω2 ≡ Ω2(E).

For any real valued function ψ defined on an n-dimensional plane P , taking
values in the orthogonal complement of P in R

n+1, the graph of the function
is {Z + ψ(Z) : Z ∈ P }. Notice that it may occur that the plane P coincides
with R

n.
A function ψ : R

n −→ R is a Lip(1,1/2) function with constant A1 > 0 if
for (x, t), (x, s) ∈ R

n, |ψ(x, t) − ψ(y, s)| ≤ A1‖x − y, t − s‖. The function ψ is
called a parabolic Lipschitz function if it satisfies the following two conditions:

• ψ satisfies a Lipschitz condition in the space variable

(5) |ψ(x, t) − ψ(y, t)| ≤ A2|x − y|
uniformly on t ∈ R.

• For every interval I ⊆ R, every x ∈ R
n, and with a uniform constant A3

(6)
1

|I|

∫
I

∫
I

|ψ(x, t) − ψ(x, s)|2
|s − t|2 dtds ≤ A3 < ∞.
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The character of a parabolic Lipschitz function ψ or its graph is max{Ã2, Ã3},
where Ã2 and Ã3 are respectively, the minimal constants for which (5) and (6)
hold.

We recall that it is a well-established fact (see e.g., [5]) that every parabolic
Lipschitz function is a Lip(1,1/2) function.

Now we describe the dyadic grid associated to an (M,R) Ahlfors regular
set, regardless of the homogeneity or the surface measure associated to it
(see e.g., [1]). Given E ⊂ R

n+1 satisfying an (M,R) Ahlfors condition as (3),
there exists a family of partitions Δj of E (called the generations of the dyadic
grid), j ∈ Z, into sets Q called parabolic dyadic surface cubes (or simply dyadic
cubes) with the following properties:
(DG1) If j ≤ k, Q ∈ Δj and Q′ ∈ Δk then either Q ∩ Q′ = ∅ or Q ⊆ Q′;
(DG2) there exists a constant G > 0 such that if Q ∈ Δj then

2j/G ≤ diamQ ≤ G2j and 2j(n+1)/G ≤ σ(Q) ≤ G2j(n+1);

(DG3) if Q ∈ Δj and τ > 0, then with the same constant G > 0 as above

σ
({

(X, t) ∈ Q : d
(
(X, t);E \ Q

)
≤ τ2j

})
≤ Gτ1/G2j(n+1).

This last property is recalled as a relative smallness property of the boundary
of the cubes. In (DG2), diamQ = sup{ ‖x − y, t − s‖ : (x, t), (y, s) ∈ Q} denotes
the parabolic diameter of Q.

From now on, we adopt the following standard notations: A � B means
that A ≤ kB with a constant k > 0, that may depend at most on the constants
involved in previous definitions, or whose dependance is clear from the context.
In any case, the dependance may be explicitly stated using the notation k =
k(· · · ). Similarly, A ≈ B means that A � B and B � A hold simultaneously.
Finally, the constant in a chain of inequalities may change from line to line,
as long as the dependance of such a constant does not interfere in the essence
of the argument.

Let Δ =
⋃

Δj and for Q ∈ Δ, t ∈ R and x ∈ R
n−1 define:

• the t-slice of Q as Qt = (Rn × {t}) ∩ E and
• the x-slice of Q as Qx = {t ∈ R : (x, t) ∈ Q for some x ∈ R

n}.
Observe that if Qt �= ∅ then (DG1)–(DG3) imply Hn−1(Qt) ≈ (diamQ)n−1,
and similarly if Qx �= ∅ then by (DG1)–(DG3) one has H1(Qx) ≈ [diamQ]2.

When E coincides with a t-plane then the dyadic grid may actually be
chosen to coincide (after a rotation, if needed) with the grid of cubes of the
form

Q2j (X, t) = {(Z, τ) : |Z − X| < 2j , |τ − t| < 22j } for certain (X, t) ∈ R
n+1.

We will keep the notation Qr(p) for the cube contained in a t-plane centered
at p with radius r > 0.

Let Q ∈ Δj and R ∈ Δ. We say that R is a descendant of Q if R ∈ Δj+1

and R ⊂ Q. We say that R is a sibling of Q if R ∈ Δj and both R and Q are
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descendants of the same Q̃ ∈ Δj−1. The family of siblings of Q is denoted by
ς(Q).

Definition 1.2. A Borel set E ⊂ R
n+1 admits a parabolic Corona decom-

position if for each η > 0 there is a constant C = C(η) > 0 such that we can
partition Δ =

⋃
Δj into a good set G ⊂ Δ and a bad set B ⊂ Δ with the

following properties:

(CD1) The bad set satisfies a Carleson packing condition:∑
Q∈B
Q⊂R

σ(Q) ≤ Cσ(R).

The good set in turn can be partitioned into a family F of subsets S
of G such that:

(CD2) Each S has a maximal element denoted by Q(S);
(CD3) If Q ∈ S, Q′ ∈ Δ with Q ⊆ Q′ ⊆ Q(S), then Q′ ∈ S;
(CD4) If Q ∈ S then either all of the descendants of Q lie in S or none of

them do;
(CD5) The maximal cubes satisfy the Carleson packing condition∑

S∈F
Q(S)⊂R

σ(Q(S)) ≤ Cσ(R).

An additional property of the elements in the family F is the following:
(CD6) For each S ∈ F there exists a parabolic Lipschitz graph Γ with char-

acter η such that for every Q ∈ S if X ∈ E, d(X,Q) ≤ diam(Q) then
d(X; Γ) ≤ η diam(Q).

Following [2], we refer to the S ∈ F as the stopping-time regions, since they
are usually constructed through algorithms using stopping time arguments.

The triple (B, G, F ) satisfying (CD1)–(CD5) will be called a coronization
of E (see [3, p. 55]). Observe that our notion of parabolic Corona decompo-
sition differs from the original one introduced by [2, p. 18], only in property
(CD6), as the type of approximating graph we require is of a different nature
as that of Lipschitz functions.

At the same time, the so called generalized Corona decompositions in [3,
p. 63ff] allow more general sets (not necessarily Lipschitz graphs) to be the
approximating sets alluded to in (CD6). However, this generalization is essen-
tially in a different sense, and in particular, we still have to obtain the precise
regularity condition addressed by (6) in the definition of parabolic Lipschitz
functions.

A basic parabolic Lipschitz domain is a domain of the form

Ω(ψ) = {(x0, x, t) ∈ R × R
n−1 × R : x0 > ψ(x, t)}
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for some parabolic Lipschitz function ψ. We say that an (M,R) Ahlfors–David
regular set E contains big pieces of parabolic Lipschitz graphs of character at
most B1 ≥ 1 (or in short notation E ∈ BPPLG(B1)), if there exist a constant
ϑ > 0 such that for every (Q,s) ∈ E and r > 0 there exists a basic parabolic
Lipschitz domain D = Ω(ψ), with character at most B1, and such that after
a rotation in space variable, if we set

Dr(X, t) = {(z, τ) ∈ R
n−1 × R : |z − x| < r, τ ∈ (t − r2, t + r2)}

then the following estimate holds

(7) σ
(
E ∩ {(ψ(z, τ), z, τ) : (z, τ) ∈ Dr(X, t)}

)
≥ ϑrn+1.

Using the fundamental results of [3, I Chapter 3] on coronizations of
Ahlfors–David regular sets, we can obtain the following adaptation of [3, The-
orem I.3.42].

Proposition 1.3. Suppose that E admits a generalized parabolic Corona
decomposition, in which (CD6) above is substituted by:
(GCD6) For each S ∈ F there exists a set ES ∈ BPPLG(C(η)) such that for

every Q ∈ S the estimate d(X;ES) ≤ η diam(Q) holds whenever X ∈
E and d(X,Q) ≤ diam(Q).

Then E admits a parabolic Corona decomposition in the sense of Defini-
tion 1.2. The constant C(η) > 0 may depend on η but not on S.

Certainly the opposite of this theorem is immediate. We will have a use
for Proposition 1.3 in the proof of Theorem 1.5 below.

In our first theorem, we relate the concepts introduced in Definitions 1.1
and 1.2 as follows.

Theorem 1.4. Let E be a parabolic hypersurface in R
n+1. If E is uni-

formly rectifiable in the parabolic sense, then E admits a parabolic Corona
decomposition.

The technique of the proof follows closely that of [2]. In fact, Theorem 1.4
may be viewed, in the spirit of [2], as an intermediate step in order to develop
a theory of singular integrals of parabolic type on sets E uniformly rectifi-
able in the parabolic sense. With techniques from [2, Chapter 15] and the
constructions in Section 2, it may not be difficult to prove a reciprocal of
Theorem 1.4, but we will not pursue the implementation of these adaptations
in this work.

Moving on to the description of our next result, consider convolution type
singular integral operators

(8) Tf(X) =
∫

E

K(X − Y)f(Y)dσ(Y),

X = (X, t), Y = (Y, s), where the kernel K(X, t) is odd as a function of X , it
satisfies the following properties:
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• K(X, t) ≤ C1/‖X, t‖n+1;
• | ∇XK(X, t)| ≤ C2/‖X, t‖n+2;
• | ∇2

XK(X, t)|, |∂tK(X, t)| ≤ C2/‖X, t‖n+3,
where | ∇2

XK| denotes the norm of the vector of all the second order derivatives
with respect to X of K. When all of the above conditions hold, we say that K
is a good kernel.

The choice of T guarantees its L2 boundedness over parabolic Lipschitz
graphs by standard techniques and ideas in [6] (see [12, Theorem 2.1]). When
dealing with singular integral operators over (M,R)-Ahlfors regular sets E,
we say that T is bounded on L2(E,dσ) if the operator

T ∗f(X) = sup
ε>0

∫
E∩ { ‖X,t‖>ε}

K(X − Y)f(Y)dσ(Y),

originally defined for instance on C0(E), extends as a bounded operator on
L2(E,dσ). This convention is adopted in order to avoid issues of defining
principal value operators over E.

Theorem 1.5. Let E be a set in R
n+1 satisfying a (M,R) David–Ahlfors

condition. If any operator T as described in (8) defines a bounded operator
on L2(E,dσ) then E admits a parabolic Corona decomposition.

For the proof of this theorem, while following the technique from [2, Chap-
ters 3–5] and [3], we find it necessary to prove an adaptation of a theorem
originally proved in the nonparabolic setting in [4]. The precise statement is
at the end of Section 3, and its proof is provided in the last section.

Finally, it may be conjectured that Theorem 1.5 has a reciprocal, and that
it may be obtained using techniques from [13], but we do not address this
issue here.

2. Proof of Theorem 1.4

In order to obtain a parabolic Corona decomposition from the parabolic
uniform rectifiability of E, we follow several steps and the lines of [2]. The
steps are indicated as subsections.

2.1. Construction of F , B and the stopping-time regions. Let 0 <
ε < δ be two small positive numbers so that ε/δ is also small. Let k be a
large constant to be determined in the bulk of the proof of the theorem (more
precisely, right after Lemma 2.6). Denote by G ≡ G(ε) the set of cubes Q ∈ Δ
such that there is a t-plane PQ such that d(X, PQ) ≤ εdiamQ for all X ∈ kQ.
Define now B = Δ \ G so that we already have a decomposition Δ = B ∪ G.

We now record an almost-uniqueness property for the t-planes in the pre-
vious definitions. The proof is straightforward from the definition, and details
can be found in [2, p. 32].



540 J. RIVERA-NORIEGA

Lemma 2.1. Let Q ∈ Δ and suppose that P1 and P2 are two t-planes such
that d(X, Pi) ≤ εdiamQ for all X ∈ kQ, i = 1,2. Then d(P1, P2) � εdiamQ.

Now define

(9) γ∞(Z, τ ; r) = inf
P

sup
{

d(Y, s;P )
r

: (Y, s) ∈ Δr(Z, τ)
}

,

where the infimum is taken over all t-planes P , and recall that in [8, p. 359] it
is proved that γ∞(Z, τ ; r)n+3 ≤ C(n)γ(Z, τ ; 2r). Then it can be easily verified
that (4) in the definition of parabolic uniform rectifiability implies

(10)
∑

γ∞(Q)>ε

Q⊆R

σ(Q) ≤ C(ε)σ(R),

where R is any surface cube of E. Here in analogy with (9), for a dyadic
cube Q we define

γ∞(Q) = inf
P

sup
{

d(Y, s;P )
diamQ

: (Y, s) ∈ 2Q

}
.

Estimate (10) can be proved with a well known technique of associating
dyadic cubes on E with certain rectangles in E × (0, ∞). In turn, (10) implies
the Carleson packing condition for B in (CD1) above.

Now we organize the sets in G and define the family F of regions S. Then
we will obtain the remaining properties of a parabolic Corona decomposition.

For the next construction, we localize our work in a fixed surface cube
R0 ⊂ E. Let Δ(R0) =

⋃
Δj ⊂R0

Δj and denote by G(R0) the family of sub-
cubes of R0 in G. Let Q0 be a maximal cube in G(R0) and let π0 denote the
projection of points in R

n+1 on P0, the t-plane that is associated to Q0 ac-
cording to the definition of G. Define for Q ⊂ Q0 the set P0(Q) = π−1

0 (π0(Q)),
which is a cylindrical region perpendicular to P0 and with level surfaces given
by π0(Q).

Now we construct a family K(Q0) of cubes as follows:
• Q0 ∈ K(Q0)
• R ∈ Δ(R0) is added to K(Q0) if all of the following holds:

– R is a descendant of Q, for certain Q ∈ K(Q0);
– every sibling of R, including R itself, is an element of G(R0);
– d(P0(R) ∩ PR;P0(kR) ∩ P0) ≤ δ diamR.
This last inequality refers indirectly to the angle between P0 and PQ, as

originally considered in [2]. However, we will not use specifically the angle
between these planes, but rather we measure how close the portions of planes
P0(R) ∩ PR and P0(kR) ∩ P0 are from each other.

Now define

S(Q0) =
( ⋃

Q∈K(Q0)

Q

)
∪

( ⋃
R∈ς(Q)

Q∈K(Q0)

R

)
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and repeat the procedure inductively, choosing at each stage a maximal cube
in G(R0) not contained in any of the previously constructed S(Q). Let F
denote the collection of all the regions so obtained, and let us introduce the
notation Q0 = Q(S) if and only if S = S(Q0).

Observe that if S ∈ F then the only options for X ∈ S is that either X
belongs to a minimal cube, or there exists an infinite sequence of elements
in S such that X belongs to all of the terms of the sequence.

2.2. Construction of the approximating graphs. According to (CD6),
we must associate to each S ∈ F the graph of a parabolic Lipschitz function,
and so in the next construction we fix S ∈ F . Given X ∈ R

n+1, define

(11) d(X) = inf
Q∈S

[d(X,Q) + diamQ]

and let P = PQ(S). Let P ⊥ denote the normal vector to P pointing towards
the region Ω1 and let π and π⊥ denote the canonical projections from R

n+1

onto P and P ⊥, respectively. Note that π⊥ might be negative by the chosen
orientation of P ⊥. Define for p ∈ P

(12) D(p) = inf
X∈π−1(p)

d(X) = inf
Q∈S

[d(p,π(Q)) + diamQ].

In this subsection, we construct the graph approximating S and prove some
of its basic properties, leaving the conclusion of the proof of the next lemma
to Section 2.3.

Lemma 2.2. There exists a parabolic Lipschitz function ψ : P −→ P ⊥ with
character of the order of δ, and such that for every X ∈ Q(S) one has

(13) d(X; (π(X), ψ(π(X)))) � εd(X).

To begin the construction of the graph, let Z = {Z ∈ E : d(Z) = 0} and for
Z ∈ Z define

ψ(π(Z)) = π⊥(Z).

Lemma 2.3. The function ψ is of Lip(1,1/2) type on π(Z), with constant
of the order of δ.

The proof of this lemma follows from the following result for which we have
some applications later on.

Lemma 2.4. If Z1,Z2 ∈ 2Q(S) satisfy ‖Z1 − Z2‖ ≥ 10−3 min{d(Z1), d(Z2)},
then

|π⊥(Z1) − π⊥(Z2)| � 2δ‖π(Z1) − π(Z2)‖.

Proof. We can assume that ‖Z1 − Z2‖ ≥ 10−3d(Z1) and choose Q ∈ S such
that d(Z1,Q) + diamQ ≤ d(Z1). In fact, we can replace it by one of its
ancestors (if necessary) so that diamQ ≈ ‖Z1 − Z2‖. Now, by construction,
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there is a t-plane PQ such that d(X, PQ) ≤ εdiamQ for all X ∈ 2Q. This
implies that

d(Z1, PQ) + d(Z2, PQ) � ε‖Z1 − Z2‖ < δ‖Z1 − Z2‖.

On the other hand, by definition of S one has δ‖Z1 − Z2‖ � εδ diamQ +
δ2‖π(Z1) − π(Z2)‖, which proves the lemma. �

The issue is now to define ψ outside of π(Z) and for that purpose we use a
Whitney-type extension. Note that {P + ψ(P) : P ∈ π(Z)} ⊂ E, and since E
is URPS then we can take advantage of the Carleson measure estimate (4)
(as in [8], [9]) to conclude that this extension yields a parabolic Lipschitz
function.

As observed before, over the n-dimensional t-plane P one can choose a
dyadic grid of parabolic cubes, which after a rotation in space variables have
the form

Qr(z, τ) = {(y, s) ∈ P : |yi − zi| < r, i = 1, . . . , n − 1, |s − τ | < r2}.

Let X ∈ P be such that D(X) > 0 and X is not in the boundary of any dyadic
cube. Let RX be the largest parabolic dyadic cube in P containing X and
such that diamRX ≤ inf{D(Z) : Z ∈ RX}/20.

Let {Ri}, i ∈ I , be a list of these cubes without repetition. Then the Rj

have pairwise disjoint interiors, they cover P \ π(Z) and do not intersect π(Z).
Moreover [2, Lemma 8.7], if 10Ri ∩ 10Rj �= ∅ then

(14) C−1 diamRj ≤ C diamRi ≤ C diamRj ,

which defines some sort of closeness between Rj and Ri. We are now ready
to define ψ off of π(Z), but still in a neighborhood of π(Q(S)).

Let U0 = P ∩ C2L(π(X0)), where X0 ∈ Q(S) is fixed and from now on L =
diamQ(S). Also define I0 = {i ∈ I : Ri ∩ U0 �= ∅}. For i ∈ I0, choose Qi ∈ S
such that

C−1
1 diamRi ≤ diamQi ≤ C1 diamRi,(15)

d(π(Qi),Ri) ≤ C1 diamRi(16)

for certain constant C1 > 0. This can be done by definition of D(p) for p ∈ Ri.
Note that there is only a finite number of Ri for which one particular Q may
correspond to, and that there is a uniform bound for this finite number, not
depending on Q. For a chosen Qi, we define H(Qi), the average height of PQi

with respect to P over Ri as

H(Qi) =
1
2

(
sup

X∈PQi

π(X)∈2Ri

π⊥(X) + inf
X∈PQi

π(X)∈2Ri

π⊥(X)
)
.
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Now choose a parabolic partition of the unity {vi} adapted to {2Ri : i ∈
I0}. Namely, we choose the vi with the following properties: 0 ≤ vi ≤ 1,
vi ∈ C∞

0 (3Ri), vi ≡ 1 on 2Ri and

(17) (diamRi)�

∣∣∣∣ ∂�

∂x�
vi

∣∣∣∣ + (diamRi)2�

∣∣∣∣ ∂�

∂t�
vi

∣∣∣∣ ≤ C2, � = 1,2,3, . . . ,

with an absolute constant C2 > 0. Then we normalize the vi so that∑
vi ≡ 1 on V ≡

⋃
i∈I0

2Ri.

Let Bi : P → P ⊥ be the constant function defined to take the value H(Qi).
Define now for Y ∈ V

ψ(Y) =
∑

vi(Y)Bi(Y).

Note that V ∩ π(Z) = ∅ and U0 \ π(Z) ⊆ V , and so ψ is well defined on U0.

Lemma 2.5. The function ψ is of Lip(1,1/2) type on U0 with constant of
the order of δ.

Proof. Given a pair of points in U0, we consider two cases:
Case 1 : Z1,Z2 ∈ 2Rj . In this case,

|ψ(Z1) − ψ(Z2)|

≤
∣∣∣∣∑

i

vi(Z1)[Bi(Z1) − Bi(Z2)]
∣∣∣∣ +

∣∣∣∣∑
i

[vi(Z2) − vi(Z1)]Bi(Z2)
∣∣∣∣

=
∣∣∣∣∑

i

[vi(Z2) − vi(Z1)][Bi(Z1) − Bj(Z2)]
∣∣∣∣,

since Bi(Z1) − Bi(Z2) = 0 and
∑

i[vi(Z2) − vi(Z1)] = 0. If either vi(X) �= 0 or
vi(Y) �= 0, then we can apply (14) and obtain diamRi ≈ diamRj . Using the
notations Z1 = (x, t), Z2 = (y, s) we obtain by (17)

|vi(Z1) − vi(Z2)| ≤ C

(diamRj)2
|s − t| +

C

diamRj
|x − y|

≤ C

diamRj

[
|s − t|

‖Z1 − Z2‖ + |x − y|
]

≤ C(diamRj)−1‖Z1 − Z2‖.

Claim. If 10Ri ∩ 10Rj �= ∅, then d(Qi,Qj) � diamRj , and in consequence
|Bi(Z) − Bj(Z)| � εdiamRj for Z ∈ 2Rj .

To prove this claim, we first pick X ∈ Qj , Y ∈ Qi and assume ‖X − Y‖ ≥
3−1 diamQj . Since d(X) ≤ diamQj by definition, then Lemma 2.4 may be
applied and we get |π⊥(X) − π⊥(Y)| ≤ ‖π(X) − π(Y)‖ � diamRj . Hence,
d(Qi,Qj) ≤ ‖X − Y‖ � diamRj . This already implies the first part of the
claim.
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For the second conclusion of the claim, we take Z ∈ 2Rj and denote by Zj

and Zi the points in PQj and PQi such that π(Zj) = Z = π(Zi). Then by
Lemma 2.1, (15), (16) and (14)

|Zj − Zi| � ε[diamQj + diamQi] � εdiamRj .

Now with the Claim at hand, we conclude: If Z1,Z2 ∈ 2Rj , then |ψ(Z1) −
ψ(Z2)| ≤ 2δ‖Z1 − Z2‖ whenever ε � δ. Of course at some point, we used the
fact that there is a bounded number of i such that vi(Z1) − vi(Z2) �= 0.

Case 2 : Z0 ∈ π(Z), Z1 ∈
⋃

j∈I0
Rj . Choose j such that Z1 ∈ Rj and fix

Y ∈ Qj . We have

|ψ(Z1) − ψ(Z2)| ≤ |ψ(Z1) − Bj(Z1)| + |Bj(Z1) − Bj(π(Y))|
+ |Bj(π(Y)) − π⊥(Y)| + |π⊥(Y) − ψ(Z0)|

≡ L1 + L2 + L3 + L4.

Observe that since Bj is a constant function then L1 = L2 = 0. Now by defin-
ition of ψ and the construction of the stopping-time regions L3 � εdiamQj �
ε‖Z1 − Z0‖ � δ‖Z1 − Z0‖. Finally, by Lemma 2.4, letting X = (Z0, ψ(Z0))
we obtain L4 = |π⊥(Y) − π⊥(X)| � δ|π(Y) − Z0| � δ|Z1 − Z0| by the very
definition of Qi. The lemma is proved. �

Again by a Whitney type argument, ψ can be extended to P as a Lip(1,1/2)
function with constant of the order of δ off of U0. The remaining properties
of ψ are established in the next subsection.

2.3. Verification of the properties of the graph. First, we prove the
estimate (13). If Z ∈ Z , then (13) is clear. To continue the proof, we need the
following lemma, which can be proved as in [2, p. 48] with small variations.

Lemma 2.6. Let Y ∈ U0 and r > 0 be such that D(Y) ≤ r ≤ L. Sup-
pose Q ∈ S is such that d(Y, π(Q)) ≤ Cr and C−1r ≤ diamQ ≤ Cr. Then
π−1(Br(Y)) ∩ Q(S) is contained in C0Q for certain C0 that may depend
on C. Also there is a constant C̃ that depends only on k such that C̃−1d(X) ≤
D(π(X)) ≤ C̃d(X) for all X ∈ Q(S)

With the lemma at hand, let X ∈ Q(S) be such that d(X) > 0, and let
X0 = π(X). From the Lemma 2.6, we know D(X0) > 0 and hence X0 ∈ Ri

for some i. We apply Lemma 2.6 with r = D(X0) and Q = Qi, thus obtain-
ing X ∈ C0Qi. Choosing k � C0 one gets |π⊥(X) − Bi(π(X))| ≤ 2εdiamQi ≤
2CεD(X0) ≤ 2C2εd(X). Also note that |Bi(π(X))−ψ(π(X))| � εD(X0). This
implies the estimate (13) by definition of D and Ri, and by the Claim
above.
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To finish the proof of Proposition 2.2, it remains to prove that ψ is a
parabolic Lipschitz function. Denote the graph of ψ by Ψ, and let γ′, ν′ be
the objects corresponding to Ψ as in Definition 1.1. We first point out another
consequence of the construction made so far.

Lemma 2.7. Let X ∈ E. If Y ∈ Ψ ∩ C10L(X) then for certain ĉ > 0

d(Y;E) ≤ ĉd(π(Y);π(Z)).

Proof. The result is trivial if Y ∈ Z . Now from the definitions if Y =
(ψ(y, s), y, s), with (y, s) ∈ Ri then d(Y;E) � εdiamQi � diamRi � d(π(Y);
π(Z)) �

If we fix (Ẑ, τ̂) ∈ Ψ, with ρ̂ > 0, we have to obtain the estimate

(18) ν′(Cρ̂(Ẑ, τ̂) ∩ Ψ × (0, ρ̂)
)

� ρ̂n+1.

Recall now that all of the above construction was made within a fixed rectangle
R0 ⊂ E. Let ρ denote the diameter of R0. If ρ̂ > ρ then

γ′(Ẑ, τ̂ ; ρ̂
)

�
(

ρ

ρ̂

)n+3

and so the Ahlfors–David condition (3) implies (18).
Now for ρ̂ ≤ ρ, we separate the proof into the two possible scenarios (com-

pare to [8, pp. 365–368]) which will give as a result the estimate

(19) ν′(Z ∩ Cρ̂(Ẑ, τ̂) × (0, ρ̂)
)

� (1 + ‖ν‖+)ρ̂n+1.

2.3.1. Estimate in Z . Given a fixed portion of the graph

Ψi = {(ψ(y, s), y, s) ∈ Ψ : (y, s) ∈ Ri},

we would like to find a decomposition of it by using surface balls centered
at points in E. Set c̃ = 2ĉ, where ĉ is the constant of Lemma 2.7, and let
ρi = diamRi. By the Lemma 2.7, we can find cylinders {Cc̃ρi(Zj , τj)}j , with
(Zj , τj) ∈ E, such that they form a covering of Ψi, and {Cc̃ρi/5(Zj , τj }j are
pairwise disjoint. Observe that every point in

⋃
j {Cc̃ρi(Zj , τj } lies in no more

than a uniform number of cylinders.
Define now Ψi,j = Ψi ∩ Cc̃ρi(Zj , τj) and Ei = {(Y, s) ∈ E : d(Y, s;Ψi) <

2c̃ρi}. Let P be any t-plane. Note that if (X̂, t̂) ∈ Z and r > 0 is such
that Cr(X̂, t̂) ⊂ Cρ̂(Ẑ, τ̂) then we have∫

Ψ∩Cr(X̂,t̂)

d(Y, s; P )2 dσ(Y, s) �
∑

i

∑
j

∫
Ψi,j ∩Cr(X̂,t̂)

d(Y, s; P )2 dσ(Y, s),

where the sum on i runs over I(X̂, t̂; r) = {i : Ψi ∩ Cr(X̂, t̂) �= ∅}.
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For (Y, s) ∈ Ψi,j , we have d(Y, s; P ) � ρi + inf{d(Z, τ ; P ) : (Z, τ) ∈ Δc̃ρi(Zj ,
τj)}, hence∑

j

∫
Ψi,j ∩Cr(X̂,t̂)

d(Y, s; P )2 dσ(Y, s)

� ρiσ
(
Ψi ∩ Cr(X̂, t̂)

)
+

∑
j

∫
C5r/4(X̂,t̂)∩Δc̃ρi

(Zj ,τj)

d(Y, s; P )2 dσ(Y, s)

�
[
ρn+3

i +
∫

C5r/4(X̂,t̂)∩Ei

d(Y, s; P )2 dσ(Y, s)
]
.

Observe that the Ei have uniformly bounded overlap, and so summing over i
we obtain

(20) γ′(X̂, t̂; r) �
[ ∑

i∈I(X̂,t̂;r)

(
ρi

r

)n+3

+ γ(X̂, t̂; 5r/4)
]
.

Integrating over Cρ̂(Ẑ, τ̂) ∩ Z , and with a change of order of the integrals

ν′(Z ∩ Cρ̂(Ẑ, τ̂) × (0, ρ̂)
)

=
∫ ρ̂

0

∫
Z ∩Cρ̂(Ẑ,τ̂)

γ′(X̂, t̂; r)dσ(X̂, t̂)
dr

r

≈
∫

Z ∩Cρ̂(Ẑ,τ̂)

( ∑
i∈I(X̂,t̂;r)

∫ ρ̂

ri(X̂,t̂)

(
ρi

r

)n+3
dr

r

)
dσ(X̂, t̂)

+ ν
(

Z ∩ Cρ̂(Ẑ, τ̂) × (0, ρ̂)
)
,

where ri(X̂, t̂) = d(X̂, t̂;Ψi). The last quantity is estimated as follows:

�
∑

i∈(Ẑ,τ̂ ;ρ̂)

∫
Z ∩Cρ̂(Ẑ,τ̂)

(
ρi

ri(X̂, t̂)

)n+3

dσ(X̂, t̂) + C‖ν‖+ρ̂n+1

�
∑

i∈I(Ẑ,τ̂ ;ρ̂)

ρn+1
i + C‖ν‖+ρ̂n+1

� (1 + ‖ν‖+)ρ̂n+1.

2.3.2. Estimate in E \ Z . For r > 0 and (x̂, t̂) ∈ P define

(21) κ(x̂, t̂; r) =
1

rn+3

[
inf
L

∫
Qr(x̂,t̂)

|ψ(y, s) − L(y)|2 dy ds

]
,

where the infimum is taken over linear functions L of the y variable only. Also
recall that Qr(x̂, t̂) denotes a cube on P centered at (x̂, t̂) with radius r > 0.
We clearly have

(22) c−1κ(x̂, t̂; r) ≤ γ′(ψ(x̂, t̂), x̂, t̂; r) ≤ cκ(x̂, t̂; r)
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for certain constant c that may depend on the Ahlfors–David constant M
of E, and the Lip(1,1/2) constant of ψ. This, along with Taylor’s theorem,
imply that for 0 < r ≤ 2ρi/3 and (x̂, t̂) ∈ Ri one has κ(x̂, t̂; r) � r2/ρ2

i . Next,
observe that if 2ρi/3 < r ≤ 8ρi then the inequality κ(x̂, t̂; r) � r2/ρ2

i still holds.
Altogether, we obtain

(23) ν′(Ψi × (0,8ρi)
)

� ρn+1
i .

We still need to consider the case r > 8ρi. By the Whitney property of Ri

and (22), we can choose (x′
i, t

′
i) ∈ π(Z) such that diamRi ≈ d(Ri;x′

i, t
′
i), and

also γ′(X̂, t̂; r) � γ′(X ′
i, t

′
i; 3r/2) for (x̂, t̂) ∈ Ri. Let X̂ = ψ(x̂, t̂), X ′

i = ψ(x′
i, t

′
i).

Then for (X̂, t̂) ∈ Ψi, after integrating we obtain∫ ρ̂

8ρi

γ′(X̂, t̂; r)
dr

r
�

∫ ρ̂

8ρi

γ′(X ′
i, t

′
i : 3r/2)

dr

r
+

∫ ρ̂

2ρi

∑
j∈I(X′

i,t
′
i;2r)

(
ρj

r

)n+3
dr

r

� ‖ν‖+ +
∑

j∈I(X′
i,t

′
i;2r)

(
ρj

ρi + ρj + d(Ri,Rj)

)n+3

,

where in the first inequality we have used the argument that yields (20).
It remains to integrate over Ψi and sum over i:∑

i∈I(Ẑ,τ̂ ;ρ̂)

∫
Ψi

∫ ρ̂

8ρi

γ′(X̂, t̂; r)
dr

r
dσ(X̂, t̂)

� ‖ν‖+ρ̂n+1 +
∑

j∈I(Ẑ,t̂;2ρ̂)

ρn+3
j

∫
P

(
ρj + d(y, s;x′

jt
′
j)

)−(n+3)
dy ds

�
[

‖ν‖+ρ̂n+1 +
∑

j∈I(Ẑ,t̂;2ρ̂)

ρn+1
j

]
� (1 + ‖ν‖+)ρ̂n+1.

This along with (23) yields (19), which is the desired estimate.

2.4. Carleson packing condition for the stopping-time regions. To
prove (CD5) in the definition of the parabolic Corona decomposition it suffices
to prove the following lemma.

Lemma 2.8. For every R ∈ Δ

(24)
∑
S∈F

Q(S)⊆R

σ(Q(S)) ≤ Cσ(R).

The next paragraphs contain the proof of this lemma.
Fixing S = S(Q0), let m(S) denote the set of minimal cubes of S and let U

denote the union of all the cubes in m(S). We separate m(S) into two families,
according to the options that any minimal cube R has: either R ∈ K(S) and
at least one descendant of R is in B(R0); or R ∈ S \ K(S).
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Let m1(S) denote the set of minimal cubes with at least one descendant
in B(R0), and let m2(S) denote the set of minimal cubes R ∈ S \ K(S) with
d(PR ∩ P0(R);PQ0 ∩ P0(kR)) > δ diamR (recall definitions in page 540). Also
we set

Ui = Ui(S) ≡
⋃

Q∈mi(S)

Q, i = 1,2.

Accordingly, we have three types of regions:

I =
{
S ∈ F : σ

(
Q(S) \ U

)
≥ θσ(Q(S))

}
,

I I = {S ∈ F : σ(U1) ≥ θσ(Q(S))}

and
I I I = {S ∈ F : σ(U2) ≥ θσ(Q(S))}.

Condition (24) for the class I is essentially due to the disjointneess of the
different S in F . For the class I I , one can use the Carleson packing condition
for B(R0) to obtain (24). Indeed,∑

S∈I I
Q(S)⊆R

σ(Q(S)) ≤ 1
θ

∑
S∈I I

Q(S)⊆R

∑
Q∈m1(S)

σ(Q) ≤ 1
θ

∑
S∈I I

Q(S)⊆R

∑
Q∈m1(S)

σ(BQ) � σ(R),

where BQ denotes one of the descendants of Q in the class B(R0), and in the
last inequality we use (CD1).

In order to prove (24) for class I I I , we use the approximating graphs, as
we now describe. Let S be one of the stopping time regions in I I I , and set

X = {(Z, τ ; r) ∈ E × R+ : (Z, τ) ∈ k0Q(S), k−1
0 δ(Z, τ) ≤ r ≤ k0L},

where k0 is to be chosen. Define δ(Z, τ) = infQ∈S {d(Z, τ ;Q) + diamQ} and
as before let L = diamQ(S).

Observe that if we prove that for some η > 0 that may depend on appro-
priately chosen parameters ε, δ and k0, but not on S, one has

(25)
∫ ∫

X
γ(Z, τ ;k0r)dσ(Z, τ)

dr

r
≥ ησ(Q(S)),

then we can obtain∑
S∈I I I
Q(S)⊆R

σ(Q(S)) ≤ 1
η

∑
S∈I I I

∫ ∫
X

γ(Z, τ ;k0r)dσ(Z, τ)
dr

r

�
∫ k0 diamR

0

∫
k0R

γ(Z, τ ;k0r)dσ(Z, τ)
dr

r
≤ Cσ(R)

by the parabolic uniform rectifiability, and with C > 0 depending on k0. This
is the desired estimate.
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Now in order to prove (25) it suffices to prove that if the estimate

(26)
∫∫

X
γ(Z, τ ;k0r)dσ(Z, τ)

dr

r
≤ ησ(Q(S))

holds for every η > 0 then S /∈ I I I , which of course is a contradiction.
Suppose then that (26) holds. Recall that {Ri : i ∈ I} is an enumeration

of the rectangles in Section 2.2, and that U0 = P ∩ CL(π(X0)) for certain
X0 ∈ Q(S). Define now U2 = P ∩ CL/2(π(X0)), and I2 = {i ∈ I : Ri ∩ U2}. In
the next lemma, we establish the conditions for the choice of the constant k0.

Lemma 2.9. If k0 is large enough and κ is as defined in (21), then

1
Ln+1

∫ L

0

∫
U2

κ(p;k0r)dp
dr

r
≤ C

[
ε +

1
Ln+1

∫ ∫
X

γ(Z, τ ;k0r)dσ(Z, τ)
dr

r

]
,

where C does not depend on ε or δ.

Once Lemma 2.9 is established, under the assumption (26) we obtain for
every η > 0

(27)
∫ L

0

∫
U2

κ(p;k0r)dp
dr

r
≤ Cη2σ(Q(S)).

Lemma 2.10. Suppose that for certain S ∈ F the estimate (27) holds. Then
S /∈ I I I .

After proving the technical Lemmata 2.9 and 2.10, the proof of all the steps
that establish that E has a parabolic Corona decomposition will be finished.

2.5. Proof of the technical Lemmata 2.9 and 2.10. We keep notations
and constructions introduced in the previous paragraph. For the proof of
Lemma 2.9, we note that the arguments in [2, Lemma 13.4] are adaptable
with small changes due to the definition of ψ and of the functional γ. While
we will omit these details, we provide a fairly complete argument that yields
Lemma 2.10. This proof is an adaptation from the original arguments in [2,
Chapters 10, 11 and 14].

Let P0 and P ⊥
0 denote the translates of P and P ⊥ (resp.) to the origin.

We denote the variables and points on the plane P (or P0) with lowercase
letters p, q, etc. Choose ϕ ∈ C∞

0 , defined on P0, satisfying the following:

• ϕ is supported in C1/20(�0) and ϕ ≡ 0 on C1/100(�0),
• ϕ(λx,λ2t) = ϕ(x, t) for (x, t) ∈ P0,
• the following spatial moment condition holds: for every polynomial F , in

space variable only, and of degree at most one, one has∫
P

ϕF dp = 0.
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We denote by ϕ ∗ ψ the function defined on P as

ϕ ∗ ψ(p) =
∫

P

ϕ(p − q)ψ(q)dq.

By the moment condition, for any linear function G of the y variable only
the following holds:

(ϕλ ∗ ψ)2(p0) = [ϕλ ∗ (ψ − G)]2(p0) � ‖ϕ‖ ∞λ−(n+1)

∫
Qλ(p0)

|ψ − G|2 dp,

where as before Qλ(p0) denotes a cube centered at p0 of radius λ, over the
plane P . Hence, by (21) and (22) and the assumption (27)

(28)
∫

V

∫ L

0

|ϕλ ∗ ψ(p)|2 dλ

λ3
dp � η2σ(Q(S)),

where V = {Z ∈ P : d(Z;π(Q(S))) ≤ 2L}.
Now write ψ = ψ1 + ψ2, where

ψ1(p) =
∫ ∞

L

ϕλ ∗ ϕλ ∗ ψ(p)
dλ

λ
+

∫ L

0

∫
P \V

ϕλ(p − q)ϕλ ∗ ψ(q)dq
dλ

λ
,

ψ2(p) =
∫ L

0

∫
V

ϕλ(p − q)ϕλ ∗ ψ(q)dq
dλ

λ
.

For further future analysis of ψ2, we define

mQ(ψ2) =
1

| Q |

∫
Q

ψ2(p)dp

and the maximal operator

Mψ2(p) = sup
Q

1
| Q |1/(n+1)

(
1

| Q |

∫
Q

|ψ2 − mQ(ψ2)|
)

,

where the supremum is taken over cubes Q in P containing p and of the form
Qρ(x, t) ≡ {(z, τ) ∈ P : |z − x| + |τ − t|1/2 < ρ}, for certain (x, t) ∈ P and ρ > 0.

Set Vj = {p ∈ P : d(p;Q(S)) ≤ 30L/2j }. Let Q̃ ≡ Qr(p0) be a cube con-
tained in V1, and suppose that r < r0L, where r0 is small and to be chosen
later. Let HQ̃ be the graph of the function ψQ̃(p) = ψ(p0)+ ∇ψ1(p0) · (p − p0).
Our ultimate goal is now to prove

(29) sup
X∈Ψ∩π−1(Q̃)

[
1
r
d(X;HQ̃)

]
≤ (1 + r0)rδ.

Define F = {p ∈ V2 : Mψ2(p) ≤ δ} and let (1 + r0)rδ � ξrδ, where ξ is now
the one to be chosen.

Claim. If Q ∈ m2(S) and ξ is small enough, then d(π(Q);F ) > diamQ.

Assuming this claim momentarily, we proceed with the following lemma.



A PARABOLIC VERSION OF CORONA DECOMPOSITIONS 551

Proof of Lemma 2.10. Let Q ∈ m2(S) and pick xQ ∈ Q. Consider CQ ≡
Ck2 diamQ(xQ). If k2 is appropriately large, then certain family {CQ : Q ∈ T }
of these cubes cover U2 and { C3diamQ(xQ) : Q ∈ T } are pairwise disjoint.
Hence,

σ(U2) ≤
∑
Q∈T

σ(E ∩ CQ) �
∑

(diamQ)n+1.

Now by Lemma 2.4, the sets DQ = P ∩ CdiamQ(π(xQ)), for Q ∈ T , are pairwise
disjoint. In particular, |

⋃
Q∈T DQ| ≥ U2/k2. But DQ ⊂ V2 and DQ ∩ F = ∅

for all Q ∈ T by the claim, and therefore from (33) we obtain

σ(U2) ≤ c

∣∣∣∣ ⋃
Q∈T

DQ

∣∣∣∣ ≤ c|V2 \ F | ≤ c̃

δ
σ(Q(S)).

This yields σ(U2) ≤ σ(Q(S))/3, and so S /∈ I I I . �

In order to prove the claim (using estimate (29)), take XQ ∈ Q, and set
p0 = π(XQ) and Q̃ ≡ Qr(p0), with r = 10diamQ. Take now X ∈ Q and note
that the previous constructions imply

‖X − (π(X), ψ(π(X)))‖ ≤ cεdiamQ.

Since Q̃ ∩ F �= ∅, by (29), we obtain for ε small d(X;HQ̃) < cξδr. Thus, we
have two t-planes close to Q, and so by Lemma 2.1 we have d(HQ̃;PQ) �
(ε + ξδ)diamQ. In either case, by choosing ξ and ε appropriately such that
(ε + ξδ) � δ, we obtain d(HQ̃;P ) � δ diamQ.

Lemma 2.11. Given ρ > 0 and M > 0 there exists ε0 > 0 such that if ε <
ε0 then for every Q ∈ S with diamQ ≥ ρL/M one has d(PQ ∩ P0(Q);P ∩
P0(Q)) < δ diamQ.

Proof. Consider the chain Q < Q1 < Q2 < · · · < QT = Q(S), where Qj <
Qj+1 means that Qj ⊂ Qj+1 and diamQj+1 ≈ 2diamQj . Since Qj ∈ G then
d(PQj ;Pj+1) ≤ CεdiamQ and so d(PQ;P ) ≤ CTεdiamQ. Since

T ≤ log
(

2diamQ(S)
diamQ

)
≤ log

(
2M

r0

)
then d(PQ ∩ P0(Q);PQ0 ∩ P0(Q)) ≤ CεdiamQ log(2M/r0), and if ε is suitable
small we obtain d(PQ ∩ P0(Q);PQ0 ∩ P0(Q)) ≤ Cδ diamQ. �

Now we can finish the proof of the claim. Indeed, suppose that the claim is
false, that is, suppose diamQ ≥ d(π(Q);F ) for Q ∈ m2(S). Observe that for ρ
and ε small enough, we must have diamQ ≤ ρL, since otherwise the lemma
would imply Q /∈ m2(S).

Now choose Q∗ the largest ancestor of Q such that 10diamQ∗ ≤ ρ. Let
Q̃∗ = Q10diamQ∗ (p0). By repeating the constructions above, we can obtain
d(PQ∗ ,HQ̃ ∗ ) < Cδ diamQ∗. Note also that HQ̃ ∗ = HQ̃, since their definitions
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depend only on p0, and so d(PQ∗ ;PQ) < Cδ diamQ. This already implies
d(PQ ∩ P0(Q);P ∩ P0(Q)) < δ diamQ, with ε even smaller. This again implies
Q /∈ m2(S), hence obtaining a contradiction that proves the Claim.

From now on, we focus on the proof of (29), which is the only remain-
ing estimate to be proved. First, observe that for f ∈ L2(P ) the following
reproducing formula holds

f ≈
∫ ∞

0

ϕλ ∗ ϕλ ∗ f
dλ

λ

in a distributional sense, and with constant independent of f . Moreover, ϕ can
be chosen to be equal to λ∂Wλ/∂λ for W ∈ C∞

0 (P ), nonnegative, supported
in Q1(�0), and with

∫
W = 1. In this case, we even have ‖ϕ‖ ∞ < ω for an

absolute constant ω.
Choose Φ such that

Φh =
∫

λ>L

ϕλ ∗ ϕλ
dλ

λ
.

Then with an appropriate choice of h (by the reproducing formula)

(30) Φ =
∫

λ>1

ϕλ ∗ ϕλ
dλ

λ
= δ0 −

∫
λ≤1

ϕλ ∗ ϕλ
dλ

λ
,

where δ0 denotes the Dirac δ mass at 0.
Estimates for ψ1. Set ψ1 = ψ11 + ψ12, where

ψ11(p) ≡
∫ ∞

L

ϕλ ∗ ϕλ ∗ ψ(p)
dλ

λ
,

ψ12(p) =
∫ L

0

∫
P \V

ϕλ(p − q)ϕλ ∗ ψ(q)dq
dλ

λ
.

By properties of ψ and ϕ, one may obtain

(31) | ∇ψ12| ≤ C, | ∇2ψ12| ≤ C/L on V1.

Good estimates for Φ and formula (30) imply that ψ11 = Φh ∗ ψ satisfies (31).
All in all ψ1 itself satisfies (31).

Estimates for ψ2. Choose F ∈ L2(P ). Then by Cauchy’s inequality,∣∣∣∣∫
P

F | ∇ψ2|
∣∣∣∣

≤
(∫ L

0

∫
V

| ∇ϕλ| ∗
∣∣F |(q)|ϕλ ∗ ψ(q)

∣∣dq
dλ

λ

)
≤

(∫ L

0

∫
V

|ϕλ ∗ ψ(q)|2 dq
dλ

λ3

)1/2(∫ L

0

∫
V

[| ∇ϕλ| ∗ |F |(q)]2 dqλdλ

)1/2

� η[σ(Q(S))]1/2

(∫
P

|F |2
)1/2
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by Plancherel’s inequality, (31) and (28). In conclusion,

(32)
∫

P

| ∇ψ2|2 � ησ(Q(S)).

Observe that the following Poincaré-type inequality holds for ψ2 and any Q:

| Q | −(n+2)/(n+1)

∫
Q

|ψ2 − mQψ2| dp � 1
| Q |

∫
Q

| ∇ψ2| dp.

Now estimates for Hardy–Littlewood maximal function of | ∇ψ2| and (32) yield

(33)
∫

P

[Mψ2]2 �
∫

| ∇ψ2|2 � ησ(Q(S)).

We are ready now to give an estimate for all of ψ. Recall that F = {p ∈
V2 : Mψ2(p) ≤ δ} and suppose that Q̃ ∩ F �= ∅. For p ∈ Q̃, one clearly has

|ψ(p) − ψ(p0) − ∇ψ1(p0) · (p − p0)|
≤ |ψ2(p) − ψ2(p0)| + |ψ1(p) − ψ2(p0) − ∇ψ1(p0) · (p − p0)|
≡ I + II .

To control I , we define λ = oscp∈Q̃ ψ2 ≡ supp∈Q̃ |ψ2(p) − mQ̃(ψ2)|. Choose
q ∈ C such that this supremum is attained, that is, λ = |ψ2(q) − mQ̃(ψ2)|.

Since ψ is Lipschitz in space variables, by (31) applied to ψ1 we get
‖∇ψ2‖L∞(C) � δ. But if p ∈ Q̃ satisfies ‖p − q‖ ≤ λ/2Cδ, then |ψ2(p) − ψ2(q)| ≤
Cδ‖p − q‖ ≤ λ/2, and since λ = |ψ2(q) − mQ̃ψ2| ≤ |ψ2(p) − ψ2(q)| + |ψ2(p) −
mQ̃ψ2| ≤ λ/2 + |ψ2(p) − mQ̃ψ2| then

(34) |ψ2(p) − mQ̃ψ2| ≥ λ

2
.

Suppose r ≥ λ/2Cδ. Then integrating (34)∫
Q̃

|ψ2 − mQ̃ψ2| ≥ λ

2C

(
λ

2Cδ

)n+1

and so

(35) λ � δ(n+1)/(n+2)

(∫
Q̃

|ψ2 − mQ̃ψ2|
)1/(n+2)

.

Suppose now that r ≤ λ/2Cδ. Then for p ∈ Q̃ one has ‖p − q‖ < r < λ/2Cδ and
by (34) |ψ2(p) − mQ̃ψ2| ≥ λ/2. Integrating we obtain mQ̃(|ψ2 − mQ̃ψ2|) ≥ Cλ.

On the other hand, since ‖ ∇ψ2‖L∞(C) ≤ Cδ then mQ̃(|ψ2 − mQ̃ψ2|)/r ≤ Cδ,
and in conclusion

Cλ ≤ mQ̃(|ψ2 − mQ̃ψ2|) = r

[
1
r
mQ̃(|ψ2 − mQ̃ψ2|)

] 1
n+2+ n+1

n+2

(36)

≤ Cr

[
1
r
mQ̃(|ψ2 − mQ̃ψ2|)

] 1
n+2

δ
n+1
n+2 .
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Combining (35) and (36), we obtain

(37) I ≤ 2λ � r

[
1
r
mQ̃(|ψ2 − mQ̃ψ2|)

] 1
n+2

δ
n+1
n+2 .

On the other hand, note that by Taylor’s theorem and (31)

(38) II � δr2

L
� δr0r.

If we now choose X ∈ Q̃ ∩ F , we obtain

|ψ(p) − ψ(p0) − ∇ψ1(p0) · (p − p0)| ≤ [Mψ2(X)]1/(n+2)δ(n+1)/(n+2) + Cδr0r.

By (33), the estimate for ψ we were seeking is

(39) sup
p∈Q̃

|ψ(p) − ψ(p0) − ∇ψ1(p0) · (p − p0)| � (1 + r0)rδ.

With essentially the same reasoning leading to (39), we now obtain

sup
X∈Ψ∩π−1(Q̃)

[
1
r
d(X;HQ̃)

]
≤ (1 + r0)rδ

which was our ultimate goal, namely, estimate (29).

3. Proof of Theorem 1.5

This proof combines arguments in [2, Chapters 3–5] and [3, II Chapter 2].
We include a sketch of the adaptations of ideas and constructions therein,
for completeness and in order to state properly the adaptation of the result
from [4] that mentioned in the Introduction.

Let ψ(X, t) be a smooth function on (X, t) ∈ R
n × R which is odd in the X

variable, and with compact support. In order to define a kernel to which we
can apply the hypothesis, consider the set Ω of sequences ω = {ωj }, with wj ∈
{−1,1}, endowed with the product topology. The measure Π on Ω assigns
equal probability to the values ±1. Consider projections εj : Ω −→ {−1,1}
given by εj(ω) = ωj . Recall that it is well known that

m∑
j=−m

∣∣∣∣∫
E

ψj(X − Y, t − s)f(Y, s)dσ(Y, s)
∣∣∣∣2

=
∫

Ω

∣∣∣∣∣
m∑

j=−m

∫
E

εj(ω)ψj(X − Y, t − s)f(Y, s)dσ(Y, s)

∣∣∣∣∣
2

dΠ(ω),

where ψj(X, t) = 2−j(n+1)ψ(2−jX,2−2jt). Define

Km(X, t;ω) =
m∑

j=−m

εj(ω)ψj(X, t).
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Observe that this kernel is still odd in the X variable and it satisfies the other
assumptions for good kernels. By our assumptions,∫

E

∣∣∣∣∫
E

Km(X − Y, t − s;ω)f(Y, s)dσ(Y, s)
∣∣∣∣2 dσ(X, t)

≤ C(m,ω)
∫

E

|f(X, t)|2 dσ(Y, s)

with a constant C(m,ω) that depends on m and ω. After the “completeness
argument” of [2, p. 22], one gets

(40)
m∑

j=−m

∣∣∣∣∫
E

ψj(X − Y, t − s)f(Y, s)dσ(Y, s)
∣∣∣∣2 ≤ C

∫
E

|f(X, t)|2 dσ(Y, s),

this time with a constant independent of m and ω. Applying (40) to charac-
teristic functions of balls, it is not hard to prove that( ∞∑

j=− ∞

∣∣∣∣∫
E

ψj(X − Y, t − s)dσ(Y, s)
∣∣∣∣2

)
dσ(X, t)dδ2k(u)

is a Carleson measure over E × (0, ∞).
Using this, we now construct a collection of cubes satisfying a Carleson

measure type property. For τ > 0, small let R(τ) denote the set of cubes
Q ∈ Δ with the property that there exist X,Y ∈ 2Q such that d(2X − Y;E) ≥
τ diamQ.

Claim 1. With the definitions and notations above, one has∑
Q∈R(τ)

Q⊂R

σ(Q) ≤ C(τ)σ(R).

The proof of this claim can be easily adapted from [2, p. 24].
Let ε > 0 be given and define G(ε) as the family of cubes Q ∈ Δ for which

there is a plane PQ satisfying the following properties:

d(X;PQ) ≤ εdiamQ for all X ∈ 2Q;(41)
if Y ∈ PQ and d(Y;Q), then d(Y;E) ≤ εdiamQ.(42)

Claim 2. Set B(ε) = Δ \ G(ε). Then

(43)
∑

Q∈B(ε)

Q⊂R

σ(Q) ≤ C(ε)σ(R)

for all R ∈ Δ and all ε > 0.

The proof can be adapted this time from [2, pp. 28–32]. The point is
now that the estimates in the two claims above will lead us to a parabolic
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generalized Corona decomposition, defined in Proposition 1.3. Here is where
we follow ideas in [3, II Chapter 2] and [4]

First, we record a useful adaptation of a theorem about coronizations of
Ahlfors–David regular sets.

Claim 3. Let E be a set in R
n+1 satisfying a (M,R) David–Ahlfors con-

dition. Let A ⊂ Δ be a family of cubes that satisfies a packing condition of
the form ∑

Q∈A
Q⊂R

σ(Q) ≤ Cσ(R)

for all R ∈ Δ. Then there exist a coronization (B, G, F ) of E such that A ⊂ B.
Moreover, for each region S ∈ F we can find an (M ′,R) Ahlfors–David regular
set ES that satisfies

(44) d(X;ES) ≤ 4diamQ whenever X ∈ 2Q for some cube Q ∈ S.

The constant M ′ depends only on the Ahlfors–David constant M of E.

The first conclusion is [3, I Lemma 3.22], while the second one is proved
essentially in [3, pp. 99–100]. Applying this claim to B as defined above,
we obtain a coronization that we denote (B ′, G ′, F ) and such that B(ε) ⊆ B ′.
According to Proposition 1.3, it remains to prove that ES ∈ BPPLG(C(η)),
and for that purpose we can follow the plan of [3, p. 102ff]. Namely, we follow
the next steps:

(a) From (43), which is an estimate for E, we obtain a similar estimate for
each ES and

(b) All ES have big projections as we now define:
An (M,R) Ahlfors–David regular set E is said to have big projections

if there exists θ > 0 such that for each (X, t) ∈ E and r > 0 there is a
t-plane P such that, if πP denotes the projection on P , then

(45)
∣∣πP

(
Cr(X, t) ∩ E

)∣∣ ≥ θrn+1.

To finish the proof of Theorem 1.5 we use (a) and (b) and the following
theorem, whose proof is in the next section.

Theorem 3.1. If E is an (M,R) Ahlfors–David regular set that has big
projections and it satisfies (43) (considering the definitions in (41) and (42)),
then E ∈ BPPLG(C(τ)).

Observe that we can reduce the estimate (43) to another estimate involving
a Carleson measure estimate as follows. For (X, t) ∈ E and r > 0, define

(46) β(X, t; r) = inf
P

{
sup

d(Y, s;P )
r

: (Y, s) ∈ E ∩ Cr(X, t)
}

,
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where the infimum is taken over all t-planes P . Then, in order to obtain (43)
it suffices to prove that if A ≡ A(τ) = {(X, t;ρ) ∈ E × (0, ∞) : β(X, t;ρ) > τ }
then

(47) χA(X, t;ρ)dσ(X, t)
dρ

ρ
is a Carleson measure.

The step (a) is now obtained as follows. Fixing S ∈ F , we define for (X, t) ∈
ES and r > 0

βS(X, t; r) = inf
P

{
sup

d(Y, s;P )
r

: (Y, s) ∈ Es ∩ Cr(X, t)
}

,

where the infimum is taken over all t-planes P . In order to obtain∑
Q∈B ′

Q⊂R

σ(Q) ≤ C(τ)σ(R) for all R ∈ Δ

or the equivalent formulation stated in (47), we can follow the argument in
[3, pp. 103–104], where one essentially uses the corresponding estimate for E.

For the proof of step (b) one can follow the constructions and arguments
in [3, pp. 104–110]. Although the planes in those constructions are not as our
t-planes, the arguments can be applied verbatim.

4. Sketch of proof of Theorem 3.1

Throughout this section, we denote by |F | the n-dimensional Hausdorff
measure of a set F . Let (X, t) ∈ E and r > 0. By the big projections property,
there exists a t-plane P such that |πP (E ∩ Cr(X, t)| > θrn+1. Now choose Q0 ∈
Δ and ε > 0 such that Q0 ⊂ Cr(X, t) ∩ E, diamQ0 ≥ εr and still |πP (Q0)| ≥
2εσ(Q0) holds. Let f : Q0 −→ P be defined as f ≡ πP . Then obviously f
is an affine function (as a function taking values on R

n+1) and it satisfies
‖f(X, t) − f(Y, s)‖ ≤ ‖X − Y, t − s‖.

We now quote an adaptation from [4, Theorem 2.11]. The proof included
therein (pp. 864–867) can be adapted with few easy adaptations. The only
property that one requires is: if f ∈ Lip(1,1/2) and σ(A) ≤ c̃σ(Q0) then
|f(A)| ≤ c̃σ(Q0). In our case actually |f(A)| ≤ σ(A) holds.

Claim. Suppose K > 0 and ε > 0 are given. Then there exists constants
α, τ , N such that the following is true: There exists closed subsets Fj of Q0,
1 ≤ j ≤ N , such that

‖f(X, t) − f(Y, s)‖ ≥ τ ‖X − Y, t − s‖, (X, t), (Y, s) ∈ Fj ;(48) ∣∣∣∣f(
Q0

∖(⋃
j

Fj

))∣∣∣∣ ≤ ε|Q0|.(49)

The dependance of the constants is described as follows: α = α(n, ε,M), τ =
τ(n, ε,M,K), N = N(n, ε,M,K).
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We now address a consequence of this claim. Observe that by (49), we have

(50) |f(∪Fj)| ≥ |f(Q0)| − εσ(Q0) ≥ εσ(Q0)

which implies σ(f(Fj0)) ≥ εσ(Q0)/N for some j0. Now by (48), we can
write Fj0 = {p + ψ(p) : p ∈ f(Fj0)} for some ψ : f(Fj0) ⊂ P −→ R and ψ ∈
Lip(1,1/2). But as we have done before a couple of times, we must prove that
ψ is a parabolic Lipschitz function. For that purpose, we write a result in [8,
pp. 362–363, 365–373] in such a way that it implies at once the conclusion of
the proof of Theorem 3.1.

Proposition 4.1. Let E ⊂ R
n+1 be a uniformly rectifiable set in the par-

abolic sense. Suppose that there exist a t-plane P with a canonical projec-
tion π : R

n+1 −→ P associated to it, and a set F ⊂ E ∩ Δr(X, t), for some
0 < r < R, (X, t) ∈ E, and such that the following conditions hold:
(i) There exists g : π(F ) −→ R with |g(y, s) − g(z, τ)| ≤ q1‖y − z, s − τ ‖, and

such that (ψ(y, s), y, s) ∈ F for every (y, s) ∈ π(F );
(ii) Hn+1(π(F )) ≥ q2r

n+1.
Then there exists a parabolic Lipschitz function ψ : R

n −→ R such that
g(y, s) = ψ(y, s) for (y, s) ∈ π(F1), for certain closed set F1 ⊂ F with
Hn+1(F1) ≥ q3r

n+1, for certain constant q3 depending on q2 and the Car-
leson norm (4) of E.
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