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UNUSUAL GEODESICS IN GENERALIZATIONS OF
THOMPSON’S GROUP F

CLAIRE WLADIS

Abstract. We prove that seesaw words exist in Thompson’s
group F (N) for N = 2,3,4, . . . with respect to the standard finite

generating set X. A seesaw word w with swing k has only geo-
desic representatives ending in gk or g−k (for given g ∈ X) and at

least one geodesic representative of each type. The existence of

seesaw words with arbitrarily large swing guarantees that F (N)

is neither synchronously combable nor has a regular language of

geodesics. Additionally, we prove that dead ends (or k-pockets)

exist in F (N) with respect to X and all have depth 2. A dead

end w is a word for which no geodesic path in the Cayley graph

Γ which passes through w can continue past w, and the depth of

w is the minimal m ∈ N such that a path of length m + 1 exists

beginning at w and leaving B|w|. We represent elements of F (N)

by tree-pair diagrams so that we can use Fordham’s method for

computing word length. This paper generalizes results by Cleary
and Taback, who proved the case N = 2.

1. Generalizations of Thompson’s groups F

1.1. Introduction. Thompson’s group F (N) is a generalization of the
group F . R. Thompson introduced F in the early 1960s (see [15]) while
constructing the groups V and T (also often referred to in the literature as
Thompson’s groups); V and T were the first known examples of infinite,
simple, finitely-presented groups. Here, F ⊆ T ⊆ V . Higman in [14] later
generalized T into an infinite class of groups, and Brown applied this same
generalization to the groups F and V in [3]. This paper only considers gen-
eralizations of the group F .
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Definition 1.1 (Thompson’s group F (N)). Thompson’s group F (N), for
N ∈ {2,3,4, . . .}, is the group of piecewise-linear orientation-preserving home-
omorphisms of the closed unit interval with finitely-many breakpoints in the
ring Z[ 1

N ] and slopes in the cyclic multiplicative group 〈N 〉 in each linear
piece.

F is then simply the group F (2). Throughout this paper, we use the
convention that N = p + 1 for p ∈ Z+ (we note that p need not be prime,
but is rather a positive integer); this is because the numbering of tree-pair
diagrams and some algebraic expressions will be simpler with the use of p
rather than N .

F (p + 1), p ∈ N, is finitely-presented, infinite-dimensional, torsion-free and
of type FP∞ (see [4]). This paper is specifically interested in the Cayley
graph of F (p + 1) with respect to the standard finite generating set, about
which relatively little is known. One known result is that F (p+1) satisfies no
nontrivial convexity condition with respect to the standard finite generating
set (see [1], [8], and [16]). More detailed information about Thompson’s groups
can be found in [5].

1.2. Unusual geodesics. The first unusual kind of geodesic behavior in the
Cayley graph of F (p + 1) with respect to the standard finite generating set
to that we will explore in this paper is illustrated by the existence of seesaw
words.

1.2.1. Seesaw words. Groups with seesaw words with arbitrarily large swing
are not synchronously combable by geodesics and do not have a regular lan-
guage of geodesics. A proof of this fact will follow in Section 2.2. In [10],
Cleary and Taback show that Thompson’s group F (2) has seesaw words of
arbitrarily large swing with respect to the standard finite generating set; we
generalize this argument to F (p+1) for p ≥ 2. Cleary and Taback have shown
in [7] that the Lamplighter groups and certain generalized wreath products
also have seesaw words of arbitrarily large swing with respect to the natural
generating sets.

Definition 1.2 (Seesaw word). A word w with length |w| in the generating
set X is a seesaw word with swing k ∈ N with respect to g ∈ X if the following
hold:
(1) |wgl| = |w| − |l| for 0 < |l| ≤ k,
(2) |wglh| ≥ |wgl| for all h ∈ X ∪ X−1 such that h 	= g, when 0 < |l| < k.
In other words, all geodesic representatives of a seesaw word w end in either
gk or g−k, and there is at least one geodesic representative of each type.

Definition 1.3 (Synchronous k-fellow traveller property). Let λ and η be
geodesic paths in the Cayley graph Γ(G,X) of the group G from the identity
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to w and v, respectively. Then λ and η synchronously k-fellow travel if for
some constant k:
(1) dΓ(w,v) = 1 and
(2) For any 2 vertices h on λ and g on η, if |h| = |g|, then dΓ(h, g) ≤ k.

For the remainder of this paper, we will simply refer to this property as
the k-fellow traveler property.

Definition 1.4 (Synchronously combable). A group is synchronously com-
bable if it can be represented by a language of words satisfying the synchronous
k-fellow traveler property.

We will use the term combable in this paper to mean synchronously com-
bable.

1.2.2. Dead ends. Dead ends were first defined by Bogopolski in 1997 in [2].
For any group G with Cayley graph Γ(G,X), any geodesic representative of a
dead end element cannot be extended past that element in the Cayley graph.
The depth of a dead end then measures how severe this behavior is: for a dead
end element w of length m, a depth of k means that only paths beginning at
w of length greater than k can leave the ball Bm.

Definition 1.5 (Dead ends). An element w of a group G is a dead end
with respect to the given generating set X if |wg±1| ≤ |w| for all g ∈ X .

In this paper, we give a general form for all dead end elements in F (p+1).

Definition 1.6 (Depth of a dead end element). For a dead end element
w, let |w| = n. The depth of a dead end element w with respect to the
generating set X is the smallest number m such that |wg1 · · · gm| ≤ n for
all possible g1, . . . , gm ∈ X ∪ X−1 and |wg1 · · · gm+1| > n for some choice of
g1, . . . , gm+1 ∈ X ∪ X−1. If no such m exists, we say that the dead end has
infinite depth.

In other words, the depth of a dead end is the smallest integer m such
that all paths of length m or less emanating from w remain in the ball Bn

(centered at the identity), but for which there exists a path of length m + 1
which leaves Bn.

Clearly, all dead ends have depth greater than or equal to 1 (and for groups
with all relators of even length this depth is greater than or equal to 2). If a
group has a dead end w with depth k ≥ 1, we can also say that w is a k-pocket
in the Cayley graph of the group. We will show that while F (p + 1) has dead
ends, it does not have deep k-pockets, because all dead ends in F (p + 1) have
depth 2.

The property of having dead ends has been explored for several groups
already. Thompson’s group F (2) has dead ends with respect to the standard
finite generating set, and all of them have depth 2, as Cleary and Taback
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show in [9]; our results simplify to this case when p = 1. In contrast, dead
ends with arbitrary depth exist in the Lamplighter groups, and in some more
general wreath products with respect to the natural generating sets (see [7]).

1.3. Tree-pair diagram representatives. What follows for the remainder
of this section is summarized from [16]; greater detail can be found there.

Because elements of F (p + 1) are piecewise linear maps which take the ith
subinterval of the domain to the ith subinterval of the range, any element of
F (p + 1) is wholly determined by the subdivisions present in its domain and
range. In fact, any element x ∈ F (p + 1) can be entirely determined by an
ordered pair of two sets of consecutive subintervals of [0,1]:

D = {I0 = [a0, a1], I1 = [a1, a2], . . . , Ik = [ak, ak+1]},

R = {J0 = [b0, b1], J1 = [b1, b2], . . . , Jk = [bk, bk+1]},

where ai < ai+1, bi < bi+1 for all i ∈ {0, . . . , k}, and x is the map that takes Ii

to Ji for all i = 0, . . . , k. Tree-pair diagrams, which we will use to represent
elements of F (p + 1), are a geometric representation of this idea.

A graph of p + 2 vertices, one with degree p + 1 (parent vertex ) and the
rest with degree 1 (child vertices), and p + 1 edges which connect each of the
child vertices to the parent vertex is a (p + 1)-ary caret. A diagram which
consists of (p + 1)-ary carets, each with parent vertex oriented upwards and
sharing at least one vertex with another caret, is called a (p+1)-ary tree. The
graph consisting of an ordered pair of (p+1)-ary trees with the same number
of leaves (or equivalently, the same number of carets) is a (p+1)-ary tree-pair
diagram. Figure 1 is an example of a (p + 1)-ary tree-pair diagram.

Definition 1.7 (Nodes and leaves). Within a (p + 1)-ary tree, any vertex
which is the parent vertex of a caret (i.e., which has degree p + 1 or p + 2)
is a node; any vertex which has degree 1 is a leaf. We note that here, the

Figure 1. Tree-pair diagram representative of an element of
F (p + 1) with all carets and leaves numbered.
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term node refers only to vertices which are not leaves; it is not a synonym for
vertex.

The top node of a (p + 1)-ary tree is the root or root node, and the caret
which contains it is called the root caret. We refer to the leftmost or rightmost
directed edge of a tree as the left or right edge of the tree, respectively.

1.3.1. Leaf ordering in a tree-pair diagram. We recall that an arbitrary ele-
ment x of F (p+1) can be entirely determined by an ordered pair of sets of con-
secutive subintervals of [0,1]: (D = {I0, . . . , Ik },R = {J0, . . . , Jk }). Each leaf
in a tree-pair diagram will correspond to one of the intervals I0, . . . , Ik, J0, . . . ,
Jk in the following way: if the parent node of a caret represents an in-
terval [a, b], then the child nodes of that caret represent the subintervals
[a, a + b−a

p+1 ], [a + b−a
p+1 , a + 2(b−a)

p+1 ], . . . , [a + p(b−a)
p+1 , b]; we let the root node of

each tree in a tree-pair diagram represent [0,1], so each leaf in the first or sec-
ond tree in the the tree-pair diagram now represents one of the subintervals
I0, . . . , Ik or J0, . . . , Jk respectively. We then number the leaves in the tree by
assigning each of them the index number of the interval which they represent.
For more details, see [16]. We can see a tree-pair diagram with all its leaves
numbered in Figure 1.

1.3.2. Minimal tree-pair diagrams. The group F (p+1) induces an equivalence
relation on the set of (p + 1)-ary tree-pair diagrams.

Definition 1.8 (Equivalent tree-pair diagrams). Two (p+1)-ary tree-pair
diagrams are equivalent if they represent the same element of F (p + 1).

Definition 1.9 (Minimal tree-pair diagram representative). The tree-pair
diagram which has the smallest number of leaves of any diagram in its equiv-
alence class is the minimal tree-pair diagram representative of the element of
F (p + 1) represented by that equivalence class.

Within a (p+1)-ary tree-pair diagram, the domain tree is referred to as the
negative tree and is often denoted by T−, whereas the range tree is referred to
as the positive tree and is denoted by T+. We will denote a tree-pair diagram
with negative tree T− and positive tree T+, by (T−, T+). In general, for any
tree-pair diagram (T,S), the first tree listed is the domain tree and the second
tree listed is the range tree (whether or not the (T−, T+) notation is used).

We describe how we may obtain the equivalent minimal tree-pair diagram
representative of an element of F (p+1) from an arbitrary representative. We
say that a caret is exposed if all of its children are leaves. If there is an exposed
caret in both the negative and positive trees, and all the leaves of the exposed
caret in each tree have the same index numbers, then we can remove the
pair of exposed carets in the tree-pair diagram without changing the element
which the tree-pair diagram represents. This is the only way in which a tree-
pair diagram can be reduced. So, every element of F (p + 1) has a unique
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representation as a minimal tree-pair diagram. We will write w = (T−, T+)
to denote that (T−, T+) is the minimal tree-pair diagram representative of w.

Notation 1.1 (((Tx)−, (Tx)+), ((Tx)′
−, (Tx)′

+)). When w = (T−, T+) and
x ∈ F (p + 1), we denote the (possibly nonminimal) tree-pair diagram repre-
sentative of the product wx by ((Tx)−, (Tx)+). We will denote the minimal
tree-pair diagram representative of wx by ((Tx)′

−, (Tx)′
+).

1.3.3. Multiplying tree-pair diagrams. Multiplication of two elements of F (p+
1) is simply function composition. We will use functional notation so that
multiplying x by y on the right will be written xy, which denotes x ◦ y.

To compute the product xy of x = (T−, T+) and y = (S−, S+) using the
tree-pair diagram representatives, we first make S+ identical to T−. This is
possible because we can add a caret to any leaf in S+ as long as we add a caret
to the leaf with the same index number in S−, because this is just the reverse
of the process removing exposed caret pairs. In the same way, we can add a
caret to any leaf in T−. We continue adding carets to the tree-pair diagrams
in this way until T− and S+ are identical. If we let (T ∗

−, T ∗
+) and (S∗

−, S∗
+)

denote the tree-pair diagrams for x and y, respectively once carets have been
added as needed so that S∗

+ = T ∗
−, then (S∗

−, T ∗
+) is the (possibly nonminimal)

tree-pair diagram representative of xy. To see an example of multiplication
of tree-pair diagrams, see Figure 2.

Figure 2. Multiplication of tree-pair diagrams representing
the product xpx0 in F (p + 1) (each caret has p + 1 edges)
where x0 = (T−, T+), xp = (S−, S+). Here, T−, T+, S−, S+ are
the trees represented by only black carets. The grey carets are
the carets that must be added in order for multiplication to
take place, so T ∗

−, T ∗
+, S∗

−, S∗
+ are then the trees represented by

the union of black and grey carets, and xpx0 = (T ∗
−, S∗

+). We
note that because the operation here is function composition,
the order in which xp and x0 appear in the product xpx0 and
the order in which the tree-pair diagram representatives for
xp and x0 appear above is reversed.
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Figure 3. The standard finite generators of F (p+1), where
i ∈ {1, . . . , p − 1} (each caret has p+1 edges, which we denote
by dots.

1.4. Caret types. In order to understand the metric on F (p+1) developed
by Fordham in [11], which we will need to prove the results of this paper, we
must first categorize the carets in a tree into the following types:
(1) L. This is a left caret; a left caret is any caret that has one edge on the

left side of the tree. The root caret is defined to be of this type.
(2) R. This is a right caret; a right caret is any caret (except the root caret)

that has one edge on the right side of the tree.
(3) M. This is a middle caret; all carets which are neither left nor right carets

are middle carets.

1.5. Group presentations. F (p + 1) has a standard infinite presentation
and a standard finite presentation; the infinite presentation can be obtained
from the finite presentation by induction.

The standard infinite presentation is [3]:

F (p + 1) = {x0, x1, x2, . . . |xixj = xj+pxi for i < j}.

The standard finite presentation is [3] (see Figure 3):{
x0, x1, . . . , xp

∣∣∣∣[x0x
−1
i , xj ] when i < j, [x2

0x
−1
i x−1

0 , xj ] when i ≥ j − 1,
[x3

0x
−1
p x−2

0 , x1]. Here i, j = 0, . . . , p.

}
From now on, we will use the notation X to represent the generating set

{x0, . . . , xp}.
In [11], Fordham developed a metric to calculate geodesic lengths in the

Cayley graph of F (p + 1) generated by X (this is a generalization of his work
in [12] and [13]). The material in this section is primarily paraphrased from
[11]. This metric depends upon the exact types of carets within a (p + 1)-
ary tree, so before we proceed to present the metric, we further classify caret
types.

1.6. Further classification of carets of type M. We further subcatego-
rize the middle carets into p subtypes: Mi for i = 1,2, . . . , p. The value of i de-
pends upon the type of the middle caret’s parent caret and its relative location
with respect to its parent caret. Figure 4 shows the subtype of each child caret



490 C. WLADIS

Figure 4. For each of the parent caret types given above: L,
R and Mi for i = 1, . . . , p, the caret type listed below each
child is the type of the child caret in that position, if one
exists. The root caret will be of type L, but note that the
type of any caret hanging off of the rightmost child vertex
will by type R rather than Mp (as in the case of all other
type L parent carets). Additionally, note that every caret
of type Mi will have two children of type Mi: the children
hanging off the leftmost and the rightmost child vertices.

for a given parent caret type. For example, in Figure 1, ∧3, ∧5, ∧6, ∧7 ∈ T−
have types M1, Mp, M3, M3, respectively, and ∧1, ∧2, ∧3, ∧4, ∧6, ∧7, ∧8 ∈ T+

have types M2, Mp, M2, M1, M4, M3, M3, respectively.

1.7. Caret/node order. The metric is based on numbering all the carets in
each tree of a tree-pair diagram and pairing up each caret in the negative tree
with the caret in the positive tree with the same index number. The type of
each caret in the pair then determines the contribution of that pair of carets
to the length of the element which the tree-pair diagram represents.

Definition 1.10 (Ancestor, descendant). For any two vertices a and b on
an n-ary tree, vertex a is an ancestor of vertex b if it is on the directed path
from the root node to vertex b. Similarly, vertex b is a descendent of vertex a
if vertex a is an ancestor of vertex b.

To order the carets in a (p + 1)-ary tree, we first order the nodes of the
tree. Once we have ordered the nodes within a tree, we can simply number
them, beginning with 0 and assigning numbers so that the numbering reflects
the placement of the nodes in the order. And once we have numbered the
nodes of a tree, we can number the carets in the tree simply by assigning to
each caret the index number of its parent node.

To order all the nodes within a tree, we begin by ordering all the nodes
within a single caret. Since every caret in a tree has at least one node which is
common to another caret in the tree, any absolute order for the nodes within
an arbitrary caret induces an absolute order on all the nodes in a tree (i.e.
for any 3 nodes within a single caret a, b, c such that a < b < c in the order,
for an arbitrary descendant node b′ of b, we must also have a < b′ < c).

Now we describe this absolute order of nodes within a caret. The type of a
given caret determines which child nodes will come before the parent node in



UNUSUAL GEODESICS IN GENERALIZATIONS OF THOMPSON’S GROUP F 491

Figure 5. For each of the caret types given above: Mi for
i = 1, . . . , p and L or R, the order of the nodes of the caret is
defined so that for arbitrary nodes a and b with vertex index
numbers αj and αk, a < b if and only if j < k. Note that the
index numbers here index the nodes of the caret (including
the root node) and not simply the child nodes.

the order and which will come after it (see Figure 5). For an arbitrary caret, we
assign index numbers α0, . . . , αp+1 to every vertex within the caret; how these
index numbers will be assigned depends upon the caret type: For left and right
carets, the leftmost child vertex of the caret will have index number α0, the
root vertex will have index number α1, and the remaining child vertices will
have index numbers α2, . . . , αp+1. For carets of type Mi where i ∈ {1, . . . , p},
the p − i + 1 leftmost child vertices will have index numbers α0, . . . , αp−i,
the parent vertex will have index number αp−i+1, and the remaining child
vertices will have index numbers αp−i+2, . . . , αp+1. For a visual summary
of these details, see Figure 5. Then these vertex index numbers induce an
ordering of the nodes of the caret as follows: for arbitrary nodes a and b in
the caret with vertex index numbers αj and αk, a < b if and only if j < k.

Within a tree-pair diagram, the carets in the negative and positive trees
with the same index number are paired together and referred to as a caret
pair. The caret pair with index number i is called the ith caret pair, and is
denoted by ∧i.

Notation 1.2 (∧i). We use the notation ∧i to represent both a single
caret with index number i and to represent the ith caret pair in a tree-pair
diagram; when we use this notation, which of these is meant should be clear
from the context.

1.8. Final classification of caret types. The following definitions will
further refine our categories of caret types so that we can finally proceed to
the metric.

Definition 1.11 (Successor, predecessor). For two carets ∧i and ∧j in a
tree, we say that ∧i is a successor of ∧j whenever i > j, and we say that ∧i

is a predecessor of ∧j whenever i < j.

Remark 1.1 (Ancestor/descendant vs. successor/predecessor). We must
not confuse successors with children (or descendants) and predecessors with
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parents (or ancestors). ∧B is a child of ∧A if and only if the parent vertex
of ∧B is a child vertex of ∧A, but ∧B is a successor of ∧A if and only if
B > A. The properties of being a child or successor of some fixed caret are
wholly independent. For example, in Figure 1, in T+ ∧1 is a child but not a
successor of ∧3, and in T−, ∧8 is a successor but not a child of ∧6; in contrast,
in T−, ∧7 is both a child and a successor of ∧5.

Definition 1.12 (Leftmost caret). When we refer to a caret as the leftmost
caret with some property X , we mean precisely the caret with property X
whose index number is smallest. So, for example, the leftmost child of ∧i

would be the child of ∧i with the smallest index number and the leftmost
child successor would be the caret with the smallest index number which is
both a child and a successor of ∧i.

And now we enumerate the final set of categories of caret type:

(1) L ∅. This is the first and leftmost caret of the tree. There is one and only
one caret of this type in any nonempty tree.

(2) LL. Any left caret not of type L ∅ is of this type.
(3) R ∅. This is any right caret for which all successor carets are right carets.

For example, in Figure 1, ∧8 ∈ T− is the only caret of type R ∅.
(4) RR. This is a right caret whose immediate successor is a right caret, but

which has at least one successor which is not a right caret. For example,
in Figure 8, ∧m+2 ∈ S+ is of type RR because its immediate successor is
∧m+3, which is type R, but its successor ∧m+np+n is not type R.

(5) Rj . This is a right caret whose immediate successor is not a right caret
and whose leftmost child successor is type Mj when j < p, or R when
j = p. For example, in T+ in Figure 1, the leftmost child successor of ∧5

is ∧6; since ∧6 is type M4, ∧5 is type R4. A caret of type Rp can be
seen in T−: ∧4 has as its immediate successor ∧5, which is not a right
caret, and the leftmost child successor of ∧4 is ∧8, which is type R, so ∧4

is type Rp.
(6) Mi

∅. This is a middle caret of type Mi that has no child successor carets.
For example, in Figure 1, the only carets of type Mi

∅ for some i ∈ {1, . . . , p}
are: ∧3 ∈ T− is type M1

∅, ∧6, ∧7 ∈ T− are type M3
∅, ∧2 ∈ T+ is type Mp

∅,
∧1, ∧3 ∈ T+ are type M2

∅, ∧4 ∈ T+ is type M1
∅, ∧8 ∈ T+ is type M3

∅. Note
that a caret may have child carets but no child successor carets (i.e., if
the child carets are predecessors rather than successors).

(7) Mi
j . This is a middle caret of type Mi with leftmost child successor

of type Mj . We note that we will always have j ≤ i because all child
successor carets of a type Mi caret will have type Mj such that j ≤ i
(see Figure 4). For example, in Figure 1, ∧5 ∈ T− is type Mp

3, ∧6 ∈ T+ is
type M4

3, and ∧7 ∈ T+ is type M3
3.



UNUSUAL GEODESICS IN GENERALIZATIONS OF THOMPSON’S GROUP F 493

Table 1. Weight of types of caret pairs in a (p+1)-ary tree-
pair diagram

(·, ·) L ∅ LL R∅ RR Rj Ml
∅ Mt

u

L ∅ 0 – – – – – –
LL – 2 1 1 1 2 2
R ∅ – 1 0 2 2 1 3
RR – 1 2 2 2 1 3

Ri – 1 2 2 2

{
1 for i ≤ l

3 for i > l
3

Mk
∅ – 2 1 1

{
1 for j ≤ k

3 for j > k
2

{
2 for k ≤ u

4 for k > u

Mr
s – 2 3 3 3

{
2 for l ≤ s

4 for l > s
4

1.9. The metric. We now describe the metric developed by Fordham in [11]
for geodesic length in F (p + 1) with respect to X . According to this metric,
each caret pair in the minimal tree-pair diagram representative of an element
of F (p + 1) contributes a “weight” which, when summed over all caret pairs
in the diagram, yields the length of the element in F (p + 1).

Notation 1.3 (|w|). For given w ∈ F (p+1), |w| is the length of w w.r.t. X .

The weight of a caret pair in a minimal tree-pair diagram representing
w ∈ F (p + 1) is the contribution of that caret pair to the length of w (see
Table 1). The weight depends upon the type of each caret in the pair and
is derived from the cardinality of the set of generators which is required to
produce the caret pair.

Notation 1.4 (w(T−,T+)(∧i), w(T−,T+)(τ1, τ2)). If the types of the negative
and positive carets in the ith caret pair of (T−, T+) are denoted by τ1 and τ2 re-
spectively, then we denote the weight of ∧i by w(T−,T+)(∧i) or w(T−,T+)(τ1, τ2).
When the tree-pair diagram itself is obvious from the context, we will often
omit the subscript.

Remark 1.2. Since Table 1 is symmetric, w(τ1, τ2) = w(τ2, τ1) for all τ1, τ2.

Theorem 1.1 (Fordham [11], Theorem 2.0.11). Given an element w =
(T−, T+) in F (p + 1), |w| is the sum of the weights given in Table 1 for each
of the pairs of carets in (T−, T+). (Note that since only ∧0 is of type L ∅,
(L ∅, L ∅) is the only possible pairing in which the caret type L ∅ can appear.)

1.10. How generators act on caret type pairings. Our approach in this
paper involves thinking of multiplication on the right by a generator as an
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Figure 6. The “action” of given g ∈ X ∪ X−1 on an arbi-
trary (p + 1)-ary tree-pair diagram, where we assume that
the tree-pair diagram (S−, S+) has already had any carets
added which are needed in order to compute the product.
Here i ∈ {1, . . . , p − 1} and Ai, Bi and Ci all represent (pos-
sibly empty) subtrees. Black arrows/labels indicate the “ac-
tion” of g on the tree-pair diagram representative of an arbi-
trary word w, and grey arrows/labels indicate the “action”
of g−1 on the tree-pair diagram representative of an arbitrary
word v. Because multiplication on the right has no effect on
the positive tree of a tree-pair diagram after all carets have
been added for multiplication, the “action” makes no change
to the positive trees (see Remark 1.3).

“action” on a tree-pair diagram. When we multiply x = (T−, T+) of F (p + 1)
on the right by y, we view ((Ty)−, (Ty)+) as the result of this “action” of y on
(T−, T+). Diagrams depicting this “action” of g ∈ X ∪ X−1 on an arbitrary S−
can be seen in Figure 6. Because multiplication by x±1

i is harder to visualize
than other product computation (since it does not exist in the case of F (2)),
we include an example of this computation in Figure 7.

We now define two conditions which will be used in the theorems that
follow.

Definition 1.13 (Subtree condition). For fixed w = (T−, T+) ∈ F (p + 1),
g ∈ X ∪ X−1, w and g fulfil the subtree condition when wg can be computed
without adding carets.

Definition 1.14 (Minimality condition). For fixed w = (T−, T+) ∈ F (p +
1), g ∈ X ∪ X−1, w and g fulfil the minimality condition when ((Tg)−, (Tg)+)
is minimal.
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Figure 7. The calculation of a product xx1 in F (4). In this
case, we must add a caret to the leaves with index number
5 in x1 in order for the multiplication to take place; this
is indicated by the grey carets in the figure. The tree-pair
diagram for xx1 will then consist of the negative tree of x1

with the added grey caret as the negative tree and T+ as the
positive tree.

Fordham proves that when these two conditions are met, only one caret
pair in the tree-pair diagram changes type as a result of the “action” of g:

Theorem 1.2 (Fordham [11], Theorem 2.1.1). If w = (T−, T+) ∈ F (p + 1)
and g ∈ X ∪ X−1 satisfy the subtree and minimality conditions, then there
is exactly one caret ∧i in the tree-pair diagram that changes type under the
multiplication wg; that is, if we let τT− (∧i) denote the caret type of ∧i in T−
in the tree-pair diagram (T−, T+), then ∃i such that

τT− (∧i) 	= τ(Tg)− (∧i) and τT− (∧j) = τ(Tg)− (∧j) ∀j 	= i.

The caret ∧i which changes type when the conditions of Theorem 1.2 are
met will always be in the negative tree.

Remark 1.3. When multiplying an element x = (T−, T+) in F (p + 1) by
an element y on the right, if the subtree condition is met, then the type of
caret ∧i is the same in both T+ and (Ty)+ for all caret index numbers i, and
T+ = (Ty)+. The type of ∧i will be different in (Ty)′

+ than in T+ only if the
minimality condition is not met.

When either the subtree or minimality condition fails, we have an alternate
theorem which can help us to determine the effect of multiplication on an
element’s length without computing it directly.

Theorem 1.3 (Fordham [11], Theorems 2.1.3 and 2.14). If g ∈ X ∪ X−1

and w = (T−, T+) ∈ F (p + 1), do not fulfil:
(1) the subtree condition when computing wg, then |wg| = |w| + 1,
(2) the minimality condition when computing wg, then |wg| = |w| − 1.
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2. Seesaw words with arbitrary swing exist in F (p + 1)

2.1. Seesaw words in F (p + 1).

Theorem 2.1. Any word in F (p+1) with the following normal form, where
m,n ∈ N is a seesaw word with respect to x0 in X .

xm−1
0 xpxnp2+(m+n)p

(
pn∏
i=1

x−1
np2+(m+n−i+1)p−i

)
x−m

0 .

The minimal tree-pair diagram representative of an element of this form
can be seen in Figure 8. This family of seesaw words will be denoted S .

The proofs that follow will be concerned entirely with showing that all
elements with minimal tree-pair diagram representative of the form given in
Figure 8 are seesaw words with respect to x0. The algebraic expression is
entirely determined by the minimal tree-pair diagram; to see how this alge-
braic expression can be obtained from the tree-pair diagram given in Figure 8,
see the section on normal forms of F (p + 1) in [16]. This family S is a gen-
eralization of the family of seesaw words introduced by Cleary and Taback
in [10].

For our proof, we take arbitrary w = (S−, S+) ∈ S . First, we prove that w
satisfies part 1 of the definition of seesaw words with respect to x0 ∈ X .

Lemma 2.1.

|wx±q
0 | = |w| − q for all q such that 0 < q < m − 1, n − 1,

Figure 8. Minimal tree-pair diagram representative of an
arbitrary seesaw element in the family S . The letter m de-
notes the number of carets of type LL in S− and the letter n
denotes the number of carets of type R on the right side of
S− which are not of type R∅.
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where m denotes the number of carets of type LL in S− and n denotes the
number of carets of type R on the right side of S− which are not type R∅.

Proof. We prove this by induction. Throughout this proof, we let (Sq
−, Sq

+)
denote ((Sx−q)−, (Sx−q)+) and we let (Rq

−,Rq
+) denote ((Sxq)−, (Sxq)+),

where q > 0 in both cases. Our inductive hypotheses will include the assump-
tion that wxq

0 and wx−q
0 have minimal tree-pair diagram representatives of

the form given in Figures 9 and 10, respectively.

Figure 9. Minimal tree-pair diagram representative of wx−q
0

(when 0 < q < n − 1) for w ∈ S .

Figure 10. Minimal tree-pair diagram representative of wxq
0

(when 0 ≤ q < m − 1) for w ∈ S .
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(1) |wx−q
0 |: We begin by considering the case when q = 1. Performing the

multiplication wx−1
0 using the minimal tree-pair diagram representatives of

w and x−1
0 in Figures 8 and 3, respectively, we obtain Figure 9 (when q = 1);

(S1
−, S1

+) is minimal because there are only two exposed carets in S1
+: the

carets with leftmost leaf index numbers p and np2 + (m + n)p, but neither of
the leaves with these index numbers in S1

− is the leftmost leaf of an exposed
caret.

Our inductive hypothesis will be that |wx−q
0 | = |w| − q for some q such that

0 < q < m − 1, n − 1 and that wx−q
0 has minimal tree-pair diagram representa-

tive (Sq
−, Sq

+) given in Figure 9. Now we assume our hypotheses hold for some
q = j − 1 such that 0 < j < n − 2 and we consider what happens when we mul-
tiply wx

−(j−1)
0 by x−1

0 on the right. By our inductive hypothesis, the tree-pair
diagram in Figure 9 is the minimal representative of wx

−(j−1)
0 when q = j − 1.

Because wx
−(j−1)
0 and x−1

0 satisfy the subtree condition, the positive tree
Sj−1

+ remains unchanged after multiplication by x−1
0 (see Remark 1.3). So we

consider which changes x−1
0 makes to the negative tree.

By looking at Figures 6 and 9 which represent wx
−(j−1)
0 and x−1

0 respec-
tively, we can see that multiplying wx

−(j−1)
0 by x−1

0 changes ∧m+2+(j−1)(p+1)

(the rightmost child of the root) in Sj−1
− from type R1 to type LL. This is

the only change in the negative tree. So we can see that the resulting tree-
pair diagram representative for wx−j

0 will have ∧m+2+(j−1)(p+1) as the root
caret and ∧m+2+(j−2)(p+1) as the leftmost child of the root. The relative lo-
cation of all other carets in the tree will be identical to their placement in
the minimal tree-pair diagram representative for wx

−(j−1)
0 . So it is clear that

Figure 9 (when q = j) is a tree-pair diagram representative for wx−j
0 . Now we

need only show that it is minimal; we note that any carets which are exposed
in (Sj

−, Sj
+) would also have been exposed in (Sj−1

− , Sj−1
+ ), so minimality of

(Sj−1
− , Sj−1

+ ) implies minimality of (Sj
−, Sj

+).
Now we consider the effect of multiplication of wx

−(j−1)
0 by x−1

0 on the
length of wx

−(j−1)
0 . The caret ∧m+2+(j−1)(p+1) will always be a succes-

sor of the caret ∧m in both Sj−1
+ and Sj

+, and the only successors of ∧m

in Sj−1
+ and Sj

+ which are not of type RR are ∧m+np+n and ∧m+np+n+1.
Since j < n, it is clear that m + 2 + (j − 1)(p + 1) < m + np + n and there-
fore ∧m+2+(j−1)(p+1) is of type RR in Sj−1

+ and Sj
+. Therefore, this change

in the caret ∧m+2+(j−1)(p+1) in the negative tree from type R1 to type LL

changes the pairing from (R1, RR), which has weight 2, to (LL, RR), which
has weight 1 (see Table 1). So |wx−j

0 | = |wx
−(j−1)
0 | − 1. And since by our

inductive hypotheses |wx
−(j−1)
0 | = |w| − (j − 1),

|wx−j
0 | = |w| − (j − 1) − 1 = |w| − j for all j s.t. 0 < j < n − 1.
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(2) |wxq
0|: The proof that |wxq

0| = |w| − q is similar to the proof that
|wx−q

0 | = |w| − q. The primary difference is that the caret in (Rj−1
− ,Rj−1

+ )
in Figure 10 whose type is changed by multiplication by x0 is ∧m−(j−1) (the
root caret) in Rj−1

− , which is changed from type LL to type RR (or Rp in the
case j = 1). In the same way as for the x−1

0 case, this leads to the conclusion
that Figure 10 is a minimal tree-pair diagram representative of wxj

0 when
q = j. Then to compute the effect of multiplication by x0 on length, we note
that the caret ∧m−(j−1) in Rj−1

+ or Rj
+ will always be of type LL for any given

j = 1, . . . ,m − 2 because ∧m−(j−1) is a predecessor of the root ∧m in Rj−1
+

and Rj
+ since m − (j − 1) < m and, and the only predecessors of the root in

Rj−1
+ or Rj

+ which are not of type LL are ∧1 and ∧0. Since j ≤ m − 2 guaran-
tees that m − (j − 1) > 1 for all possible j, ∧m−(j−1) 	= ∧1 or ∧0. Therefore,
this change in the caret ∧m−(j−1) from type LL to type RR (or Rp when
j = 1) changes the pairing from (LL, LL), which has weight 2, to (RR, LL) (or
(Rp, LL) when j = 1), which has weight 1 (see Table 1). Then similarly to
the x−1

0 case, we can use induction to conclude that |wxq
0| = |w| − q and that

Figure 10 is a minimal tree-pair diagram representative of wxq
0 for all q such

that 0 ≤ q < m − 1. �

Now we show that all w ∈ S satisfy part 2 of the definition of a seesaw
word by considering the “action” of each g ∈ X ∪ X−1 on wx±q

0 for arbitrary
q such that 0 ≤ q < m − 1, n − 1, and showing that this “action” always results
in increased length.

Lemma 2.2. For w ∈ S , ε ∈ { −1,1}, and arbitrary q s.t. 0 < |q| < m −
1, n − 1,

|wxεq
0 g| ≥ |wxεq

0 |
for all g ∈ X ∪ X−1.

Proof. We consider each possible combination of values of ε and g:

(1) |wx−q
0 x±1

i |, i ∈ {1,2, . . . , p}: First, we note that wx−q
0 and x±1

i when 0 ≤
q < m − 1, n − 1 and i = 1,2, . . . , p satisfy both the subtree and minimality
conditions of Theorem 1.2 except when q = 0 and i = 1, . . . , p − 1. So only
one caret will change type in the negative tree and the positive tree will
remain unchanged after multiplication in these cases.

We begin with the case q = 0.
(a) |wx−1

i |: Multiplying w by x−1
i changes ∧m+2 from type R1 to type

Mi
1 and changes no other caret types. Since all the carets in S+

and S1
+ which succeed ∧m and precede ∧m+np+n have type RR and

m < m + 2 < m + np + n, ∧m+2 is of type RR in S+ and S1
+. So the

change in the type pair of ∧m+2 goes from (R1, RR) which has weight
2 to type (Mi

1, RR) which has weight 3, and clearly |wx−1
i | > |w|.
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(b) |wxi|: Multiplying w by xi when i = 1, . . . , p − 1 does not satisfy the
subtree condition and therefore by Theorem 1.3, |wxi| > |w|. Multi-
plying w by xp changes ∧m+1 from type Mp

∅ to type RR and changes
no other caret types. Since m < m + 1 < m + np + n, ∧m+1 is of type
RR in S+ and R1

+. So this change in the type pair of ∧m+1 goes
from (Mp

∅, RR) which has weight 1 to (RR, RR) which has weight 2,
so |wxp| > |w|.

Now we consider multiplying wx−q
0 for 0 < q < m − 1, n − 1 by x±1

i for
i = 1,2, . . . , p, when both conditions of Theorem 1.2 are met.
(a) |wx−q

0 x−1
i |: Multiplying wx−q

0 by x−1
i changes ∧m+2+q(p−1) (the right

child of the root) in Sq
− from type R1 to type Mi

1. In Sq
+ and Sq+1

+ , all
carets which succeed ∧m and precede ∧m+np+n have type RR, so since
m < m + 2 + q(p − 1) < m + np + n (because q < n − 1), ∧m+2+q(p−1)

is of type RR in Sq
+ and Sq+1

+ . So this multiplication changes the type
pair of ∧m+2+q(p−1) from (R1, RR), which has weight 2, to (Mi

1, RR),
which has weight 3. So |wx−q

0 x−1
i | = |w| − q + 1.

(b) |wx−q
0 xi|: Multiplying wx−q

0 by xi changes ∧m+2+(q−1)(p−1)+i (the
ith child of the root) in Sq

− from type Mi
∅ to type Ri+1 when i < p and

to type RR when i = p. Again, since m < m +2+ (q − 1)(p − 1)+ i <

m + np + n (because q < n − 1), ∧m+2+(q−1)(p−1)+i is of type RR

in Rq
+ and Rq+1

+ . So this multiplication changes the type pair of
∧m+2+(q−1)(p−1)+i from (Mi

∅, RR), which has weight 1, to (Ri+1, RR)
when i < p and (RR, RR) when i = p, both of which have weight 2.
So |wx−q

0 xi| = |w| − q + 1.
(2) |wxq

0x
±1
i |, i ∈ {1,2, . . . , p}: Now we consider multiplying wxq

0 for 0 < q <

m − 1, n − 1 by x±1
i for i = 1,2, . . . , p. First we note that wxq

0 and x−1
i

when 0 ≤ q < m − 1, n − 1 and i = 1,2, . . . , p satisfy both the subtree and
minimality conditions of Theorem 1.2. So only one caret will change type
in the negative tree and the positive tree will remain unchanged after
multiplication in this case.
(a) |wxq

0x
−1
i |: If we let i = 1, . . . , p, multiplying wxq

0 by x−1
i changes the

rightmost child of the root, which is ∧m−q+1 when q > 0 and ∧m+2

when q = 0. When q = 0, we can conclude that ∧m+2 is of type RR in
both S+ and R1

+ (since m < m+2 < m+np+n), and ∧m+2 is changed
from type R1 to type Mi

1, changing the type pairing from (R1, RR)
which has weight 2 to (Mi

1, RR) which has weight 3. When q > 0, we
can conclude that ∧m−q+1 is of type LL in both Rq

+ and Rq+1
+ since

all carets which succeed ∧1 and precede ∧m+1 in Rq
+ and Rq+1

+ are of
type LL and clearly 1 < m − q + 1 < m + 1 (since q < m − 1). When
q = 1, ∧m−q+1 is changed from type RR to type Mi

∅, changing the
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type pairing from (Rp, LL) or (RR, LL), both of which have weight 1,
to (Mi

∅, LL) which has weight 2. So |wxq
0x

−1
i | = |w| − q + 1.

(b) |wxq
0xi|, i ∈ {1,2, . . . , p}:

(i) |wxq
0xi|, i ∈ {1,2, . . . , p}, except when q = 0 and i = p: In this

case, multiplying wxq
0 by xi does not satisfy the required condi-

tions of Theorem 1.2 because we must add a caret before we can
complete the multiplication, so we know from Theorem 1.3 that
|wxq

0xi| > |wxq
0| in this case.

(ii) |wxq
0xp|: When q = 0, wxq

0 and xp satisfy the required subtree and
minimality conditions of Theorem 1.2 and therefore only one caret
changes type in the negative tree and the positive tree remains
unchanged. The caret ∧m+1 is changed from type Mp

∅ to type
RR. Since m < m+1 < m+np+n, it is clear that ∧m+1 is of type
RR in S+ and R1

+, and so the change in type pairing goes from
(Mp

∅, RR) which has weight 1 to (RR, RR) which has weight 2.
So we can conclude that that |wxq

0xi| > |wxq
0| in this case. �

Proof of Theorem 2.1. This proof follows immediately from Lemma 2.1,
Lemma 2.2, and Definition 1.2. So all w ∈ S are seesaw words, and we can
create such words with any given swing k (where 0 < k < min{m − 1, n − 1})
by choosing m and n such that m,n > k + 1. �

Corollary 2.1. Thompson’s group F (p + 1) contains seesaw words of
arbitrarily large swing with respect to x0 ∈ X .

2.2. Consequences.

Lemma 2.3. Given any constant k, there exists a word w ∈ S such that
no geodesics paths from the identity to wx0, w, or wx−1

0 satisfy the k-fellow
traveler property.

Proof. This holds for the same reasons that Proposition 4.2 in [10] holds
for p = 1.

Let γ be a geodesic path from the identity to a seesaw word w with swing
n. Then γ passes through the vertex wx0 or wx−1

0 ; without loss of general-
ity, we suppose that γ passes through wx0. Let η be a geodesic path from
the identity to wx−1

0 . Clearly, dΓ(w,wx−1
0 ) = 1. We can rewrite γ = γ′xs

0

and η = η′x
−(s−1)
0 as long as we choose s ≤ n. So wxs−1

0 is on the path γ

and wx
−(s−1)
0 is on the path η. Because of the properties of seesaw words,

dΓ(wxs−1
0 ,wx

−(s−1)
0 ) = 2(s − 1).

Because seesaw words exist with arbitrarily large swing, given any constant
k, we can choose a seesaw word w with swing s > k

2 +1 so that 2(s − 1) > k. �

Theorem 2.2. Thompson’s group F (p + 1) is not combable by geodesics.
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Proof. This holds for the same reasons that Theorem 4.2 in [10] holds for
p = 1. Suppose there does exist a combing of F (p + 1) by geodesics. If we let
γ represent the geodesic combing path from the identity to w, then we know
that the vertex wxε

0 is on the path γ where ε ∈ {−1,1}, but the vertex wx−ε
0

is not. Let η denote the geodesic combing path from the identity to wx−ε
0 .

Lemma 2.3 shows that γ and η do not have the k-fellow traveler property,
and therefore F (p + 1) is not combable by geodesics. �

Theorem 2.3 (Theorem 30 in [6]). A group G generated by a finite set X
with seesaw elements of arbitrary swing w.r.t. X has no regular language of
geodesics.

Corollary 2.2. There does not exist a regular language of geodesics for
F (p + 1) with respect to X .

3. Dead ends exist in Thompson’s group F (p + 1)

Cleary and Taback in [9] have shown that F (2) has dead ends with respect
to the standard finite generating set, and that all these dead ends have depth 2.
In this section, we use a similar approach to extend their results to F (p + 1)
for all p ∈ N.

3.1. Dead ends in F (p + 1). The proofs in this section will contain many
tree-pair diagrams which use the following notational convention.

Notation 3.1 (Subtrees in tree-pair diagrams). When depicting tree-pair
diagrams, the symbol �indicates the presence of a nonempty subtree, and
the the symbol �indicates the presence of a (possibly empty) subtree. When
neither of these symbols are used, it is assumed that there is no subtree
present.

Now we proceed to show that elements of F (p + 1) are dead ends if and
only if they have a minimal tree-pair diagram representative with a specific
form.

Theorem 3.1. An element in F (p + 1) is a dead end with respect to X if
and only if it has a minimal tree-pair diagram of the form given in Figure 11.

We note that in Theorem 3.1 we mean that the minimal form of the dead
end tree-pair diagram representative must include all of the carets explic-
itly given in Figure 11, so, for example, at least one of the subtrees labeled
f1, . . . , fp in T− and at least one of the subtrees labeled f ′

1, . . . , f
′
p in T+ are

nonempty because otherwise ∧F would cancel. The proof of this theorem
is based upon recognizing how the “action” of each g ∈ X ∪ X−1 affects an
arbitrary tree-pair diagram (T−, T+).
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Figure 11. Form of Minimal Tree-pair Diagram for All
Dead Ends in F (p + 1) where we impose the additional con-
ditions that whenever ∧Ci , for some i ∈ {1, . . . , p − 1}, is of
type Mi

∅ in T−, then ∧Ci must be of type LL, Rk Ml
∅ or

Ml
k in T+, where k, l ≤ i; and similarly, whenever ∧D is of

type Mp
∅ in T−, then ∧D cannot be of type RR or R ∅ in T+.

Figure 12. A representation of a (possibly non-minimal)
negative tree in an arbitrary (p + 1)-ary tree-pair diagram.

Remark 3.1. The negative tree of any (p+1)-ary tree-pair diagram (wheth-
er or not it is a dead end) can be written in the (possibly nonminimal) form
given by Figure 12, and for any negative tree in this form, the “action” of
any g ∈ X ∪ X−1 on T− will change only one caret type in that tree. (This is
because the only other changes in type that can occur when multiplying by a
generator are caused by the addition of carets to the tree-pair diagram, but
by definition, negative trees in this form will belong to tree-pair diagrams to
which all carets needed in order to multiply by a generator or its inverse have
already been added—see Theorem 1.2 and Remark 1.3).

The “action” of g on this negative tree will produce the following caret
type change (see Figure 6):
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(1) x0 takes the type of ∧B from LL to R.
(2) x−1

0 takes the type of ∧E from R to LL.
(3) xi for i = 1, . . . , p − 1 takes the type of ∧Ci from Mi to R.
(4) x−1

i for i = 1, . . . , p − 1 takes the type of ∧E from R to Mi.
(5) xp takes the type of ∧D from Mp to R.
(6) x−1

p takes the type of ∧E from R to mpp.

Because a dead end w by definition must not increase in length when
multiplied by g ∈ X ∪ X−1 (by Theorem 1.3), w in the product wg must
satisfy the subtree condition with respect to any g.

Lemma 3.1. All dead ends must have a minimal tree-pair diagram with
negative tree of the form given by Figure 12, and any dead end w must satisfy
the subtree and minimality conditions with respect to all possible g ∈ X ∪ X−1.

Proof. A minimal (p + 1)-ary tree-pair diagram representing an arbitrary
element x ∈ F (p+1) will have a negative tree of this form if and only if x sat-
isfies the subtree condition with respect to all g ∈ X ∪ X−1 (see Remark 3.1).
For an arbitrary dead end w, we cannot have |wg| > |w|, so by Theorem 1.3,
w must satisfy the subtree conditions with respect to all possible g.

The fact that w = (T−, T+) satisfies the minimality condition with respect
to all possible g follows directly from the fact that it satisfies the subtree
condition. The subtree condition implies that T+ = (Tg)+, and therefore, the
only way in which exposed caret pairs may exist in ((Tg)−, (Tg)+), is if the
“action” of g on (T−, T+) causes carets to be exposed in (Tg)− which were
not exposed in T−. However, if we consider the “action” of each g on the
negative tree of w, which must be of the form given in Figure 12, we can see
that for all g ∈ X ∪ X−1, the only carets which will be exposed in (Tg)− are
those which are also exposed in T− (see Figure 6, or consider Figures 13–18
which follow). Therefore, ((Tg)−, (Tg)+) is minimal for all g. �

Corollary 3.1. For all dead ends w = (T−, T+) and all g ∈ X ∪ X−1, the
“action” of g on (T−, T+) only changes the type of one caret in T− and leaves
the types of all carets in T+ unchanged.

Proof. This follows immediately from Lemma 3.1, Remark 1.3, and Theo-
rem 1.2. �

So now we can proceed to prove Theorem 3.1 by observing which caret
changes type in the negative tree when each g “acts” on an arbitrary dead
end w = (T−, T+) and then enumerating those conditions which must be met
by (T−, T+) in order for this type change to result in a decrease in length (we
note that length cannot remain unchanged after multiplication by g because
in F (p + 1) all relators are of even length). By showing that these conditions
will be met if and only if w satisfies those conditions laid out in Theorem 3.1,



UNUSUAL GEODESICS IN GENERALIZATIONS OF THOMPSON’S GROUP F 505

we will conclude our proof of the theorem. Before continuing with our proof,
we first introduce some notation.

Notation 3.2 (τ(∧j) and Δg(∧j)). τT+(∧j) and τ(T−,T+)(∧j) represent
the type of the caret ∧j in the tree T+ and the the type pair of the caret pair
∧j in the tree-pair diagram (T−, T+), respectively.

Δg(∧j) denotes the change in weight of the caret pair ∧j during multipli-
cation by some g ∈ X ∪ X−1, where the original tree-pair diagram and the
resulting tree-pair diagram should be clear from the context.

Proof of Theorem 3.1. We consider multiplying our dead end element w =
(T−, T+) by each g ∈ X ∪ X−1 and enumerate which caret in the negative tree
has its type changed by this multiplication and the effect of this change on
the length of the element (see Table 1).

For a clearer organizational structure, we organize this process by the caret
in T− which is affected by the multiplication. The labeled carets in T− are
(see Figure 12): ∧A, ∧B ∧Ci for i = 1, . . . , p − 1, ∧D, ∧E , ∧F . To see which g
affects which caret pair in (T−, T+), we consult Remark 3.1.
(1) Conditions on ∧A in (T−, T+): We know from Remark 3.1 that there is

no g ∈ X ∪ X−1 which will change the type of ∧A in the negative tree, so
we have no conditions on the type of this caret unless they are imposed
by the required types of other carets within the tree. By definition, ∧A

is of type L in T−. In T+, the only conditions on ∧A will come from the
conditions imposed on ∧B (see (2)); because ∧B in T+ must be of type L
and since ∧A is a predecessor of ∧B , ∧A in T+ must be of type L or of
type M with an ancestor of type L.

(2) Conditions on ∧B in (T−, T+): We know from Remark 3.1 that only x0

will change the type of ∧B in the negative tree, from type LL to type R.
If we look at (T−, T+), we can see that in this case we can compute the
types more specifically: x0 will change the type of ∧B in the negative tree
from type LL to type R1 because ∧B ’s leftmost child successor is ∧C1 ,
which is of type M1 (see Figure 13). Table 2 lists the change in weight
(taken from Table 1) of this caret pair for each possible caret type pair
of ∧B . From this table, we conclude that ∧B in T+ must be of type LL

because this is the only caret pairing in (T−, T+) for ∧B which will result
in |wx0| < |w|.

(3) Conditions on ∧Ci in (T−, T+) for i = 1,2, . . . , p − 1: We know from Re-
mark 3.1 that only xi will change the type of ∧Ci in the negative tree, from
type Mi to type R (see Figure 14). First, we enumerate the conditions
imposed by the specific subtype of ∧Ci in T− on the specific subtype
of ∧Ci in (Txi)− (in Figure 14). First, we note that in both T− and
(Txi)−, in ∧Ci , the child carets in the subtrees ci

1, . . . , c
i
p−i+1 (if they are

nonempty) will be predecessors of ∧Ci and the child carets in the sub-
trees ci

p−i+2, . . . , c
i
p+1 (if they are nonempty) will be successors of ∧Ci (see
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Figure 13. (Tx0)− (where (Tx0)+ = T+).

Table 2. How x0 “acts” on w(∧B) in arbitrary dead end
w = (T−, T+), listed by possible types of ∧B ∈ T+. Here,
τT− (∧B) = LL

τT+(∧B) τ(T−,T+)(∧B) τ((Tx0)−,(Tx0)+)(∧B) Δx0(∧B)
LL (LL, LL) (R1, LL) −1
R∅ (LL, R ∅) (R1, R ∅) 1
RR (LL, RR) (R1, RR) 1
Rj (LL, Rj) (R1, Rj) 1
Mi

∅ (LL, Mi
∅) (R1, Mi

∅) 1
Mi

j (LL, Mi
j) (R1, Mi

j) 1

Figure 14. (Txi)− when i = 1, . . . , p − 1 (where (Txi)+ = T+).

Figure 5). Additionally, the root caret of the subtrees ci
1, . . . , c

i
p−i+1 (if

they exist) will have caret types Mi, . . . , Mp respectively, and the root
carets of the subtrees ci

p−i+2, . . . , c
i
p+1 (if they exist) will have caret types

M1, . . . , Mi, respectively (see Figure 4).
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Table 3. How xi (for i = 1,2, . . . , p − 1), when τT− (∧Ci) =
Mi

∅, “acts” on w(∧Ci) in arbitrary dead end w = (T−, T+),
listed by possible types of ∧Ci ∈ T+

τT+(∧Ci) τ(T−,T+)(∧Ci) τ((Txi)−,(Txi)+)(∧Ci) Δxi(∧Ci)
LL (Mi

∅, LL) (Ri+1, LL) −1
R∅ (Mi

∅, R ∅) (Ri+1, R ∅) 1
RR (Mi

∅, RR) (Ri+1, RR) 1

Rj (Mi
∅, Rj) (Ri+1, Rj)

{
−1 for j ≤ i

1 for j > i

Mk
∅ (Mi

∅, Mk
∅) (Ri+1, Mk

∅)
{

−1 for k ≤ i

1 for k > i

Ml
m (Mi

∅, Ml
m) (Ri+1, Ml

m)
{

−1 for l ≤ i

1 for l > i

(a) If τT− (∧Ci) = Mi
∅, then the subtrees ci

p−i+2, . . . , c
i
p+1 are all empty,

which implies that ∧Ci+1 is the leftmost child successor of ∧Ci . Since
τ(∧Ci+1) = Mi+1, τ(Txi)− (∧Ci) = Ri+1.

(b) If τT− (∧Ci) = Mi
j , then the leftmost child successor of ∧Ci in T−

is the root caret of the subtree ci
j , which implies that the subtrees

ci
p−i+2, . . . , c

i
j−1 are all empty. So the leftmost child successor of ∧Ci

in (Txi)− will also be the root of subtree ci
j , which is of type Mj , so

τ(Txi)− (∧Ci) = Rj .
Table 3 lists the change in weight (taken from Table 1) of this caret

pair ∧Ci when τT− (∧Ci) = Mi
∅; When τT− (∧Ci) = Mi

j , the change in
caret type of ∧Ci from Mi

j to Rj results in a decrease in caret weight no
matter what the type of ∧Ci in T+, so we conclude that if τT− (∧Ci) = Mi

j ,
then ∧Ci in T+ may be of any type. If τT− (∧Ci) = Mi

∅, then we can see
from Table 3 that ∧Ci in T+ may be of type LL, Rk or Mk

∅ , or Mr
s for

k, r, s ≤ i.
(4) Conditions on ∧D in (T−, T+): We know from Remark 3.1 that only xp

will change the type of ∧D in the negative tree, from type Mp to type R
(see Figure 15). First, we enumerate the conditions which determine the
subtype of ∧D in T− and the conditions imposed by that specific subtype
of ∧D in T− on the specific subtype of ∧D in (Txp)− in Figure 15. First,
we note that in both T− and (Txp)−, in ∧D, the child carets in the subtree
d0 (if nonempty) will be predecessors of ∧D and the child carets in the
subtrees d1, . . . , dp (if nonempty) will be successors of ∧D (see Figure 5).
Additionally, the root caret of the subtrees d0, d1, . . . , dp (if they exist)
will have caret types Mp, M1, . . . , Mp respectively (see Figure 4).
(a) If dj is a leaf for all j ∈ {1, . . . , p}, then τT− (∧D) = Mp

∅, because ∧D ∈
T− will have no child successors (see Figure 11), and τ(Txp)− (∧D) =
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Figure 15. (Txp)− (where (Txp)+ = T+).

Table 4. How xp, when τT− (∧D) = Mp
∅, “acts” on w(∧D)

in arbitrary dead end w = (T−, T+), listed by possible types
of ∧D ∈ T+. Case 1 is when τ(Txp)− (∧D) = RR, and case 2 is
when τ(Txp)− (∧D) = R∅

τ((Txp)−,(Txp)+)(∧D) Δxp(∧D)

τT+(∧D) τ(T−,T+)(∧D) case 1 case 2 case 1 case 2
LL (Mp

∅, LL) (RR, LL) (R∅, LL) −1 −1
R∅ (Mp

∅, R ∅) (RR, R ∅) (R∅, R ∅) 1 1
RR (Mp

∅, RR) (RR, RR) (R∅, RR) 1 1
Rj (Mp

∅, Rj) (RR, Rj) (R∅, Rj) −1 −1
Mi

∅ (Mp
∅, Mi

∅) (RR, Mi
∅) (R∅, Mi

∅) −1 −1
Mi

j (Mp
∅, Mi

j) (RR, Mi
j) (R ∅, Mi

j) −1 −1

RR or R∅ since the leftmost child successor of ∧D ∈ (Txp)− will be
∧E , which will also be ∧D’s immediate successor (see Figure 15).

(b) If there is a j ∈ {1, . . . , p} such that dj is not a leaf, then τT− (∧D) =
Mp

i , where i = min{j|dj is not a leaf}, and τ(Txp)− (∧D) = Ri, be-
cause when j < p, the root of the subtree di will be the leftmost child
successor of ∧D in both T− and (Txp)−, and will be of type Mi in
both trees, and when j = p, the leftmost child successor of ∧D will be
the root of the subtree di (which is type Mi) in T− and will be ∧E

(type R) in (Txp)−, and the immediate successor of ∧D will be in the
subtree with root of type Mi in both trees (see Figures 4 and 5).

Table 4 lists the change in weight (taken from Table 1) of this caret
pair ∧D when τT− (∧D) = Mp

∅; When τT− (∧D) = Mp
j , the change in caret

type of ∧D from Mp
j to Rj decreases caret weight, no matter what the

type of ∧D in T+, so if τT− (∧D) = Mp
j , then ∧D in T+ may be of any
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Figure 16. (Tx−1
0 )− (where (Tx−1

0 )+ = T+).

Figure 17. (Tx−1
i )− (where (Tx−1

i )+ = T+).

Figure 18. (Tx−1
p )− (where (Tx−1

p )+ = T+).

type. If τT− (∧D) = Mp
∅, then we can see from Table 4 that ∧D in T+

must be of type LL, Rj , Mk
∅ or Mk

l , where j, k, l ∈ {1,2, . . . , p}.
(5) Conditions on ∧E in (T−, T+): We know from Remark 3.1 that x−1

i for
i = 0,1,2, . . . , p will change the type of ∧E in the negative tree, from
type R to type LL when i = 0 (see Figure 16) and Mi when i > 0 (see
Figures 17 and 18). First, we enumerate the conditions that determine
the subtype of ∧E in T− (which is R) and in (Txi)−, (which is LL when
i = 1 and Mi when i > 0) by considering Figures 12, 16, 17, and 18. To
understand this set of conditions, see Figures 4 and 5.
(a) If ek is a nonempty subtree in T− for some k ∈ {1, . . . , p}, then:
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Table 5. How x−1
0 “acts” on w(∧E) in arbitrary dead end

w = (T−, T+), listed by possible types of ∧E ∈ T+. Case 1 is
when τT− (∧E) = R∅, case 2 is when τT− (∧E) = RR, and case
3 is when τT− (∧E) = Rj

τ(T−,T+)(∧E)
τ(∧E)

in wx−1
0

Δx−1
0

(∧E)

τT+(∧E) case 1 case 2 case 3 case 1 case 2 case 3
LL (R∅, LL) (RR, LL) (Rj , LL) (LL, LL) 1 1 1
R∅ (R∅, R ∅) (RR, R ∅) (Rj , R ∅) (LL, R ∅) 1 −1 −1
RR (R∅, RR) (RR, RR) (Rj , RR) (LL, RR) −1 −1 −1
Rk (R∅, Rk) (RR, Rk) (Rj , Rk) (LL, Rk) −1 −1 −1

Mi
∅ (R∅, Mi

∅) (RR, Mi
∅) (Rj , Mi

∅) (LL, Mi
∅) 1 1

{
1 for i < j

−1 for i ≥ j

Ml
k (R∅, Ml

k) (RR, Ml
k) (Rj , Ml

k) (LL, Ml
k) −1 −1 −1

(i) The type of ∧E in T− is Rj (where j = min{k|ek is nonempty}),
because when j < p, the root of ej (which is type Mj) will be
the leftmost child successor of ∧E , and when j = p, ∧F (which
is type R) will be the leftmost child successor of ∧E and the
immediate successor of ∧E will be in ej (and thus not type R).

(ii) They type of ∧E in (Tx−1
i )− is LL for i = 0 and Mi

j for i > 0,
because the leftmost child successor of ∧E in (Tx−1

i )− is the root
of the subtree ej , which is of type Mj (see Figures 4 and 5).

(b) If ek is a leaf in T− for all k ∈ {1, . . . , p}, then ∧F (which is type R)
will be the immediate successor of ∧E in both T− and (Tx−1

i )−:
(i) The type of ∧E in T− is R∅ when ∧F in T− is type R∅ and RR

otherwise. If ∧F in T− is type R ∅, then all of the successors of
∧F are type R, and thus all successors of ∧E must also be type
R. If ∧F in T− is not of type R ∅, then there exists at least one
successor of ∧F , and of ∧E by extension, which is not of type R.

(ii) The type of ∧E in (Tx−1
i )− is LL for i = 0 and Mi

∅ for i > 0,
because ∧E will have no nonempty child successor in (Tx−1

i )−.
Table 5 lists the change in weight (taken from Table 1) of ∧E when

i = 0, and Table 6 lists the change in weight of ∧E when i > 0. So now we
proceed to outline the possible caret types of ∧E in (T−, T+) which result
in reduced length after multiplication by x−1

i for i = 0, . . . , p.
From Tables 5 and 6, we have the following sets of conditions.

(a) i = 0: The possible caret pairings for ∧E in (T−, T+), determined
because the weight of ∧E decreases after multiplication by x−1

0 (see
Table 5) are:
(i) (R, R) excluding (R ∅, R ∅),
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Table 6. How x−1
i (for i = 1,2, . . . , p) “acts” on w(∧E) in

arbitrary dead end w = (T−, T+), listed by possible types of
∧E ∈ T+. Case 1 is when τT− (∧E) = R ∅, case 2 is when
τT− (∧E) = RR, and case 3 is when τT− (∧E) = Rj (where
j > i)

τ(T−,T+)(∧E)
τ(∧E)

in wx−1
i

Δx−1
i

(∧E)

τT+(∧E) case 1 case 2 case 3 case 1case 2 case 3
LL (R∅, LL) (RR, LL) (Rj , LL) (Mi

∅, LL) 1 1 1
R ∅ (R∅, R ∅) (RR, R ∅) (Rj , R ∅) (Mi

∅, R ∅) 1 −1 −1
RR (R∅, RR) (RR, RR) (Rj , RR) (Mi

∅, RR) −1 −1 −1
Rk (R∅, Rk) (RR, Rk) (Rj , Rk) (Mi

∅, Rk) 1 for k ≤ i, −1 for k > i

Ml
∅ (R∅, Ml

∅) (RR, Ml
∅) (Rj , Ml

∅) (Mi
∅, Ml

∅) 1 1
{

1 for l < j

−1 for l ≥ j

Mm
n (R∅, Mm

n ) (RR, Mm
n ) (Rj , Mm

n ) (Mi
∅, Mm

n ) 1 for m ≤ i, −1 for m > i

(ii) (R, Mt
u),

(iii) (Rj , Ml
∅) such that l ≥ j.

(b) i > 0: We define the variable R′ ∈ {R ∅, RR, Rj |j > i}. The possible
caret type pairs for ∧E in (T−, T+), determined because the weight
of ∧E decreases after multiplication by x−1

i where i ∈ {1, . . . , p} (see
Table 6) are:
(i) (RR, R ∅),
(ii) (Rj , R ∅) where j > i,
(iii) (R′, RR),
(iv) (R′, Rk) where k > i,
(v) (Rj , Ml

∅) where j > i and l ≥ j,
(vi) (R′, Mr

s) where s > i (and if R ′ = Rj , then r ≥ j).
We note that multiplying by each x−1

i for i = 0, . . . , p imposes its own
set of conditions on the type pair of ∧E . In order for w to be a dead
end, the caret ∧E in w = (T−, T+) must satisfy all p + 1 sets of con-
ditions, because its length must be reduced whenever we multiply by
x−1

i for any i ∈ {0, . . . , p}. We note that
⋂p

i=0{(Rj , ∗)|j > i} = ∅ and⋂p
i=0{(Mr

s, ∗)|s > i} = ∅ for any caret type ∗, so taking the intersection
of the set of possible caret type pairs for all i ∈ {0, . . . , p} given in 5a and
5b yields:

(R∅, RR), (RR, R ∅), (RR, RR).

These are the only type pairs for ∧E which will result in |wx−1
i | < |w|

for all i ∈ {0, . . . , p}, and since ∧E ∈ T− and ∧E ∈ T+ are both of type R∅
or RR, each e1, . . . , ep must be a leaf in both T− and T+.
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Table 7. Possible caret pairings for labeled carets in a dead
end w = (T−, T+). Here ∗ can be any caret type

∧A ∧B ∧Ci , i = 1, . . . , p − 1 ∧D ∧E ∧F

(L, L) (LL, LL) (Mi, LL) (Mp, ∗), (R ∅, RR) (R, R)
(LL, M) (Mi

∅, Rk) for k ≤ i except (RR, R ∅)
(Mi

∅, Ml
∅) for l ≤ i (Mp

∅, RR) (RR, RR)
(Mi

∅, Mr
s) for r, s ≤ i or

(Mi
j , ∗) (Mp

∅, R ∅)

(6) Conditions on ∧F in (T−, T+): We know from Remark 3.1 that there is
no g ∈ X ∪ X−1 which will change the type of ∧F in the negative tree, so
we have no conditions on the type of this caret unless they are imposed
by the required types of other carets within the tree. By definition ∧F is
of type R in T−. Since e1, . . . , ep must all be leaves in T− and T+ (see 5),

∧F is the immediate successor of ∧E , so ∧F must be type R in T+.
We summarize the possible caret pairings outlined above for each of the

labeled carets in (T−, T+) in Table 7. These are precisely the conditions met
by Figure 11. �
3.2. Depth of dead ends.

Theorem 3.2. All dead ends in F (p + 1) have depth 2 with respect to X .
Or, there are no k-pockets in F (p + 1) for k 	= 2.

Proof. We show that for arbitrary dead end w, |wx−1
0 xixj | for any i, j ∈

{1,2, . . . , p} will have length greater than |w|. The word wx−1
0 x2

1 which Cleary
and Taback use in [9] to prove this theorem for p = 1 is a subcase of this
construction.

Suppose |w| = q; we have seen that |wg±1| = q − 1 for g ∈ {x0, . . . , xp}.
So |wg±1

1 g±1
2 | ≤ q for g1, g2 ∈ {x0, . . . , xp}, which shows that w cannot have

depth 1, and |wg±1
1 g±1

2 g±1
3 | ≤ q + 1 for g1, g2, g3 ∈ {x0, . . . , xp}. So, to show

that a dead end w in F (p + 1) has depth 2, we need only find g1, g2, g3 ∈
{x0, . . . , xp} such that |wgε1

1 gε2
2 gε3

3 | ≥ q + 1 where ε1, ε2, ε3 ∈ {−1,1}.
If we consider the tree-pair diagram for w given in Figure 11, we can

see that wx−1
0 will have the tree-pair diagram given in Figure 16. We have

|wx−1
0 | = q − 1, and to multiply wx−1

0 by xi for i = 1,2, . . . , p, we must add
a caret to the tree-pair diagram for wx−1

0 on the leaf with index number ei

(we note that in a dead end, the subtrees e1, . . . , ep will all be empty—see
Figure 11); we call this new caret Ei. So the tree-pair diagram for wx−1

0 xi

will have the form given in Figure 19. Since we had to add a caret to the
tree-pair diagram for wx−1

0 to get wx−1
0 xi, by Theorem 1.3, |wx−1

0 xi| = q.
To multiply wx−1

0 xi by xj where j = 1,2, . . . , p, we need to add a caret to
the tree-pair diagram for wx−1

0 xi on the leaf with index number ej , and then



UNUSUAL GEODESICS IN GENERALIZATIONS OF THOMPSON’S GROUP F 513

Figure 19. Tree-pair diagram representative of wx−1
0 xi, for

i = 1,2, . . . , p and w a dead end in F (p + 1).

by Theorem 1.3, |wx−1
0 xixj | > q. Therefore, all dead ends have depth 2 in

F (p + 1) with respect to X . �
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