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NONCOMMUTATIVE EXTRAPOLATION THEOREMS
AND APPLICATIONS

YING HU

Abstract. In this paper, we prove some noncommutative ana-
logues of Yano’s classical extrapolation theorem. Applying one

of them to noncommutative martingales, we obtain a maximal

inequality for noncommutative martingales from L log2 L to L1.

Moreover, the exponent 2 is optimal. We also obtain the non-
commutative analogue of the classical theorem of Burkholder and
Chow on the iterations of two conditional expectations.

1. Introduction and preliminaries

We start by recalling the classical extrapolation theorem of Yano [Yan51].
Let (Ω, μ) be a probability space, and let T be a bounded sublinear map on
Lp(Ω) for all 1 < p ≤ 2, verifying the following norm estimate

‖Tf ‖p ≤ c

p − 1
‖f ‖p ∀f ∈ Lp(Ω),

where c is a positive constant independent of p and f . Then T can be extrap-
olated to a bounded map from L logL into L1. This theorem was considerably
improved and extended. We mention here only the works [JM91] of Jawerth
and Milman, where among many other results, the links between Yano’s type
extrapolation and interpolation theory are fully studied, and the more recent
paper [Car00] by Carro, which gives an interesting improvement of Yano’s
theorem. Let us also point out that Tao [Tao01] proved that the converse to
Yano’s theorem holds for translation invariant maps.

We investigate in this paper noncommutative analogues of Yano’s theo-
rem for maps acting on noncommutative Lp-spaces. Finding such analogues
becomes natural after the recent developments on noncommutative martin-
gales and ergodic inequalities. Our starting point is the noncommutative
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Marcinkiewicz type interpolation theorem proved in [JX07] which can be
stated as follows: Let M be a von Neumann algebra equipped with a normal
faithful tracial state τ , let S = (Sn)n≥0 be a sequence of subadditive maps
on L+

p (M) for all 1 ≤ p ≤ ∞. Assume that S is of type (∞, ∞) and weak
type (1,1) (see Section 2 below for the definition). Then S is of type (p, p) for
any 1 < p < ∞. More precisely, for any x ∈ L+

p (M), there exists a ∈ L+
p (M)

such that

(1.1) Sn(x) ≤ a ∀n ≥ 0 and ‖a‖p ≤ c

(p − 1)2
‖x‖p,

where c is a constant depending only on S. Our extrapolation theorem asserts
that if S satisfies (1.1), then S extends to a sequence of bounded maps from
L log2 L(M) into L1(M). Recall that the order (p − 1)−2 in (1.1) is optimal for
filtrations of conditional expectations. Accordingly, we prove that the space
L log2 L(M) in our extrapolation theorem cannot be replaced by L logr L(M)
for r < 2.

A second extrapolation theorem for sublinear maps is proved by similar ar-
guments. The remainder of this paper is devoted to applications. The first one
concerns noncommutative maximal ergodic inequalities for factorable maps in
Anantharaman’s sense [AD06]. Anantharaman proved the noncommutative
Rota dilation theorem for these maps. Consequently, one gets the noncom-
mutative maximal ergodic inequalities by virtue of Junge’s Doob maximal
inequality [Jun02] with a norm estimate as in (1.1). Our first extrapola-
tion theorem then implies a maximal ergodic inequality from L log2 L(M)
into L1(M). Accordingly, we obtain an individual ergodic convergence for
operators in L log2 L(M). These results apply in particular to some free
group actions.

The second main application deals with the iterations of two noncommu-
tative conditional expectations. Namely, we prove the noncommutative ana-
logue of a classical theorem due to Burkholder and Chow [BC61].

In the rest of this introduction, we give some necessary preliminaries on
noncommutative Lp-spaces. We refer, for instance, to [PX97] for more details.

We will mainly work on semifinite noncommutaitve Lp-spaces, except in
the last section on applications. Thus, we confine our attention here to the
semifinite case. Let M be a von Neumann algebra equipped with a normal
semifinite faithful trace τ . For 0 < p ≤ ∞, let Lp(M) be the associated non-
commutative Lp-space. We will also need L logr L(M) and its dual space,
which are Orlicz spaces. More generally, given an Orlicz function φ, the Or-
licz space Lφ(M) is defined as the space of all τ -measurable operators x such
that φ( |x|

λ ) ∈ L1(M) for some λ > 0. The norm ‖x‖φ is then defined by

‖x‖φ = inf
{

λ > 0 : τ

[
φ

(
|x|
λ

)]
≤ 1

}
.
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If φ(t) = t(1 + log+ t)r for some r > 0, we get the space L logr L(M), whose
norm is often denoted by ‖ · ‖L logr L. The dual space of L logr L(M) is
expL1/r(M), which is the Orlicz space associated to the function ψ defined
by ψ(t) = exp(t1/r) − 1.

Since we will study noncommutative maximal inequalities, we will need
the spaces Lp(M; �∞) and Lp(M; �c

∞), 1 ≤ p ≤ ∞. Recall that a sequence
x = (xn)n≥0 ⊂ Lp(M) belongs to Lp(M; �∞) if and only if x can be factored
as xn = aynb with a, b ∈ L2p(M) and a bounded sequence (yn) ⊂ L∞(M). We
then define

‖x‖Lp(M;�∞) = inf
xn=aynb

{
‖a‖2p sup

n
‖yn‖ ∞ ‖b‖2p

}
.

Following [JX07], this norm is symbolically denoted by ‖supn
+xn‖p. Simi-

larly, Lp(M; �c
∞) is defined by requiring that x can be factored as xn = ayn

with a ∈ Lp(M) and a bounded sequence (yn) ⊂ L∞(M). Recall that a pos-
itive sequence x = (xn)n belongs to Lp(M; �∞) if and only if there exists
a ∈ L+

p (M) such that xn ≤ a for all n ≥ 0. In this case,∥∥∥sup
n

+xn

∥∥∥
p

= inf{ ‖a‖p : a ∈ L+
p (M) s.t. xn ≤ a ∀n ≥ 0}.

Here and in the rest of the paper, L+
p (M) denotes the positive cone of Lp(M).

We refer to [Jun02] and [JX07] for more information on Lp(M; �∞).

2. Extrapolation theorems

Throughout this section, M denotes a von Neumann algebra equipped with
a normal faithful finite trace τ . For simplicity, we assume τ is normalized,
i.e., τ(1) = 1.

Let Sn : L+
1 (M) → L+

1 (M) be a positive map for n ≥ 0. We suppose that
S = (Sn) is subadditive in the following sense Sn(x + y) ≤ Sn(x) + Sn(y) for
x, y ∈ L+

1 (M) and all n ≥ 0. Our basic assumption is the following norm
estimate on S:

(H) There exist 1 < p0 ≤ ∞, c > 0 and r > 0 such that∥∥∥sup
n

+Sn(x)
∥∥∥

p
≤ c

(p − 1)r
‖x‖p ∀x ∈ L+

p (M), ∀1 < p ≤ p0.

Namely, S is of type (p, p) with a constant c(p − 1)−r.
As already quoted in the Introduction, if S is of weak type (1,1) and type

(p0, p0), then S satisfies (H) with r = 2 (see [JX07]). Recall that the weak type
(1,1) of S means that there exists a constant c such that for any x ∈ L+

1 (M)
and any λ > 0 there is a projection e ∈ M such that

e(Sn(x))e ≤ λ ∀n ≥ 0 and τ(e⊥) ≤ c
‖x‖1

λ
.
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Recall that s 
→ λs(x) denotes the distribution of an operator x ∈ L1(M).
Namely, for s > 0

λs(x) = τ
[
χ(s,∞)(|x|)

]
,

where χ(s,∞)(|x|) is the spectral projection of |x| corresponding to the interval
(s, ∞) and |x| = (x∗x)1/2.

Lemma 2.1. Assume S satisfies (H). Let 1 < p ≤ p0 and x ∈ L+
p (M). Let

ax ∈ L+
p (M) be an operator such that

(2.1) Sn(x) ≤ ax ∀n and ‖ax‖p ≤ c

(p − 1)r
‖x‖p.

Then for every t > 0

(2.2) τ [(ax − t)+] =
∫ ∞

t

λs(ax)ds ≤ cpKt1−p

(p − 1)r
‖x‖p

p,

where K = supp>1
1
p ( 1

p−1 )r(p−1).

Proof. We have ∫ ∞

t

λs(ax)ds =
∫ ∞

t

s1−psp−1λs(ax)ds

≤ t1−p

∫ ∞

t

sp−1λs(ax)ds

≤ t1−p

p
‖ax‖p

p

≤ cpt1−p

p(p − 1)rp
‖x‖p

p.

It follows that ∫ ∞

t

λs(ax)ds ≤ cpKt1−p

(p − 1)r
‖x‖p

p.

On the other hand,

τ [(ax − t)+] =
∫ ∞

0

λs[(ax − t)+]ds =
∫ ∞

t

λs(ax)ds.

Then we deduce the desired inequality. �

Lemma 2.2. Let xk ∈ L1(M) with x∗
k = xk. Then for every t > 0 and ck ≥ 0

such that
∑

ck = 1, we have

τ

[(∑
k≥1

xk − t

)
+

]
≤

∑
k≥1

τ [(xk − ckt)+].
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Proof. We have

τ

[(∑
k

xk − t

)
+

]
= τ

[(∑
k

(xk − ckt)
)

+

]
= τ

[
1
2

(∣∣∣∣∑
k

(xk − ckt)
∣∣∣∣ +

∑
k

(xk − ckt)
)]

≤
∑

k

τ

(
|xk − ckt|

2

)
+

∑
k

τ

(
xk − ckt

2

)
=

∑
k

τ

(
|xk − ckt| + xk − ckt

2

)
=

∑
k

τ [(xk − ckt)+].
�

Theorem 2.3. Let S = (Sn) satisfy (H). Then for x ∈ L logr L(M) with
x ≥ 0 we have ∥∥∥sup

n

+Sn(x)
∥∥∥

1
≤ c′ ‖x‖L logr L,

where c′ is a constant depending only on p0, c and r in (H).

Proof. Fix a positive operator x in L logr L(M). We can decompose x as

x =
∑
k∈Z

xek =
∑
k≤0

xek +
∑
k≥1

xek
def=x0 +

∑
k≥1

xk,

where ek = χ(2k,2k+1](x). Let pk = 1 + 1
k log 2 for k ≥ 1. Applying Lemma 2.1

to xk, we find ak ∈ L+
pk

(M) satisfying the properties there. In particular,

τ [(ak − 2−k)+] ≤ cpkK2k(pk −1)

(pk − 1)r
‖xk ‖pk

pk

= K2
1

log 2 c1+ 1
k log 2 kr(log 2)rτ(xpk

k )
≤ c′krτ(xpk

k ).

Similarly, we also find a corresponding majorant a0 ∈ L+
p0

(M) for x0. Set
a =

∑
k≥0 ak. Then we have Sn(x) ≤ a for all n ≥ 0. On the other hand, by

Lemma 2.2,

‖a‖1 ≤ ‖a0‖1 +
∥∥∥∥∑

k≥1

ak

∥∥∥∥
1

(2.3)

≤ ‖a0‖p0 +
∫ 1

0

λs

(∑
k≥1

ak

)
ds +

∫ ∞

1

λs

(∑
k≥1

ak

)
ds

≤ c

(p0 − 1)r
‖x0‖p0 + 1 + τ

[(∑
k≥1

ak − 1
)

+

]
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≤ 2c

(p0 − 1)r
+ 1 + c′

∑
k≥1

krτ(xpk

k )

≤ c′ + c′
∑
k≥1

krτ(xpk

k ).

Since
xpk

k ≤ (2k+1ek)1+
1

k log 2 ≤ 2k+12
2

log 2 ek ≤ 21+ 2
log 2 xk,

we deduce that

‖a‖1 ≤ c′ + 21+ 2
log 2 c′

∑
k≥1

krτ(xk)

≤ c′ + c′τ

(∑
k≥1

xk logr xk

)
≤ c′ ‖x‖L logr L.

Therefore, the theorem is proved. �

Using similar arguments, we can prove an extrapolation theorem for a single
sublinear map on Lp(M). For our purpose, the sublinearity can be defined in
the following general sense.

Definition 2.4. A map T on Lp(M) is called sublinear if it satisfies the
following conditions:
• |T (λx)| = |λ| |T (x)| for all λ ∈ C and x ∈ Lp(M);
• For any pair (x, y) in Lp(M), there exist two contractions u and v in M

such that |T (x + y)| ≤ u|T (x)|u∗ + v|T (y)|v∗.

By virtue of the famous inequality of Akemann, Anderson and Pederson
[AAP82], we see that any linear map is sublinear.

Theorem 2.5. Let T be a sublinear map on Lp(M) for any 1 < p ≤ p0.
Assume that there exist two positive constants c and r such that

‖T (x)‖p ≤ c

(p − 1)r
‖x‖p ∀x ∈ Lp(M).

Then T extends to a bounded map from L logr L(M) into L1(M).

Proof. Since any operator in L logr L(M) is a linear combination of four
positive ones, it suffices to consider the positive operators in L logr L(M). Fix
such an operator x. Decompose x as in the proof of Theorem 2.3, i.e.,

x =
∑
k≤0

xek +
∑
k≥1

xek = x0 +
∑
k≥1

xk.

We can also assume that the series above is a finite sum for it converges in
L logr L(M). Using the sublinearity of T , we find a sequence of contractions
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(uk)k≥0 ⊂ M such that∣∣∣∣T(∑
k≥0

xk

)∣∣∣∣ ≤
∑
k≥0

uk |T (xk)|u∗
k.

Therefore,

‖T (x)‖1 ≤
∥∥u0|T (x0)|u∗

0

∥∥
1
+

∥∥∥∥∑
k≥1

uk |T (xk)|u∗
k

∥∥∥∥
1

≤ ‖T (x0)‖p0 + 1 +
∫ ∞

1

λs

[∑
k≥1

uk |T (xk)|u∗
k

]
ds.

By Lemma 2.2,∫ ∞

1

λs

[∑
k≥1

uk |T (xk)|u∗
k

]
ds = τ

[(∑
k≥1

uk |T (xk)|u∗
k − 1

)
+

]
≤

∑
k≥1

τ
[(

uk |T (xk)|u∗
k − 2−k

)
+

]
=

∑
k≥1

∫ ∞

2−k

λs[uk |T (xk)|u∗
k]ds

≤
∑
k≥1

∫ ∞

2−k

λs[T (xk)]ds.

Now let pk be as in the proof of Theorem 2.3. Then by assumption and as in
the proof of Lemma 2.1, we deduce∫ ∞

2−k

λs[T (xk)]ds ≤ cpkK2k(pk −1)

(pk − 1)r
τ(xpk

k ) ≤ c′krτ(xk).

Then we conclude the proof as before. �

3. The martingale case

In this section, M still denotes a von Neumann algebra with a normal
faithful normalized trace τ . Let (Mn) be an increasing sequence of von
Neumann subalgebras of M. Let (En) be the associated sequence of trace
preserving conditional expectations. As usual, each En extends to a contrac-
tive projection from Lp(M) onto Lp(Mn) ∀1 ≤ p < ∞. The extended map is
still denoted by En. By Junge’s noncommutative Doob maximal inequality
[Jun02], we have that for 1 < p ≤ ∞

(3.1)
∥∥∥sup

n

+
En(x)

∥∥∥
p

≤ δp‖x‖p ∀x ∈ Lp(M),

where δp ≤ c(p − 1)−2 with a universal constant c.

Theorem 3.1. Let (En) be as above.
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(i) We have∥∥∥sup
n

+
En(x)

∥∥∥
1

≤ c‖x‖L log2 L ∀x ∈ L log2 L(M), x ≥ 0.

(ii) The exponent 2 in the inequality above cannot be replaced by any 0 < r < 2.
More precisely, if there is a constant c such that∥∥∥sup

n

+
En(x)

∥∥∥
1

≤ c‖x‖L logr L ∀x ∈ L logr L(M), x ≥ 0,

then r ≥ 2.

Proof. The first part immediately follows from Theorem 2.3. Thus, it re-
mains to prove (ii). Suppose that there is a c > 0, such that∥∥∥sup

n

+
En(x)

∥∥∥
1

≤ c‖x‖L logr L.

Then by duality, for any finite sequence (an)n≥1 in L+
∞(M),

(3.2)
∥∥∥∥ ∑

n≥1

Enan

∥∥∥∥
exp(L1/r)

≤ c

∥∥∥∥ ∑
n≥1

an

∥∥∥∥
∞

.

Recall that exp(L1/r)(M) is the Orlicz space associated to the function

ψ(t) = exp(t1/r) − 1.

Let ψ2(t) = ψ(t2). By Kadison’s Cauchy–Schwarz inequality and (3.2), for
any finite sequence (an) ⊂ L+

∞(M), we have∥∥∥(∑
|Enan|2

)1/2∥∥∥
ψ2

=
∥∥∥∑

|Enan|2
∥∥∥1/2

ψ
≤

∥∥∥∥∑
n

En(|an|2)
∥∥∥∥1/2

ψ

(3.3)

≤
√

c

∥∥∥∥∑
n

|an|2
∥∥∥∥1/2

∞
=

√
c

∥∥∥∥(∑
n

|an|2
)1/2∥∥∥∥

∞
.

Now we specialize to matrix algebras. Namely, let M = Mm for an arbitrary
large integer m, where Mm denotes the algebra of m × m matrices, equipped
with the usual trace Tr (which becomes normalized if we wish). For n ≤ m,
Mn is viewed as the subalgebra of Mm at the upper left corner. Note that
Mn does not contain the unit of Mm. However, there still exists a natural
conditional expectation Ẽn from Mm to Mn, which is defined by Ẽn = enxen,
where en projects a vector in �m

2 into its first n coordinates. Thus, we still have
a finite increasing filtration (Ẽn)1≤n≤m of conditional expectations. The only
difference is that Ẽn is no longer faithful. However, using the arguments
in [JX03], we can easily make Ẽn faithful. Then we deduce that (3.4) holds
for Ẽn. Consequently, for any an ∈ Mm,∥∥∥∥∥

(
m∑

n=1

|Ẽn(an)|2
)1/2∥∥∥∥∥

ψ2

≤
√

c

∥∥∥∥∥
(

m∑
n=1

|an|2
)1/2∥∥∥∥∥

∞

.
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We are now in a position of using the lower triangular projection T as in
[JX05]. Recall that T is defined by

(T (x))ij =

{
xij , if j ≤ i,

0, otherwise.

Let a ∈ Mm, and let an denote the matrix whose nth row is that of a and all
others are zero. It is clear that(

m∑
n=1

|an|2
)1/2

= |a|.

On the other hand, one easily sees that Ẽn(an) is the matrix whose nth row
is that of Ta and all other rows are zero. Then we deduce

(3.4) ‖Ta‖ψ2 ≤ c‖a‖ ∞.

Consider the Hilbert matrix h = (hij):

hij =

{
(i − j)−1, if i �= j,

0, if i = j.

It is well known that (cf. e.g., [KP70])

(3.5) ‖h‖ ∞ ≤ c and ‖Th‖ ∞ ≈ logm.

Thus by (3.4), ‖Th‖ψ2 ≤ c. Therefore, there is a constant γ such that

Tr
[∑

n≥1

1
n!

(
|Th|
γ

)2n/r]
≤ 1.

Thus, Tr(|Th|2n/r) ≤ γ2n/rn!, so ‖Th‖2n/r ≤ γ(n!)r/(2n). Since ‖Th‖2n/r ≈
‖Th‖∞, if 2n

r ≈ logm, then

‖Th‖ ∞ ≤ γ(n!)r/(2n) ≈ γnr/2 ≤ γ(logm)r/2.

From (3.5), we have logm ≤ γ(logm)r/2, so r ≥ 2. �

We end this section by a remark on applications of Theorem 2.5. Using it,
we can give new proofs of some inequalities in [Ran02]. For instance, let us
consider martingale transforms. Let α = (αn)n ⊂ C be a bounded sequence,
and let Tα be the associated martingale transform:

Tα(x) =
∑
n≥0

αndnxn,

where dn = En − En−1 (with E−1 = 0). It is proved in [Ran02] that for any
1 < p < ∞,

‖Tα(x)‖p ≤ cp2

p − 1
sup
n≥0

|αn| ‖x‖p ∀x ∈ Lp(M).
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Moreover, Tα is also of weak type (1,1), which implies that Tα : L logL(M) →
L1(M) is bounded. This latter result is also a consequence of Theorem 2.5.

4. Applications

4.1. Noncommutative Rota theorem. In this subsection, we consider
general von Neumann algebras. To simplify terminology, we call a noncom-
mutative probability space a pair (M, ϕ), where M is a von Neumann algebra
and ϕ is a normal faithful state on M.

Let (M0, ϕ0) and (M1, ϕ1) be two noncommutative probability spaces.
A Markov operator T : (M0, ϕ0) → (M1, ϕ1) is a normal unital completely
positive map. T is (ϕ1, ϕ0)-preserving if ϕ1 ◦ T = ϕ0 and T ◦ σϕ0

t = σϕ1
t ◦

T for all t ∈ R, where σϕ
t denotes the modular automorphism group of a

state ϕ. All maps in what follows are assumed to be ϕ-preserving in this
sense.

Definition 4.1. Let T : (M0, ϕ0) → (M1, ϕ1) be a (ϕ1, ϕ0)-preserving
Markov operator. We call T factorable if there exist a noncommutative proba-
bility space (M2, ϕ2) and two normal unital homomorphisms V : (M0, ϕ0) →
(M2, ϕ2), U : (M2, ϕ2) → (M1, ϕ1) such that V and U are respectively,
(ϕ2, ϕ0)- and (ϕ1, ϕ2)-preserving and T = U ◦ V .

Recall that for a ϕ-preserving Markov operator T on (M, ϕ), there exists
a unital completely positive map T ∗ such that

ϕ(T ∗(b)a) = ϕ(bT (a)).

The following noncommutative Rota dilation theorem for factorable maps is
proved in [AD06].

Theorem 4.2. Let T be a factorable operator on (M, ϕ). Then

T ∗nTn = E ◦ En,

where En and E are normal faithful conditional expectations on M and (En)
is decreasing.

We will use Haagerup noncommutative Lp-spaces in the type III case (see
[Haa79]). Thus, for M as above its noncommutative Lp-spaces are denoted
by Lp(M), 1 ≤ p ≤ ∞. The noncommutative maximal martingale and ergodic
inequalities remain true for the type III von Neumann algebras (see [Jun02]
and [JX07]). Using Junge’s Doob maximal inequality, we obtain

Corollary 4.3. Let T be a factorable operator on (M, ϕ).
(i) For 1 < p < ∞, we have∥∥∥sup

n

+T ∗nTn(x)
∥∥∥

p
≤ c

(p − 1)2
‖x‖p ∀x ∈ Lp(M),
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where c is a universal constant.
(ii) If additionally T is ϕ-symmetric (i.e.,ϕ(T (y)∗x) = ϕ(y∗T (x))), then∥∥∥sup

n

+Tn(x)
∥∥∥

p
≤ c

(p − 1)2
‖x‖p ∀x ∈ Lp(M).

We specialize to the case of a tracial state. Applying Theorem 3.1 and
Corollary 4.3, we obtain the following theorem.

Theorem 4.4. Let T be a factorable map on (M, ϕ) with ϕ tracial.
(i) For x ∈ L log2 L(M),∥∥∥sup

n

+T ∗nTn(x)
∥∥∥

1
≤ c‖x‖L log2 L.

(ii) If additionally T is ϕ-symmetric,∥∥∥sup
n

+Tn(x)
∥∥∥

1
≤ c‖x‖L log2 L.

As a consequence of this theorem, we deduce the corresponding individual
ergodic theorem. Let us first recall the relevant notions of individual conver-
gence in the noncommutative setting. We restrict ourselves for the moment
to the case where the state ϕ is tracial. A sequence (xn) ⊂ Lp(M) with
1 ≤ p ≤ ∞ is said to converge to x ∈ Lp(M) almost uniformly (in short a.u.)
if for every ε > 0 there is a projection e ∈ M such that

ϕ(e⊥) < ε and lim
n→∞

‖(xn − x)e‖∞ = 0.

In a similar way, the bilateral almost uniform convergence is defined by re-
quiring that lim ‖e(xn − x)e‖∞ = 0. In the proof of the following corollary,
we will use the space Lp(M; c0). It is the subspace of Lp(M; �∞) consisting
of all sequences (xn)n≥0 which admit a factorization as follows: there are
a, b ∈ L2p(M) and (yn) ⊂ M such that xn = aynb and limn→∞ ‖yn‖ ∞ = 0.
The subspace Lp(M; cc

0) of Lp(M; �c
∞) is defined similarly.

Corollary 4.5. Let T be a factorable operator on (M, ϕ).
(i) For x ∈ L log2 L(M), T ∗nTn(x) converges b.a.u. to E ◦ E∞(x).
(ii) Moreover, if T is ϕ-symmetric, for x ∈ L log2 L(M), Tn(x) converges

b.a.u. to F (x), where F is the projection onto {x ∈ L log2 L(M) :
T (x) = x}.

Proof. (i) Due to [AD06], we know that for p > 1 and x ∈ Lp(M), T ∗nTn(x)
converges b.a.u. to E ◦ E∞(x). We can suppose that E ◦ E∞(x) = 0. Since
L2(M) is dense in L log2 L(M), then for x ∈ L log2 L(M), there are (xk)k≥1 ⊂
L2(M) such that ‖xk − x‖L log2 L → 0 as k → ∞. By the first part, we
know that for every k, (T ∗nTn(xk))n ∈ L2(M; c0) ⊂ L1(M; c0). Therefore, by
Corollary 4.3, we have (T ∗nTn(x))n ∈ L1(M; c0). So from [JX07], T ∗nTn(x)
converges b.a.u. to 0.



474 Y. HU

(ii) By [JX07], we can know that T 2n(x) converges b.a.u. to F (x) for
x ∈ Lp(M), p > 1. Using similar arguments, we get part (ii) of the proof. �

4.2. Maximal ergodic theorems for free group actions. In this sub-
section, M will be a von Neumann algebra with a normal tracial state τ .
We will consider noncommutative ergodic theorems for free group actions.
We will follow Bufetov [Buf02] and refer to [NS94] for history and more ref-
erences in the commutative case. Many of Bufetov’s results were extended
to the noncommutative setting by Anantharaman [AD06]. We also refer
to [Hu08] for a different approach which is modeled on Nevo–Stein’s argu-
ments [NS94].

Let Fm be a free group on m generators {l1, . . . , lm}. Set

I = { −m, . . . , −1,1, . . . ,m}.

For 1 ≤ i ≤ m, let Ti be a normal unital automorphism of M corresponding
to the generator li such that τ ◦ Ti = τ and we set T−i = T −1

i . Let ΩI be the
set of all finite words over the alphabet I , that is,

ΩI = {ω = ω1ω2 · · · ωn|ωi ∈ I,1 ≤ i ≤ n,n ∈ N}.

Let P = (pij)i,j∈I be a Markov matrix and (pi)i∈I a stationary distribution
with pi > 0 for i ∈ I . Denote by |ω| the length of a word ω. For ω = ω1 · · · ωn,
set

p(ω) = pω1ω2 · · · pωn−1ωn , μ(ω) = pω1p(ω)

and define
Tω = Tω1Tω2 · · · Tωn .

Consider the maps

σn =
∑

|ω|=n

μ(ω)Tω

and their Cesaro averages

Un =
1

n + 1

n∑
k=0

σk.

Set N = �2m
∞ (M) = {ỹ = (yi)i∈I : yi ∈ M } and define a normal unital positive

map

P(ỹ)i =
∑

j

pijTi(yj).

Given x ∈ M, let x̃ = (xi)i∈I ∈ N with xi = x for all i ∈ I . Then

Pn(x̃)i =
1
pi

∑
|ω|=n,ω1=i,

μ(ω)Tω(x).
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The adjoint of P is given by

P∗(ỹ)i =
1
pi

∑
j∈I

pjpjiT−j(yj).

Consider a unitary operator

V (ỹ)i = Ti(y−i).

Then V P∗V = P. Therefore,

Un(x) =
1

n + 1

∑
i∈I

n∑
k=0

piPk(x̃)i.

From [JX07], [Hu08], we know that∥∥∥sup
n

+Un(x)
∥∥∥

p
≤

∥∥∥∥∥sup
n

+ 1
n + 1

n∑
k=0

Pk(x̃)

∥∥∥∥∥
p

≤ c

(p − 1)2
‖x̃‖p ≤ cm

(p − 1)2
‖x‖p.

Therefore, Theorem 2.3 and an argument similar to that in Corollary 4.5 yield
the following theorem.

Theorem 4.6. Let Un be as above. Then for x ∈ L log2 L(M),∥∥∥sup
n

+Un(x)
∥∥∥

1
≤ cm‖x‖L log2 L

and Un(x)converges bilaterally almost uniformly.

In fact, P is factorable (see [AD06]), P∗nPn = E ◦ En, where En and E

are normal faithful conditional expectations and (En) is decreasing. By the
noncommutative Doob’s inequality, we have∥∥∥sup

n

+P∗nPn(ỹ)
∥∥∥

p
≤

∥∥∥sup
n

+
En(ỹ)

∥∥∥
p

≤ c

(p − 1)2
‖ỹ‖p.

Then by Theorem 2.5, for ỹ ∈ L log2 L(N ),∥∥∥sup
n

+P∗nPn(ỹ)
∥∥∥

1
≤

∥∥∥sup
n

+
En(ỹ)

∥∥∥
1

≤ c‖ỹ‖L log2 L.

Let us now consider the special case where pi = 1
2m and pij = 1

2m−1 for
i, j ∈ I . Then

σn(x) =
1

2m(2m − 1)n−1

∑
|ω|=n

Tω(x).

Accordingly,

Pn(x̃)i =
1

(2m − 1)n−1

∑
|ω|=n,ω1=i

Tω(x)
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for x ∈ M, x̃ = (xi)i∈I ∈ N with xi = x for every i ∈ I . In this special situa-
tion, we have

P2n−1 =
2m − 1
2m − 2

V P∗nPn − 1
2m − 2

V P∗n−1Pn−1.

Then, for ỹ ∈ L logL2(N ),∥∥∥sup
n

+P2n−1(ỹ)
∥∥∥

1
≤ 2m − 1

2m − 2

∥∥∥sup
n

+P∗nPn(ỹ)
∥∥∥

1

+
1

2m − 2

∥∥∥sup
n

+P∗n−1Pn−1(ỹ)
∥∥∥

1

≤ m

m − 1
c‖ỹ‖L log2 L ≤ c‖ỹ‖L log2 L.

Therefore, ∥∥∥sup
n

+Pn(ỹ)
∥∥∥

1
≤

∥∥∥sup
n

+P2n(ỹ)
∥∥∥

1
+

∥∥∥sup
n

+P2n−1(ỹ)
∥∥∥

1
(4.1)

≤ c‖P(ỹ)‖L log2 L + c‖ỹ‖L log2 L

≤ c‖ỹ‖L log2 L.

Theorem 4.7. In this special setting, for x ∈ L log2 L(M),∥∥∥sup
n

+σn(x)
∥∥∥

1
≤ cm‖x‖L log2 L

and σ2n(x) converges bilaterally almost uniformly to F (x), where F is the
projection onto {x ∈ L log2 L(M) : σ2

1(x) = x}.

Proof. By inequality (4.2),∥∥∥sup
n

+σn(x)
∥∥∥

1
≤ 1

2m

∑
i∈I

∥∥∥sup
n

+Pn(x̃)i

∥∥∥
1

≤
∥∥∥sup

n

+Pn(x̃)
∥∥∥

1

≤ c‖x̃‖L log2 L ≤ cm‖x‖L log2 L.

The rest of the proof is similar to the one of Corollary 4.5. �

4.3. Group von Neumann algebra. Let G be a discrete group, and let
VN(G) denote its group von Neumann algebra. We are interested here in
the case where G = Fm is a free group on m generators {l1, . . . , lm}. Let | · |
denote the associated length function on Fm. For t ≥ 0, let Tt be the Herz–
Schur multiplier defined by exp(−t| · |). Tt is a normal completely positive
trace preserving unital map on VN(Fm). (Tt)t≥0 is called the free Poisson
semigroup of Fm. It is proved in [JLMX06] that each Tt admits a Rota type
dilation. On the other hand, each Tt can be extended to the Lp-space. Still
denote it by Tt. Consequently, we have for any t,∥∥∥sup

n

+Tn
t (x)

∥∥∥
p

≤ c

(p − 1)2
‖x‖p,
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where c is a universal constant. Therefore, by Theorem 2.3,

(4.2)
∥∥∥sup

n

+Tn
t (x)

∥∥∥
1

≤ c‖x‖L log2 L.

Theorem 4.8. Let (Tt)t≥0 be the free Poisson semigroup. Then for x ∈
L log2 L(VN(Fm)), ∥∥∥sup

t

+Tt(x)
∥∥∥

1
≤ c‖x‖L log2 L.

Proof. To prove this inequality, we only need to consider Tt(x) for all t in
a dense subset of (0, ∞), for instance, the subset {2−mn,m,n ∈ N}. Using
Proposition 2.1 from [JX07] and inequality (4.2), we have∥∥∥sup

n,m

+Tn2−m(x)
∥∥∥

1
= sup

m

∥∥∥ sup
n,1≤k≤m

+Tn2−k(x)
∥∥∥

1

= sup
m

∥∥∥sup
n

+Tn2−m(x)
∥∥∥

1

= sup
m

∥∥∥sup
n

+Tn
2−m(x)

∥∥∥
1

≤ c‖x‖L log2 L.

Then we deduce the desired inequality. �
Theorem 4.9. Let {Tt}t≥0 be the free Poisson semigroup.

(i) When t → ∞, Tt(x) converges b.a.u. to τ(x)1 for x ∈ L log2 L(VN(Fm)).
(ii) When t → 0, Tt(x) converges b.a.u. to x for x ∈ L log2 L(VN(Fm)).

Proof. (i) In [JX07], we know that for all x ∈ Lp(VN(Fn)) (p > 1), Tt(x)
converges bilaterally almost uniformly to F (x), where F is the projection
onto {x ∈ Lp(VN(Fn)) : Tt(x) = x ∀t ≥ 0}. It is easy to see that Tt(y) = y for
all t if and only if y = c1 for some c ∈ C. Therefore, F (x) = τ(x)1. By the
same discussion as in Corollary 4.5, for x ∈ L log2 L(VN(Fn)), Tt(x) converges
b.a.u. to τ(x)1.

(ii) We know when t → 0, Tt(x) converges b.a.u. to x for x ∈ Lp(VN(Fn))
(see [JX07]). Tt(x) converges b.a.u. to x for x ∈ L log2 L(VN(Fn)) by the
same way as in Corollary 4.5. �

The previous theorem is also valid for some other semigroups considered
in [JLMX06], for instance, the free Uhlenbeck–Ornstein semigroup and more
generally, the q-Uhlenbeck–Ornstein semigroups.

4.4. Conditional expectation. We first recall the classical Burkholder–
Chow theorem on the iterations of two conditional expectations. Let E and F

be the conditional expectations on a probability space (Ω,F, P ) relative to
two σ-subalgebras F1 and F2 of F, respectively. Then for any f ∈ L2(Ω)∥∥∥ sup

n
|(EF)n(f)|

∥∥∥
2

≤ c‖f ‖2.
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Moreover, (EF)n(f) converges to E ∧ F(f) almost everywhere and in norm,
where E ∧ F denotes the conditional expectation relative to F1 ∩ F2. Our goal
here is to prove the noncommutative analogue of Burkholder–Chow theorem.
In the sequel, M will denote a von Neumann algebra equipped with a normal
faithful state ϕ. If E is a ϕ-preserving normal faithful conditional expectation
on M, E automatically extends to a contractive projection on Lp(M) for every
1 ≤ p < ∞ (see the discussion in Section 4.1). We start with the following
lemma.

Lemma 4.10. Let T and S be two factorable maps on (M, ϕ). Then T ◦ S
is also factorable.

Proof. There are (NT , ψT ), (NS , ψS) and the normal unital homomor-
phisms i0 : (M, ϕ) → (NT , ψT ), i1 : (M, ϕ) → (NT , ψT ), j0 : (M, ϕ) → (NS ,
ψS), j1 : (M, ϕ) → (NS , ψS) such that T = i∗

0 ◦ i1 and S = j∗
0 ◦ j1. There-

fore, T ◦ S = i∗
0 ◦ i1 ◦ j∗

0 ◦ j1. By [AD06], i1 ◦ j∗
0 is factorable. Thus, there

are (N , ψ) and the normal unital homomorphisms k0 : (NT , ψT ) → (N , ψ),
k1 : (NS , ψS) → (N , ψ) such that i1 ◦ j∗

0 = k∗
0 ◦ k1. Thus T ◦ S = (k0 ◦ i0)∗ ◦

k1 ◦ j1, so T ◦ S is factorable. �

Corollary 4.11. Let E and F be ϕ-preserving normal faithful conditional
expectations on M. Then EFE is factorable.

Proof. This is an immediate consequence of the preceding lemma for state
preserving normal conditional expectations are factorable. �

Recall that Lp(M; �∞) is the dual space of Lp′ (M; �1) if p′ < ∞, where p′ is
the index conjugate to p (cf. [Jun02]). Given 1 ≤ p ≤ ∞, Lp(M; �1) is defined
as the space of all sequences x = (xn)n≥0 which admit a factorization of the
following form: ∃ukn, vkn ∈ L2p(M) such that

xn =
∑
k≥0

u∗
knvkn ∀n ≥ 0

and ∑
k,n≥0

u∗
knukn ∈ Lp(M),

∑
k,n≥0

v∗
knvkn ∈ Lp(M),

where these series are required to be convergent in Lp(M) (if p = ∞, then
both series are convergent relative to the w∗-topology). We then define the
norm of Lp(M; �1):

‖x‖Lp(M;�1) = inf

{∥∥∥∥ ∑
k,n≥0

u∗
knukn

∥∥∥∥ 1
2

p

∥∥∥∥ ∑
k,n≥0

v∗
knvkn

∥∥∥∥ 1
2

p

}
,

where the infimum runs over all factorization as above. In the following
proof, the subspaces Lp(M; �n

∞) and Lp(M; �n
1 ) will be used. Recall that

Lp(M; �n
∞) is the subspace of Lp(M; �∞) consisting of all finite sequences
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(x0, x1, . . . , xn−1,0, . . .). Lp(M; �n
1 ) is defined in a similar way. The following

result is certainly known to experts.

Lemma 4.12. Let T be a completely positive contractive map on (M, ϕ)
with ϕ ◦ T ≤ ϕ and σϕ

t ◦ T = T ◦ σϕ
t .

(i) For 1 ≤ p ≤ ∞,

‖T (x)‖Lp(M;�∞) ≤ ‖x‖Lp(M;�∞) ∀x = (xn) ∈ Lp(M; �∞)

and for 2 ≤ p ≤ ∞,

‖T (x)‖Lp(M;�c
∞) ≤ ‖x‖Lp(M;�c

∞) ∀x = (xn) ∈ Lp(M; �c
∞).

(ii) For 1 ≤ p ≤ ∞,

‖T (x)‖Lp(M;c0) ≤ ‖x‖Lp(M;c0) ∀x = (xn) ∈ Lp(M; c0)

and for 2 ≤ p ≤ ∞,

‖T (x)‖Lp(M;cc
0)

≤ ‖x‖Lp(M;cc
0)

∀x = (xn) ∈ Lp(M; cc
0).

Proof. (i) Let x = (xn) ∈ Lp(M; �∞) with 1 < p ≤ ∞. For any y = (yn) ∈
Lp′ (M; �1), ‖y‖Lp′ (M;�1) ≤ 1, we have

(4.3) 〈T (x), y〉 = 〈x,T ∗(y)〉 ≤ ‖x‖Lp(M;�∞)‖T ∗(y)‖Lp′ (M;�1).

Since T is completely positive, then we can find a representation π and a
bounded linear operator V such that

‖V ‖ ≤ ‖T ∗ ‖1/2, T ∗(a) = V ∗π(a)V ∀a ∈ Lp(M).

Therefore, for uk,n, vk,n ∈ L2p′ (M) in the factorization of y,

T ∗(yn) =
∑
k≥0

V ∗π(u∗
knvkn)V =

∑
k≥0

V ∗π(u∗
kn)π(vkn)V.

Thus, by the contraction of T ,∥∥∥∥ ∑
k,n≥0

V ∗π(u∗
kn)π(ukn)V

∥∥∥∥
p′

≤
∥∥∥∥ ∑

k,n≥0

π(u∗
kn)π(ukn)

∥∥∥∥
p′

.

From the inequality above and the definition of Lp(M; �1), we know that
‖T ∗(y)‖Lp′ (M;�1) ≤ ‖y‖Lp′ (M;�1) ≤ 1. Therefore, by duality and from (4.3),

‖T (x)‖Lp(M;�∞) ≤ ‖x‖Lp(M;�∞) ∀x ∈ Lp(M; �∞),1 < p ≤ ∞.

For the case p = 1, we have L1(M; �n
∞)∗ = L∞(M; �n

1 ) (see [JX07]). A same
discussion then shows that ‖T (x)‖L1(M;�∞) ≤ ‖x‖L1(M;�∞).

From the Cauchy–Schwarz inequality and the fact that

x = (xn) ∈ Lp(M; �c
∞) if and only if x∗x = (x∗

nxn) ∈ Lp/2(M; �∞),

we have for x = (xn) ∈ Lp(M; �c
∞) with 2 ≤ p ≤ ∞

‖T (x)‖Lp(M;�c
∞) ≤ ‖x‖Lp(M;�c

∞).

(ii) In consequence, we know (ii) similarly. �
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With the help of the preceding lemma, we obtain the following theorem.

Theorem 4.13. Let E and F be ϕ-preserving normal faithful conditional
expectations on M.
(i) For 1 < p < ∞, we have∥∥∥sup

n

+(EF)n(x)
∥∥∥

p
≤ c

(p − 1)2
‖x‖p ∀x ∈ Lp(M),

where c is a universal constant.
(ii) If additionally ϕ is tracial, then∥∥∥sup

n

+(EF)n(x)
∥∥∥

1
≤ c‖x‖L log2 L ∀x ∈ L log2 L(M).

Proof. (i) Set T = FEF. T is a state preserving completely positive map on
(M, ϕ). From Corollary 4.11, T is factorable. Moreover, T is ϕ-symmetric.
Therefore, T satisfies the noncommutative Rota’s dilation property. Thus, for
1 < p < ∞, ∥∥∥sup

n

+Tn(x)
∥∥∥

p
≤ c

(p − 1)2
‖x‖p ∀x ∈ Lp(M).

So by Lemma 4.12, we have∥∥∥sup
n

+(EF)n(x)
∥∥∥

p
=

∥∥∥sup
n

+
ETn−1(x)

∥∥∥
p

≤
∥∥∥sup

n

+Tn−1(x)
∥∥∥

p

≤ c

(p − 1)2
‖x‖p.

(ii) This follows from (i) and Theorem 2.3. �

Theorem 4.13 allows us to deduce the corresponding individual ergodic
theorem. To this end, we first recall the almost sure convergence for operators
in Haagerup noncommutative Lp-spaces. As a normal faithful state ϕ on M,
ϕ corresponds to a positive element in L1(M). In the sequel, this element
will be denoted by D, which is called the density of ϕ in L1(M). A sequence
(xn) ⊂ Lp(M) with p < ∞ is said to converge to x ∈ Lp(M) almost surely (in
short a.s.) if for every ε > 0 there is a projection e ∈ M and a family (an,k)
in M such that

ϕ(e⊥) < ε, xn − x =
∑

k

(
an,kD

1
p
)

and lim
n→∞

∥∥∥∥∑
k

(an,ke)
∥∥∥∥

∞
= 0.

Similarly, the bilateral almost sure (in short b.a.s.) convergence is defined by
the symmetric injection of M into Lp(M) : a 
→ D1/(2p)aD1/(2p).

Theorem 4.14. Let E and F be ϕ-preserving normal faithful conditional
expectations on M.
(i) If 1 < p ≤ 2, (EF)n(x) converges b.a.s. to (E ∧ F)(x) for x ∈ Lp(M).
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(ii) If 2 < p < ∞, (EF)n(x) converges a.s. to (E ∧ F)(x) for x ∈ Lp(M).
(iii) If p = ∞, (EF)n(x) converges a.u. to (E ∧ F)(x) for x ∈ M.
(iv) If additionally ϕ is tracial, (EF)n(x) converges b.a.u. to (E ∧ F)(x) for

x ∈ L log2 L(M).

Proof. Set T = FEF. Then T is a completely positive unital ϕ-preserving
map on M. So T extends to a contraction on Lp(M) for every p ≥ 1. More-
over, T is symmetric, i.e., self-adjoint as an operator on L2(M). By [JX07],
we have

• if 1 < p ≤ 2, (Tn(x) − F (x))n ∈ Lp(M; c0) for x ∈ Lp(M);
• if 2 < p < ∞, (Tn(x) − F (x))n ∈ Lp(M; cc

0) for x ∈ Lp(M),
where F is the projection onto {x ∈ Lp(M) : T (x) = x}. For x ∈ M, we have
((Tn(x) − F (x))D1/p)n ∈ Lp(M; cc

0) with p > 2. Therefore, Tn(x) converges
a.u. to F (x) for x ∈ M.

On the other hand, it is clear that E(L2(M)) ∩ F(L2(M)) = {x ∈ L2(M) :
T (x) = x}. Therefore,

E(Lp(M)) ∩ F(Lp(M)) = {x ∈ Lp(M) : T (x) = x}, 1 ≤ p ≤ ∞.

That is F = E ∧ F. In the following, we only consider the case 1 < p ≤ 2. From
Lemma 4.12,∥∥∥ sup

m≤n≤k

+
ETn(x) − E ∧ F(x)

∥∥∥
p

≤
∥∥∥ sup

m≤n≤k

+Tn(x) − E ∧ F(x)
∥∥∥

p
→ 0 as n,k → ∞.

That is (ETn(x) − E ∧ F(x))n ∈ Lp(M; c0) for x ∈ Lp(M). So (EF)n(x) con-
verges bilaterally almost surely to E ∧ F(x) for x ∈ Lp(M). In the same way,
we can deal with the other cases.

Finally, if additionally ϕ is tracial, by Corollary 4.5, a similar discussion
shows that (EF)n(x) converges b.a.u. to (E ∧ F)(x) for x ∈ L log2 L(M). �

Remark 4.15. The case p = 2 of Theorem 4.14 was also proved by Jajte
(see [Jaj91, Theorem 4.2.2]).
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