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THE EXTENSIONS OF C∗-ALGEBRAS WITH TRACIAL
TOPOLOGICAL RANK NO MORE THAN ONE

XIAOCHUN FANG AND YILE ZHAO

Abstract. Let 0 → I → A → A/I → 0 be a short exact sequence
of C∗-algebras with A unital. Suppose that I has tracial topolog-
ical rank no more than one and A/I is TAI (in particular, if A/I

is simple and has tracial topological rank no more than one). It

will be proved that A has tracial topological rank no more than

one if the extension is quasidiagonal, and A has the property (P1)
if the extension is tracially quasidiagonal.

1. Introduction

Recently, much progress has been made in the classification of C∗-algebras
(see [1], [3], [4], [5], [6], [7], [15], [20], [24], [26], [29]). The notion of tra-
cial topological rank (denoted by TR) was first introduced by Lin (see [13],
[19]). The purpose to introduce this notion was motivated by Elliott’s pro-
gram of classification of nuclear C∗-algebras. There are two previously known
noncommutative topological ranks which are widely used in the theory of C∗-
algebras, namely the real rank and the stable rank. Tracial topological rank
is another analogy of the topological rank.

Simple C∗-algebras with tracial topological rank zero, also called TAF (Tra-
cially Approximate Finite) C∗-algebras, have real rank zero, stable rank one,
weakly unperforated ordered K0-groups with the Rieze interpolation property
and are quasidiagonal (see [2], [11], [17], [18], [22], [28], [31]). The classification
theorem for unital nuclear separable simple C∗-algebras with tracial topolog-
ical rank zero which satisfy the UCT was given in the paper [21] few years
ago. (The C∗-algebras classified by Lin in [21] turn out to be all in the class
of Elliott–Gong in [8].) The simple C∗-algebras with tracial topological rank
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no more than one have also stable rank one, weakly unperforated ordered
K0-groups with the Rieze interpolation property and are also quasidiagonal.
Recently, the classification theorem for unital nuclear separable simple C∗-
algebras with tracial topological rank no more than one which satisfy the
UCT has also been obtained by Lin in [23]. (The C∗-algebras classified by
Lin in [23] are also all in the class of Elloitt–Gong–Li in [9] and [12].) So it
is very interesting to find which C∗-algebras are tracial topological rank zero
or tracial topological rank no more than one, and along this line, much effort
has been made until now (see [10], [25], [30]).

Let 0 → I → A → A/I → 0 be a short exact sequence of separable C∗-
algebras with A unital. In the paper [14], it is proved that A has tracial
topological rank zero if both I and A/I have tracial topological rank zero, and
if the extension is tracially quasidiagonal (see Definition 4.1). Inspired by this
result, we are interested in considering the C∗-algebras with tracial topological
rank no more than one in a short exact sequence. Let 0 → I → A → A/I → 0
be a short exact sequence of C∗-algebras with A unital. Suppose that I has
tracial topological rank no more than one and A/I is TAI (in particular if A/I
is simple and has tracial topological rank no more than one). In this paper,
it will be proved that A has tracial topological rank no more than one if the
extension is quasidiagonal, and A has the property (P1) (see Definition 4.2)
if the extension is tracially quasidiagonal.

This paper is organized as follows. In Section 2, we list some preliminar-
ies which will be used in the sections later. In Section 3, we consider the
quasidiagonal extension 0 → I → A → A/I → 0 with A unital. After several
lemmas are introduced, it will be proved that A has tracial topological rank
no more than one if I has tracial topological rank no more than one and A/I
is TAI (in particular if A/I is simple and has tracial topological rank no more
than one). In Section 4, we consider the tracially quasidiagonal extension
0 → I → A → A/I → 0 with A unital. First, we introduce several definitions
and lemmas. Then it will be shown that A has the property (P1) if I has
tracial topological rank no more than one and A/I is TAI (in particular, if
A/I is simple and has tracial topological rank no more than one).

2. Preliminaries

In this paper, we assume that A is a unital C∗-algebra and I is a σ-unital
closed ideal of A and π: A → A/I is the quotient map. Therefore, we have
the following short exact sequence:

(�) 0 −−−→ I −−−−→ A
π−−−−→ A/I −−−→ 0.

We denote the extension (�) by the pair (A,I). In addition, we will use the
following conventions:

(1∗) For a, b ∈ A, we write a ≈ε b if ‖a − b‖ < ε.
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(2∗) For a C∗-subalgebra C of A, we write a ∈ε C if there is b ∈ C such
that ‖a − b‖ < ε.

(3∗) Denote by I (0) the class of all finite dimensional C∗-algebras, and
denote by I (k) the class of all the C∗-algebras which are unital hereditary C∗-
subalgebras of C∗-algebras of the form C(X) ⊗ F , where X is a k-dimensional
finite CW complex and F is a finite dimensional C∗-algebra.

(4∗) Let 0 < σ2 < σ1 < 1. Define fσ1
σ2

by

fσ1
σ2

(t) =

⎧⎪⎪⎨⎪⎪⎩
1, t ≥ σ1,

t − σ2

σ1 − σ2
, σ2 < t < σ1,

0, 0 ≤ t ≤ σ2.

(5∗) Suppose that A is a C∗-algebra and a ∈ A. We denote by Her(a) the
hereditary C∗-subalgebra of A generated by a.

(6∗) Let a, b be two positive elements of a C∗-algebra A. We write [a] ≤ [b]
if there is x ∈ A such that x∗x = a,xx∗ ∈ Her(b). We write n[a] ≤ [b] if there
are x1, . . . , xn ∈ A such that xi

∗xi = a,xixi
∗ ∈ Her(b) and xixi

∗ (1 ≤ i ≤ n)
are mutually orthogonal.

(7∗) {pt} is the set of a single point.

Definition 2.1. Let A be a unital C∗-algebra. A is said to have tracial
topological rank no more than k (denoted by TR(A) ≤ k) if for any ε > 0, any
finite subset F of A containing a nonzero positive element a, any 0 < σ4 <
σ3 < σ2 < σ1 < 1, and any integer n > 0, there exist a projection p ∈ A and a
C∗-subalgebra C ∈ I (k) of A with 1C = p such that

‖xp − px‖ < ε for all x ∈ F ;(1)
pxp ∈ε C for all x ∈ F ;(2)

n
[
fσ1

σ2

(
(1 − p)a(1 − p)

)]
≤ [fσ3

σ4
(pap)].(3)

If TR(A) ≤ k but TR(A) � k − 1, we write TR(A) = k. If A has no unit, we
define TR(A) = TR(A+), where A+ is the unitization of A.

Definition 2.2. Let I and A be as in (�). An approximate unit {un} ∞
n=1

of I is called quasicentral if limn→∞ ‖unx − xun‖ = 0 for any x ∈ A, and the
extension (A,I) is said to be quasidiagonal if there is a quasicentral approxi-
mate unit {rn} ∞

n=1 of I consisting of projections.

Definition 2.3. A unital C∗-algebra A is TAI if for any ε > 0, any finite
subset F of A containing a nonzero positive element a ∈ A, any 0 < σ4 < σ3 <
σ2 < σ1 < 1, and any integer n > 0, there exist a projection p ∈ A and a C∗-
subalgebra C ∼=

⊕l
k=1 Mmk

C(Yk) of A with 1C = p, where Yk = {pt} or [0,1],
such that

‖px − xp‖ < ε for all x ∈ F ;(1)
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pxp ∈ε C for all x ∈ F ;(2)
n
[
fσ1

σ2

(
(1 − p)a(1 − p)

)]
≤ [fσ3

σ4
(pap)].(3)

Lemma 2.4 ([14], Lemma 2.5). Let a, b be two positive elements in a C∗-
algebra A and p be a projection in A.

(1) If a ≤ λb for some λ > 0, then [a] ≤ [b];
(2) If there is x ∈ A such that a = x∗x and b = xx∗, then [a] = [b] and

[fσ1
σ2

(a)] = [fσ1
σ2

(b)] for any 0 < σ2 < σ1 < ‖a‖;
(3) [a] = [a2];
(4) If ‖a − b‖ < δ2, then [f δ1

δ2
(a)] ≤ [b] for any 0 < δ2 < δ1 < 1;

(5) Suppose that ‖a‖ ≤ 1, ‖b‖ ≤ 1. Then for any 0 < δ4 < δ3 < δ2 < δ1 < 1,
there is δ = δ(δ3, δ4) > 0 such that ‖a − b‖ < δ implies that [f δ1

δ2
(a)] ≤ [f δ3

δ4
(b)];

(6) If 0 ≤ a ≤ b, then [fδ1
δ2

(a)] ≤ [f δ3
δ4

(b)] for any 0 < δ4 < δ3 < δ2 < δ1 < 1.

Lemma 2.5 ([19], Theorem 5.3 and Theorem 5.8). Let A be a unital C∗-
algebra with TR(A) ≤ k. Then TR(Mn(A)) ≤ k for n ≥ 1 and TR(C) ≤ k for
any unital hereditary C∗-subalgebra C of A.

Lemma 2.6 ([14], Corollary 2.7). Let a ∈ A with 0 ≤ a ≤ 1 and p be a
nonzero projection of A. Then for any 0 < σ4 < σ3 < σ2 < σ1 < 1, there is
δ = δ(σ3, σ4) > 0 such that ‖ap − pa‖ < δ implies

[fσ1
σ2

(a)] ≤ [fσ3
σ4

(pap)] +
[
fσ3

σ4

(
(1 − p)a(1 − p)

)]
;(1)

[fσ1
σ2

(pap)] +
[
fσ1

σ2

(
(1 − p)a(1 − p)

)]
≤ [fσ3

σ4
(a)].(2)

Lemma 2.7 ([14], Lemma 2.12). Let 0 < σ8 < σ7 < · · · < σ2 < σ1 < 1 and
n be a positive integer. There is a δ = δ(n,σ1, . . . , σ8) > 0 satisfying the fol-
lowing: Suppose that A is a C∗-algebra and a, b, xi ∈ A (i = 1, . . . , n) with
0 ≤ a ≤ 1 such that xi

∗xi = fσ3
σ4

(a), xixi
∗ ∈ Her(fσ5

σ6
(b)), and xixi

∗ (1 ≤ i ≤ n)
are mutually orthogonal. If there is a projection p ∈ A such that ‖py − yp‖ < δ
for y ∈ {a, b, xi, xi

∗ |i = 1, . . . , n}, then

n[fσ1
σ2

(pap)] ≤ [fσ7
σ8

(pbp)].

3. Quasidiagonal extensions of C∗-algebras

The following two lemmas are taken from [14].

Lemma 3.1 ([14], Corollary 3.3). Let I and A be as in (�) and 0 < σ4 < σ3 <
δ4 < δ3 < δ2 < δ1 < σ2 < σ1 < 1. Suppose the extension (A,I) is quasidiagonal.
If a ∈ A with 0 ≤ a ≤ 1 and

n
[
f δ1

δ2

((
1 − π(p)

)
π(a)

(
1 − π(p)

))]
≤ [f δ3

δ4
(π(p)π(a)π(p))]

for some projection p ∈ A and any integer n > 0, then there is a projection
r ∈ (1 − p)I(1 − p) such that

n
[
fσ1

σ2

(
(1 − p − r)a(1 − p − r)

)]
≤ [fσ3

σ4
(pap)].
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Moreover, for any finite subset F ⊂ A and ε > 0, if ‖px − xp‖ < ε for all
x ∈ F ∪ {a}, we can require that ‖rx − xr‖ < 3ε for all x ∈ F ∪ {a}.

The following lemma is from Lemma 3.1 in [14] with a little change, and
their proofs are the same.

Lemma 3.2. Let I and A be as in (�). If the extension (A,I) is quasidiag-
onal, then for any finite dimensional C∗-subalgebra C̄ of A/I , there is a finite
dimensional C∗-subalgebra C of A such that C ∼= C̄ and π(C) = C̄. More-
over, there exists a quasicentral approximate unit {rn} ∞

n=1 of I consisting of
projections such that rnx = xrn, ∀x ∈ C,n ≥ 1.

Lemma 3.3. Let I and A be as in (�). Suppose the extension (A,I) is quasi-
diagonal. If D is a C∗-subalgebra of A/I which is isomorphic to C[0,1] ⊗ Mn,
then there is a C∗-subalgebra C of A such that π|C is the isomorphism from C
onto D.

Proof. Let ϕ be the isomorphism from C[0,1] ⊗ Mn onto D and D1 = ϕ
(1C[0,1] ⊗ Mn), then D1 is isomorphic to Mn. By Lemma 3.2, there is a
C∗-subalgebra C1 of A such that π|C1 is the isomorphism from C1 onto D1.
Let C0 = {x ∈ 1C1A1C1 |π(x) ∈ D}, then 1C0 = 1C1 ,C1 ⊆ C0 and π(C0) = D.
Let {eij }1≤i,j≤n, {cij }1≤i,j≤n, {dij }1≤i,j≤n be the matrix units of Mn,C1,D1

respectively such that π(cij) = dij = ϕ(1 ⊗ eij). Let C0,e = c11C0c11 and De =
d11Dd11, then ϕ(C[0,1] ⊗ e11) = De. Since π(C0) = D, π|C0,e is surjective
from C0,e onto De.

By Theorem 6.1.2 and Remark 6.1.3 in [27], there are canonical isomor-
phisms αe : C0,e ⊗ Mn → C0 and αd : De ⊗ Mn → D such that the following
diagram

C0
π

D
ϕ

C[0,1] ⊗ Mn

C0,e ⊗ Mn

αe

π|C0,e
⊗id

De ⊗ Mn

αd

(C[0,1] ⊗ e11) ⊗ Mn

ϕ|C[0,1]⊗e11 ⊗id

s⊗id

commutes, where s is the canonical isomorphism from C[0,1] ⊗ e11 onto C[0,1]
with s(f ⊗ e11) = f for any f ∈ C[0,1], αe(c ⊗ eij) = ci1cc1j for any c ∈ C0,e,
and αd(d ⊗ eij) = di1dd1j for any d ∈ De, 1 ≤ i, j ≤ n.

Let ψ = s ◦ (ϕ|C[0,1]⊗e11)
−1 ◦ π|C0,e , then ψ is the unital surjective homo-

morphism from C0,e onto C[0,1]. Let g be the identity function on [0,1] and h
be any element in C0,e such that 0 ≤ h ≤ c11 and ψ(h) = g, then c11 /∈ C∗(h),
where C∗(h) is the C∗-algebra generated by h. Let Ce = C∗(h, c11) ⊆ C0,e,
then 1Ce = c11 = 1C0,e . So ψ is the isomorphism from Ce onto C[0,1] and
ψ ⊗ id is the isomorphism from Ce ⊗ Mn onto C[0,1] ⊗ Mn. From the com-
mutative diagram above, we have π(h) = π ◦ αe(h ⊗ c11) = ϕ(g ⊗ e11). Let



446 X. FANG AND Y. ZHAO

C = αe(Ce ⊗ Mn) ⊆ C0, we have 1C = 1C0 = 1C1 and π|C is the isomorphism
from C onto D. �

From the proof of Lemma 3.3, we have the following corollary.

Corollary 3.4. Let I and A be as in (�). Suppose the extension (A,I)
is quasidiagonal. If ϕ is an isomorphism from C[0,1] ⊗ Mn onto a C∗-
subalgebra D of A/I and C1 is a C∗-subalgebra of A satisfying that π|C1

is an isomorphism from C1 onto ϕ(1C[0,1] ⊗ Mn), then we can find a C∗-
subalgebra C of A such that 1C = 1C1 and π|C is the isomorphism from C
onto D.

Theorem 3.5. Let I and A be as in (�). Suppose that (A,I) is quasidiago-
nal, then for any C∗-subalgebra D of A/I and D ∼=

⊕l
k=1 Mnk

(C(Yk)), where
Yk is {pt} or [0,1], there is a C∗-subalgebra C of A such that π|C is an iso-
morphism from C onto D. Moreover, we can find a quasicentral approximate
unit {rn} ∞

n=1 of I consisting of projections such that rnx = xrn for any x ∈ C
and any n ≥ 1.

Proof. Let ϕ be the isomorphism from
⊕l

k=1 C(Yk) ⊗ Mnk
onto D. Set

D1 = ϕ(
⊕l

k=1 1C(Yk) ⊗ Mnk
), then D1 is a finite dimensional C∗-subalgebra

of D. By Lemma 3.2, there exist a finite dimensional C∗-subalgebra C1 of A
such that π|C1 is the isomorphism from C1 onto D1 and a quasicentral ap-
proximate unit {rn} ∞

n=1 of I consisting of projections such that

rnx = xrn for any x ∈ C1 and any n ≥ 1.

Without loss of generality, we may assume there exists an integer l0 > 0
such that Yk = {pt} if l0 < k ≤ l and Yk = [0,1] if 1 ≤ k ≤ l0. Then (π|C1)

−1 ◦ ϕ

is the isomorphism from
⊕l

k=1 1C(Yk) ⊗ Mnk
onto C1. Let ek be the unit of

Mnk
, qk = ϕ(1C(Yk) ⊗ ek) and pk = (π|C1)

−1(qk), 1 ≤ k ≤ l. Setting C1k =
pkC1pk, we have C1 = (

⊕l
k=1 pk)C1(

⊕l
k=1 pk) =

⊕l
k=1 C1k. Let ϕk be the

isomorphism from C(Yk) ⊗ Mnk
onto qkDqk which is defined by ϕ, then π|C1k

is the isomorphism from C1k onto ϕk(1C(Yk) ⊗ Mnk
).

In the case Yk = {pt} (l0 < k ≤ l), then we have C(Yk) ⊗ Mnk
= 1C(Yk) ⊗

Mnk
. Therefore, (π|C1)

−1 ◦ ϕ is the isomorphism from
l⊕

k=l0+1

C(Yk) ⊗ Mnk
onto

(
l⊕

k=l0+1

pk

)
C1

(
l⊕

k=l0+1

pk

)
=

l⊕
k=l0+1

C1k.

In the case Yk = [0,1] (1 ≤ k ≤ l0), let {ck,ij }1≤i,j≤nk
and {ek,ij }1≤i,j≤nk

be
the matrix units in C1k and Mnk

, respectively. From the proof of Lemma 3.3,
we have:

(1) Let C0k = {x ∈ 1C1k
A1C1k

= pkApk |π(x) ∈ qkDqk }, then C0k ⊇ C1k

with 1C0k
= 1C1k

= pk and π(C0k) = qkDqk;
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(2) Let C0k,e = ck,11C0kck,11, there is an isomorphism αk,e from C0k,e ⊗
Mnk

onto C0k with αk,e(c ⊗ eij) = ck,i1cck,1j for any c ∈ C0k,e 1 ≤ i, j ≤ nk;
(3) For any hk ∈ C0k,e with 0 ≤ hk ≤ ck,11 satisfying π(hk) = ϕk(g ⊗ ek,11),

where g is the identity function on [0,1]. Let C̃k,e = C∗(hk, ck,11) ⊆ C0k,e and
C̃k = αk,e(C̃k,e ⊗ Mnk

), then π|C̃k
is the isomorphism from C̃k onto qkDqk =

ϕk(C(Yk) ⊗Mnk
). Moreover, there exists hk ∈ C0k,e with the properties above.

Now let us consider the following commutative diagram

0 I M(I)
π1

Q(I) 0

0 I A

ρ

π
A/I

τ

0,

where ρ is the C∗-homomorphism with ρ|I = idI defined by the extension
(A,I), and τ is the Busby invariant of the extension (A,I). Since the approx-
imate unit {rn} ∞

n=1 of I is quasicentral, then

lim
n→∞

‖rnhk − hkrn‖ = 0, 1 ≤ k ≤ l0.

So limn→∞ ‖rnρ(hk) − ρ(hk)rn‖ = 0 since ρ|I = idI . For any ε > 0, we can
find a subsequence {rni } ∞

i=1 of {rn} ∞
n=1 such that for all hk (1 ≤ k ≤ l0),

‖(rni − rni−1)ρ(hk)(rni − rni−1) − (rni − rni−1)ρ(hk)‖ < ε/2i,

where rn0 = 0.
It is easy to see that

∑n
i=1[(rni − rni−1)ρ(hk) − (rni − rni−1)ρ(hk)(rni −

rni−1)] is convergent in the norm topology as n → ∞. Let ak =
∑∞

i=1[(rni −
rni−1)ρ(hk) − (rni − rni−1)ρ(hk)(rni − rni−1)], then ak ∈ I .

Since
∑∞

i=1(rni − rni−1)ρ(hk) is convergent to ρ(hk) in the strict topology
in M(I), then

∑∞
i=1(rni − rni−1)ρ(hk)(rni − rni−1) is convergent to ρ(hk) − ak

in the strict topology. Let ρ(hk)′ =
∑∞

i=1(rni − rni−1)ρ(hk)(rni − rni−1), then
ρ(hk) = ρ(hk)′ + ak. It is clear that rniρ(hk)′ = ρ(hk)′rni . Since hk ≤ ck,11,
then ρ(hk) ≤ ρ(ck,11). So we have

(rni − rni−1)ρ(hk)(rni − rni−1) ≤ (rni − rni−1)ρ(ck,11)(rni − rni−1).

Since rnick,11 = ck,11rni and ρ(rn) = rn (∀n), then (rni − rni−1)ρ(ck,11)(rni −
rni−1) = ρ(ck,11)(rni − rni−1). Therefore, we have

ρ(hk)′ =
∞∑

i=1

(rni − rni−1)ρ(hk)(rni − rni−1)

≤
∞∑

i=1

(rni − rni−1)ρ(ck,11)(rni − rni−1)

=
∞∑

i=1

ρ(ck,11)(rni − rni−1).
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Since
∑∞

i=1 ρ(ck,11)(rni − rni−1) is convergent to ρ(ck,11) in the strict topol-
ogy, then we have

ρ(hk)′ ≤ ρ(ck,11).
It is known that the pullback E(τ) = {x ⊕ b ∈ M(I) ⊕ A/I|π1(x) = τ(b)}

is isomorphic to A. We denote this isomorphism by γ, then γ(a) = ρ(a) ⊕
π(a) for any a ∈ A. Since π1(ρ(hk)′) = π1(ρ(hk)) = τ(π(hk)), then we have
ρ(hk)′ ⊕ π(hk) ∈ E(τ). Let

h′
k = γ−1

(
ρ(hk)′ ⊕ π(hk)

)
.

Since

γ(rnih
′
k) = γ(rni)γ(h′

k) = (rni ⊕ 0)
(
ρ(hk)′ ⊕ π(hk)

)
= rniρ(hk)′ ⊕ 0 = ρ(hk)′rni ⊕ 0 =

(
ρ(hk)′ ⊕ π(hk)

)
(rni ⊕ 0)

= γ(h′
k)γ(rni) = γ(h′

krni),

and
γ(h′

k) = ρ(hk)′ ⊕ π(hk) ≤ ρ(ck,11) ⊕ π(ck,11) = γ(ck,11),
we have

rnih
′
k = h′

krni , h′
k ≤ ck,11 ≤ pk.

Since π(h′
k) = π(γ−1(ρ(hk) ⊕ π(hk))) = π(hk) = ϕk(g ⊗ ek,11), where g is the

identity function on [0,1], then h′
k ∈ C0k. Therefore, we have h′

k ∈
ck,11C0kck,11 = C0k,e.

Let Ck,e = C∗(h′
k, ck,11) and C(k) = αk,e(Ck,e ⊗ Mnk

). Since rni commutes
with h′

k and ck,11, we have rnix = xrni for any x ∈ Ck,e. Since αk,e(c ⊗ eij) =
ck,i1cck,1j for any c ∈ Ck,e and rni commutes with ck,ij and Ck,e, we have
rnic = crni for any c ∈ C(k). By (3), which is from the proof of Lemma 3.3,
we have 1C(k) = pk and π|C(k) is an isomorphism from C(k) onto qkDqk.
Therefore, we have that π|⊕l0

k=1 C(k)
is the isomorphism from

⊕l0
k=1 C(k)

onto (
⊕l0

k=1 qk)D(
⊕l0

k=1 qk) =
⊕l0

k=1 qkDqk. Setting C = (
⊕l0

k=1 C(k)) ⊕
(
⊕l

k=l0+1 C1k), we have that π|C is the isomorphism from C onto D and
rni commutes with every element of C. Since {rni } ∞

i=1 is also a quasicentral
approximate unit of I , it completes the proof. �

Theorem 3.6. Suppose the extension (A,I) is quasidiagonal. Then for
any ε > 0, any finite subset F of A containing a nonzero positive element a,
any 0 < σ4 < σ3 < σ2 < σ1 < 1, and any integer n > 0, if there exist δi, i =
1,2,3,4, satisfying 0 < σ4 < σ3 < δ4 < δ3 < δ2 < δ1 < σ2 < σ1, a projection
q̄ ∈ A/I and C̄ ∼=

⊕l
k=1 Mnk

(C(Yk)) with 1C̄ = q̄, where Yk is {pt} or [0,1],
such that

‖q̄π(x) − π(x)q̄‖ < ε for all x ∈ F ;(1)
q̄π(x)q̄ ∈ε C̄ for all x ∈ F ;(2)

n
[
f δ1

δ2

(
(1 − q̄)π(a)(1 − q̄)

)]
≤ [f δ3

δ4
(q̄π(a)q̄)],(3)
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then there exist a projection q ∈ A and a C∗-subalgebra C ∈ I (1) of A with
1C = q, π(q) = q̄ and a projection r ∈ (1 − q)I(1 − q) such that

‖qx − xq‖ < 8ε and ‖rx − xr‖ < 24ε for all x ∈ F ;(1′)

qxq ∈2ε C and (q + r)x(q + r) ∈18ε C + rIr for all x ∈ F ;(2′)

n
[
fσ1

σ2

(
(1 − q − r)a(1 − q − r)

)]
≤ [fσ3

σ4
(qaq)].(3′)

Proof. Since the extension (A,I) is quasidiagonal, by Theorem 3.5, there
exist a projection q̃ ∈ A, a C∗-subalgebra C̃ of A with 1C̃ = q̃ such that
π(q̃) = q̄, π|C̃ is an isomorphism from C̃ onto C̄, and an approximate unit
{rn} ∞

n=1 of I consisting of projections which commutes with every element
of C̃.

By (1) and (2), for any x ∈ F , we can find ax, bx ∈ I and cx ∈ C̃ which
depend on x such that

‖xq̃ − q̃x − ax‖ < ε and ‖q̃xq̃ − bx − cx‖ < ε.

Let G = {ax, bx|x ∈ F }. Since G is finite, we can choose some rn such
that ‖(1 − rn)y‖ < ε and ‖y(1 − rn)‖ < ε for all y ∈ G. Let q = q̃(1 − rn)q̃
and C = qC̃q = (1 − rn)C̃(1 − rn), then we have π(q) = q̄ and π(C) = C̄.
Since rn ∈ I and commutes with C̃, we may define a map ψ from C̃ to C =
(1 − rn)C̃(1 − rn) = (1 − rn)C̃ by ψ(a) = (1 − rn)a (∀a ∈ C̃). It is routine
to check that ψ is a surjective homomorphism. Suppose there is a ∈ C̃ such
that (1 − rn)a = 0, then a = rna ∈ I and π|C̃(a) = π(a) = 0. Since π|C̃ is an
isomorphism from C̃ onto C̄, we have a = 0, that is, ψ is injective. Therefore,
ψ is an isomorphism from C̃ onto C. Since C̃ ∈ I (1), then we have C ∈ I (1).

For any x ∈ F , since

qx − xq = q̃(1 − rn)q̃x − xq̃(1 − rn)q̃
≈2ε q̃(1 − rn)q̃(xq̃ − ax) − (q̃x + ax)q̃(1 − rn)q̃
= q̃(1 − rn)q̃xq̃ − q̃(1 − rn)q̃ax − q̃xq̃(1 − rn)q̃ − ax(1 − rn)q̃
≈2ε q̃(1 − rn)(bx + cx) − q̃(1 − rn)ax − (bx + cx)(1 − rn)q̃

− ax(1 − rn)q̃
= q̃(1 − rn)bx − q̃(1 − rn)ax − bx(1 − rn)q̃ − ax(1 − rn)q̃

then

‖qx − xq‖ < 4ε + ‖q̃(1 − rn)bx‖ + ‖q̃(1 − rn)ax‖
+ ‖bx(1 − rn)q̃‖ + ‖ax(1 − rn)q̃‖

< 4ε + ε + ε + ε + ε = 8ε.

We have

(4) ‖qx − xq‖ < 8ε for all x ∈ F.
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Since

qxq = q̃(1 − rn)q̃xq̃(1 − rn)q̃
≈ε q̃(1 − rn)q̃(bx + cx)q̃(1 − rn)q̃
= q̃(1 − rn)q̃bxq̃(1 − rn)q̃ + q̃(1 − rn)q̃cxq̃(1 − rn)q̃
= q̃(1 − rn)q̃bxq̃(1 − rn)q̃ + qcxq

= q̃(1 − rn)bx(1 − rn)q̃ + qcxq

then
‖qxq − qcxq‖ < ε + ‖q̃(1 − rn)q̃bxq̃(1 − rn)q̃‖ < 2ε.

We have

(5) qxq ∈2ε C.

By Lemma 3.1, (3) and (4), there is a projection r ∈ (1 − p)I(1 − p) such that

‖rx − xr‖ < 24ε for all x ∈ F

and

(6) n
[
fσ1

σ2

(
(1 − q − r)a(1 − q − r)

)]
≤ [fσ3

σ4
(qaq)].

Then together with (4), we have

(1′) ‖qx − xq‖ < 8ε and ‖rx − xr‖ < 24ε for all x ∈ F.

Since
(q + r)x(q + r) = qxq + qxr + rxq + rxr ≈16ε qxq + rxr,

together with (5), we have

(2′) qxq ∈2ε C and (q + r)x(q + r) ∈18ε C + rIr for all x ∈ F.

(3′) is from (6), and then we complete the proof. �

Theorem 3.7. Suppose the extension (A,I) is quasidiagonal. If TR(I) ≤ 1
and A/I is TAI, then TR(A) ≤ 1.

Proof. For any ε > 0, any finite subset F of A containing a nonzero positive
element a, any 0 < σ4 < σ3 < σ2 < σ1 < 0, and any integer n > 0, we choose
di, δi, i = 1,2,3,4, satisfying

0 < σ4 < σ3 < δ4 < δ3 < d4 < d3 < d2 < d1 < δ2 < δ1 < σ2 < σ1 < 1.

Since A/I is TAI, there exist a projection q̄ in A/I and a C∗-subalgebra C̄1

of A/I which is isomorphic to
⊕l

k=1 Mnk
C(Yk) with 1C̄1

= q̄, where Yk = {pt}
or [0,1], such that

‖π(x)q̄ − q̄π(x)‖ < ε/64 for all x ∈ F ;(1)
q̄π(x)q̄ ∈ε/64 C̄1 for all x ∈ F ;(2)

n
[
fd1

d2

(
(1 − q̄)π(a)(1 − q̄)

)]
≤ [fd3

d4
(q̄π(a)q̄)].(3)
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By Theorem 3.6, there exist a projection q ∈ A and a C∗-subalgebra C1 ∈ I (1)

of A with 1C1 = q, π(q) = q̄, and a projection r ∈ (1 − q)I(1 − q) such that

‖qx − xq‖ < ε/8, ‖rx − xr‖ < 3/8ε for all x ∈ F ;(4)

qxq ∈1/32ε C1, (q + r)x(q + r) ∈9ε/32 C1 + rIr for all x ∈ F ;(5)

n
[
f δ1

δ2

(
(1 − q − r)a(1 − q − r)

)]
≤ [fδ3

δ4
(qaq)].(6)

Let G = {rxr|x ∈ F }. Since TR(I) ≤ 1, by Lemma 2.5 we have TR(rIr) ≤
1. Then there exist a projection p ∈ rIr and a C∗-subalgebra C2 ∈ I (1) of rIr
with 1C2 = p such that

‖prxr − rxrp‖ < ε/8 for all x ∈ F ;(7)
pxp ∈ε/8 C2 for all x ∈ F ;(8)

n
[
f δ1

δ2

(
(r − p)a(r − p)

)]
≤ [f δ3

δ4
(pap)].(9)

Now let s = q +p and C = C1 +C2. It is easy to see that C ∈ I (1) and 1C = s.
Since

sx − xs = (q + p)x − x(q + p)
= qx − xq + px − xp

≈ε/8 px − xp

= prrx − xrrp

≈6ε/8 prxr − rxrp

≈ε/8 0,

we have

(1′) ‖sx − xs‖ < ε for all x ∈ F.

Since

sxs = (q + p)x(q + p)
= qxq + pxp + pxq + qxp

≈ε/4 qxq + pxp,

by (8) and (5), we have

(2′) sxs ∈3ε/8 C for all x ∈ F.

Finally, with ε small enough, by Lemma 2.6, (4), (6), (7) and (9), we have

n
[
fσ1

σ2

(
(1 − s)a(1 − s)

)]
≤ n

[
f δ1

δ2

(
(1 − q − r)a(1 − q − r)

)]
+ n

[
fδ1

δ2

(
(r − p)a(r − p)

)]
≤ [fδ3

δ4
(qaq)] + [fδ3

δ4
(pap)]

≤ [fσ3
σ4

(sas)].
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Then

(3′) n
[
fσ1

σ2

(
(1 − s)a(1 − s)

)]
≤ [fσ3

σ4
(sas)].

We complete the proof from (1′), (2′), (3′) above. �

Corollary 3.8. Suppose the extension (A,I) is quasidiagonal and A/I is
a unital simple C∗-algebra. If TR(I) ≤ 1 and TR(A/I) ≤ 1, then TR(A) ≤ 1.

Proof. Suppose A/I is a unital simple C∗-algebra. By Theorem 7.1(b) in
[19], TR(A/I) ≤ 1 if and only if A/I is TAI. Then the conclusion follows from
Theorem 3.7. �

4. Tracially quasidiagonal extensions of C*-algebras

Definition 4.1. Let I and A be as in (�). The extension (A,I) is said to
be tracially quasidiagonal if for any ε > 0, any 0 < σ4 < σ3 < σ2 < σ1 < 1, any
finite subset F ⊂ A containing a nonzero positive element a, and any inte-
ger n > 0, there exist a projection p ∈ A and a C∗-subalgebra C of A with
1C = p such that

‖px − xp‖ < ε for all x ∈ F ;(1)
pxp ∈ε C for all x ∈ F ;(2)

n
[
fσ1

σ2

(
(1 − p)a(1 − p)

)]
≤ [fσ3

σ4
(pap)];(3)

C ∩ I = pIp and the extension (C,pIp)(4)
is quasidiagonal.

The following definition was first given by Hu–Lin–Xue, which can be found
in [14].

Definition 4.2. Let A be a unital C∗-algebra. We say that A has the
property (Pk) if the following holds: for any ε > 0, any integer n > 0, any
finite subset F ⊂ A containing a nonzero positive element a, and any 0 <
σ4 < σ3 < σ2 < σ1 < 1, there exist a projection p ∈ A and a C∗-subalgebra C
of A with 1C = p and TR(C) ≤ k such that

‖px − xp‖ < ε for all x ∈ F ;(1)
pxp ∈ε C for all x ∈ F ;(2)

n
[
fσ1

σ2

(
(1 − p)a(1 − p)

)]
≤ 2[fσ3

σ4
(pap)].(3)

Lemma 4.3. Suppose that D is a compact subset of [0,1]. For any ε > 0
and h ∈ C(D) with h(x) = x if x ∈ D, then there is h′ ∈ C(D) such that
‖h − h′ ‖ < ε and the spectrum of h′ is the finite disjoint union of sets of a
single point or closed intervals (possibly the finite disjoint union is one set of
a single point or one closed interval).
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Proof. Fix ε > 0. Let a0 = inf D and b = sup D, then a0, b ∈ D. Without
loss of generality, we assume that a0 + ε ≤ b.

Case (1). If a0 is the left interior point of D, that is, there exists t > 0 such
that [a0, t] ⊆ D. Let a1 = sup{t|[a0, t] ⊆ D}, then a1 ∈ D and a1 is not the
left interior point of D. We define h′

0 on [a0, a1] by

h′
0(x) = x, a0 ≤ x ≤ a1.

Case (2). If a0 is not the left interior point of D and c = a0 + ε/2 is the left
interior point of D, then we can choose sufficiently small δ with 0 < δ < ε/2
such that a0 + δ < c and a0 + δ ∈ Dc. Since Dc is an open set, we can find an
interval [α,β] ⊂ Dc such that a0 < α < a0 + δ < β < c.

Let a1 = sup {t|[c, t] ⊂ D} = max{t|[c, t] ⊂ D}, then a1 ∈ D and a1 − a0 >
ε/2. We define h′

1 on [a0, a1] by

h′
0(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a0, a0 ≤ x < α,

linear, α ≤ x < β,

c, β ≤ x < c,

x, c ≤ x ≤ a1.

Case (3). If both a0 and c = a0 + ε/2 are not the left interior points
of D, then we can choose δ with 0 < δ < ε/2 such that c + δ ∈ Dc. Let a1 =
sup{t|(c + δ, t) ∩ D = φ}, then a1 ∈ D and a1 − a0 > ε/2. We define h′

1 on
[a0, a1] by

h′
0(t) =

⎧⎪⎨⎪⎩
a0, a0 ≤ x < c + δ,

linear, c + δ ≤ x < a1,

a1, x = a1.

In any case above, h′
0 is a continuous function on [a0, a1] with h′

0(a0) =
a0, h′

0(a1) = a1 and ‖h|D∩[a0,a1] − h′
0|D∩[a0,a1]‖ < ε. Moreover, the spectrum

of h′
0|D∩[a0,a1] is the finite disjoint union of sets of a single point or closed

intervals.
If a1 + ε ≤ b, replacing a0 by a1 and repeating the process above, then

we have a2 ∈ D and continuous function h′
1 on [a1, a2] with h′

1(a1) = a1,
h′

1(a2) = a2 and ‖h|D∩[a1,a2] − h′
1|D∩[a1,a2]‖ < ε. Moreover, a2 − a0 > ε/2

and the spectrum of h′
1|D∩[a1,a2] is the finite disjoint union of sets of a sin-

gle point or closed intervals. We may continue the process above, for ex-
ample n times, and have a0, . . . , an with an ∈ D and an−1 + ε ≤ b, and
continuous functions h′

i on [ai, ai+1] with h′
i(ai) = ai, h′

i(ai+1) = ai+1 and
‖h|D∩[ai,ai+1] − h′

i|D∩[ai,ai+1]‖ < ε (0 ≤ i ≤ n) such that a2i − a2(i−1) > ε/2
(i ≥ 1) and the spectrum of h′

i|D∩[ai,ai+1] is the finite disjoint union of sets of
a single point or closed intervals for each i with 0 ≤ i ≤ n.
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Since a2i − a2(i−1) > ε/2 (i ≥ 1) and |[a0, b]| = b − a0 < 1, then we can find
a positive integer n such that an ≤ b and an + ε > b. Then we define h̃ on
[a0, b] by

h̃(t) =

{
h′

i−1, ai−1 ≤ x < ai,1 ≤ i ≤ n,

an, an < x ≤ b.

Let h′ = h̃|D, then h′ ∈ C(D) and ‖h − h′ ‖ < ε. Moreover, the spectrum of
h′ is the finite disjoint union of sets of a single point or closed intervals, and
this completes the proof. �

Note. The result of Lemma 4.3 is also obtained from Lemma 2.4 of [23].
But the proof here is different from that one.

Theorem 4.4. Suppose the extension (A,I) is tracially quasidiagonal. If
TR(I) ≤ 1 and A/I is TAI, then A has the property (P1).

Proof. Let ε be a positive number, F be a finite subset of A containing a
nonzero positive element a, σi (i = 1,2,3,4) be positive numbers with 0 < σ4 <
σ3 < σ2 < σ1 < 1, and n be a positive integer. We choose α1, . . . , α18, d1, d2

satisfying σ3 < d2 < d1 < α18 < · · · < α1 < σ2. Without loss of generality, we
assume that F is contained in the unit ball of A. Let γ be a positive number
which will be decided later.

Since A/I is TAI, there exist a projection p̄ in A/I and a C∗-subalgebra C̄

of A/I with 1C̄ = p̄ and C̄ ∼=
⊕l

k=1(C(Xk) ⊗ Mnk
), where Xk is {pt} or [0,1],

such that

‖π(x)p̄ − p̄π(x)‖ < γ for all x ∈ F ;(1)
p̄π(x)p̄ ∈γ C̄ for all x ∈ F ;(2) [

fα11
α12

(
(1 − p̄)π(a)(1 − p̄)

)]
≤ [fα13

α14
(p̄π(a)p̄)].(3)

Let ϕ be the isomorphism from
⊕l

k=1(C(Xk)
⊗

Mnk
) onto C̄. Without

loss of generality, we may assume that there exists an integer l0 > 0 such that

Xk = [0,1] if 1 ≤ k ≤ l0 and Xk = {pt} if l0 < k ≤ l.

For any k with 1 ≤ k ≤ l, let {dk
ij }1≤i,j≤nk

be the matrix units of Mnk
. Let

D̄k = ϕ(1C(Xk) ⊗ Mnk
), then ϕ(

⊕l
k=1(1C(Xk) ⊗ Mnk

)) =
⊕l

k=1 D̄k. Let ēk
ij =

ϕ(1C(Xk) ⊗ dk
ij), then p̄ =

⊕l
k=1(

⊕nk

i=1 ēk
ii). Let ak

ij be the element in A such
that π(ak

ij) = ēk
ij . Moreover, for 1 ≤ k ≤ l0, we let h̄k = ϕ(hk ⊗ (

∑nk

i=1 dk
ii)),

where hk ∈ C[0,1] is the identity function. Then

C̄ =

(
l0⊕

k=1

C∗(h̄k, ēk
ij : 1 ≤ i, j ≤ nk)

)
⊕

(
l⊕

k=l0+1

C∗(ēk
ij : 1 ≤ i, j ≤ nk)

)
.

By (3), there exist the elements x̄s (1 ≤ s ≤ n + 1) in A/I such that x̄∗
sx̄s =

fα11
α12

((1 − p̄)π(a)(1 − p̄)), x̄sx̄
∗
s ∈ Her(fα13

α14
(p̄ap̄)), and x̄sx̄

∗
s (1 ≤ s ≤ n + 1)
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are mutually orthogonal. Let xs (1 ≤ s ≤ n + 1) be the elements in A with
‖xs‖ ≤ 1 such that π(xs) = x̄s. Let p′ be the element in A with 0 ≤ p′ ≤ 1A

such that π(p′) = p̄, and bk (1 ≤ k ≤ l0) be the positive elements in A such
that π(bk) = h̄k. Let

F ′ = F ∪ {ak
ij |1 ≤ k ≤ l,1 ≤ i, j ≤ nk } ∪ {xs, x

∗
s |1 ≤ s ≤ n + 1}

∪ {bk, b∗
k |1 ≤ k ≤ l0} ∪ {p′ },

and let γ1 be a positive number with 0 < γ1 < 1/54 which will be decided
later.

Since the extension (A,I) is tracially quasidiagonal, there exist a projection
q in A and a C∗-subalgebra B of A with 1B = q such that B ∩ I = qIq, the
extension (B,qIq) is quasidiagonal, and

‖qx − xq‖ < γ1 for all x ∈ F ′;(4)
qxq ∈γ1 B for all x ∈ F ′;(5)

n
[
fα1

α2

(
(1 − q)a(1 − q)

)]
≤ [fα3

α4
(qaq)].(6)

For any k with 1 ≤ k ≤ l, we can choose c̄k
ij (1 ≤ i, j ≤ nk) of π(B) such that

‖c̄k
ij ‖ ≤ 1, c̄k

ii is a positive element and π(q)ēk
ijπ(q) ≈γ1 c̄k

ij . Since

(c̄k
ii)

2 − c̄k
ii ≈2γ1 c̄k

iiπ(q)ēk
iiπ(q) − π(q)ēk

iiπ(q)

≈γ1 π(q)ēk
iiπ(q)ēk

iiπ(q) − π(q)ēk
iiπ(q)

≈γ1 π(q)ēk
iiπ(q) − π(q)ēk

iiπ(q)
= 0,

then we have
‖(c̄k

ii)
2 − c̄k

ii‖ < 4γ1.

Since γ1 < 1/108, then we have

‖(c̄k
ii)

2 − c̄k
ii‖ < 4γ1 < 1/4.

By Lemma 2.5.5 in [16], there exists a projection p̄k
ii in π(B) such that ‖c̄k

ii −
p̄k

ii‖ < 8γ1. Then we have

‖π(q)ēk
iiπ(q) − p̄k

ii‖ < 9γ1

and ∥∥ēk
ii − p̄k

ii −
(
1 − π(q)

)
ēk
ii

(
1 − π(q)

)∥∥ < 10γ1.

Let s and t be integers with 1 ≤ t ≤ l and 1 ≤ s ≤ nt, then we have a
projection p̄t

ss in π(B) such that ‖π(q)ēt
ssπ(q) − p̄t

ss‖ < 9γ1 and ‖ēt
ss − p̄t

ss −
(1 − π(q))ēt

ss(1 − π(q))‖ < 10γ1. If k �= t, or k = t but i �= s, then we have

p̄k
iip̄

t
ss ≈18γ1 π(q)ēk

iiπ(q)π(q)ēt
ssπ(q)

≈γ1 π(q)ēk
iiē

t
ssπ(q)

= 0.
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That is, ‖p̄k
iip̄

t
ss‖ < 19γ1. By Lemma 2.5.6 in [16], with γ1 sufficiently small,

we may assume that p̄k
ii and p̄t

ss are mutually orthogonal if k �= t, or k = t but
i �= s.

For any k with 1 ≤ k ≤ l, since

ēk
1j ≈γ1 π(q)ēk

1jπ(q) +
(
1 − π(q)

)
ēk
1j

(
1 − π(q)

)
≈γ1 c̄k

1j +
(
1 − π(q)

)
ēk
1j

(
1 − π(q)

)
,

then
ēk
1j ≈2γ1 c̄k

1j +
(
1 − π(q)

)
ēk
1j

(
1 − π(q)

)
and

ēk
j1 ≈2γ1 (c̄k

1j)
∗ +

(
1 − π(q)

)
ēk

j1

(
1 − π(q)

)
.

So we have

ēk
1j = ēk

11ē
k
1j ē

k
jj

≈10γ1

(
p̄k
11 +

(
1 − π(q)

)
ēk
11

(
1 − π(q)

))
ēk
1j ē

k
jj

≈10γ1

(
p̄k
11 +

(
1 − π(q)

)
ēk
11

(
1 − π(q)

))
ēk
1j

(
p̄k

jj +
(
1 − π(q)

)
ēk

jj

(
1 − π(q)

))
≈2γ1

(
p̄k
11 +

(
1 − π(q)

)
ēk
11

(
1 − π(q)

))(
c̄k
1j +

(
1 − π(q)

)
ēk
1j

(
1 − π(q)

))
×

(
p̄k

jj +
(
1 − π(q)

)
ēk
jj

(
1 − π(q)

))
= p̄k

11c̄
k
1j p̄

k
jj +

(
1 − π(q)

)
ēk
11

(
1 − π(q)

)
ēk
1j

(
1 − π(q)

)
ēk
jj

(
1 − π(q)

)
.

Set zk
1j = p̄k

11c̄
k
1j p̄

k
jj and fk

1j = (1 − π(q))ēk
11(1 − π(q))ēk

1j(1 − π(q))ēk
jj(1 − π(q)),

then we have

(7) ēk
1j ≈22γ1 zk

1j + fk
1j , ēk

j1 ≈22γ1 (zk
1j)

∗ + (fk
1j)

∗.

Therefore, we have

ēk
11 = ēk

1j ē
k
j1 ≈44γ1 zk

1j(z
k
1j)

∗ + fk
1j(f

k
1j)

∗

and
ēk

jj = ēk
j1ē

k
1j ≈44γ1 (zk

1j)
∗zk

1j + (fk
1j)

∗fk
1j .

Since

p̄k
11 +

(
1 − π(q)

)
ēk
11

(
1 − π(q)

)
≈10γ1 ēk

11 ≈44γ1 zk
1j(z

k
1j)

∗ + fk
1j(f

k
1j)

∗

and

p̄k
jj +

(
1 − π(q)

)
ēk
jj

(
1 − π(q)

)
≈10γ1 ēk

jj ≈44γ1 (zk
1j)

∗zk
1j + (fk

1j)
∗fk

1j ,

then we have

‖p̄k
11 − zk

1j(z
k
1j)

∗ ‖ < 54γ1 and ‖p̄k
jj − (zk

1j)
∗zk

1j ‖ < 54γ1.

Since γ1 < 1/54, then we have

‖p̄k
11 − zk

1j(z
k
1j)

∗ ‖ < 54γ1 < 1 and ‖p̄k
jj − (zk

1j)
∗zk

1j ‖ < 54γ1 < 1.
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By Lemma 2.5.3 of [16], we have p̄k
11 and p̄k

jj are Murray–von Neumann equiv-
alent. Since

0 ≤ p̄k
jj − |zk

1j | ≤ p̄k
jj − (zk

1j)
∗zk

1j < 54γ1,

then |zk
1j | is invertible in p̄k

jjπ(B)p̄k
jj . Set ṽk

1j = zk
1j |zk

1j | −1, then

ṽk
1j(ṽ

k
1j)

∗ = p̄k
11, (ṽk

1j)
∗ṽk

1j = p̄k
jj and ‖ṽk

1j − zk
1j ‖ <

54γ1

1 − 54γ1
.

For 1 ≤ i, j ≤ nk, set ẽk
ij = (ṽk

1i)
∗ṽk

1j , then {ẽk
ij }1≤i,j≤nk

(1 ≤ k ≤ l) are mutu-
ally orthogonal matrix units in π(B). Since

ẽk
ij = (ṽk

1i)
∗ṽk

1j

≈ 108γ1
1−54γ1

(zk
1i)

∗zk
1j

≈44γ1 π(q)(ēk
1i)

∗π(q)π(q)ēk
1jπ(q) (by (7))

≈γ1 π(q)(ēk
1i)

∗ēk
1jπ(q)

= π(q)ēk
ijπ(q),

then we have

(8) ‖π(q)ēk
ijπ(q) − ẽk

ij ‖ < 45γ1 +
108γ1

1 − 54γ1
for 1 ≤ k ≤ l, 1 ≤ i, j ≤ nk.

For any k with 1 ≤ k ≤ l0, by (5), we can find an element gk in B with
0 ≤ gk ≤ q such that ‖qbkq − gk ‖ < γ1. Let

g̃k = π(gk) and h̃k =
nk⊕
i=1

ẽk
i1g̃kẽk

i1 for any k with 1 ≤ k ≤ l0,

then g̃k, h̃k ∈ π(B) and h̃k ≤
⊕nk

i=1 ẽk
ii = ẽk ≤ π(q), where ẽk is the unit of the

finite dimensional C∗-subalgebra spanned by {ẽk
ij |1 ≤ i, j ≤ nk }. It is easy to

check that h̃k commutes with ẽk
ij (1 ≤ i, j ≤ nk). Since

h̃k =
nk⊕
i=1

ẽk
i1g̃kẽk

1i ≈γ1

nk⊕
i=1

ẽk
i1π(q)h̄kπ(q)ẽk

1i

≈2nk(45γ1+
108γ1

1−54γ1
)

nk∑
i=1

π(q)ēk
i1π(q)h̄kπ(q)ēk

1iπ(q) (by (8))

≈2nkγ1

nk∑
i=1

π(q)ēk
i1h̄kēk

1iπ(q) = π(q)h̄kπ(q) (by (4)),

then for any k with 1 ≤ k ≤ l0 we have

(9) ‖h̃k − π(q)h̄kπ(q)‖ < nk

(
93γ1 +

216γ1

1 − 54γ1

)
.
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For any k with 1 ≤ k ≤ l0, let Ak = C∗(h̃k, ẽk
ij : 1 ≤ i, j ≤ nk) and

Ak,e = C∗(ẽk
11h̃kẽk

11, ẽ
k
11). Since {dk

ij }1≤i,j≤nk
is a matrix unit for Mnk

and
{ẽk

ij }1≤i,j≤nk
is a matrix unit in Ak, then we define a map αk from Ak,e ⊗ Mnk

to Ak by
αk(a ⊗ dk

ij) = ẽk
i1aẽk

1j .

By Theorem 6.1.2 and Remark 6.1.3 in [27], αk is an isomorphism from Ak,e ⊗
Mnk

onto Ak. By the Gelfand theorem for commutative C∗-algebras, there
is an isomorphism βk from Ak,e onto C(σ(ẽk

11h̃kẽk
11)) such that βk

−1(fk) =
ẽk
11h̃kẽk

11, where fk the identity function on σ(ẽk
11h̃kẽk

11).
Let η > 0 which will be decided later, by Lemma 4.3, there exists f ′

k ∈
C(σ(ẽk

11h̃kẽk
11)) such that ‖fk − f ′

k ‖ < η and the spectrum of f ′
k is the finite

disjoint union of sets of a single point or closed intervals. Then we have

βk
−1(f ′

k) ∈ Ak,e, ‖ẽk
11h̃kẽk

11 − β−1
k (f ′

k)‖ < η,

and
C∗(βk

−1(f ′
k), ẽk

11) ∼= C(σ(β−1
k (f ′

k))).

Since σ(β−1
k (f ′

k)) is the finite disjoint union of sets of a single point or closed
intervals, we may assume there exist an integer mk > 0 and disjoint sets Y k

i

(1 ≤ i ≤ mk) which are single points or closed intervals such that σ(β−1
k (f ′

k)) =⋃mk

i=1 Y k
i , then C(σ(β−1

k (f ′
k))) is isomorphic to

⊕mk

i=1 C(Y k
i ). Since a closed

interval is homeomorphic to [0,1], we have

C∗(βk
−1(f ′

k), ẽk
11) ⊗ Mnk

∼=
(

mk⊕
i=1

C(Xk
i )

)
⊗ Mnk

,

where each Xk
i is a single point or [0,1]. For any k with 1 ≤ k ≤ l0, let

C̃k = αk

(
C∗(βk

−1(f ′
k), ẽk

11) ⊗ Mnk

)
and h̃′

k =
nk∑
i=1

ẽk
i1β

−1
k (f ′

k)ẽk
1i.

Since ‖h̃k − h̃′
k ‖ = ‖

∑nk

i=1 ẽk
i1(β

−1
k (fk) − β−1

k (f ′
k))ẽk

1i‖ < η, together with (9),
we have

(10) ‖π(q)h̄kπ(q) − h̃′
k ‖ < nk

(
93γ1 +

216γ1

1 − 54γ1

)
+ η for 1 ≤ k ≤ l0.

Since
αk(ẽk

11 ⊗ dk
ij) = ẽk

i1ẽ
k
11ẽ

k
1i = ẽk

ij

and

αk

(
β−1

k (f ′
k) ⊗

(
nk∑
i=1

dk
ii

))
=

nk∑
i=1

(
αk

(
β−1

k (f ′
k) ⊗ dk

ii

))
=

nk∑
i=1

ẽk
i1β

−1
k (f ′

k)ẽk
1i = h̃′

k,
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we have
C̃k = C∗(h̃′

k, ẽk
ij : 1 ≤ i, j ≤ nk), 1 ≤ k ≤ l0.

Let

C̃ =

(
l0⊕

k=1

C̃k

)
⊕

(
l⊕

k=l0+1

C∗(ẽk
ij : 1 ≤ i, j ≤ nk)

)
,

then C̃ ⊆ π(C). Let p̃ = 1C̃ , then p̃ =
⊕l

k=1(
⊕nk

i=1 ẽk
ii) ≤ π(q) = 1π(C). By (8)

and p̄ =
⊕l

k=1(
⊕nk

i=1 ēk
ii), we have

(11) ‖p̃ēk
ij p̃ − ẽk

ij ‖ < 45γ1 +
108γ1

1 − 54γ1

and

(12) ‖π(q)p̄π(q) − p̃‖ < M

(
45γ1 +

108γ1

1 − 54γ1

)
,

where M = n1 + n2 + · · · + nl. Moreover, by (4) and (12), we have

(13) ‖π(q)p̄ − p̃‖ < M

(
46γ1 +

108γ1

1 − 54γ1

)
.

For any x ∈ F , by (13), we have

p̃π(q)π(x)π(q) − π(q)π(x)π(q)p̃
≈2M(46γ1+

108γ1
1−54γ1

) π(q)p̄π(x)π(q) − π(q)π(x)p̄π(q)

≈γ 0.

Therefore, with γ1 and γ sufficiently small, we have

(14) ‖p̃y − yp̃‖ < ε for all y ∈ π(qFq).

For any x ∈ F , by (2) there exists x̄ ∈ C̄ such that ‖p̄π(x)p̄ − x̄‖ < γ. Then
by (13), we have

p̃π(q)π(x)π(q)p̃ ≈2M(46γ1+
108γ1

1−54γ1
) π(q)p̄π(x)p̄π(q)

≈γ π(q)x̄π(q).

By (8), (10), and the definitions of C̄ and C̃, for any λ > 0, with γ1 and η suf-
ficiently small, we can find x̃ ∈ C̃ such that ‖π(q)x̄π(q) − x̃‖ < λ. Therefore,
with γ1, γ, η and λ sufficiently small, we have

(15) p̃yp̃ ∈ε C̃ for all y ∈ π(qFq).

By (13), we may choose sufficiently small γ1 such that

(16)
∥∥(

π(q) − p̃
)
π(a)

(
π(q) − p̃

)
− π(q)(1 − p̄)π(a)(1 − p̄)π(q)

∥∥ < δ(α9, α10);
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and

(17) ‖π(q)p̄π(a)p̄π(q) − p̃π(a)p̃‖ < δ(α17, α18),

where δ(α9, α10) and δ(α17, α18) are given by Lemma 2.4(5). Then by (16)
and Lemma 2.4(5), we have

(18)
[
fα7

α8

((
π(q) − p̃

)
π(a)

(
π(q) − p̃

))]
≤

[
fα9

α10

(
π(q)(1 − p̄)π(a)(1 − p̄)π(q)

)]
.

By (4), we may choose sufficiently small γ1 such that for any y ∈ {x̄s|1 ≤ s ≤
n + 1} ∪ {p̄π(a)p̄, (1 − p̄)π(a)(1 − p̄)}
(19) ‖π(q)y − yπ(q)‖ < δ(n + 1, α9, α10, . . . , α15, α16),

where δ(n + 1, α9, α10, . . . , α15, α16) is given by Lemma 2.7. Since

(n + 1)
[
fα11

α12

(
(1 − p̄)π(a)(1 − p̄)

)]
≤ [fα13

α14
(p̄π(a)p̄)],

we have

(n + 1)
[
fα9

α10

(
π(q)(1 − p̄)π(a)(1 − p̄)π(q)

)]
≤ [fα15

α16
(π(q)p̄π(a)p̄π(q))] (by (19) and Lemma 2.7)

≤ [fα17
α18

(p̃π(a)p̃)] (by (17) and Lemma 2.4(5)).

So we have

(20) (n + 1)
[
fα7

α8

((
π(q) − p̃

)
π(a)

(
π(q) − p̃

))]
≤ [fα17

α18
(p̃π(a)p̃)].

By (5), without loss of generality, we may assume qFq ⊆ B. Since the
extension (B,qIq) is quasidiagonal, by (14), (15), (20) and Theorem 3.6 there
exist a projection p and a C∗-subalgebra C ∈ I (1) of B with 1C = p, π(p) = p̃

and π(C) = C̃, and a projection r ∈ (q − p)I(q − p) such that

‖px − xp‖ < 8ε and ‖rx − xr‖ < 24ε for all x ∈ qFq;(21)

pxp ∈2ε C and (p + r)x(p + r) ∈18ε C + rIr for all x ∈ qFq;(22)

(n + 1)
[
fα5

α6

(
(q − p − r)a(q − p − r)

)]
≤ [fd1

d2
(pap)].(23)

Let C0 = C + rIr. Since TR(I) ≤ 1 and r ∈ I , we have TR(rIr) ≤ 1. Set
p0 = p + r, we have TR(C0) ≤ 1 and 1C0 = p0. Since

n
[
fσ1

σ2

(
(1 − p0)a(1 − p0)

)]
≤ n

[
fα1

α2

(
(1 − q)a(1 − q)

)]
+ n

[
fα1

α2

(
(q − p0)a(q − p0)

)]
≤ [fα3

α4
(qaq)] + n

[
fα1

α2

(
(q − p0)a(q − p0)

)]
≤ [fα5

α6
(p0ap0)] + (n + 1)

[
fα5

α6

(
(q − p0)a(q − p0)

)]
≤ [fσ3

σ4
(p0ap0)] + [fd1

d2
(pap)] (by Lemma 2.4(2) and 2.4(6))

≤ 2[fσ3
σ4

(p0ap0)],

then it follows that A has the property (P1) and it completes the proof. �
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Note. If the Cuntz semi-group of A is weakly unperforated, then n = 2m
and n[a] ≤ 2[b] imply that m[a] ≤ [b]. Therefore, (3) of Definition 4.2 will be
the same as (3) in the definition of TR(A) ≤ 1. That is, Theorem 4.4 implies
TR(A) ≤ 1.

Corollary 4.5. Suppose that (A,I) is tracially quasidiagonal, A is unital
and A/I is a unital simple C∗-algebra. If TR(I) ≤ 1 and TR(A/I) ≤ 1, then A
has the property (P1).

Proof. Suppose A/I is a unital simple C∗-algebra. By Theorem 7.1(b) in
[19], it was shown that TR(A/I) ≤ 1 if and only if A/I is TAI. Then the
conclusion follows from the Theorem 4.4. �
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