NONVANISHING DERIVATIVES AND THE MACLANE CLASS \mathcal{A}

ALASTAIR FLETCHER, JIM LANGLEY, AND JANIS MEYER

Abstract. Let $k \geq 2$ and let f be meromorphic in the unit disc Δ, such that $f(z) f^{(k)}(z) \neq 0$ for all $z \in \Delta$ and the poles of f in Δ have bounded multiplicities. Then f has asymptotic values on a dense subset of $\partial \Delta$.

1. Introduction

Let $\Delta=B(0,1)$ denote the unit disc in the complex plane and let $\mathbb{T}=\partial \Delta$ be the boundary circle. A meromorphic function $f: \Delta \rightarrow \mathbb{C}^{*}=\mathbb{C} \cup\{\infty\}$ is said to have the asymptotic value $a \in \mathbb{C}^{*}$ at $\zeta \in \mathbb{T}$ if there exists a path $z(t):[0, \infty) \rightarrow \Delta$ such that

$$
z(t) \rightarrow \zeta \quad \text { and } \quad f(z(t)) \rightarrow a \quad \text { as } t \rightarrow+\infty
$$

The MacLane class \mathcal{A} is the set of all analytic functions f on D such that f has asymptotic values at each ζ in a dense subset E_{f} of \mathbb{T} [14], [15]. The corresponding class of meromorphic functions is denoted by \mathcal{A}_{m} [1]. Note that it is common practice to exclude constant functions from the classes \mathcal{A} and \mathcal{A}_{m}, but for the present paper it is convenient to admit them. Our starting point is the following theorem [2, Theorem 2(a)].

Theorem 1.1 ([2]). Let f be analytic on Δ such that $f f^{\prime \prime}$ has no zeros in Δ. Then $f^{\prime} / f, \log f$ and f are all in \mathcal{A}.

The corresponding study of meromorphic functions in the plane with nonvanishing derivatives has a long history, going back at least as far as Pólya [16]. In a landmark paper on the value distribution of meromorphic functions

[^0]and their derivatives [9], Hayman conjectured that if f is meromorphic in the plane and f and $f^{(k)}$ have no zeros for some $k \geq 2$, then
\[

$$
\begin{equation*}
f(z)=e^{a z+b} \quad \text { or } \quad f(z)=(a z+b)^{-n} \tag{1}
\end{equation*}
$$

\]

where $a, b \in \mathbb{C}$ and $n \in \mathbb{N}$. For entire functions and $k=2$, this conjecture was proved by Hayman [9]. Theorem 1.1 may be regarded as an analogue for the unit disc of Hayman's result. For $k \geq 3$ and f again entire, Hayman's conjecture was proved by Clunie [4] using what is now called the Tumura-Clunie method [10], [18]. Finally, Hayman's conjecture was established for meromorphic functions for $k \geq 3$ by Frank [5], [7], and for $k=2$ by Langley [13].

Associated with these results in the plane is a normal family analogue for plane domains in the spirit of the Bloch hypothesis [20]. The following theorem is due to Bergweiler and Langley [3], but was proved by Schwick [17] for families of analytic functions: both results rely on the Pang-Zalcman rescaling method [19], [20].

Theorem 1.2 ([3]). Let D be a domain in \mathbb{C}, let $k \geq 2$ be an integer, and let \mathcal{F} be the family of all meromorphic functions f on D such that f and $f^{(k)}$ have no zeros on D. Then the family $\left\{f^{\prime} / f: f \in \mathcal{F}\right\}$ is normal on D.

The main result of the present paper is the following theorem.
Theorem 1.3. Let $k \geq 2$ and let f be meromorphic in $\Delta=B(0,1)$, such that $f(z) f^{(k)}(z) \neq 0$ for all $z \in \Delta$ and the poles of f in Δ have bounded multiplicities. Then $1 / f \in \mathcal{A}$ and $f \in \mathcal{A}_{m}$.

The hypothesis on the multiplicities of the poles may not really be needed in Theorem 1.3, but is indispensable for the present method in that it implies a separation between distinct poles of f which is sufficient for much of the machinery of [2] to be applicable, with appropriate modifications, to f^{\prime} / f.

2. Preliminary lemmas

The following lemma is straightforward but we give a proof for completeness.

Lemma 2.1. Let \mathcal{F} be a normal family of meromorphic functions on the unit disc Δ. Let d, c_{1}, c_{2} be real numbers with $0<d<1$ and $0 \leq c_{1}<c_{2}$. Then there exist positive real numbers b_{j} such that the following properties hold for all $u \in \mathcal{F}$.
(i) If $z_{1} \in B(0, d)$ and $\left|u\left(z_{1}\right)\right| \leq c_{1}$, we have $|u(z)| \leq c_{2}$ for all $z \in B\left(z_{1}, b_{1}\right)$.
(ii) For any zero z_{1} of u in $B(0, d)$, there are no zeros z of u which satisfy $0<\left|z-z_{1}\right|<b_{2} s$, where $s=\min \left\{1,\left|u^{\prime}\left(z_{1}\right)\right|\right\}$.

Proof. Part (i) follows simply from the equicontinuity of \mathcal{F}. For part (ii), let $z_{1} \in B(0, d)$ be a zero of u and apply (i) with $c_{1}=0, c_{2}=1$. This gives a positive constant B_{1}, independent of u, such that

$$
|u(z)| \leq 1 \quad \text { for }\left|z-z_{1}\right| \leq 2 B_{1}
$$

Assume now that z_{2} is a zero of u with $0<\left|z_{2}-z_{1}\right| \leq B_{1}$. Then

$$
|h(z)| \leq \frac{1}{\left(2 B_{1}\right)\left(B_{1}\right)} \quad \text { on } \partial B, \text { where } h(z)=\frac{u(z)}{\left(z-z_{1}\right)\left(z-z_{2}\right)}
$$

is analytic on the disc $B=B\left(z_{1}, 2 B_{1}\right)$. It follows that

$$
\left|u^{\prime}\left(z_{1}\right)\right|=\left|\left(z_{2}-z_{1}\right) h\left(z_{1}\right)\right| \leq \frac{\left|z_{2}-z_{1}\right|}{2 B_{1}^{2}}
$$

which gives a lower bound for $\left|z_{2}-z_{1}\right|$ and completes the proof.
The next lemma is an analogue for the unit disc of a standard result in the plane setting [12, Lemma 7.7].

Lemma 2.2. Let k and m be positive integers, let A_{0}, \ldots, A_{k-1} be meromorphic functions on the unit disc Δ, and assume that the equation

$$
\begin{equation*}
w^{(k)}+A_{k-1} w^{(k-1)}+\cdots+A_{0} w=0 \tag{2}
\end{equation*}
$$

has a fundamental set f_{1}, \ldots, f_{k} of solutions meromorphic in Δ and satisfying

$$
T\left(r, f_{j}\right)=O(1-r)^{-m}
$$

as $r \rightarrow 1$ for each j. Then

$$
\begin{equation*}
m\left(r, A_{p}\right)=O\left(\log \frac{1}{1-r}\right) \tag{3}
\end{equation*}
$$

as $r \rightarrow 1$ for each p.
Proof. This uses induction on k and the familiar reduction of order procedure. If $k=1$, then the result follows immediately from [10, Lemma 2.3], applied to f_{1}. Assume now that $k \geq 2$ and that the result has been proved for $k-1$, and write $w=v f_{1}$ and $u=v^{\prime}$. Then the functions

$$
g_{j}=\left(\frac{f_{j}}{f_{1}}\right)^{\prime}, \quad j=2, \ldots, k
$$

are linearly independent solutions of the equation

$$
u^{(k-1)}+B_{k-2} u^{(k-2)}+\cdots+B_{0} u=0
$$

where

$$
\begin{equation*}
B_{k-2}=k \frac{f_{1}^{\prime}}{f_{1}}+A_{k-1}, \quad \ldots, \quad B_{0}=k \frac{f_{1}^{(k-1)}}{f_{1}}+\cdots+A_{1} \tag{4}
\end{equation*}
$$

The induction hypothesis gives (3) for $p=0, \ldots, k-2$, but with A_{p} replaced by B_{p}, and (4) then leads to (3) for $p=k-1, \ldots, 1$. Finally, (3) for $p=0$ follows from dividing (2) by w.

3. Estimates for logarithmic derivatives

Throughout this section, let f be meromorphic on the unit disc Δ such that f and $f^{(k)}$ have no zeros there, for some $k \geq 2$. Let

$$
\begin{equation*}
\psi(z)=\frac{f^{\prime}(z)}{f(z)} \tag{5}
\end{equation*}
$$

Lemma 3.1. There exists $c_{1}>0$ such that

$$
\begin{equation*}
\rho(\psi(z))=\frac{\left|\psi^{\prime}(z)\right|}{1+|\psi(z)|^{2}} \leq \frac{c_{1}}{(1-|z|)^{2}} \quad \text { on } \Delta . \tag{6}
\end{equation*}
$$

Furthermore, there exists $\delta \in(0,1 / 2)$ such that, for all $z_{0} \in \Delta$,

$$
\begin{align*}
& \left(1-\left|z_{0}\right|\right)\left|\psi\left(z_{0}\right)\right| \geq 2 \quad \Rightarrow \quad\left(1-\left|z_{0}\right|\right)|\psi(z)| \geq 1 \tag{7}\\
& \quad \text { for } z \in B\left(z_{0}, 2 \delta\left(1-\left|z_{0}\right|\right)\right)
\end{align*}
$$

Finally, suppose in addition that the poles of f have bounded multiplicities. Then δ may be chosen so that for each $z_{0} \in \Delta$ the function f has at most one pole, possibly multiple, in $B\left(z_{0}, 2 \delta\left(1-\left|z_{0}\right|\right)\right)$.

Proof. Let $z_{0} \in \Delta$ and set

$$
g(z)=f\left(z_{0}+\left(1-\left|z_{0}\right|\right) z\right), \quad G(z)=\frac{g^{\prime}(z)}{g(z)}=\left(1-\left|z_{0}\right|\right) \psi\left(z_{0}+\left(1-\left|z_{0}\right|\right) z\right)
$$

Then g belongs to the family \mathcal{H} of functions h which are meromorphic on Δ with $h h^{(k)} \neq 0$ there, and G belongs to the family $\left\{h^{\prime} / h: h \in \mathcal{H}\right\}$, which is normal by Theorem 1.2. Thus, $\rho(G(0)) \leq c_{1}$ for some c_{1} independent of f and z_{0}, which implies (6). Now the existence of δ satisfying (7) follows from Lemma 2.1(i) applied to $H=1 / G$ with $z_{1}=0$. Finally, if the poles of f have bounded multiplicities, then there exists $c_{2}>0$ such that $H(z)=0$ implies that $\left|H^{\prime}(z)\right| \geq c_{2}$. If u_{1}, u_{2} are distinct poles of f in $B\left(z_{0},\left(1-\left|z_{0}\right|\right) / 2\right)$, define v_{1}, v_{2} by $u_{j}=z_{0}+\left(1-\left|z_{0}\right|\right) v_{j}$. Then v_{1}, v_{2} are distinct zeros of H in $B(0,1 / 2)$, and it follows from Lemma 2(ii) that $\left|v_{1}-v_{2}\right| \geq c_{3}>0$, where c_{3} is independent of z_{0}. This proves Lemma 3.1.

Observe next that (6) gives, in the terminology of [10, p. 12],

$$
\begin{equation*}
A(r, \psi)=O\left(\frac{1}{1-r}\right)^{3}, \quad T(r, \psi)=O\left(\frac{1}{1-r}\right)^{2} \tag{8}
\end{equation*}
$$

as $r \rightarrow 1$. It then follows using $[10, \mathrm{p} .36]$ that

$$
\begin{equation*}
m\left(r, \psi^{\prime} / \psi\right)=O\left(\log \frac{1}{1-r}\right), \quad T\left(r, \psi^{(j)}\right)=O\left(\frac{1}{1-r}\right)^{2} \tag{9}
\end{equation*}
$$

as $r \rightarrow 1$, for each $j \in \mathbb{N}$.
Proposition 3.1. If $k \geq 3$, then

$$
\begin{equation*}
T(r, \psi)=O\left(\log \frac{1}{1-r}\right) \tag{10}
\end{equation*}
$$

as $r \rightarrow 1$. The same conclusion holds for $k=2 i f$, in addition,

$$
\begin{equation*}
\bar{N}(r, f)=O\left(\log \frac{1}{1-r}\right) \tag{11}
\end{equation*}
$$

as $r \rightarrow 1$.
We make several remarks concerning Proposition 3.1. First, it will be shown in Section 5 that (11) automatically holds if the poles of f have bounded multiplicities. On the other hand, it seems likely that Proposition 3.1 holds for $k=2$ without the additional hypothesis (11), although the present method does not suffice for this.

Next, the case $k \geq 3$ is essentially not new, and may be derived directly from the methods of [5], [7]: however, it is much simpler to do this once the estimates (8) and (9) are available, and we will outline the proof in the next section.

4. Proof of Proposition 3.1

Let f satisfy the hypotheses of Proposition 3.1 for some $k \geq 2$, and define ψ by (5). We first dispose of the case $k=2$. If f is given by (1), then the estimate (10) is obvious, while in the contrary case (10) follows at once from (9), (11), and [9, Theorem 4] (see also [10, p. 60]).

Assume henceforth that $k \geq 3$. The notation $S(r)$ will be used to denote any function $S:[0,1) \rightarrow[0, \infty)$ which satisfies

$$
S(r)=O\left(\log \frac{1}{1-r}\right)
$$

as $r \rightarrow 1$. Then (9) gives

$$
m\left(r, \psi^{(j)} / \psi\right)=S(r)
$$

for each $j \in \mathbb{N}$. Denote by Λ the collection of meromorphic functions λ on Δ such that

$$
T(r, \lambda)=S(r)
$$

Then Λ is a field closed under differentiation.
Frank's method [5], [7] depends on properties of the Wronskian determinant [12, Section 1.4]. Define analytic functions f_{j}, g, h and w_{j} on Δ by

$$
\begin{align*}
f_{j}(z) & =z^{j-1}, \quad g^{k}=\frac{f}{f^{(k)}}, \quad h=-\left(\frac{f^{\prime}}{f}\right) g=-\psi g \tag{12}\\
w_{j} & =f_{j}^{\prime} g+f_{j} h
\end{align*}
$$

Then we have, with c_{k} a nonzero constant,

$$
W\left(f_{1}, \ldots, f_{k}, f\right)=c_{k} f^{(k)}=c_{k} f g^{-k}
$$

and so

$$
\frac{c_{k}}{(f g)^{k}}=W\left(f_{1} / f, \ldots, f_{k} / f, 1\right)=(-1)^{k} W\left(\left(f_{1} / f\right)^{\prime}, \ldots,\left(f_{k} / f\right)^{\prime}\right)
$$

Multiplying through by $(f g)^{k}$ then gives

$$
(-1)^{k} c_{k}=W\left(\left(f_{1} / f\right)^{\prime}(f g), \ldots,\left(f_{k} / f\right)^{\prime} f g\right)=W\left(w_{1}, \ldots, w_{k}\right)
$$

It follows that w_{1}, \ldots, w_{k} are linearly independent solutions of an equation (2), in which the coefficients A_{p} are analytic in Δ and $A_{k-1} \equiv 0$. Moreover, we have $A_{p} \in \Lambda$, by (9), (12), and Lemma 2.2. The key to Frank's method is then to observe that there is a system of equations

$$
\begin{equation*}
T_{\mu}(G)=S_{\mu}(H)=\sum_{j=0}^{k-\mu} c_{j, \mu} H^{(j)}, \quad \mu=0, \ldots, k-1, \tag{13}
\end{equation*}
$$

with the following properties [3, Lemma 2.4] (see also [6, Lemma 6] and $[8$, Lemma C]).
(i) The system (13) is solved by $G=g, H=h$.
(ii) The T_{μ} and S_{μ} are homogeneous linear differential operators, and their coefficients are rational functions in the A_{p} and their derivatives and so are in Λ.
(iii) If G, H are any solutions of (13), then the functions

$$
f_{1}^{\prime} G+f_{1} H, \ldots, f_{k}^{\prime} G+f_{k} H
$$

are solutions of the equation (2) and so linear combinations of the w_{j}.
(iv) Taking $\mu=k-1$ gives

$$
\begin{equation*}
S_{k-1}(H)=H^{\prime}=T_{k-1}(G)=U(G)=-(k-1) G^{\prime \prime} / 2-A_{k-2} G / k . \tag{14}
\end{equation*}
$$

There are then two cases to consider (for the details see [3, pp. 358-361]). In the first case, suppose that we have $c_{0, \nu} \not \equiv 0$ for at least one $\nu \in\{0, \ldots, k-1\}$. Then (12), (13), and (14) give

$$
\begin{equation*}
h=-\psi g=\left(c_{0, \nu}\right)^{-1}\left(T_{\nu}(g)-\sum_{j=1}^{k-\nu} c_{j, \nu} \frac{d^{j-1}}{d z^{j-1}}(U(g))\right)=V(g) \tag{15}
\end{equation*}
$$

and g solves a system of equations

$$
\begin{equation*}
U(g)=\frac{d}{d z}(V(g)), \quad S_{\mu}(V(g))=T_{\mu}(g), \quad \mu=0, \ldots, k-2 \tag{16}
\end{equation*}
$$

with coefficients in Λ. If the dimension of the solution space of (16) is 1 , then a standard reduction procedure [11, p. 126] shows that g solves a first order homogeneous linear differential equation with coefficients in Λ, in which case g^{\prime} / g is in Λ and therefore so is ψ, by (15). On the other hand, if the
system (16) has a solution G with G / g nonconstant, then G and $H=V(G)$ solve (13). Hence, the functions $f_{j}^{\prime} G+f_{j} H$ are solutions of (2) and so linear combinations of the w_{p}, and so there are polynomials g_{j} with

$$
f_{j}^{\prime} G+f_{j} H=g_{j}^{\prime} g+g_{j} h
$$

for $j=1, \ldots, k$. The standard argument due to Frank [3, p. 360] (see also [6, p. 424]) then shows that this system of linear equations has rank 3, and $\psi=-h / g$ is a rational function and so obviously satisfies (10).

In the second case, we have $c_{0, \mu} \equiv 0$ for each μ in the system (13), which is then solved by taking $G=0, H=1$. Hence, the functions $f_{j}^{\prime} G+f_{j} H=f_{j}$ are solutions of (2), and so the w_{j} are rational functions, from which it follows that so is ψ.

5. Proof of Theorem 1.3

Let f satisfy the hypotheses of Theorem 1.3 and define ψ by (5). We follow the construction of [2], but with modifications to take account of the poles of ψ. Denote positive constants by c_{j}, d_{j}. Choose a small positive δ as in Lemma 3.1, and define t, r_{n} and q_{n} by setting, for $n=1,2, \ldots$,

$$
\begin{equation*}
t=1-\frac{\delta}{8}, \quad r_{n}=1-t^{n}, \quad q_{n}=\left[\frac{16 \pi r_{n}}{\delta t^{n}}\right]+1, \quad \theta_{n}=\frac{2 \pi}{q_{n}} \tag{17}
\end{equation*}
$$

where $[x]$ denotes the greatest integer not exceeding x. The logarithmic rectangles $B_{n, q}$ are then defined, for $n=1,2, \ldots$ and $q=0, \ldots, q_{n}-1$, by

$$
\begin{equation*}
B_{n, q}=\left\{r e^{i \theta}: r_{n} \leq r \leq r_{n+1}, q \theta_{n} \leq \theta \leq(q+1) \theta_{n}\right\} \tag{18}
\end{equation*}
$$

Following [2] we obtain, from (18),

$$
\begin{equation*}
\operatorname{diam} B_{n, q} \leq r_{n+1}-r_{n}+r_{n} \theta_{n}<\frac{\delta t^{n}}{4}<\frac{\delta\left(1-r_{n+1}\right)}{2} \tag{19}
\end{equation*}
$$

Thus, (19) implies that

$$
\begin{equation*}
z_{0} \in B_{n, q} \quad \Rightarrow \quad B_{n, q} \subseteq B\left(z_{0}, \frac{\delta\left(1-\left|z_{0}\right|\right)}{2}\right) \tag{20}
\end{equation*}
$$

It now follows from Lemma 3.1 and (20) that

$$
\begin{equation*}
f \text { has at most one pole, possibly multiple, in each } B_{n, q} . \tag{21}
\end{equation*}
$$

By (21), the number of distinct poles z of f satisfying $r_{n} \leq|z| \leq r_{n+1}$ is at $\operatorname{most} q_{n}=O\left(t^{-n}\right)$. For $r_{n} \leq r \leq r_{n+1}$ we deduce using (17) that

$$
\begin{equation*}
\bar{n}(r, f) \leq c_{1}\left(1+t^{-1}+\cdots+t^{-n}\right) \leq c_{2} t^{-n} \leq \frac{c_{3}}{1-r_{n}} \leq \frac{c_{3}}{1-r} \tag{22}
\end{equation*}
$$

This leads at once to (11), and proves the first assertion made following Proposition 3.1.
5.1. An exceptional set. Let w_{1}, w_{2}, \ldots be the distinct poles of f in the set $\{z \in \mathbb{C}: 1 / 4 \leq|z|<1\}$, arranged in order of nondecreasing modulus. Let σ_{1} be small and positive and set

$$
\begin{aligned}
\Omega_{j} & =\left\{z \in \mathbb{C}:\left|\arg \frac{z}{w_{j}}\right| \leq \sigma_{1}\left(1-\left|w_{j}\right|\right)^{2},|\log | \frac{z}{w_{j}}| | \leq \sigma_{1}\left(1-\left|w_{j}\right|\right)^{2}\right\} \\
\Omega & =\bigcup_{j=1}^{\infty} \Omega_{j} .
\end{aligned}
$$

Then there exist small positive constants σ_{2}, σ_{3} such that

$$
\begin{equation*}
\sigma_{2} \leq \frac{\left|z-w_{j}\right|}{\left|w_{j}\right|\left(1-\left|w_{j}\right|\right)^{2}} \leq \sigma_{3} \quad \text { for all } z \in \partial \Omega_{j} \tag{24}
\end{equation*}
$$

By choosing σ_{1} small enough, we may therefore assume in view of Lemma 3.1 that the Ω_{j} are pairwise disjoint.

Lemma 5.1. We have

$$
\begin{equation*}
\log |\psi(z)| \leq O\left(\frac{1}{1-r} \log \frac{1}{1-r}\right) \quad \text { for }|z|=r \geq \frac{1}{2}, \quad z \notin \operatorname{int} \Omega \tag{25}
\end{equation*}
$$

Proof. Let z be as in (25) and apply the Poisson-Jensen formula to ψ in $B(0, R)$, where $1-R=(1-r) / 2$. Ignoring the contribution from the zeros of ψ, which in any case is nonpositive, and observing that each pole of f is a simple pole of ψ, we obtain

$$
\log |\psi(z)| \leq\left(\frac{R+r}{R-r}\right)(T(R, \psi)+T(R, 1 / \psi))+\sum_{\left|w_{j}\right|<R} \log \frac{4}{\left|z-w_{j}\right|}+O(1)
$$

But $\left|z-w_{j}\right| \geq c_{4}(1-r)^{2}$ for all $j \in \mathbb{N}$, by (24), and so (25) follows using (10) and (22).

5.2. A growth estimate for $1 / f$.

Lemma 5.2. We have, for $|z|=r \geq \frac{1}{2}$,

$$
\begin{equation*}
\log ^{+} \log ^{+} \frac{1}{|f(z)|}=O\left(\frac{1}{1-r} \log \frac{1}{1-r}\right) \tag{26}
\end{equation*}
$$

Proof. Let $z_{0}=r_{0} e^{i \theta_{0}}$ with $3 / 4 \leq r_{0}<1$ and $\theta_{0} \in[0,2 \pi)$ and define the closed set S_{0} as follows. First, take the line segment L_{0} from $(3 / 4) e^{i \theta_{0}}$ to z_{0}, and let M_{0} be the component of $L_{0} \cup \Omega$ which contains z_{0}. Finally, define S_{0} by $S_{0}=M_{0} \backslash \operatorname{int} \Omega$. Then S_{0} is a connected subset of $B(0, R)$, where $1-R=\left(1-r_{0}\right) / 2$, using the fact that the Ω_{j} are pairwise disjoint in (23). By construction the total arc length of S_{0} is at most c_{5}, and since (25) holds on S_{0}, integration of $-\psi$ gives (26) on S_{0}, with r replaced by r_{0}. But z_{0} either lies on S_{0} or in the interior of some Ω_{j} which meets L_{0}, in which case $\partial \Omega_{j} \subseteq S_{0}$. Since $1 / f$ is analytic on Δ, the lemma follows.
5.3. Application of Harnack's inequality. Fix a small positive constant ε and a large positive integer N. We modify the classification of $[2]$ as follows. A box $B_{n, q}$ will be called bad if $n \geq N$ and there exists

$$
\begin{equation*}
z_{0} \in B_{n, q} \backslash \Omega \quad \text { with } \log \left|\psi\left(z_{0}\right)\right|>\frac{12}{\left(1-\left|z_{0}\right|\right)^{1-\varepsilon}} \tag{27}
\end{equation*}
$$

Lemma 5.3. Let $B_{n, q}$ be a bad box. Then

$$
\begin{equation*}
\log |\psi(z)| \geq \frac{1}{(1-|z|)^{1-\varepsilon}} \quad \text { for all } z \in B_{n, q} \tag{28}
\end{equation*}
$$

Proof. Take z_{0} satisfying (27). By Lemma 3.1, (27), and the fact that N is large, we have

$$
\begin{equation*}
|\psi(z)| \geq \frac{1}{1-\left|z_{0}\right|} \quad \text { for all } z \in B\left(z_{0}, 2 \delta\left(1-\left|z_{0}\right|\right)\right) \tag{29}
\end{equation*}
$$

and there is at most one pole w^{*} of ψ in $B\left(z_{0}, 2 \delta\left(1-\left|z_{0}\right|\right)\right)$. If there is no such pole w^{*}, or if $\left|w^{*}-z_{0}\right| \geq \delta\left(1-\left|z_{0}\right|\right)$, set

$$
h(z)=\log |\psi(z)|, \quad U=B\left(z_{0}, \delta\left(1-\left|z_{0}\right|\right)\right) .
$$

On the other hand, if $\left|w^{*}-z_{0}\right|<\delta\left(1-\left|z_{0}\right|\right)$ set

$$
h(z)=\log \left|\frac{\psi(z)\left(z-w^{*}\right)}{\delta}\right|, \quad U=B\left(z_{0}, 2 \delta\left(1-\left|z_{0}\right|\right)\right) .
$$

In either case, we have $h(z)>0$ on ∂U, using (29), and the function h is positive and harmonic on U. Furthermore, the fact that $z_{0} \notin \Omega$ gives

$$
h\left(z_{0}\right) \geq \frac{12}{\left(1-\left|z_{0}\right|\right)^{1-\varepsilon}}-c_{6} \log \frac{1}{1-\left|z_{0}\right|}-c_{6} \geq \frac{6}{\left(1-\left|z_{0}\right|\right)^{1-\varepsilon}}
$$

again since N is large. Applying Harnack's inequality now yields

$$
h(z) \geq \frac{2}{\left(1-\left|z_{0}\right|\right)^{1-\varepsilon}} \quad \text { for }\left|z-z_{0}\right|<\frac{\delta\left(1-\left|z_{0}\right|\right)}{2}
$$

from which (28) follows using (20).
For $\theta \in[0,2 \pi]$, let

$$
R_{\theta}=\left\{r e^{i \theta}: 0 \leq r<1\right\} .
$$

For $n=N, N+1, \ldots$, let E_{n} be the union of the bad boxes $B_{n, q}$ and let

$$
F_{n}=\left\{\theta \in[0,2 \pi]: r_{n} e^{i \theta} \in E_{n}\right\}=\left\{\theta \in[0,2 \pi]: R_{\theta} \cap E_{n} \neq \emptyset\right\}
$$

using (18). Then (10) and (28) give

$$
c_{7} \log \frac{1}{1-r_{n}} \geq m\left(r_{n}, \psi\right) \geq \frac{1}{2 \pi} \int_{F_{n}} \log ^{+}\left|\psi\left(r_{n} e^{i \theta}\right)\right| d \theta \geq \frac{\left|F_{n}\right|}{2 \pi\left(1-r_{n}\right)^{1-\varepsilon}},
$$

using $|X|$ for the Lebesgue measure of $X \subseteq \mathbb{R}$, and so we obtain, recalling (17),

$$
\left|F_{n}\right| \leq c_{8}\left(1-r_{n}\right)^{1-\varepsilon} \log \frac{1}{1-r_{n}}=c_{9} n t^{n(1-\varepsilon)}
$$

Next, for $n \geq N$ let E_{n}^{*} be the union of all those Ω_{j} which meet the half-open annulus given by $r_{n} \leq|z|<r_{n+1}$, and let

$$
F_{n}^{*}=\left\{\theta \in[0,2 \pi]: R_{\theta} \cap E_{n}^{*} \neq \emptyset\right\} .
$$

It follows from (21) and (23) that the number of Ω_{j} which make up E_{n}^{*} is not greater than $q_{n-1}+q_{n}+q_{n+1}=O\left(t^{-n}\right)$, and that

$$
\left|F_{n}^{*}\right| \leq d_{1}\left(1-r_{n}\right)^{2} t^{-n} \leq d_{2} t^{n}
$$

Now set

$$
\widetilde{E}_{n}=E_{n} \cup E_{n}^{*}, \quad \widetilde{F}_{n}=F_{n} \cup F_{n}^{*}
$$

for $n \geq N$, so that

$$
\begin{equation*}
\left|\widetilde{F}_{n}\right| \leq d_{3} n t^{n(1-\varepsilon)}, \quad \sum_{n=N}^{\infty}\left|\widetilde{F}_{n}\right|<\infty \tag{30}
\end{equation*}
$$

Then

$$
\widetilde{F}=\left\{\theta \in[0,2 \pi]: R_{\theta} \text { meets infinitely many } \widetilde{E}_{n}\right\}=\bigcap_{m=N}^{\infty} \bigcup_{n=m}^{\infty} \widetilde{F}_{n}
$$

has Lebesgue measure $|\widetilde{F}|=0$. Set $\widetilde{E}_{N-1}=\Delta, \widetilde{F}_{N-1}=[0,2 \pi]$ and

$$
G_{n}=\left\{\theta \in[0,2 \pi]: R_{\theta} \cap \widetilde{E}_{n-1} \neq \emptyset, \quad R_{\theta} \cap \widetilde{E}_{m}=\emptyset \text { for all } m \geq n\right\}
$$

for $n \geq N$. Then the G_{n} are pairwise disjoint with union $[0,2 \pi] \backslash \widetilde{F}$, and for $n>N$ we have

$$
\begin{equation*}
G_{n} \subseteq \widetilde{F}_{n-1} \quad \text { and } \quad\left|G_{n}\right| \leq\left|\widetilde{F}_{n-1}\right| \leq d_{3} n t^{n(1-\varepsilon)} \tag{31}
\end{equation*}
$$

by (30).
Let $n \geq N$ and $\theta \in G_{n}$. Then we estimate $1 / f(z)$ on R_{θ} as follows. For $z \in R_{\theta}$ with $|z| \geq r_{n}$, we have $z \notin \widetilde{E}_{m}=E_{m} \cup E_{m}^{*}$ for all $m \geq n$, so that $z \notin \Omega$ and

$$
\log |\psi(z)| \leq \frac{12}{(1-|z|)^{1-\varepsilon}}
$$

because otherwise z would lie in a bad box. In view of (26), this gives

$$
\log \frac{1}{|f(z)|} \leq \exp \left(\frac{d_{4}}{1-r_{n}} \log \frac{1}{1-r_{n}}\right)+\exp \left(\frac{12}{(1-r)^{1-\varepsilon}}\right)
$$

for $z \in R_{\theta},|z|=r>r_{n}$. Using (26) again, the fact that N is large, and the inequalities

$$
x+y \leq x y \quad(x, y \geq 2), \quad(a+b)^{1+\varepsilon} \leq(2 a)^{1+\varepsilon}+(2 b)^{1+\varepsilon} \quad(a, b>0)
$$

we obtain

$$
\begin{aligned}
I_{\theta}= & \int_{0}^{1}\left(\log ^{+} \log ^{+} \frac{1}{|f(z)|}\right)^{1+\varepsilon} d r \\
\leq & d_{5}+\int_{\frac{1}{2}}^{r_{n}}\left(\frac{d_{4}}{1-r} \log \frac{1}{1-r}\right)^{1+\varepsilon} d r \\
& +\int_{r_{n}}^{1}\left(\frac{d_{4}}{1-r_{n}} \log \frac{1}{1-r_{n}}+\frac{12}{(1-r)^{1-\varepsilon}}\right)^{1+\varepsilon} d r \\
\leq & \frac{d_{6}}{\left(1-r_{n}\right)^{\varepsilon}}\left(\log \frac{1}{1-r_{n}}\right)^{1+\varepsilon}+\int_{r_{n}}^{1}\left(\frac{2 d_{4}}{1-r_{n}} \log \frac{1}{1-r_{n}}\right)^{1+\varepsilon} d r \\
& +\int_{r_{n}}^{1}\left(\frac{24}{(1-r)^{1-\varepsilon}}\right)^{1+\varepsilon} d r \\
\leq & \frac{d_{7}}{\left(1-r_{n}\right)^{\varepsilon}}\left(\log \frac{1}{1-r_{n}}\right)^{1+\varepsilon}+\int_{r_{n}}^{1}\left(\frac{d_{8}}{(1-r)^{1-\varepsilon^{2}}}\right) d r \\
\leq & \frac{d_{7}}{\left(1-r_{n}\right)^{\varepsilon}}\left(\log \frac{1}{1-r_{n}}\right)^{1+\varepsilon}+d_{9}\left(1-r_{n}\right)^{\varepsilon^{2}} \\
\leq & d_{10} n^{1+\varepsilon} t^{-n \varepsilon} .
\end{aligned}
$$

Recalling (31) and the fact that \widetilde{F} has measure 0 , we arrive finally at

$$
\begin{aligned}
I & =\iint_{\Delta}\left(\log ^{+} \log ^{+} \frac{1}{|f(z)|}\right)^{1+\varepsilon} d x d y \\
& \leq \sum_{n=N}^{\infty} \int_{G_{n}} I_{\theta} d \theta \\
& \leq d_{11}+\sum_{n=N+1}^{\infty} d_{3} n t^{n(1-\varepsilon)} \cdot d_{10} n^{1+\varepsilon} t^{-n \varepsilon} \\
& =d_{11}+d_{3} d_{10} \sum_{n=N+1}^{\infty} n^{2+\varepsilon} t^{n(1-2 \varepsilon)}<\infty
\end{aligned}
$$

from which it follows that $1 / f \in \mathcal{A}[2$, Lemma 4]. This proves Theorem 1.3.
We conclude the paper by observing that Proposition 3.1 and Theorem 1.3 together answer a question from [2]. Suppose that f is analytic in Δ and f and $f^{(k)}$ have no zeros for some $k \geq 3$. Then $\psi=f^{\prime} / f$ satisfies (10) and $\psi \in \mathcal{A}$ by $[2$, Lemma 2(a)]. Also, Theorem 1.3 gives $1 / f \in \mathcal{A}$ and so f and $\log f$ are in \mathcal{A}. If, in addition, f^{\prime} has no zeros, then f satisfies the hypotheses of [2, Lemma 3(b)].

References

[1] K. F. Barth, Asymptotic values of meromorphic functions, Michigan Math. J. 13 (1966), 321-340. MR 0199405
[2] K. F. Barth and P. J. Rippon, Exceptional values and the Maclane class A, Bergman spaces and related topics in analysis, Contemp. Math. 404 (2006), 41-52. MR 2244003
[3] W. Bergweiler and J. K. Langley, Nonvanishing derivatives and normal families, J. Analyse Math. 91 (2003), 353-367. MR 2037414
[4] J. G. Clunie, On integral and meromorphic functions, J. London Math. Soc. 37 (1962), 17-27. MR 0143906
[5] G. Frank, Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, Math. Zeit. 149 (1976), 29-36. MR 0422615
[6] G. Frank and S. Hellerstein, On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients, Proc. London Math. Soc. (3) 53 (1986), 407-428. MR 0868452
[7] G. Frank, W. Hennekemper and G. Polloczek, Über die Nullstellen meromorpher Funktionen und deren Ableitungen, Math. Ann. 225 (1977), 145-154. MR 0430250
[8] G. Frank and J. K. Langley, Pairs of linear differential polynomials, Analysis 19 (1999), 173-194. MR 1705364
[9] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9-42. MR 0110807
[10] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964. MR 0164038
[11] E. L. Ince, Ordinary differential equations, Dover, New York, 1956. MR 0010757
[12] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Math., vol. 15, Walter de Gruyter, Berlin, 1993. MR 1207139
[13] J. K. Langley, Proof of a conjecture of Hayman concerning f and $f^{\prime \prime}$, J. London Math. Soc. (2) 48 (1993), 500-514. MR 1241784
[14] G. R. Maclane, Asymptotic values of holomorphic functions, Rice Univ. Studies 49 (1963), 83 pp. MR 0148923
[15] G. R. Maclane, Exceptional values of $f^{(n)}(z)$, asymptotic values of $f(z)$, and linearly accessible asymptotic values, Mathematical essays dedicated to A.J. Macintyre 271288, Ohio Univ. Press, 1970. MR 0274765
[16] G. Pólya, Über die Nullstellen sukzessiver Derivierten, Math. Zeit. 12 (1922), 36-60. MR 1544505
[17] W. Schwick, Normality criteria for families of meromorphic functions, J. Analyse Math. 52 (1989), 241-289. MR 0981504
[18] Y. Tumura, On the extensions of Borel's theorem and Saxer-Csillag's theorem, Proc. Phys. Math. Soc. Japan (3) 19 (1937), 29-35.
[19] L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813-817. MR 0379852
[20] L. Zalcman, Normal families: New perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998), 215-230. MR 1624862

Alastair Fletcher, School of Mathematical Sciences, University of Nottingham, NG7 2RD, UK

E-mail address: alastair.fletcher@nottingham.ac.uk
Jim Langley, School of Mathematical Sciences, University of Nottingham, NG7 2RD, UK

E-mail address: james.langley@nottingham.ac.uk
Janis Meyer, School of Mathematical Sciences, University of Nottingham, NG7 2RD, UK

E-mail address: janis_meyer@gmx.de

[^0]: Received October 30, 2008; received in final form December 12, 2008.
 This research was supported by EPSRC Grant EP/D065321/1 (Fletcher and Langley) and DFG Grant ME 3198/1-1 (Meyer).

 2000 Mathematics Subject Classification. 30D40, 30D35.

