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NONVANISHING DERIVATIVES AND THE MACLANE
CLASS A

ALASTAIR FLETCHER, JIM LANGLEY, AND JANIS MEYER

Abstract. Let k ≥ 2 and let f be meromorphic in the unit disc
Δ, such that f(z)f (k)(z) �= 0 for all z ∈ Δ and the poles of f in

Δ have bounded multiplicities. Then f has asymptotic values on
a dense subset of ∂Δ.

1. Introduction

Let Δ = B(0,1) denote the unit disc in the complex plane and let T = ∂Δ
be the boundary circle. A meromorphic function f : Δ → C

∗ = C ∪ { ∞} is
said to have the asymptotic value a ∈ C∗ at ζ ∈ T if there exists a path
z(t) : [0, ∞) → Δ such that

z(t) → ζ and f(z(t)) → a as t → +∞.

The MacLane class A is the set of all analytic functions f on D such that f
has asymptotic values at each ζ in a dense subset Ef of T [14], [15]. The
corresponding class of meromorphic functions is denoted by Am [1]. Note
that it is common practice to exclude constant functions from the classes A
and Am, but for the present paper it is convenient to admit them. Our
starting point is the following theorem [2, Theorem 2(a)].

Theorem 1.1 ([2]). Let f be analytic on Δ such that ff ′ ′ has no zeros
in Δ. Then f ′/f , log f and f are all in A.

The corresponding study of meromorphic functions in the plane with non-
vanishing derivatives has a long history, going back at least as far as Pólya
[16]. In a landmark paper on the value distribution of meromorphic functions
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and their derivatives [9], Hayman conjectured that if f is meromorphic in the
plane and f and f (k) have no zeros for some k ≥ 2, then

(1) f(z) = eaz+b or f(z) = (az + b)−n,

where a, b ∈ C and n ∈ N. For entire functions and k = 2, this conjecture was
proved by Hayman [9]. Theorem 1.1 may be regarded as an analogue for the
unit disc of Hayman’s result. For k ≥ 3 and f again entire, Hayman’s conjec-
ture was proved by Clunie [4] using what is now called the Tumura–Clunie
method [10], [18]. Finally, Hayman’s conjecture was established for meromor-
phic functions for k ≥ 3 by Frank [5], [7], and for k = 2 by Langley [13].

Associated with these results in the plane is a normal family analogue
for plane domains in the spirit of the Bloch hypothesis [20]. The following
theorem is due to Bergweiler and Langley [3], but was proved by Schwick
[17] for families of analytic functions: both results rely on the Pang–Zalcman
rescaling method [19], [20].

Theorem 1.2 ([3]). Let D be a domain in C, let k ≥ 2 be an integer, and
let F be the family of all meromorphic functions f on D such that f and f (k)

have no zeros on D. Then the family {f ′/f : f ∈ F } is normal on D.

The main result of the present paper is the following theorem.

Theorem 1.3. Let k ≥ 2 and let f be meromorphic in Δ = B(0,1), such
that f(z)f (k)(z) �= 0 for all z ∈ Δ and the poles of f in Δ have bounded mul-
tiplicities. Then 1/f ∈ A and f ∈ Am.

The hypothesis on the multiplicities of the poles may not really be needed
in Theorem 1.3, but is indispensable for the present method in that it implies
a separation between distinct poles of f which is sufficient for much of the
machinery of [2] to be applicable, with appropriate modifications, to f ′/f .

2. Preliminary lemmas

The following lemma is straightforward but we give a proof for complete-
ness.

Lemma 2.1. Let F be a normal family of meromorphic functions on the
unit disc Δ. Let d, c1, c2 be real numbers with 0 < d < 1 and 0 ≤ c1 < c2. Then
there exist positive real numbers bj such that the following properties hold for
all u ∈ F .

(i) If z1 ∈ B(0, d) and |u(z1)| ≤ c1, we have |u(z)| ≤ c2 for all z ∈ B(z1, b1).
(ii) For any zero z1 of u in B(0, d), there are no zeros z of u which satisfy

0 < |z − z1| < b2s, where s = min{1, |u′(z1)| }.
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Proof. Part (i) follows simply from the equicontinuity of F . For part (ii),
let z1 ∈ B(0, d) be a zero of u and apply (i) with c1 = 0, c2 = 1. This gives a
positive constant B1, independent of u, such that

|u(z)| ≤ 1 for |z − z1| ≤ 2B1.

Assume now that z2 is a zero of u with 0 < |z2 − z1| ≤ B1. Then

|h(z)| ≤ 1
(2B1)(B1)

on ∂B, where h(z) =
u(z)

(z − z1)(z − z2)

is analytic on the disc B = B(z1,2B1). It follows that

|u′(z1)| = |(z2 − z1)h(z1)| ≤ |z2 − z1|
2B2

1

,

which gives a lower bound for |z2 − z1| and completes the proof. �

The next lemma is an analogue for the unit disc of a standard result in the
plane setting [12, Lemma 7.7].

Lemma 2.2. Let k and m be positive integers, let A0, . . . ,Ak−1 be mero-
morphic functions on the unit disc Δ, and assume that the equation

(2) w(k) + Ak−1w
(k−1) + · · · + A0w = 0

has a fundamental set f1, . . . , fk of solutions meromorphic in Δ and satisfying

T (r, fj) = O(1 − r)−m

as r → 1 for each j. Then

(3) m(r,Ap) = O

(
log

1
1 − r

)
as r → 1 for each p.

Proof. This uses induction on k and the familiar reduction of order pro-
cedure. If k = 1, then the result follows immediately from [10, Lemma 2.3],
applied to f1. Assume now that k ≥ 2 and that the result has been proved
for k − 1, and write w = vf1 and u = v′. Then the functions

gj =
(

fj

f1

)′
, j = 2, . . . , k,

are linearly independent solutions of the equation

u(k−1) + Bk−2u
(k−2) + · · · + B0u = 0,

where

(4) Bk−2 = k
f ′
1

f1
+ Ak−1, . . . , B0 = k

f
(k−1)
1

f1
+ · · · + A1.
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The induction hypothesis gives (3) for p = 0, . . . , k − 2, but with Ap replaced
by Bp, and (4) then leads to (3) for p = k − 1, . . . ,1. Finally, (3) for p = 0
follows from dividing (2) by w. �

3. Estimates for logarithmic derivatives

Throughout this section, let f be meromorphic on the unit disc Δ such
that f and f (k) have no zeros there, for some k ≥ 2. Let

(5) ψ(z) =
f ′(z)
f(z)

.

Lemma 3.1. There exists c1 > 0 such that

(6) ρ(ψ(z)) =
|ψ′(z)|

1 + |ψ(z)|2 ≤ c1

(1 − |z|)2 on Δ.

Furthermore, there exists δ ∈ (0,1/2) such that, for all z0 ∈ Δ,

(1 − |z0|)|ψ(z0)| ≥ 2 ⇒ (1 − |z0|)|ψ(z)| ≥ 1(7)
for z ∈ B

(
z0,2δ(1 − |z0|)

)
.

Finally, suppose in addition that the poles of f have bounded multiplicities.
Then δ may be chosen so that for each z0 ∈ Δ the function f has at most one
pole, possibly multiple, in B(z0,2δ(1 − |z0|)).

Proof. Let z0 ∈ Δ and set

g(z) = f
(
z0 + (1 − |z0|)z

)
, G(z) =

g′(z)
g(z)

= (1 − |z0|)ψ
(
z0 + (1 − |z0|)z

)
.

Then g belongs to the family H of functions h which are meromorphic on Δ
with hh(k) �= 0 there, and G belongs to the family {h′/h : h ∈ H }, which is
normal by Theorem 1.2. Thus, ρ(G(0)) ≤ c1 for some c1 independent of f
and z0, which implies (6). Now the existence of δ satisfying (7) follows from
Lemma 2.1(i) applied to H = 1/G with z1 = 0. Finally, if the poles of f have
bounded multiplicities, then there exists c2 > 0 such that H(z) = 0 implies
that |H ′(z)| ≥ c2. If u1, u2 are distinct poles of f in B(z0, (1 − |z0|)/2), define
v1, v2 by uj = z0 +(1 − |z0|)vj . Then v1, v2 are distinct zeros of H in B(0,1/2),
and it follows from Lemma 2(ii) that |v1 − v2| ≥ c3 > 0, where c3 is independent
of z0. This proves Lemma 3.1. �

Observe next that (6) gives, in the terminology of [10, p. 12],

(8) A(r,ψ) = O

(
1

1 − r

)3

, T (r,ψ) = O

(
1

1 − r

)2

as r → 1. It then follows using [10, p. 36] that

(9) m(r,ψ′/ψ) = O

(
log

1
1 − r

)
, T

(
r,ψ(j)

)
= O

(
1

1 − r

)2
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as r → 1, for each j ∈ N.

Proposition 3.1. If k ≥ 3, then

(10) T (r,ψ) = O

(
log

1
1 − r

)
as r → 1. The same conclusion holds for k = 2 if, in addition,

(11) N(r, f) = O

(
log

1
1 − r

)
as r → 1.

We make several remarks concerning Proposition 3.1. First, it will be shown
in Section 5 that (11) automatically holds if the poles of f have bounded
multiplicities. On the other hand, it seems likely that Proposition 3.1 holds
for k = 2 without the additional hypothesis (11), although the present method
does not suffice for this.

Next, the case k ≥ 3 is essentially not new, and may be derived directly
from the methods of [5], [7]: however, it is much simpler to do this once the
estimates (8) and (9) are available, and we will outline the proof in the next
section.

4. Proof of Proposition 3.1

Let f satisfy the hypotheses of Proposition 3.1 for some k ≥ 2, and define ψ
by (5). We first dispose of the case k = 2. If f is given by (1), then the estimate
(10) is obvious, while in the contrary case (10) follows at once from (9), (11),
and [9, Theorem 4] (see also [10, p. 60]).

Assume henceforth that k ≥ 3. The notation S(r) will be used to denote
any function S : [0,1) → [0, ∞) which satisfies

S(r) = O

(
log

1
1 − r

)
as r → 1. Then (9) gives

m
(
r,ψ(j)/ψ

)
= S(r)

for each j ∈ N. Denote by Λ the collection of meromorphic functions λ on Δ
such that

T (r,λ) = S(r).
Then Λ is a field closed under differentiation.

Frank’s method [5], [7] depends on properties of the Wronskian determinant
[12, Section 1.4]. Define analytic functions fj , g, h and wj on Δ by

fj(z) = zj−1, gk =
f

f (k)
, h = −

(
f ′

f

)
g = −ψg,(12)

wj = f ′
jg + fjh.
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Then we have, with ck a nonzero constant,

W (f1, . . . , fk, f) = ckf (k) = ckfg−k

and so
ck

(fg)k
= W (f1/f, . . . , fk/f,1) = (−1)kW

(
(f1/f)′, . . . , (fk/f)′).

Multiplying through by (fg)k then gives

(−1)kck = W
(
(f1/f)′(fg), . . . , (fk/f)′fg

)
= W (w1, . . . ,wk).

It follows that w1, . . . ,wk are linearly independent solutions of an equation
(2), in which the coefficients Ap are analytic in Δ and Ak−1 ≡ 0. Moreover,
we have Ap ∈ Λ, by (9), (12), and Lemma 2.2. The key to Frank’s method is
then to observe that there is a system of equations

(13) Tμ(G) = Sμ(H) =
k−μ∑
j=0

cj,μH(j), μ = 0, . . . , k − 1,

with the following properties [3, Lemma 2.4] (see also [6, Lemma 6] and [8,
Lemma C]).

(i) The system (13) is solved by G = g,H = h.
(ii) The Tμ and Sμ are homogeneous linear differential operators, and their

coefficients are rational functions in the Ap and their derivatives and so are
in Λ.

(iii) If G,H are any solutions of (13), then the functions

f ′
1G + f1H, . . . , f ′

kG + fkH

are solutions of the equation (2) and so linear combinations of the wj .
(iv) Taking μ = k − 1 gives

(14) Sk−1(H) = H ′ = Tk−1(G) = U(G) = −(k − 1)G′ ′/2 − Ak−2G/k.

There are then two cases to consider (for the details see [3, pp. 358–361]). In
the first case, suppose that we have c0,ν �≡ 0 for at least one ν ∈ {0, . . . , k − 1}.
Then (12), (13), and (14) give

(15) h = −ψg = (c0,ν)−1

(
Tν(g) −

k−ν∑
j=1

cj,ν
dj−1

dzj−1
(U(g))

)
= V (g),

and g solves a system of equations

(16) U(g) =
d

dz
(V (g)), Sμ(V (g)) = Tμ(g), μ = 0, . . . , k − 2,

with coefficients in Λ. If the dimension of the solution space of (16) is 1,
then a standard reduction procedure [11, p. 126] shows that g solves a first
order homogeneous linear differential equation with coefficients in Λ, in which
case g′/g is in Λ and therefore so is ψ, by (15). On the other hand, if the
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system (16) has a solution G with G/g nonconstant, then G and H = V (G)
solve (13). Hence, the functions f ′

jG + fjH are solutions of (2) and so linear
combinations of the wp, and so there are polynomials gj with

f ′
jG + fjH = g′

jg + gjh

for j = 1, . . . , k. The standard argument due to Frank [3, p. 360] (see also
[6, p. 424]) then shows that this system of linear equations has rank 3, and
ψ = −h/g is a rational function and so obviously satisfies (10).

In the second case, we have c0,μ ≡ 0 for each μ in the system (13), which is
then solved by taking G = 0,H = 1. Hence, the functions f ′

jG + fjH = fj are
solutions of (2), and so the wj are rational functions, from which it follows
that so is ψ.

5. Proof of Theorem 1.3

Let f satisfy the hypotheses of Theorem 1.3 and define ψ by (5). We follow
the construction of [2], but with modifications to take account of the poles
of ψ. Denote positive constants by cj , dj . Choose a small positive δ as in
Lemma 3.1, and define t, rn and qn by setting, for n = 1,2, . . . ,

(17) t = 1 − δ

8
, rn = 1 − tn, qn =

[
16πrn

δtn

]
+ 1, θn =

2π

qn
,

where [x] denotes the greatest integer not exceeding x. The logarithmic rec-
tangles Bn,q are then defined, for n = 1,2, . . . and q = 0, . . . , qn − 1, by

(18) Bn,q = {reiθ : rn ≤ r ≤ rn+1, qθn ≤ θ ≤ (q + 1)θn}.

Following [2] we obtain, from (18),

(19) diamBn,q ≤ rn+1 − rn + rnθn <
δtn

4
<

δ(1 − rn+1)
2

.

Thus, (19) implies that

(20) z0 ∈ Bn,q ⇒ Bn,q ⊆ B

(
z0,

δ(1 − |z0|)
2

)
.

It now follows from Lemma 3.1 and (20) that

(21) f has at most one pole, possibly multiple, in each Bn,q .

By (21), the number of distinct poles z of f satisfying rn ≤ |z| ≤ rn+1 is at
most qn = O(t−n). For rn ≤ r ≤ rn+1 we deduce using (17) that

(22) n(r, f) ≤ c1(1 + t−1 + · · · + t−n) ≤ c2t
−n ≤ c3

1 − rn
≤ c3

1 − r
.

This leads at once to (11), and proves the first assertion made following Propo-
sition 3.1.
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5.1. An exceptional set. Let w1,w2, . . . be the distinct poles of f in the set
{z ∈ C : 1/4 ≤ |z| < 1}, arranged in order of nondecreasing modulus. Let σ1

be small and positive and set

Ωj =
{

z ∈ C :
∣∣∣∣arg

z

wj

∣∣∣∣ ≤ σ1(1 − |wj |)2,
∣∣∣∣log

∣∣∣∣ z

wj

∣∣∣∣∣∣∣∣ ≤ σ1(1 − |wj |)2
}

,

Ω =
∞⋃

j=1

Ωj .(23)

Then there exist small positive constants σ2, σ3 such that

(24) σ2 ≤ |z − wj |
|wj |(1 − |wj |)2 ≤ σ3 for all z ∈ ∂Ωj .

By choosing σ1 small enough, we may therefore assume in view of Lemma 3.1
that the Ωj are pairwise disjoint.

Lemma 5.1. We have

(25) log |ψ(z)| ≤ O

(
1

1 − r
log

1
1 − r

)
for |z| = r ≥ 1

2
, z /∈ intΩ.

Proof. Let z be as in (25) and apply the Poisson–Jensen formula to ψ in
B(0,R), where 1 − R = (1 − r)/2. Ignoring the contribution from the zeros
of ψ, which in any case is nonpositive, and observing that each pole of f is a
simple pole of ψ, we obtain

log |ψ(z)| ≤
(

R + r

R − r

)(
T (R,ψ) + T (R,1/ψ)

)
+

∑
|wj |<R

log
4

|z − wj | + O(1).

But |z − wj | ≥ c4(1 − r)2 for all j ∈ N, by (24), and so (25) follows using (10)
and (22). �

5.2. A growth estimate for 1/f .

Lemma 5.2. We have, for |z| = r ≥ 1
2 ,

(26) log+ log+ 1
|f(z)| = O

(
1

1 − r
log

1
1 − r

)
.

Proof. Let z0 = r0e
iθ0 with 3/4 ≤ r0 < 1 and θ0 ∈ [0,2π) and define the

closed set S0 as follows. First, take the line segment L0 from (3/4)eiθ0 to z0,
and let M0 be the component of L0 ∪ Ω which contains z0. Finally, define
S0 by S0 = M0 \ intΩ. Then S0 is a connected subset of B(0,R), where
1 − R = (1 − r0)/2, using the fact that the Ωj are pairwise disjoint in (23).
By construction the total arc length of S0 is at most c5, and since (25) holds
on S0, integration of −ψ gives (26) on S0, with r replaced by r0. But z0

either lies on S0 or in the interior of some Ωj which meets L0, in which case
∂Ωj ⊆ S0. Since 1/f is analytic on Δ, the lemma follows. �
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5.3. Application of Harnack’s inequality. Fix a small positive constant
ε and a large positive integer N . We modify the classification of [2] as follows.
A box Bn,q will be called bad if n ≥ N and there exists

(27) z0 ∈ Bn,q \ Ω with log |ψ(z0)| >
12

(1 − |z0|)1−ε
.

Lemma 5.3. Let Bn,q be a bad box. Then

(28) log |ψ(z)| ≥ 1
(1 − |z|)1−ε

for all z ∈ Bn,q .

Proof. Take z0 satisfying (27). By Lemma 3.1, (27), and the fact that N
is large, we have

(29) |ψ(z)| ≥ 1
1 − |z0| for all z ∈ B

(
z0,2δ(1 − |z0|)

)
,

and there is at most one pole w∗ of ψ in B(z0,2δ(1 − |z0|)). If there is no
such pole w∗, or if |w∗ − z0| ≥ δ(1 − |z0|), set

h(z) = log |ψ(z)|, U = B
(
z0, δ(1 − |z0|)

)
.

On the other hand, if |w∗ − z0| < δ(1 − |z0|) set

h(z) = log
∣∣∣∣ψ(z)(z − w∗)

δ

∣∣∣∣, U = B
(
z0,2δ(1 − |z0|)

)
.

In either case, we have h(z) > 0 on ∂U , using (29), and the function h is
positive and harmonic on U . Furthermore, the fact that z0 /∈ Ω gives

h(z0) ≥ 12
(1 − |z0|)1−ε

− c6 log
1

1 − |z0| − c6 ≥ 6
(1 − |z0|)1−ε

,

again since N is large. Applying Harnack’s inequality now yields

h(z) ≥ 2
(1 − |z0|)1−ε

for |z − z0| <
δ(1 − |z0|)

2
,

from which (28) follows using (20). �

For θ ∈ [0,2π], let
Rθ = {reiθ : 0 ≤ r < 1}.

For n = N,N + 1, . . . , let En be the union of the bad boxes Bn,q and let

Fn = {θ ∈ [0,2π] : rneiθ ∈ En} = {θ ∈ [0,2π] : Rθ ∩ En �= ∅},

using (18). Then (10) and (28) give

c7 log
1

1 − rn
≥ m(rn, ψ) ≥ 1

2π

∫
Fn

log+ |ψ(rneiθ)| dθ ≥ |Fn|
2π(1 − rn)1−ε

,
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using |X| for the Lebesgue measure of X ⊆ R, and so we obtain, recalling
(17),

|Fn| ≤ c8(1 − rn)1−ε log
1

1 − rn
= c9ntn(1−ε).

Next, for n ≥ N let E∗
n be the union of all those Ωj which meet the half-open

annulus given by rn ≤ |z| < rn+1, and let

F ∗
n = {θ ∈ [0,2π] : Rθ ∩ E∗

n �= ∅}.

It follows from (21) and (23) that the number of Ωj which make up E∗
n is not

greater than qn−1 + qn + qn+1 = O(t−n), and that

|F ∗
n | ≤ d1(1 − rn)2t−n ≤ d2t

n.

Now set
Ẽn = En ∪ E∗

n, F̃n = Fn ∪ F ∗
n ,

for n ≥ N , so that

(30) |F̃n| ≤ d3ntn(1−ε),

∞∑
n=N

|F̃n| < ∞.

Then

F̃ = {θ ∈ [0,2π] : Rθ meets infinitely many Ẽn } =
∞⋂

m=N

∞⋃
n=m

F̃n

has Lebesgue measure |F̃ | = 0. Set ẼN −1 = Δ, F̃N −1 = [0,2π] and

Gn = {θ ∈ [0,2π] : Rθ ∩ Ẽn−1 �= ∅, Rθ ∩ Ẽm = ∅ for all m ≥ n}

for n ≥ N . Then the Gn are pairwise disjoint with union [0,2π] \ F̃ , and for
n > N we have

(31) Gn ⊆ F̃n−1 and |Gn| ≤ |F̃n−1| ≤ d3ntn(1−ε)

by (30).
Let n ≥ N and θ ∈ Gn. Then we estimate 1/f(z) on Rθ as follows. For

z ∈ Rθ with |z| ≥ rn, we have z /∈ Ẽm = Em ∪ E∗
m for all m ≥ n, so that z /∈ Ω

and
log |ψ(z)| ≤ 12

(1 − |z|)1−ε
,

because otherwise z would lie in a bad box. In view of (26), this gives

log
1

|f(z)| ≤ exp
(

d4

1 − rn
log

1
1 − rn

)
+ exp

(
12

(1 − r)1−ε

)
for z ∈ Rθ, |z| = r > rn. Using (26) again, the fact that N is large, and the
inequalities

x + y ≤ xy (x, y ≥ 2), (a + b)1+ε ≤ (2a)1+ε + (2b)1+ε (a, b > 0),
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we obtain

Iθ =
∫ 1

0

(
log+ log+ 1

|f(z)|

)1+ε

dr

≤ d5 +
∫ rn

1
2

(
d4

1 − r
log

1
1 − r

)1+ε

dr

+
∫ 1

rn

(
d4

1 − rn
log

1
1 − rn

+
12

(1 − r)1−ε

)1+ε

dr

≤ d6

(1 − rn)ε

(
log

1
1 − rn

)1+ε

+
∫ 1

rn

(
2d4

1 − rn
log

1
1 − rn

)1+ε

dr

+
∫ 1

rn

(
24

(1 − r)1−ε

)1+ε

dr

≤ d7

(1 − rn)ε

(
log

1
1 − rn

)1+ε

+
∫ 1

rn

(
d8

(1 − r)1−ε2

)
dr

≤ d7

(1 − rn)ε

(
log

1
1 − rn

)1+ε

+ d9(1 − rn)ε2

≤ d10n
1+εt−nε.

Recalling (31) and the fact that F̃ has measure 0, we arrive finally at

I =
∫ ∫

Δ

(
log+ log+ 1

|f(z)|

)1+ε

dxdy

≤
∞∑

n=N

∫
Gn

Iθ dθ

≤ d11 +
∞∑

n=N+1

d3ntn(1−ε) · d10n
1+εt−nε

= d11 + d3d10

∞∑
n=N+1

n2+εtn(1−2ε) < ∞,

from which it follows that 1/f ∈ A [2, Lemma 4]. This proves Theorem 1.3.
We conclude the paper by observing that Proposition 3.1 and Theorem 1.3

together answer a question from [2]. Suppose that f is analytic in Δ and f
and f (k) have no zeros for some k ≥ 3. Then ψ = f ′/f satisfies (10) and ψ ∈ A
by [2, Lemma 2(a)]. Also, Theorem 1.3 gives 1/f ∈ A and so f and log f are
in A. If, in addition, f ′ has no zeros, then f satisfies the hypotheses of [2,
Lemma 3(b)].
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