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NONVANISHING DERIVATIVES AND THE MACLANE
CLASS A

ALASTAIR FLETCHER, JIM LANGLEY, AND JANIS MEYER

ABSTRACT. Let k> 2 and let f be meromorphic in the unit disc
A, such that f(z)f* (2) #0 for all z € A and the poles of f in
A have bounded multiplicities. Then f has asymptotic values on
a dense subset of OA.

1. Introduction

Let A = B(0,1) denote the unit disc in the complex plane and let T = A
be the boundary circle. A meromorphic function f: A — C* =C U {0} is
said to have the asymptotic value a € C* at ( € T if there exists a path
z(t) : [0,00) — A such that

z2(t)—¢ and f(z(t)) —a ast— +oo.

The MacLane class A is the set of all analytic functions f on D such that f
has asymptotic values at each ¢ in a dense subset Ey of T [14], [15]. The
corresponding class of meromorphic functions is denoted by A,, [1]. Note
that it is common practice to exclude constant functions from the classes A
and A,,, but for the present paper it is convenient to admit them. Our
starting point is the following theorem [2, Theorem 2(a)].

THEOREM 1.1 ([2]). Let f be analytic on A such that ff"” has no zeros
in A. Then f'/f, log f and f are all in A.

The corresponding study of meromorphic functions in the plane with non-
vanishing derivatives has a long history, going back at least as far as Pdlya
[16]. In a landmark paper on the value distribution of meromorphic functions
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and their derivatives [9], Hayman conjectured that if f is meromorphic in the
plane and f and f(*) have no zeros for some k > 2, then

(1) flz)= el or f(z)=(az+0b)"",

where a,b € C and n € N. For entire functions and k = 2, this conjecture was
proved by Hayman [9]. Theorem 1.1 may be regarded as an analogue for the
unit disc of Hayman’s result. For k> 3 and f again entire, Hayman’s conjec-
ture was proved by Clunie [4] using what is now called the Tumura—Clunie
method [10], [18]. Finally, Hayman’s conjecture was established for meromor-
phic functions for k >3 by Frank [5], [7], and for k =2 by Langley [13].

Associated with these results in the plane is a normal family analogue
for plane domains in the spirit of the Bloch hypothesis [20]. The following
theorem is due to Bergweiler and Langley [3], but was proved by Schwick
[17] for families of analytic functions: both results rely on the Pang—Zalcman
rescaling method [19], [20].

THEOREM 1.2 ([3]). Let D be a domain in C, let k> 2 be an integer, and
let F be the family of all meromorphic functions f on D such that f and f*)
have no zeros on D. Then the family {f'/f: f € F} is normal on D.

The main result of the present paper is the following theorem.

THEOREM 1.3. Let k > 2 and let f be meromorphic in A = B(0,1), such
that f(2)f*)(2) #0 for all z € A and the poles of f in A have bounded mul-
tiplicities. Then 1/f € A and f € Ay,.

The hypothesis on the multiplicities of the poles may not really be needed
in Theorem 1.3, but is indispensable for the present method in that it implies
a separation between distinct poles of f which is sufficient for much of the
machinery of [2] to be applicable, with appropriate modifications, to f’/f.

2. Preliminary lemmas

The following lemma is straightforward but we give a proof for complete-
ness.

LEMMA 2.1. Let F be a normal family of meromorphic functions on the
unit disc A. Let d,c1,co be real numbers with 0 <d <1 and 0 < ¢y < co. Then
there exist positive real numbers b; such that the following properties hold for
allue F.

(i) If z1 € B(0,d) and |u(z1)] < ¢1, we have |u(z)| < g for all z € B(z1,b1).
(ii) For any zero z1 of u in B(0,d), there are no zeros z of u which satisfy
0 < |z — 21| < bas, where s =min{1, |u’(z1)|}.
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Proof. Part (i) follows simply from the equicontinuity of F. For part (ii),
let z; € B(0,d) be a zero of u and apply (i) with ¢; =0,co =1. This gives a
positive constant By, independent of u, such that

lu(z)] <1 for |z — 21| <2Bj.

Assume now that zs is a zero of u with 0 < |23 — 21| < B;. Then

L 9B where h(s) = 42
@By OB e hE) =TTy

is analytic on the disc B = B(z1,2B1). It follows that

Ih(2)] <

|22 — 21]

W/ (21)] = (22 — 21)h(21)] < 257

which gives a lower bound for |z5 — 21| and completes the proof. O

The next lemma is an analogue for the unit disc of a standard result in the
plane setting [12, Lemma 7.7].

LEMMA 2.2. Let k and m be positive integers, let Ag, ..., Ax_1 be mero-
morphic functions on the unit disc A, and assume that the equation

(2) w® + Ay w4 Agw =0
has a fundamental set fy,..., fr of solutions meromorphic in A and satisfying

T(r,fj) =00 —r)~"

1
1—r

Proof. This uses induction on k and the familiar reduction of order pro-
cedure. If k=1, then the result follows immediately from [10, Lemma 2.3],
applied to fi. Assume now that k > 2 and that the result has been proved
for k — 1, and write w =vf; and u =1v'. Then the functions

gj:(%>v j:27"~7k7

are linearly independent solutions of the equation

as r— 1 for each j. Then

(3) m(r,A,) =0 <log

as r— 1 for each p.

w0 4 B w2 4y Bow =0,

where
(k—1)

(4) Bk—2:k£+Ak_1, . Bo=kll 4.4
bil fi
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The induction hypothesis gives (3) for p=0,...,k — 2, but with A, replaced
by B,, and (4) then leads to (3) for p=k —1,...,1. Finally, (3) for p=0
follows from dividing (2) by w. O

3. Estimates for logarithmic derivatives

Throughout this section, let f be meromorphic on the unit disc A such
that f and f(®) have no zeros there, for some k > 2. Let

f'(z)

5 = .
) v =15

LEMMA 3.1. There exists ¢1 >0 such that

_ W)l 1

© AV =P Sa—pp "
Furthermore, there exists 6 € (0,1/2) such that, for all zg € A,
(7) (L—=1]20D)¥(20)[ 22 = (1 —|20])|eb(2)] =1

for z € B(2,26(1 — |2])).

Finally, suppose in addition that the poles of f have bounded multiplicities.
Then & may be chosen so that for each zy € A the function f has at most one
pole, possibly multiple, in B(zg,20(1 — |20])).

Proof. Let zg € A and set

92 =10+ [)2), 612) =L = (1= a0 + (1 fl)2).

Then g belongs to the family H of functions h which are meromorphic on A
with hh(*¥) £ 0 there, and G belongs to the family {h’//h: h € H}, which is
normal by Theorem 1.2. Thus, p(G(0)) < ¢; for some ¢; independent of f
and zg, which implies (6). Now the existence of § satisfying (7) follows from
Lemma 2.1(i) applied to H =1/G with z; = 0. Finally, if the poles of f have
bounded multiplicities, then there exists ¢z > 0 such that H(z) =0 implies
that |H'(z)| > ¢a. If uy,us are distinct poles of f in B(zo, (1 — |20])/2), define
v1,v2 by uj = 20+ (1 —|z0|)v;. Then vy, vy are distinct zeros of H in B(0,1/2),
and it follows from Lemma 2(ii) that |v; —wv2| > ¢3 > 0, where c3 is independent
of zg. This proves Lemma 3.1. O

Observe next that (6) gives, in the terminology of [10, p. 12],

®) s =0(15) " rew=o({L)

as r — 1. It then follows using [10, p. 36] that

(9) m(r,w’/w>0(loglir)7 T(w(”)O(lir)Q
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as r — 1, for each j € N.

ProrosiTiON 3.1. If k > 3, then

1
(10) T(r,p)=0 <log )
1—7r

as r — 1. The same conclusion holds for k=2 if, in addition,

— 1
11 N =01
(1) (rf)=0(log 12 )
asr—1.

We make several remarks concerning Proposition 3.1. First, it will be shown
in Section 5 that (11) automatically holds if the poles of f have bounded
multiplicities. On the other hand, it seems likely that Proposition 3.1 holds
for k = 2 without the additional hypothesis (11), although the present method
does not suffice for this.

Next, the case k > 3 is essentially not new, and may be derived directly
from the methods of [5], [7]: however, it is much simpler to do this once the
estimates (8) and (9) are available, and we will outline the proof in the next
section.

4. Proof of Proposition 3.1

Let f satisfy the hypotheses of Proposition 3.1 for some k > 2, and define ¢
by (5). We first dispose of the case k = 2. If f is given by (1), then the estimate
(10) is obvious, while in the contrary case (10) follows at once from (9), (11),
and [9, Theorem 4] (see also [10, p. 60]).

Assume henceforth that & > 3. The notation S(r) will be used to denote
any function S : [0,1) — [0,00) which satisfies

S(r)zO(logliT>

as 7 — 1. Then (9) gives
m(r, Y /) = S(r)

for each j € N. Denote by A the collection of meromorphic functions A on A
such that
T(r,\)=5(r).
Then A is a field closed under differentiation.
Frank’s method [5], [7] depends on properties of the Wronskian determinant
[12, Section 1.4]. Define analytic functions f;,g,h and w; on A by

(12) L =21, g=- h:—(f—/)gz—m

fk’ !
wj; = f;ng fjh
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Then we have, with ¢, a nonzero constant,

W(fla"'afkaf)zckf(k) :ckfgik

and so

(chk)k — W) oo fi) 1) = (COFW (S /) (o))

Multiplying through by (fg)* then gives
(Vfex =W ((H /1) (£9)s-- (1)) fg) = W (wr,...,wp).

It follows that ws,...,wy are linearly independent solutions of an equation
(2), in which the coefficients A, are analytic in A and Ax_; =0. Moreover,
we have A, € A, by (9), (12), and Lemma 2.2. The key to Frank’s method is
then to observe that there is a system of equations

k—p
(13) T,(G)=Su(H) = ¢;HY, p=0,....k-1,
j=0

with the following properties [3, Lemma 2.4] (see also [6, Lemma 6] and [8,
Lemma C]).

(i) The system (13) is solved by G =g, H = h.

(ii) The T}, and S,, are homogeneous linear differential operators, and their
coefficients are rational functions in the A, and their derivatives and so are
in A.

(iii) If G, H are any solutions of (13), then the functions
are solutions of the equation (2) and so linear combinations of the w.

(iv) Taking p=k — 1 gives
(14) Sk-1(H)=H' =T, 1(G)=U(G) =—(k—1)G" /2 — Ar_2G /k.
There are then two cases to consider (for the details see [3, pp. 358-361]). In

the first case, suppose that we have ¢y, # 0 for at least one v € {0,...,k—1}.
Then (12), (13), and (14) give

. k—v dj71
(15)  h=—vg=(cos) ™" | Tu(9) = D_cin 5= (U(9)) | =V(9),
j=1
and g solves a system of equations
d

16)  Ulg)=(V(9),  Su(V(g) =Tulg), n=0,....k-2,

with coefficients in A. If the dimension of the solution space of (16) is 1,
then a standard reduction procedure [11, p. 126] shows that g solves a first

order homogeneous linear differential equation with coefficients in A, in which
case ¢'/g is in A and therefore so is ¥, by (15). On the other hand, if the
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system (16) has a solution G with G/g nonconstant, then G and H = V(G)
solve (13). Hence, the functions f;G + f;H are solutions of (2) and so linear
combinations of the w,, and so there are polynomials g; with

fiG+ fiH = gjg+ g;h

for j=1,...,k. The standard argument due to Frank [3, p. 360] (see also
[6, p. 424]) then shows that this system of linear equations has rank 3, and
1 = —h/g is a rational function and so obviously satisfies (10).

In the second case, we have ¢g , = 0 for each p in the system (13), which is
then solved by taking G =0, H = 1. Hence, the functions fJ’-G + f;H = f; are
solutions of (2), and so the w; are rational functions, from which it follows
that so is .

5. Proof of Theorem 1.3

Let f satisfy the hypotheses of Theorem 1.3 and define ¥ by (5). We follow
the construction of [2], but with modifications to take account of the poles
of ¥. Denote positive constants by c;,d;. Choose a small positive § as in
Lemma 3.1, and define ¢,r, and g, by setting, for n=1,2,...,

) ,
(17) t:1_§, rp=1—1t", qn:|:

1677,
otn

_27r

} +]‘7 9774 b
an

where [z] denotes the greatest integer not exceeding xz. The logarithmic rec-
tangles By, ; are then defined, for n=1,2,... and ¢=0,...,¢, — 1, by

(18) Bq= {rem crn <r <rpy1,q0, <0< (qg+1)0,}.
Following [2] we obtain, from (18),
ot 0(1—rpyq)

(19) diam By, g <7py1 — 1 +1rnby < Ve < —

Thus, (19) implies that

6(1—
0 acm = sacs(af5ED)
It now follows from Lemma 3.1 and (20) that
(21) f has at most one pole, possibly multiple, in each B, 4.

By (21), the number of distinct poles z of f satisfying 7, < |z| < r,4q is at
most ¢, =O0(t™"). For r, <r <rp4; we deduce using (17) that
C3

C3 <

(22) A <elHtT T Sor S g <

This leads at once to (11), and proves the first assertion made following Propo-
sition 3.1.
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5.1. An exceptional set. Let wy,ws,... be the distinct poles of f in the set
{z€C:1/4<|z| <1}, arranged in order of nondecreasing modulus. Let o4
be small and positive and set

Qj:{ze(C: log

= U Q,
j=1

Then there exist small positive constants o, 03 such that

<ol luy)?}

z
arg —
wj

< o1 (1= |w;])?,
wj

(24) <oz forall z € 0Q;.
By choosing o1 small enough, we may therefore assume in view of Lemma 3.1
that the €2; are pairwise disjoint.

LEMMA 5.1. We have
(25) log|w(z)§O<1 11 > for\z|:r21, z ¢ int Q.
-7

1
log
—r

(\}

Proof. Let z be as in (25) and apply the Poisson—Jensen formula to ¢ in
B(0,R), where 1 — R= (1 —r)/2. Ignoring the contribution from the zeros
of 1, which in any case is nonpositive, and observing that each pole of f is a
simple pole of 1, we obtain

R+r
log 6(:)| < (30 ) (PR )+ T(RA/) + X Tow - +0().
|w; <R

But |z —wj| > c4(1 —7)? for all j €N, by (24), and so (25) follows using (10)
and (22). O
5.2. A growth estimate for 1/f.

LEMMA 5.2. We have, for |z|=r> 1,

1 1 1

2 log™ log™ = 1 :
20 o' og" 1 =0 15 e 155

Proof. Let zyp = 1o’ with 3/4 <rg <1 and 6y € [0,27) and define the
closed set Sy as follows. First, take the line segment Lg from (3/4)e'® to z,
and let My be the component of Lo U Q) which contains zg. Finally, define
So by So =M\ intQ. Then Sy is a connected subset of B(0,R), where
1—R=(1-rg)/2, using the fact that the Q; are pairwise disjoint in (23).
By construction the total arc length of Sy is at most ¢5, and since (25) holds
on Sy, integration of —1 gives (26) on Sy, with r replaced by ro. But zg
either lies on Sy or in the interior of some €2; which meets Lg, in which case
0Q; € Sp. Since 1/f is analytic on A, the lemma follows. O
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5.3. Application of Harnack’s inequality. Fix a small positive constant
e and a large positive integer N. We modify the classification of [2] as follows.
A box B, 4 will be called bad if n > N and there exists
12
27 €B,,\Q with 1 >
( ) 20 .,q\ wi OgW’(ZON (1_ |ZO|)1_5
LEMMA 5.3. Let By, 4 be a bad box. Then

(28) log [¢(2)] > for all z € By, 4.

ot
(1—]z))t==

Proof. Take zq satisfying (27). By Lemma 3.1, (27), and the fact that N
is large, we have

(29) [(z)] > for all z € B(zo,2(5(1 — |zo|))7

1— |z
and there is at most one pole w* of ¥ in B(z,20(1 — |2p])). If there is no
such pole w*, or if |w* — zg| > 6(1 — |20]), set

h(z) =logle(2)], U= B(20,6(1~ |2])).
On the other hand, if |w* — zg| < §(1 — |20|) set

¥(2)(z — w*)

h(z) =log 5

. U=B(2,25(1—|z)).

In either case, we have h(z) >0 on U, using (29), and the function h is
positive and harmonic on U. Furthermore, the fact that zg ¢ 2 gives

12 S 6
(1—1zol)'—= T (1= ao)t
again since N is large. Applying Harnack’s inequality now yields

2 6(1 —|zo|)
— for |z — 2| < ————,
A PRI

from which (28) follows using (20). d

h(zo) > — cglog C6

b
1= [z0]
h(z) >

For 6 € [0,2x7], let
Rgz{rew :0<r<1}.
For n=N,N +1,..., let E, be the union of the bad boxes B,, ; and let
F,={0¢c0,2n]: me’ € E,} ={0€[0,27] : Ro N E,, # 0},
using (18). Then (10) and (28) give

|l
2m(1 —rp)t—e’

crlog .

n

1 .
> s ) > —— / log* [(rae®)] df >
2 F,
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using |X| for the Lebesgue measure of X C R, and so we obtain, recalling
(17),

|F| < cg(1—rp)tFlog = cont™(17)

1—r,
Next, for n > N let E}; be the union of all those §2; which meet the half-open
annulus given by 7, <|z| < 7,41, and let
Fr={6€[0,2n]: RgN E} #0}.
It follows from (21) and (23) that the number of ; which make up E;, is not
greater than ¢,_1 + ¢n + ¢n+1 = O(t™™), and that
|FX| < dy(1—rp)%t " < dot™.

Now set

E,=FE,UE}, ﬁn:FnUFf[,
for n > N, so that

(30) |Fo| <dgnt™@72) 3" |F,| < 0.
n=N

Then

o0 (oo}
F= {6 €[0,27] : Rp meets infinitely many En} = ﬂ U F,

m=N n=m
has Lebesgue measure |[F|=0. Set Exy_1 = A, Fy_1 =[0,27] and
Gn,={0€10,2r]: RgyNEy_1#0, RgN Ey =0 for all m>n}

for n> N. Then the G, are pairwise disjoint with union [0,27]\ F, and for
n > N we have

(31) GnCFno1 and |G| <|F,_1| <dsnt™1—°)

by (30).
Let n > N and 6 € G,,. Then we estimate 1/f(z) on Ry as follows. For
z € Ry with |z| > r,, we have z ¢ E,, = E,, UE?, for all m >n, so that z ¢ Q

and 1
1 S
o8 [V(()| < T

because otherwise z would lie in a bad box. In view of (26), this gives

lo 1 <e ds lo 1 +e 12
(VN (12
&) =P\ =r, 1o, Pla=nr—=

for z € Ry,|z| =r > r,. Using (26) again, the fact that N is large, and the
inequalities

z+y<azy (z,y>2), (a+b)'"<(2a)'"™+(20)'° (a,b>0),
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we obtain

1 b1 1+e
Iy = / (log log —) dr
0 £ (=)

Tn d 1 1+e
§d5—|—/ 4 log —— dr
1 1—r 1—7r

:
*}K:<1dink%11nl+(13318>1+8dr
1+e 1 1+e
= (1 —din)s (log 1 _17%) - /m (12_(12{71 tos 1 _17%) ar
1 1+
o (a=) @
1+ 1
< Ty (logll ) €+/,«n(<1—i8>152> o
dy

1\ 2
(1rf(bg1r> =)

S d10n1+5t—ns.

IN

Recalling (31) and the fact that F has measure 0, we arrive finally at

1 14¢
I:// (log+ log™ —) dx dy
A £ (2)]
gz/@w
n=N Gn

<djq + Z dsntn(lfs) _d10n1+5t7n6
n=N+1

=d; +dsdyg Z p2tegn(i=2¢) « 00,
n=N+1

from which it follows that 1/f € A [2, Lemma 4]. This proves Theorem 1.3.

We conclude the paper by observing that Proposition 3.1 and Theorem 1.3
together answer a question from [2]. Suppose that f is analytic in A and f
and f*) have no zeros for some k > 3. Then v = f’/ f satisfies (10) and ¥ € A
by [2, Lemma 2(a)]. Also, Theorem 1.3 gives 1/f € A and so f and log f are
in A. If, in addition, f’ has no zeros, then f satisfies the hypotheses of [2,
Lemma 3(b)].
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