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EXT AND INVERSE LIMITS

JAN TRLIFAJ

Dedicated to the memory of Reinhold Baer

Abstract. Enochs’ proof of the Flat Cover Conjecture [6] is based on

a construction of special preenvelopes from [8]. A recent result of Eklof
and Shelah [7] implies consistency (with ZFC + GCH) of non-existence
of the dual construction of special precovers, for certain abelian groups.
By an analysis of Ext on limits of well-ordered inverse systems, we prove
that a weaker form of the dual construction is still available (in ZFC),
for any module over any ring.

Ext was introduced by Reinhold Baer in [4]. Since then, through the work
of Cartan, Eilenberg, Mac Lane and many successors, the Ext functor has
become an indispensable part of modern algebra.

It is well-known that the covariant Hom (= Ext0) functor commutes with
inverse limits. The Ext (= Ext1) functor does not share this property: for
example, any free group is an inverse limit of the divisible ones [11]. Similarly,
the contravariant Hom functor takes direct limits to inverse ones. However,
the corresponding property for Ext1

R(−,M) holds if and only if M is pure-
injective [3].

More recently, the Ext functor has become an essential tool of the approx-
imation theory of modules, through the notion of a special approximation
(see below for unexplained terminology). By the Wakamatsu lemma, min-
imal approximations—envelopes and covers—are special. So in the search
for envelopes and covers of modules, one naturally deals with Ext, and Ext-
orthogonal classes.

The key fact proved in [8] says that given a set S of modules there is always
a special S⊥-preenvelope, µM , for any module M . Moreover, CokerµM is
S-filtered, that is, CokerµM is a particular well-ordered directed union (=
direct limit of monomorphisms) such that the cokernels of all the successive
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embeddings are in S. This fact is one of the main points in Enochs’s proof of
the Flat Cover Conjecture [6], as well as in recent work relating approximation
theory, tilting theory, and the Finitistic Dimension Conjectures (see [1], [2],
[14], and other papers).

In view of these applications of the key result of [8], it is natural to ask
for its dualization, that is, for a possible construction of special ⊥S-precovers
whose kernels are S-cofiltered. This paper provides a construction of this sort.

By a recent result of Eklof and Shelah [7], it is, however, not possible to
obtain in ZFC a complete dual of the key result of [8] for any module over
any ring. Namely, [7] says that it is consistent with ZFC that the group of
all rationals has no (special) Whitehead precover. So it is consistent that the
dual result fails for R = Z, M = Q and S = {Z}. This explains why our
main result below—proved for any ring and any module—provides only weak
S-precovers.

In fact, when defined appropriately, the required duals of the homological
and category theoretic properties hold. One can even overcome the non-
exactness of the inverse limit functor. The reason for the failure of the general
dual result is a set-theoretic fact: while the image of a small module mapped
into a long well-ordered chain of modules will eventually sit in a member
of the chain, that is, the map will factor through the given direct system
of monomorphisms, there is no dual property (‘slenderness’) for well-ordered
cochains of modules.

1. Preliminaries

Throughout this paper, R will denote a ring, M a (right R-)module and C
a class of modules.

The notion of a C-envelope generalizes the notion of an injective envelope,
which goes back to the pioneering work of Baer [5]. A map f ∈ HomR(M,C)
with C ∈ C is a C-preenvelope ofM provided the abelian group homomorphism
HomR(f, C ′) : HomR(C,C ′) → HomR(M,C ′) is surjective for each C ′ ∈ C.
The C-preenvelope f is a C-envelope of M provided that f = gf implies g is
an automorphism for each g ∈ EndR(C).

Clearly there is a unique C-envelope of M . In general, a module M may
have many non-isomorphic C-preenvelopes, but no C-envelope. Nevertheless,
if the C-envelope of M exists, it is easily seen to be isomorphic to a direct
summand in any C-preenvelope of M provided that C is closed under direct
summands and isomorphic copies.

C-precovers and C-covers are defined dually. These generalize the projective
covers introduced by Bass in the 1960’s.

The connection between Ext and approximations of modules is through the
notion of a special approximation:
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Let C ⊆ Mod-R. Define

C⊥ = Ker Ext1
R(C,−) = {N ∈ Mod-R | Ext1

R(C,N) = 0 for all C ∈ C},
⊥C = Ker Ext1

R(−, C) = {N ∈ Mod-R | Ext1
R(N,C) = 0 for all C ∈ C}.

For C = {C}, we write for short C⊥ and ⊥C in place of {C}⊥ and ⊥{C},
respectively.

Let M ∈ Mod-R. A C-preenvelope f : M → C of M is called special
provided that f is injective and Coker f ∈ ⊥C. So a special C-preenvelope
may equivalently be viewed as an exact sequence

0 −→M
f−→ C −→ D −→ 0

such that C ∈ C and D ∈ ⊥C.
Dually, a C-precover f : C →M of M is called special if f is surjective and

Ker f ∈ C⊥.
The following well-known result is the Wakamatsu lemma. It says that

under rather weak assumptions on the class C, C-envelopes and C-covers are
special:

Lemma 1.1 ([10, §7.2]). Let M be a module and let C be a class of modules
closed under extensions.

(1) Assume C contains all injective modules. If f : M → C is a C-envelope
of M , then f is special.

(2) Assume C contains all projective modules. If f : C →M is a C-cover
of M , then f is special.

Another reason for investigating special approximations consists in a ho-
mological duality discovered by Salce:

Lemma 1.2 ([12]). Let R be a ring and let A, B be classes of modules such
that A = ⊥B and B = A⊥. Then the following are equivalent:

(1) Each module has a special A-precover.
(2) Each module has a special B-preenvelope.

Pairs of classes (A,B) such that A = ⊥B and B = A⊥ are called cotorsion
pairs. The cotorsion pairs satisfying the equivalent conditions of Lemma 1.2
are called complete.

For any class of modules C, both (⊥(C⊥), C⊥) and (⊥C, (⊥C)⊥) are cotorsion
pairs, called the cotorsion pairs generated and cogenerated, respectively, by
the class C. So there are many cotorsion pairs at hand. The following two
theorems, due to Eklof and the author, say that there are also many complete
cotorsion pairs. Before stating the results, we need more notation:

A sequence of modules A = (Aα | α ≤ µ) is a continuous chain of modules
provided that A0 = 0, Aα ⊆ Aα+1 for all α < µ and Aα =

⋃
β<αAβ for all

limit ordinals α ≤ µ.
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Let M be a module and C a class of modules. Then M is C-filtered provided
that there are an ordinal κ and a continuous chain, (Mα | α ≤ κ), consisting of
submodules of M such that M = Mκ, and each of the modules M0, Mα+1/Mα

(α < κ) is isomorphic to an element of C. The chain (Mα | α ≤ κ) is called a
C-filtration of M .

For example, if C is the set of all simple modules then the C-filtered modules
coincide with the semiartinian ones.

Theorem 1.3 ([8]). Let S be a set of modules.
(1) Let M be a module. Then there is a short exact sequence 0 → M ↪→

P → N → 0, where P ∈ S⊥ and N is S-filtered. In particular,
M ↪→ P is a special S⊥-preenvelope of M .

(2) The cotorsion pair generated by S is complete.

Theorem 1.4 ([9]). Let C = (A,B) be a cotorsion pair cogenerated by a
class of pure injective modules. Then C is complete, and every module has a
B-envelope and an A-cover.

Taking the class of all pure injective modules in Theorem 1.4, we deduce
that every module has a cotorsion envelope and a flat cover, that is, the Flat
Cover Conjecture holds true; cf. [6].

Surprisingly, Theorem 1.4 is not proven by a dualization of Theorem 1.3,
but rather by its application, that is, by proving that C is generated by a set
of modules. The obvious question asking for a dualization of Theorem 1.3 is
the main topic of the next section.

2. Cofiltrations and weak approximations

We start by fixing the notation for the dual setting:

Definition 2.1. (1) Let µ be an ordinal and A = (Aα | α ≤ µ) be a
sequence of modules. Let (gαβ | α ≤ β ≤ µ) be a sequence of epimorphisms
(with gαβ ∈ HomR(Aβ , Aα)) such that I = {(Aα, gαβ) | α ≤ β ≤ µ} is an
inverse system of modules. I is called continuous provided that A0 = 0 and
Aα = lim←−β<αAβ for all limit ordinals α ≤ µ.

Let C be a class of modules. Assume that the inverse system I is continuous.
Then Aµ is called C-cofiltered (by I) provided that Ker(gα,α+1) is isomorphic
to an element of C for all α < µ.

(2) Similarly, we define continuous inverse systems of exact sequences for
well-ordered inverse systems of short exact sequences of modules.

For example, if R = Z and C = {Zp} for a prime integer p then Jp is C-
cofiltered. Similarly, Mκ is {M}-cofiltered for any module M and any cardinal
κ ≥ ω.
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When trying to dualize Theorem 1.3, the first problem we face is the non-
exactness of the inverse limit functor in general. Fortunately, in our particular
setting, lim←− is exact.

Lemma 2.2. The functor lim←− is exact on well-ordered continuous inverse
systems of exact sequences.

Proof. Let µ be a limit ordinal. Let 0 −→ Cα
hα−−→ Bα

gα−→ Aα −→ 0
(α < µ) be a continuous well-ordered inverse system of short exact sequences
with connecting triples of epimorphisms (xβα, yβα, zβα) (β ≤ α < µ).

We will prove that the sequence 0 −→ Cµ
hµ−−→ Bµ

gµ−→ Aµ −→ 0 is exact,
where gµ = lim←−α<µ gα and hµ = lim←−α<µ hα.

Since lim←− is always left exact, it suffices to prove that gµ is surjective.
Consider a sequence a = (aα | α < µ) ∈ Aµ ⊆

∏
α<µAα. By induction on

α < µ, we define a sequence b = (bα | α < µ) ∈ Bµ ⊆
∏
α<µBα such that

gµ(b) = a. Since g0 is surjective, there exists b0 ∈ B0 such that g0(b0) = a0.
If a is defined up to α < µ, we can take u ∈ Bα+1 such that gα+1(u) = aα+1.

Let v = yα,α+1(u). Then gα(v) = zα,α+1(aα+1) = aα, so bα − v ∈ Im(hα). It
follows that there exists w ∈ Cα+1 such that bα − v = yα,α+1hα+1(w).

Define bα+1 = u + hα+1(w). Then yα,α+1(bα+1) = v + (bα − v) = bα, and
gα+1(bα+1) = gα+1(u) = aα+1. For α < µ limit, we put bα = (bβ | β < α) ∈
Bα. Since gα = lim←−β<α gβ , we get gα(bα) = aα by the induction premise. �

Let C be a class of modules. Then M ∈ ⊥C whenever M is ⊥C-filtered.
This well-known homological fact has a dual, with well-ordered direct limits
of monomorphisms replaced by well-ordered inverse limits of epimorphisms;
cf. [8]:

Lemma 2.3. Let C be a class of modules, and M be a C⊥-cofiltered module.
Then M ∈ C⊥.

Proof. Without loss of generality we may assume that C = {N} for a
module N . Let I = {(Aα, gαβ) | α ≤ β ≤ µ} be a continuous inverse system
of modules such that M = Aµ is N⊥-cofiltered by I. By induction on α ≤ µ,
we prove that Ext(N,Aα) = 0; the claim is just the case α = µ.

Let α < ν. By assumption, the short exact sequence

0→ Kα ↪→ Aα+1
gα,α+1→ Aα → 0

has Kα ∈ N⊥, so it induces the exact sequence

0 = Ext(N,Kα)→ Ext(N,Aα+1)→ Ext(N,Aα) = 0

with the middle term zero.



534 JAN TRLIFAJ

Suppose that α is a limit ordinal, so Aα = lim←−β<αAβ . For each β < α,
denote by πβ the projection of Aα to Aβ . Since all the inverse system maps
are surjective, so is πβ .

Let N ∼= F/K, where F is a free module. Denote by ε the inclusion of K
into F . It remains to show that any homomorphism ϕ ∈ Hom(K,Aα) can be
extended to some φ ∈ Hom(F,Aα) so that ϕ = φε.

Take ϕ ∈ Hom(K,Aα). By induction on β < α, define hβ ∈ Hom(F,Aβ)
such that hβε = πβϕ and gγβhβ = hγ for all γ ≤ β. For β = 0, put h0 = 0. If
β < α is a limit ordinal, then hβ is defined as the inverse limit of (hγ | γ < β).
Let β < α. By the induction premise, Ext(N,Aβ+1) = 0, so there exists
kβ+1 such that kβ+1ε = πβ+1ϕ. Put δ = hβ − gβ,β+1kβ+1. Then δε = 0, so
δ induces a homomorphism δ ∈ Hom(N,Aβ). Since Ext(N,Kβ) = 0, there
exists ∆ ∈ Hom(F,Aβ+1) such that ∆ε = 0 and δ = gβ,β+1∆, so δ = gβ,β+1∆.
Then hβ+1 = kβ+1 + ∆ satisfies hβ+1ε = πβ+1ϕ and gβ,β+1hβ+1 = hβ , and
hence gγβ+1hβ+1 = hγ for all γ ≤ β + 1.

Finally, by the inverse limit property, there exists φ ∈ Hom(F,Aα) such
that πβφ = hβ for all β < α. Then πβφε = πβϕ for all β < α, so φε = ϕ. �

Before considering the dual of Theorem 1.3, we will need to dualize two
elementary constructions of continuous direct systems of modules. Since the
dual constructions are certainly not elementary, we give more details below:

(I) Let I = {(Nα, fαβ) | α ≤ β ≤ µ} be a continuous inverse system of
modules. Let E : 0 −→ Nµ

ν−→ P −→M −→ 0 be an exact sequence of modules.
For each α < µ, consider the pushout of ν and fαµ:

0 0y y
Nµ

fαµ−−−−→ Nα

ν

y y
P

gαµ−−−−→ Pαy y
M My y
0 0

Using the pushout property, we obtain a continuous inverse system of mod-
ules (except for the condition P0 = 0), J = {(Pα, gαβ) | α ≤ β ≤ µ}, such
that P = Pµ and P0

∼= M . Moreover, the exact sequences 0 −→ Nα −→ Pα −→
M −→ 0 form an inverse system with the inverse limit 0 −→ N

ν−→ P −→
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M −→ 0, and Ker fαα+1
∼= Ker gαα+1 for all α < µ. The inverse system J

will be called the inverse system induced by I and E .

(II) Conversely, assume that J = {(Pα, gαβ) | α ≤ β ≤ µ} is a continuous
inverse system of modules (except that we allow P0 6= 0). Let P = Pµ, M =
P0, and define Nα = Ker gα0 and fαβ = gαβ � Nβ for all α ≤ β ≤ µ. Then the

exact sequences 0 −→ Nα
⊆−→ Pα

gα0−−→M −→ 0 with the maps (fαβ , gαβ , idM )
form a continuous inverse system of exact sequences with the inverse limit
0 −→ Nµ

⊆−→ P −→ M −→ 0. In particular, I = {(Nα, fαβ) | α ≤ β ≤ µ} is
a continuous inverse system of modules, and Ker fαα+1

∼= Ker gαα+1 for all
α < µ. The continuous inverse system I will be called the inverse system
derived from J .

It is easy to check that an application of (II) to a system J yields a derived
system I such that Pα is a pushout of fαµ and Nµ ↪→ P for each α < µ, so an

application of (I) to I and the sequence 0 −→ Nµ
⊆−→ P −→ M −→ 0 induces

the original system J . Similarly, applying (I), and then (II), we get back
a copy of the original system I and the exact sequence 0 −→ Nµ

ν−→ P −→
M −→ 0.

The dualization will provide only weak approximations of modules in the
following sense:

Definition 2.4. Let R be a ring, µ a limit ordinal, M a module, and S
a set of modules. Put X =

∏
S∈S S, and let 0 −→ X −→ I

π−→ J −→ 0 be an
exact sequence with I injective.

An epimorphism f : P →M is a weak special ⊥S-precover of M (of length
µ) provided that

(1) Ker f is S-cofiltered by an inverse system I (indexed by ordinals ≤ µ),
and

(2) for each x ∈ HomR(P, J) which factors through J , there is y ∈
HomR(P, I) satisfying πy = x.

Here J = {(Pα, gαβ) | α ≤ β ≤ µ} denotes the inverse system of modules

(whose inverse limit is P ) induced by I and E : 0 −→ Ker f −→ P
f−→M −→ 0.

The phrase “x factors through J ” means that there is an ordinal α < µ
such that Kerx ⊇ Ker gαµ (that is, x factors through gαµ).

Remark 2.5. Condition (1) implies that Ker f ∈ ⊥(S⊥) by Lemma 2.3,
as required in the definition of a special ⊥S-precover. In particular, any
homorphism h : N →M with N ∈ ⊥S factors through f .

On the other hand, condition (2) is weaker than P ∈ ⊥S. Of course, f is a
special ⊥S-precover iff P ∈ ⊥S (the latter says that for each x ∈ HomR(P, J)
there is y ∈ HomR(P, I) such that πy = x).
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Theorem 2.6. Let R be a ring, M be a module, and S be a set of modules.
Put X =

∏
S∈S S, and let 0 −→ X −→ I

π−→ J −→ 0 be an exact sequence with
I injective. Then for each cardinal δ there is a limit ordinal µ ≥ δ and a weak
special ⊥S-precover f : P →M of M of length µ.

Proof. Without loss of generality δ ≥ ℵ0. By induction on α ≤ δ, we define
a continuous well-ordered inverse system of modules, Jδ = {(Pα, gαβ | α ≤
β ≤ δ)} as follows: First, P0 = M and g00 = idM .

Let α < δ and κ = card(HomR(Pα, J)). Let πα be the product of κ-many
copies of π. Then Ker(πα) ∼= Xκ. In particular, Ker(πα) is S-cofiltered. Let
ϕα be the canonical morphism from Pα to Jκ. For each h ∈ HomR(Pα, J),
denote by ρh ∈ HomR(Iκ, I) and σh ∈ HomR(Jκ, J) the canonical projections.
Then h = σhϕα and σhπα = πρh for each h ∈ HomR(Pα, J).

The pullback of πα and ϕα

Pα+1
gα,α+1−−−−→ Pα

ψα

y ϕα

y
Iκ

πα−−−−→ Jκ

defines Pα+1, gα,α+1 and ψα. If α ≤ δ is a limit ordinal, we put Pα =
lim←−β<α Pβ , and let gβα be the projection Pα → Pβ . This gives the construction
of the system Jδ. Put P = Pδ and f = g0δ.

Consider x ∈ HomR(P, J) such that x factors through Jδ, that is, there
are α < δ and z ∈ HomR(Pα, J) with x = zgαδ. Altogether, we have

x = zgαδ = σzϕαgαδ = σzϕαgα,α+1gα+1,δ = σzπαψαgα+1,δ = πy,

where g = ρzψαgα+1,δ. This proves that the system J = Jδ satisfies condition
(2) in 2.4.

In order to make sure that condition (1) holds for the derived inverse sys-
tem, we will refine the construction of Jδ; so we fix α ≤ δ and let κ =
card(HomR(Pα, J)).

Consider the canonical continuous inverse system of exact sequences for
the direct product Xκ: L = {(Xβ , πβγ) | β ≤ γ ≤ λ}, where Xβ+1 = Xβ ⊕Sβ
and Sβ ∈ S, for all β ≤ λ, and Xλ = X. We apply construction (I) above to
L and to the exact sequence F : 0 −→ K

ν−→ Pα+1
gαα+1−−−−→ Pα −→ 0, where

K = Xκ ∼= Ker(πα).
By construction (I), F is the inverse limit of the continuous inverse sys-

tem of short exact sequences 0 −→ Xβ −→ Qβ −→ Pα −→ 0 (β < λ) with
triples of epimorphisms (uβγ , vβγ , 1Pα) (β ≤ γ < λ) such that Keruβ,β+1

∼=
Ker vβ,β+1

∼= Sβ ∈ S for all β < λ.
Now, refine the inverse system Jδ = (Pα, gαβ | α ≤ β < δ) (so that its

length becomes µ ≥ δ) by using the modules Qγ (γ < λ) for each α < δ; thus
we may assume that Ker(gα,α+1) ∈ S for all α < µ.
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Finally, applying the construction (II) above to J = Jµ, we get the exact

sequence E : 0 −→ Nµ
⊆−→ P

f−→ M −→ 0, where Nµ is the inverse limit
of the derived inverse system of modules I = {(Nα, fαβ | α ≤ β ≤ µ)} and
Ker fαα+1

∼= Ker gαα+1 ∈ S for all α < µ. The latter says that Nµ is S-
cofiltered, so the inverse system I satisfies condition (1) in Definition 2.4.
Applying construction (I) to I and E , we get back J by Remark 2.5. Since
J is a refinement of the old Jδ, J satisfies condition (2) by the argument
above. �

Comparing Theorems 2.6 and 1.3, it is natural to ask whether there is
always an ordinal µ—possibly a large one—such that P ∈ ⊥S, that is, such
that the weak special ⊥S-precover f is actually a special ⊥S-precover of M .

In the recent work [7], Eklof and Shelah prove that it is consistent with
ZFC + GCH that the answer is negative (for R = Z, S = {Z} and M = Q):

Theorem 2.7 ([7, Theorem 0.4]). It is consistent with ZFC + GCH that
the group of all rational numbers does not have a Whitehead precover.

In fact, in the Eklof-Shelah model any transfinite procedure attempting to
produce a special ⊥Z-precover of Q using non-split extensions with kernels
∼= Z in non-limit steps, and inverse limits of the continuous inverse systems
of epimorphisms in the limit steps, will never stop.

However, in particular cases, Theorem 2.6 can be strengthened considerably
to provide special approximations (in ZFC):

Proposition 2.8 ([13]). Let R and S be rings. Let A ∈ S-Mod-R and
B ∈ Mod-R. Denote by λ the number of generators of the left S-module
Ext1

R(B,A). Assume that Ext1
R(Aλ, A) = 0. Then there is a module C ∈

Mod-R such that
(1) Ext1

R(C,A) = 0, and
(2) there is an exact sequence 0→ Aλ → C → B → 0 in Mod-R.

The point of Proposition 2.8 is that if S = {A} satisfies Ext1
R(Aλ, A) = 0

for all λ (large enough), then the inverse limits considered above are just direct
products. This makes it possible to argue more directly—using products of
systems of short exact sequences rather than general inverse limits. For more
details, we refer to [13].

Corollary 2.9. Let R be a ring and C be a module such that Ext1
R(Cκ, C)

= 0 for all κ. Then each module has a special ⊥C-precover whose kernel is
C-cofiltered.
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