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THE HIGHER COHOMOLOGY GROUPS AND EXTENSION
THEORY

K.W. GRUENBERG

In 1934 Baer published a paper [B] on the extension theory of groups
that foreshadowed in a remarkable way some later work. Perhaps the paper
was ahead of its time. But when the time did come, during the explosive
development of homological algebra in the late forties and early fifties, Baer
kept his distance. If he had become seriously involved with cohomology, would
he have been interested in exploring along the lines of the present paper? We
shall never know, but it is fun to speculate.

Given a group G and a free presentation

(0.1) R ↪→ F � G,

Baer described the extensions of a G-module A by G as the orbits on
HomF (R,A) under the action of Der(F,A) (the derivations of F in A). In 1949
MacLane observed [M] that this result gives a new description of H2(G,A).
By then, he and Eilenberg had established the basic theory of group coho-
mology, in particular that H2(G,A) classifies group extensions and H3(G,A)
classifies obstructions.

In 1967 I showed [G2] that the Eilenberg-MacLane and Baer approaches
to extension theory can be unified using a ZG-free resolution of Z determined
by (0.1). My object here is to use this resolution to exhibit, for each n ≥ 1, a
relation between the pair H2n+2(G,A), H2n+3(G,A) and the extension theory
of a functorially determined group P (n).

1. Preliminaries

To avoid trivialities, we shall always assume that R in (0.1) is not cyclic.
Moreover, (0.1) is to be a based free presentation: this means that we specify
a set X of free generators of F (and write F (X) instead of F when this needs
stressing). The resolution determined by (0.1) is given in Robinson’s book
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([R], 11.3.5). In his notation (and using right modules throughout), this is

(1.1) · · · −→ ĪR/Ī
2
R −→ IF /IF ĪR −→ ZG −→ Z .

If Y is a set of free generators of R, then ĪnR/Ī
n+1
R is G-free on the cosets of all

elements (1− y1) . . . (1− yn) with yi ∈ Y ; and IF Ī
n
R/IF Ī

n+1
R is G-free on the

cosets of all (1− x)(1− y1) . . . (1− yn), with x ∈ X, yi ∈ Y (cf. [R], 11.3.4).
The resolution gives

H2n+2(G,A) ' Coker(HomG(IF ĪnR/IF Ī
n+1
R , A))(1.2)

−→ HomG(Īn+1
R /IF Ī

n+1
R , A),

H2n+3(G,A) ' Coker(HomG(Īn+1
R /Īn+2

R , A))(1.3)

−→ HomG(IF Īn+1
R /Īn+2

R , A).

If n = 0, (1.2) can be rewritten as the Baer-MacLane theorem: for
ĪR/IF ĪR ' R̄, the relation module determined by (0.1); and

HomG(IF /IF ĪR, A) ' HomF (IF , A) ' Der(F, A).

There is also (still with n = 0) a permutation-theoretic version of the right
hand side of (1.3). We sketch how this can be extracted from Section 5 of
[G2].

The group R×A has centre Ai, where i is the natural injection a 7→ (1, a).
We view A as F -module via (0.1). Every automorphism of R × A restricts
to an automorphism on Ai and therefore induces an automorphism of R via
(R×A)/Ai ∼→ R. Let Λ be the subset of Hom(F, Aut(R×A)) consisting of all
λ such that (i) wλ restricts on A to the action of w (meaning (ai)wλ = (aw)i),
while wλ becomes conjugation by w on R (via R×A� R); and additionally
(ii) Rλ ≤ Inn(R×A), the group of inner automorphisms. (Cf. p. 347 of [G2]
for what follows.) Thus for every λ ∈ Λ and w ∈ F ,

(r, a)wλ = (rw, aw + λ′(w, r) ),

with the function λ′ : F × R 7→ A uniquely determined by λ. Clearly λ′

vanishes on F × 1 and also on R×R (by (ii)); moreover

λ′(w, r1r2) = λ′(w, r1) + λ′(w, r2),(1.4)

λ′(w1w2, r) = λ′(w1, r)w2 + λ′(w2, r
w1).(1.5)

(Comparing with [G2], λ′(w, rw
−1

)i = w ◦ r.) Define a G-homomorphism
IF ĪR/IF Ī

2
R 7→ A on our G-basis by (1 − x)(1 − y) + IF Ī

2
R 7→ λ′(x, yx

−1
).

Then (1.4), (1.5) show that for all w ∈ F, r ∈ R,

(1− w)(1− r) + IF Ī
2
R 7→ λ′(w, rw

−1
).

Hence the map vanishes on Ī2
R/IF Ī

2
R and therefore it induces a G-homomor-

phism λ′′ in HomG(IF ĪR/Ī2
R, A).
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Conversely, starting with ϕ ∈ HomG(IF ĪR/Ī2
R, A), define λ by

(r, a)wλ =
(
rw, aw +

(
(1− w)(1− rw) + Ī2

R

)
ϕ
)
.

Then wλ ∈ Aut(R × A) and λ ∈ Λ (cf. p. 349 of [G2]). This has set up a
bijection

Λ ' HomG(IF ĪR/Ī2
R, A).

Finally,

Hom(R,A) ∼→ HomG(ĪR/Ī2
R, A) −→ HomG(IF ĪR/Ī2

R, A)

where the left hand isomorphism comes via Y and the right hand map is
restriction. Thus f ∈ Hom(R,A) determines the G-homomorphism

(1− y) + Ī2
R 7→ yf

whose restriction is f ′′ : (1 − x)(1 − y) + Ī2
R 7→ yf − yx−1

fx. Then for all
w ∈ F, r ∈ R,

f ′′ : (1− w)(1− r) + Ī2
R 7→ rf − rw

−1
fw

and f acts on Λ via (λ.f)′′ = λ′′ + f ′′.
Now (1.3) shows that

(1.6). H3(G,A) is bijective with the orbit space Λ/Hom(R,A).

2. The even dimensional groups

Choose and fix an integer n ≥ 1 and continue to use (0.1). Set

E = F ? 1R ? · · · ? nR,

where R ∼→ iR via r 7→ ir. Now F � G from (0.1) and iR → 1 for all i give
a free presentation E\G ↪→ E � G, which enables us to view all G-modules
coherently as F -modules and as E-modules.

The Cartesian group E∗ (the kernel of E � F × 1R × · · · × nR) is a free
group, whence E∗/E∗′ is free abelian. Define

E∗ = [F, 1R, . . . , nR ]E∗′,

E1 = [E∗, E\G]E∗′.

It is easy to check that these are normal subgroups of E (cf. (2.4)) and, of
course, E∗/E1 is a G-module.

(2.1) Theorem. The G-module E∗/E1 is freely generated by the cosets
of all commutators [x, 1y1, . . . , nyn ], where x ∈ X, y1, . . . , yn ∈ Y .
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This result is certainly plausible but does not seem obvious. The proof
is given in Section 4. An immediate consequence of (2.1) is the G-module
isomorphism

(2.2) E∗/E1 ' IF Ī
n
R/IF Ī

n+1
R .

Let E0/E1 be the subgroup corresponding to Īn+1
R /IF Ī

n+1
R . We claim that

E0 is determined by our based free presentation (0.1). This follows from

(2.3). The isomorphism (2.2) is independent of the choice of Y .

Proof. Given w ∈ F, ui ∈ iR and 1 ≤ k ≤ n, write

c(x) = [w, u1, . . . , uk−1, x, uk+1, . . . , un ],

with x ∈ kR. Then

(2.4) c(xy) ≡ c(x)c(y)[c(x), y] (mod E∗′).

Hence [w, u1, . . . , un] is multiplicative in each ui modulo E1. Consequently,
if x ∈ X, w ∈ F and r1, . . . , rn ∈ R, then the image of [x, 1r1, . . . , nrn ]wE1

under the isomorphism (2.2) is
(
(1−x)(1− r1) . . . (1− rn) + IF Ī

n+1
R

)
g, where

w 7→ g under F → G. �

We now have a chain of normal subgroups of E:

(2.5) E\G > E∗ > E∗ > E1 > E∗′.

From (1.2) and (2.2) we obtain

(2.6) H2n+2(G, A) ' HomG(E0/E1, A)
/

HomG(E∗/E1, A).

If P = E/E0, then G-modules become P -modules and E0 ↪→ E � P is a free
presentation of P . Denote the images in P of E\G, E∗, E∗ by P \G, P ∗, P∗,
respectively; given an extension

A� H � P ,

these three subgroups of P have complete inverse images H\G, H∗, H∗ in
H. We consider only G-restricted extensions of A by P , meaning extensions
where H∗ is abelian and H∗ is central in H\G. If two extensions of A by P are
equivalent, in the usual group-theoretic sense, and one of them is G-restricted,
then so is the other. We shall call two G-restricted extensions G-equivalent if
the attached G-module extensions

A� H∗ � P∗

are equivalent (in the usual sense of module theory). Note that if two G-
restricted extensions are equivalent in the group-theoretic sense, then they
are automatically G-equivalent.

(2.7) Theorem. The G-equivalence classes of G-equivalent extensions of
A by P form a set bijective with H2n+2(G, A).
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Thus H2n+2(G, A) is isomorphic to a subquotient of H2(P,A).

Proof. We shall use covering theory as explained in [R], Section 11.1 (or
[G2], Section 2). Let tildes denote objects modulo E1. Thus Ẽ = E/E1 and
form the split extension S = Ẽ nA. If S∗, S∗, S\G are the complete inverse
images of Ẽ∗, Ẽ∗, Ẽ\G under S � Ẽ, then

S∗ = Ẽ∗ ×A, S∗ = Ẽ∗ ×A, S\G = Ẽ\G nA.

The set M of all M / S such that M × A = Ẽ0 × A is bijective with
HomG(Ẽ0, A) via Ẽ0ϕ

′ ↔ ϕ, where ϕ′ is the G-automorphism of Ẽ0 × A
given by ea 7→ e(a + eϕ). Moreover, M 7→ Mϕ′ is a regular permutational
representation of HomG(E0, A) on M ([R], 11.1.5).

Each M in M gives an extension

(2.8) A� S/M � P

which is G-restricted. Conversely, every G-restricted extension is equivalent
to one of this form. For if A� H � P is G-restricted, then the pull-back

A −−−−→ S0 −−−−→ Ẽ∥∥∥ y y
A −−−−→ H −−−−→ P

is our split extension S: the epimorphism E � Ẽ � P lifts to a homomor-
phism ϕ : E → H under which E∗ϕ ≤ H∗ and E\Gϕ ≤ H\G. Hence E1ϕ = 1,
so that ϕ induces Ẽ → H, which shows that the pull-back is split. If M is
the kernel of S � H, then S/M is equivalent to H.

We conclude that the equivalence classes of extensions (2.8) with M ∈ M
form the subset of H2(P,A) consisting of all G-restricted equivalence classes.

Now suppose two such extension classes are G-equivalent. We pick two
representative extensions of the type (2.8) and have the diagram

A −−−−→ S∗/M −−−−→ P∗∥∥∥ yθ ∥∥∥
A −−−−→ S∗/N −−−−→ P∗

where θ is a G-module isomorphism (S∗/M = (S/M)∗ since M ≤ S∗ =
Ẽ∗ × A). Therefore (eaM)θ = e(a + eθ∗)N , where e ∈ Ẽ∗, a ∈ A and
θ∗ ∈ HomG(Ẽ∗, A). Thus ea 7→ e(a + eθ∗) is a G-automorphism of Ẽ∗ × A
whose restriction θ′ to Ẽ0 ×A gives Mθ′ = N .

Conversely, if Mϕ′ = N , where ϕ is the restriction to Ẽ0 of a G-module
homomorphism Ẽ∗ → A, then S/M, S/N are G-equivalent extensions.

In view of (2.6), this completes the proof of our theorem. �
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3. The odd dimensional groups

We shall obtain a permutation-theoretic form of H2n+3(G,A) by a method
similar to that which gives H3(G,A) in Section 1.

Let Λ be the subset of Hom
(
E, Aut(E0 × A)

)
defined as in Section 1 but

for the free presentation E0 ↪→ E � P . Each λ ∈ Λ has its attached function
λ′ : E × E0 → A vanishing on E0 × E0 and on E × 1. We consider now the
subset K of Λ consisting of those homomorphisms whose attached function
vanishes on E\G×E0 and on E×E1. So κ ∈ K, e ∈ E give the automorphism

eκ : (c, a) 7→
(
ce, ae+ κ′(e, c)

)
.

We shall construct a bijection

(3.1) K ' HomG(IF Īn+1
R /Īn+2

R , A)

and prove that the action of Hom(E0, A) on Λ (as explained in Section 1)
restricts to an action of Hom(Ẽ0, A) on K to give

(3.2) Theorem. H2n+3(G,A) is bijective with the orbit space
K /Hom(Ẽ0, A).

Hence K /Hom(Ẽ0, A) → Λ/Hom(E0, A) provides a mapping of
H2n+3(G,A) onto a subset of H3(P,A).

Proof of (3.1). Let Ω be the subset of ZF consisting of all products

(1− y1) . . . (1− yn+1), yi ∈ Y.

Then Ω provides a basis of Īn+1
R as right F -module, and also as left F -

module. The left structure ensures that Ω gives a Z-basis of the free Z-module
Īn+1
R /IF Ī

n+1
R . By the definition of Ẽ0 following (2.2), we have a (right) G-

module isomorphism

σ : Ẽ0
∼→ Īn+1

R /IF Ī
n+1
R .

Forgetting the G-module structure shows that Ẽ0 is free abelian on the set
corresponding to Ω + IF Ī

n+1
R under σ. Since Īn+1

R /Īn+2
R is free as right G-

module on Ω + Īn+2
R , therefore Ω sets up an isomorphism

(3.3) Hom(Ẽ0, A) ∼→ HomG(Īn+1
R /Īn+2

R , A).

Given c ∈ E0, its image c̃ in Ẽ0 maps to c̃σ, which can be written as an
element c′ in ZΩ (the Z-span of Ω) modulo IF Īn+1

R . Also, if e ∈ E, let e′ be
the image of e in F under the homomorphism which collapses all iR and is
the identity on F .

(3.4) (ce)′ ≡ (c′)e
′

(mod Īn+2
R ).
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Proof of (3.4). We have

(ce)′ + IF Ī
n+1
R = (c̃e)σ = (c̃e)σ = (c̃σ)e′,

because σ is a G-homomorphism, whence

(ce)′ + IF Ī
n+1
R = (c′ + IF Ī

n+1
R )e′ = (c′)e

′
+ IF Ī

n+1
R .

Since R is conjugation closed in F , (c′)e
′

= b+y, where b ∈ ZΩ and y ∈ Īn+2
R .

As Īn+2
R ⊆ IF Īn+1

R , we conclude b = (ce)′. �

Take ϕ ∈ HomG(IF Īn+1
R /Īn+2

R , A) and define, for each e ∈ E, eϕ← :
E0 ×A→ E0 ×A to be

(c, a) 7→
(
ce, ae+

(
(1− e′)(c′)e

′
+ Īn+2

R

)
ϕ
)
.

Then eϕ← ∈ Aut(E0 × A). To check that ϕ← is a homomorphism we only
need prove, in view of (1.5), that

κ′(e1e2, c) = κ′(e1, c)e2 + κ′(e2, c
e1),

where κ′(e, c) =
(
(1− e′)(c′)e′ + Īn+2

R

)
ϕ. Now(

1− (e1e2)′
)(
c′
)(e1e2)′ = (1− e′1)(c′)e

′
1e′2 + (1− e′2)(c′)e

′
1e
′
2

≡ (1− e′1)
(
ce1
)′
e′2 + (1− e′2)

(
ce1
)′ e′2

, by (3.4) .

Thus ϕ← is a homomorphism and it is clear that κ′ vanishes on E\G ×E0

and on E × E1. Hence ϕ← ∈ K.
Conversely, let κ ∈ K. The attached function κ′ : E × E0 → A is here

really a function E × Ẽ0 → A (because, by (1.4), κ is multiplicative in the
second variable). Define θ ∈ HomG(IF Īn+1

R /IF Ī
n+2
R , A) as follows: For each

x ∈ X, ω ∈ Ω, set(
(1− x)ω + IF Ī

n+2
R

)
θ = κ′(x, (ω′′)x

−1
),

where ω′′ = (ω + IF Ī
n+1
R

)
σ−1 ∈ Ẽ0. This determines a unique G-homomor-

phism (of right G-modules) because the cosets of all (1−x)Ω form a G-basis.
We claim that this formula remains valid when x, ω are replaced by any w in
F , α in Īn+1

R :

(3.5)
(
(1− w)α+ IF Ī

n+2
R

)
θ = κ′(w,

(
α′′)w

−1)
.

For (1.4) shows that the substitution α is allowed, and (1.5) together with an
induction on the X-length of w, shows the same for w. If w ∈ R, then the
right hand side of (3.5) is zero (R ≤ E\G). Hence θ determines an element
κ→ of HomG(IF Īn+1

R /Īn+2
R , A). Note that w in (3.5) can be replaced by e′

for any e ∈ E with e′ = w : this follows directly from (1.5) and the vanishing
of κ′ on E\G × E0.

Finally, κ→← = κ for all κ and ϕ←→ = ϕ for all ϕ. Thus (3.1) is estab-
lished. �
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Proof of (3.2). Using (3.3) and the restriction

HomG(Īn+1
R /Īn+2

R , A)→ HomG(IF Īn+1
R /Īn+2

R , A)

determines an action of Hom(Ẽ0, A) on K (via (3.1)). The orbit set is bijective
with H2n+3(G,A), by (1.2).

To complete the proof of (3.2) we must show that this action coincides
with that of Hom(E0, A) on Λ when restricted to Hom(Ẽ0, A). Now f ∈
Hom(Ẽ0, A) gives the homomorphism

(1− w)α+ Īn+2
R −→ α′′f − (α′′)w

−1
fw,

where w ∈ F, α ∈ Īn+1
R and α′′ = (α + IF Ī

n+1
R )σ−1. This homomorphism

corresponds under (3.1) to κ ∈ Hom(E,Aut(E0×A)), whose attached function
is

κ′(e, c) = (α′′)wf − α′′fw,
where w is the image of e in F and c̃ = α′′. On the other hand, the action be-
queathed by the discussion in Section 1 shows that f ∈ Hom(Ẽ0, A) becomes
λ ∈ Hom(E,Aut(E0×A)) with attached function λ′(e, c) = (c̃)ef− c̃fe. Thus
λ acts on K exactly like κ. �

4. Proof of the commutator theorem

Choose a transversal T to the cosets of R in F , letting 1 belong to T . We
shall prove (2.1) in the following form.

(4.1) Theorem. The abelian group E∗/E1 is freely generated by the cosets
of all commutators

[x, 1y1, . . . , nyn]t,

where x ∈ X, y1, . . . , yn ∈ Y and t ∈ T .

The kernel E\G of E � G may be written E\G = E∗.R. 1R . . . nR, whence

(4.2) E1 = E∗′ [E∗, nR] . . . [E∗, 1R][E∗, R].

We now introduce a series of normal subgroups of E between E1 and E∗′ :

(4.3) E1 = D0 > D1 > · · · > Dn+1 = E∗′,

by setting, for 1 ≤ k ≤ n,

Dk = E∗′ [E∗, nR] . . . [E∗, kR].

Hence

(4.4) Dk = Dk+1[E∗, kR].
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(4.5) Lemma. For all k ≥ 1, E∗/Dk is the free abelian group on the cosets
of all elements

[w, u1, . . . , uk−1, kyk, . . . , nyn],

where 1 6= w ∈ F, 1 6= ui ∈ iR, yk, . . . , yn ∈ Y .

When k = 1 we interpret the commutator as having no u entry; and when
k = n+ 1, no y entry.

Proof. We use downward induction on k. When k = n + 1, the given
commutators form a subset of what I called in [G1] the Cartesian set in
1R, . . . , nR,F , taken in this order. By Theorem 5.1 of [G1], they form part of
a free generating set of E∗, whence their cosets modulo E∗′ freely generate a
direct summand of E∗/E∗′. Thus the lemma is true when k = n+ 1.

Assuming now the result for E∗/Dk+1 with k ≤ n, we have

E∗ = Dk+1〈 all [w, u1, . . . , uk, k+1yk+1, . . . , nyn]〉.

Express uk as a word in kY and use (2.4) to deduce that

E∗ = Dk+1〈 all [w, u1, . . . , uk−1, kyk, . . . , nyn ] 〉 [E∗, kR ].

This and (4.4) show E∗/Dk is generated by the given elements.
Suppose we have a relation among the generators:

(4.6)
∏

[w, u1, . . . , uk−1, kyk, . . . , nyn ]m ≡ 1 (mod Dk),

where the rational integer m depends, of course, on the commutator it ex-
ponentiates. The left hand side of (4.6) is expressible, modulo Dk+1, as an
element in [E∗, kR ] and therefore (by the induction hypothesis) as a word in
commutators

[w′, u′1, . . . , u
′
k, k+1yk+1

′, . . . , nyn
′, kb ],

where b ∈ R and the location of the primed elements is clear. Such a commu-
tator is like the third factor on the right hand side of (2.4). Hence by (2.4)
and our inductive hypothesis, (4.6) breaks into many new relations, each of
the form∏

[u, kyk, ak+1, . . . , an ]m(yk) ≡
∏

[u, kr, ak+1, . . . , an, kb ]`(r,b)(4.7)

(mod Dk+1)

where u = [w, u1, . . . , uk−1] is fixed and so are ai = iyi, i = k + 1, . . . , n.
Thus m in (4.7) depends only on yk. Using the notation

c(r) = [u, kr, ak+1, . . . , an ]

with r ∈ R (this is a small variant of the notation in which (2.4) is expressed),
define

C = Dk+1 〈 c(r) | 1 6= r ∈ R 〉.
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Thus C/Dk+1 is free abelian on the cosets of all c(r) (by induction) and
therefore c(r) 7→ rR′ extends uniquely to a homomorphism θ : C/Dk+1 →
R/R′. If

B = Dk+1〈 [c(r), kb ] | r, b ∈ R 〉,
then, by (2.4), B/Dk+1 ≤ Ker θ. Also c(r) is multiplicative in r modulo B.
Hence r ∈ R′ implies c(r) ∈ B, whence Ker θ ≤ B/Dk+1. Thus C/B ' R/R′.

We now know that C/B is the free abelian group on the cosets of all c(y),
y ∈ Y . In (4.7), the right hand side belongs to B, whence the left hand side is
a relation (modulo Dk+1) among the c(y), y ∈ Y . It follows that this relation
must be trivial: m(yk) = 0. �

(4.8) Corollary. E∗/D1 is free abelian on the cosets of all commutators

[w, 1y1, . . . , nyn],

where 1 6= w ∈ F, y1, . . . , yn ∈ Y .

(4.9) Lemma. The commutators given in (4.1) generate E∗/E1.

Proof. By (4.8) we only need prove that every commutator [w, 1y1, . . . , nyn]
can be expressed, modulo E1, as a word in the commutators given in (4.1).

If u, v ∈ F and ai ∈ iR for i = 1, . . . , n, then

(4.10) [uv, a1, . . . , an] ≡ [u, a1, . . . , an]v [v, a1, . . . , an] (mod E∗′)

and if v = rt with r ∈ R, t ∈ T , then

[u, a1, . . . , an]v ≡ [u, a1, . . . , an]t (mod E1).

These two congruences and an induction on the X-length of w give the lemma.
�

Suppose, finally, that we have a relation

(4.11)
∏

[x, 1y1, . . . , nyn]tm ≡ 1 (mod E1)

where m depends on the commutator it exponentiates. Since E1 = D1 [E∗, R]
(cf. (4.2)), the left hand side of (4.11) may be written, modulo D1, as a word
in elements

[w′, 1y1
′, . . . , nyn

′, r].

Using (4.10) and (4.8), we see that (4.11) is equivalent to a set of relations,
each of the form∏

[x, 1y1, . . . , nyn]tm(x,t) ≡
∏

[w, 1y1, . . . , nyn, r]`(w,r) (mod D1),(4.12)

where the entries from Y are fixed.
Let us write γ(w) = [w, 1y1, . . . , nyn ] and define

H = D1 〈γ(w) | all 1 6= w ∈ F 〉.
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By (4.8), H/D1 is freely generated by all γ(w)D1. Also, by (4.10), H is
generated, modulo D1, by all γ(x)w, with x ∈ X and w ∈ F (w = 1 being
allowed).

(4.13) Lemma. H/D1 is free abelian on all γ(x)wD1, where x ∈ X and
w ∈ F .

Proof. Suppose h =
∏
γ(x)w`(x,w) ∈ D1 and let e be one of the conjugating

w’s of longest X-length. Replace each γ(x)w by γ(xw) γ(w)−1 (according to
(4.10)) and view h as a word in the γ(w)’s.

Choose x0 so that `(x0, e) 6= 0. If |x0 e| > |e| (here | · | denotes the X-
length function), then the exponent of γ(x0 e) in h is exactly `(x0, e). This
is impossible since we know {γ(w)D1 | 1 6= w ∈ F} is a free generating set.
Hence |x0 e| < |e| and we assert e cannot equal any xw: for e = x0

−1e′,
whence e = xw implies w = x−1x0

−1e′ has length > |e|, a contradiction.
Thus the exponent of γ(e) in h is `(x0, e), which again is impossible. Thus
h = 1 and the lemma is proved. �

Using (4.13) we may define a homomorphism θ : H/D1 → IF /IF ĪR by

γ(x)wD1 7→ (1− x)w + IF ĪR.

Set K = D1 〈 [γ(w), r] | all w ∈ F, r ∈ R 〉. Then K/D1 ≤ Ker θ because

[γ(x)w, r] 7→ coset of − (1− x)w + (1− x)wr.

Next observe that γ(x)rt ≡ γ(x)t (mod K), where r ∈ R, t ∈ T ; therefore
we can write any element of H modulo K as h =

∏
γ(x)t `(x,t). If (hD1)θ = 0,

then ∑
x,t

`(x, t) (1− x)t ∈ IF ĪR,

whence `(x, t) = 0 for all x, t (since IF /IF ĪR is G-free on the cosets of all
(1 − x), x ∈ X). Thus h = 1, giving Ker θ = K/D1. Consequently H/K is
free abelian on the cosets of all γ(x)t, where x ∈ X, t ∈ T .

The right hand side of (4.12) is in K, whence all exponents m(x, t) on the
left hand side must be zero. This completes the proof of our theorem.

5. A pre-resolution of groups

The G-free resolution (1.1) can be obtained from a purely group-theoretic
setting. We explain this, but shall suppress all proofs.

We continue to use all the earlier notation (cf. Sections 1 and 2) but now
n can vary, so we write E(n), etc., when this happens. There is a companion
result to (2.1). Define ∗E to be the normal closure in E of [1R, . . . , nR ]E∗′

and set 1E = [∗E, E\G ]E∗′. Note that ∗E ≤ E∗ if n ≥ 2 but ∗E = E∗ 1R
when n = 1.
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(5.1). ∗̃E := ∗E/1E is the free G-module on the cosets of all commuta-
tors [1y1, . . . , nyn ], where y1, . . . , yn ∈ Y .

The G-module homomorphism in (1.1)

Īn+1
R /Īn+2

R � Īn+1
R /IF Ī

n+1
R ↪→ IF Ī

n
R/IF Ī

n+1
R

coupled with (2.1) and (5.1) yields a G-homomorphism

ϕ(n+ 1) : ∗̃E(n+ 1) −→ Ẽ∗(n),

for all n ≥ 1. Also from (1.1), the G-module homomorphism

IF Ī
n
R/IF Ī

n+1
R � IF Ī

n
R/Ī

n+1
R ↪→ ĪnR/Ī

n+1
R

yields a G-module homomorphism

θ(n) : Ẽ∗(n)→ ∗̃E(n)

for all n ≥ 1. Moreover ∗̃E(1)� R/R′ via 1r 7→ r.
We have now transformed (1.1) into the following G-free resolution of R/R′:

(5.2) · · · −→ Ẽ∗(2)
θ(2)−→ ∗̃E(2)

ϕ(2)−→ Ẽ∗(1)
θ(1)−→ ∗̃E(1) � R/R′.

Next define

F∗ = 〈 [x, a1, . . . , an ]w | w ∈ F, x ∈ X, 1 6= ai ∈ iR 〉,

∗F = 〈 [a1, . . . , an ]w | w ∈ F, 1 6= ai ∈ iR 〉.
Then clearly

F∗E
∗′ = E∗, ∗FE

∗′ = ∗E

and
[F∗, E\G ]E∗′ = E1, [∗F , E\G ]E∗ = 1E.

Hence

F̃∗ = F∗/F∗ ∩ [F∗, E\G]E∗′ ∼→ Ẽ∗,

∗̃F = ∗F/∗F ∩ [∗F , E\G]E∗′ ∼→ ∗̃E.

(5.3). F∗ and ∗F are free groups on the stated generators.

It follows that we may lift the homomorphisms θ, ϕ (in (5.2)) to homomor-
phisms of the free groups F∗ and ∗F . But to validate our claim that we have
a purely group-theoretic form of (1.1), we describe special lifts explicitly.

Using (5.3), we define θn : F∗(n)→ ∗F (n) by

[x, 1r1, . . . , nrn ] 7→ [1(r1
x−1

), · · · , n(rnx
−1

) ]−x [1r1, . . . , nrn ];

and ϕn+1 : ∗F (n+ 1)→ F∗(n) by the following procedure: Given r ∈ R, let
r = xε11 . . . xεkk as X-word. Define

r(i) =

{
x
εi+1
i+1 . . . x

εk
k if εi = +1,

xεii . . . x
εk
k if εi = −1,
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and for each (n+ 1)-tuple (r, r1, . . . , rn) ∈ Rn+1, set

(r; (r1, . . . , rn)) =
k∏
i=1

[xi, 1(r1
r(i)−1

), . . . , n(rnr(i)
−1

) ]εir(i).

Then
ϕn+1 : [1r, 2r1, . . . , n+1rn ] 7→ (r; (r1, . . . , rn)).

(5.4). The homomorphisms θn, ϕn+1 lift θ(n), ϕ(n+ 1) for all n ≥ 1.

Thus finally:

(5.5). A based free presentation R ↪→ F (X) � G uniquely determines a
sequence of free groups

· · · −→ F∗(2) θ2−→ ∗F (2)
ϕ2−→ F∗(1) θ1−→ ∗F (1)

that has as natural image the G-free resolution

· · · −→ Ẽ∗(2)
θ(2)−→ ∗̃E(2)

ϕ(2)−→ Ẽ∗(1)
θ(1)−→ ∗̃E(1) � R/R′.
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