L_{h}^{2}-DOMAINS OF HOLOMORPHY IN THE CLASS OF UNBOUNDED HARTOGS DOMAINS

PETER PFLUG AND WEODZIMIERZ ZWONEK

Abstract. A characterization of L_{h}^{2}-domains of holomorphy in the class of Hartogs domains in \mathbb{C}^{2} is given.

There is a precise geometric characterization of bounded L_{h}^{2}-domains of holomorphy. Namely, we have the following theorem:

Theorem 1 (see [PZ1]). Let D be a bounded pseudoconvex domain in \mathbb{C}^{n}. Then D is an L_{h}^{2}-domain of holomorphy if and only if $U \backslash D$ is not pluripolar for any open set U with $U \backslash D \neq \emptyset$.

As noted by M. A. S. Irgens, there is no hope that an analogous result holds in the unbounded case (see [Irg]); it is sufficient to consider the domain $\mathbb{C} \times \mathbb{D}$ which is not an L_{h}^{2}-domain of holomorphy (the space $L_{h}^{2}(\mathbb{C} \times \mathbb{D})$ is trivial), although the geometric condition from Theorem 1 is satisfied.

Therefore it is natural to try to find a characterization of unbounded $L_{h^{-}}^{2}$ domains of holomorphy. Recall that there is such a characterization in the case of planar domains.

Theorem 2 (see, e.g., [Con], Chapter 21.9). Let D be a domain in \mathbb{C}. Then D is an L_{h}^{2}-domain of holomorphy if and only if $U \backslash D$ is not polar for any open set U with $U \backslash D \neq \emptyset$. More precisely, for a point $a \in \partial D$ and an open neighborhood U of a there is an analytic continuation of any function $f \in L_{h}^{2}(D)$ onto U if and only if $U \backslash D$ is polar.

Another class of domains in which a full description of L_{h}^{2}-domains of holomorphy is known is the class of Reinhardt domains (see [JP]).

[^0]In this paper we present a characterization of L_{h}^{2}-domains of holomorphy in the class of unbounded Hartogs domains whose base is a planar domain. The results of the paper may also be seen as a continuation of results from [PZ2], where Bergman completeness in the class of unbounded Hartogs domains is studied.

For a domain $D \subset \mathbb{C}^{n}$ denote by $L_{h}^{2}(D)$ the class of square integrable holomorphic functions on D.

Recall that a domain $D \subset \mathbb{C}^{n}$ is called an L_{h}^{2}-domain of holomorphy if there are no domains $D_{0}, D_{1} \subset \mathbb{C}^{n}$ with $\emptyset \neq D_{0} \subset D_{1} \cap D, D_{1} \not \subset D$ such that for any $f \in L_{h}^{2}(D)$ there exists an $\tilde{f} \in \mathcal{O}\left(D_{1}\right)$ with $\tilde{f}=f$ on D_{0}.

For a subharmonic function $\rho: D \mapsto[-\infty, \infty)$, where D is a domain in \mathbb{C}, we define

$$
G_{D, \rho}:=\left\{\left(z_{1}, z_{2}\right) \in D \times \mathbb{C}:\left|z_{2}\right|<e^{-\rho\left(z_{1}\right)}\right\}
$$

we call this domain a Hartogs domain with base D.
For $f \in L_{h}^{2}\left(G_{D, \rho}\right)$ define

$$
\rho_{f}\left(z_{1}\right):=\limsup _{j \rightarrow \infty} \frac{1}{j} \log \left|f_{j}\left(z_{1}\right)\right|, z_{1} \in D
$$

where $f\left(z_{1}, z_{2}\right)=\sum_{j=0}^{\infty} f_{j}\left(z_{1}\right) z_{2}^{j},\left(z_{1}, z_{2}\right) \in D$; the f_{j} 's are the coefficients of the Hartogs expansion of f in $G_{D, \rho}$. Certainly, $\rho_{f} \leq \rho$ on D, so $\rho_{f}^{*} \leq \rho$ on D, where g^{*} denotes the upper regularization of the function g.

Then define $\tilde{\rho}:=\sup _{f \in L_{h}^{2}\left(G_{D, \rho}\right)} \rho_{f}^{*}$ on D. Clearly, $\tilde{\rho}^{*}$ is a subharmonic function on D, and $\tilde{\rho}^{*} \leq \rho$.

For a domain $D \subset \mathbb{C}$ define
$\mathcal{S}:=\mathcal{S}(D):=\{z \in \partial D: U \backslash D$ is polar for some open neighborhood U of $z\}$.
We can then reformulate Theorem 2 as follows: The domain $D \subset \mathbb{C}$ is an L_{h}^{2}-domain of holomorphy if and only if $\mathcal{S}=\emptyset$.

We denote by \mathbb{D} the unit disc in \mathbb{C}.
Our main aim is to prove the following theorem:
Theorem 3. Assume that ρ is bounded from below.
(a) If $D \neq \mathbb{C}$, then $G_{D, \rho}$ is an L_{h}^{2}-domain of holomorphy if and only if $\lim \sup _{D \ni z \rightarrow z_{0}} \rho(z)=\infty$ for any $z_{0} \in \mathcal{S}$.
(b) If $D=\mathbb{C}$, then $G_{\mathbb{C}, \rho}$ is an L_{h}^{2}-domain of holomorphy if and only if ρ is not constant.

Let us begin with some lemmas.
Lemma 4. Assume that ρ is bounded from below and let $z_{1}^{0} \in D$ be such that there is no open connected neighborhood $U \subset D$ of z_{1}^{0} such that $\rho_{\mid U}$ is constant. Then $\rho\left(z_{1}^{0}\right)=\tilde{\rho}^{*}\left(z_{1}^{0}\right)$.

Proof. Assume that $\rho \geq M$ on D. Suppose that $\tilde{\rho}^{*}\left(z_{1}^{0}\right)<M_{1}<\rho\left(z_{1}^{0}\right)$. Then there is an open disc $U \subset D$ centered at z_{1}^{0} such that $\rho_{f}\left(z_{1}\right) \leq \rho_{f}^{*}\left(z_{1}\right) \leq$ $\tilde{\rho}\left(z_{1}\right)<M_{1}$ for any $z_{1} \in U$ and $f \in L_{h}^{2}\left(G_{D, \rho}\right)$. Therefore, for any $f \in$ $L_{h}^{2}\left(G_{D, \rho}\right)$ the function \mathcal{F}_{f} defined as

$$
\mathcal{F}_{f}\left(z_{1}, z_{2}\right):=\sum_{j=0}^{\infty} f_{j}\left(z_{1}\right) z_{2}^{j},\left(z_{1}, z_{2}\right) \in U \times e^{-M_{1}} \mathbb{D}
$$

is a well defined holomorphic function-it follows from the Hartogs Lemma that the Hartogs series defining \mathcal{F}_{f} is locally uniformly convergent in $U \times$ $e^{-M_{1}} \mathbb{D}$. Certainly, $\mathcal{F}_{f}=f$ on $G_{D, \rho} \cap\left(U \times e^{-M_{1}} \mathbb{D}\right)$. Therefore \mathcal{F}_{f} is a holomorphic continuation of f onto $U \times e^{-M_{1}} \mathbb{D}$.

On the other hand, let $z_{2}^{0} \in \mathbb{C}$ be such that $\left|z_{2}^{0}\right|=e^{-\rho\left(z_{1}^{0}\right)}$. Note that $\left(z_{1}^{0}, z_{2}^{0}\right) \in\left(\partial G_{D, \rho} \cap\left(U \times e^{-M_{1}} \mathbb{D}\right)\right)$. For $z_{2} \in e^{-M_{1}} \mathbb{D}$ define

$$
U\left(z_{2}\right):=\left\{z_{1} \in U:\left(z_{1}, z_{2}\right) \in G_{D, \rho}\right\} .
$$

We claim that there is a $\tilde{z}_{2} \in e^{-M_{1}} \mathbb{D}$ such that $U\left(\tilde{z}_{2}\right) \neq \emptyset$ and $U \backslash U\left(\tilde{z}_{2}\right)$ is not polar. Actually, since $\rho_{\mid U}$ is not constant, we easily get the existence of a $\tilde{z}_{2} \in e^{-M_{1}} \mathbb{D}$ such that $U\left(\tilde{z}_{2}\right) \neq \emptyset$ and $U\left(\tilde{z}_{2}\right) \neq U$. Note that $U\left(\tilde{z}_{2}\right)=\left\{z_{1} \in U\right.$: $\left.\rho\left(z_{1}\right)<-\log \left|\tilde{z}_{2}\right|\right\}$. Suppose that $U \backslash U\left(\tilde{z}_{2}\right)$ is polar. Then $\rho\left(z_{1}\right) \geq-\log \left|\tilde{z}_{2}\right|$ for any $z_{1} \in U\left(\tilde{z}_{2}\right)$. Since $U \backslash U\left(\tilde{z}_{2}\right)$ is polar, $\rho\left(z_{1}\right) \geq-\log \left|\tilde{z}_{2}\right|$ for any $z_{1} \in U$, so $U\left(\tilde{z}_{1}\right)=\emptyset$, which is a contradiction. Therefore $U \backslash U\left(\tilde{z}_{2}\right) \neq U$ is not polar. In particular, there is a function $f \in L_{h}^{2}\left(V_{1} \times\left\{\tilde{z}_{2}\right\}\right)$, where $V_{1}:=\left\{z_{1} \in D\right.$: $\left.\left(z_{1}, \tilde{z}_{2}\right) \in G_{D, \rho}\right\}$, which does not have a holomorphic continuation on $U \times\left\{\tilde{z}_{2}\right\}$ (see Theorem 2).

It follows from a result of T. Ohsawa (see [Ohs]), applied to $\Psi(\cdot):=$ $2 g_{e^{-M \mathbb{D}}}\left(\tilde{z}_{2}, \cdot\right)$ (where $g_{D}(p, \cdot)$ denotes the Green function of the domain D with logarithmic pole at p), that there is a function $F \in L_{h}^{2}\left(G_{D, \rho}\right)$ such that $F_{\mid V_{1} \times\left\{\tilde{z}_{2}\right\}} \equiv f$. (Here and in the sequel, when referring to the result of Ohsawa, we use the formulation in [CKO, p. 706].) But it follows from the earlier property that F extends to a holomorphic function on $U \times e^{-M_{1}} \mathbb{D}$. Therefore f extends holomorphically onto $U \times\left\{\tilde{z}_{2}\right\}$, which is a contradiction.

REMARK. Let us make a remark on the proof of the above lemma. We provided the proof with the help of a new extension result of Ohsawa. The result in [Ohs] applies to the unbounded case (unlike the one in the standard version of the extension theorem in [OT]), but there are some limits. Namely, the possibility of the extension of an L_{h}^{2}-function from the hyperplane depends on the existence of a suitable plurisubharmonic function Ψ-in our proof this is the Green function of the projection of the domain $G_{D, \rho}$ onto the second variable. At this place it is important that the projection is bounded, in other words, that the function ρ is bounded from below.

LEMMA 5. Let ρ be bounded from below and not constant and let $z_{1}^{0} \in D$ be such that there is an open connected neighborhood $U \subset D$ of z_{1}^{0} such that $\rho_{\mid U}$ is constant. Then $\tilde{\rho}^{*} \equiv \rho$ on U.

Proof. Let \tilde{V}_{1} denote the set of all $z_{1} \in D$ such that there is an open neighborhood V of z_{1} such that $\rho_{\mid V}$ is constant. Certainly \tilde{V}_{1} is open and $\tilde{V}_{1} \supset U$. Denote by V_{1} the connected component of \tilde{V}_{1} such that $V_{1} \supset U$. Then $\rho_{\mid V_{1}} \equiv C$ for some $C \in \mathbb{R}$.

We claim that

$$
\begin{equation*}
\tilde{\rho}^{*} \text { is constant on } V_{1} \text {. } \tag{*}
\end{equation*}
$$

Without loss of generality assume that $\tilde{\rho}^{*} \not \equiv-\infty$. Then $\left(\tilde{\rho}^{*}\right)^{-1}(-\infty)$ is polar. We observe that in order to prove $(*)$ it is sufficient to show the following property:

For any $z_{1} \in V_{1}$ such that $\tilde{\rho}^{*}\left(z_{1}\right)>-\infty$ there is an open neighborhood $U\left(z_{1}\right) \subset V_{1}$ of z_{1} such that $\tilde{\rho}^{*}$ is constant on $U\left(z_{1}\right)$.

First we prove the implication " $(* *) \Rightarrow(*)$ ". Assume that $(* *)$ holds. Then the set $\left\{z_{1} \in V_{1}: \tilde{\rho}^{*}\left(z_{1}\right)>-\infty\right\}$ is open, so $\left(\tilde{\rho}^{*}\right)^{-1}(-\infty) \cap V_{1}$ is closed in V_{1} and polar. Therefore the set $\left\{z_{1} \in V_{1}: \tilde{\rho}^{*}\left(z_{1}\right)>-\infty\right\}$ is connected. But $\tilde{\rho}^{*}$ is locally constant there, so it is constant on $V_{1} \backslash\left(\tilde{\rho}^{*}\right)^{-1}(-\infty)$. The subharmonicity of $\tilde{\rho}^{*}$ implies that $\tilde{\rho}^{*}$ is constant on V_{1}.

Now we show the property ($* *$).
Suppose that there is a $\tilde{z}_{1} \in V_{1}$ such that $(\tilde{\rho})^{*}\left(\tilde{z}_{1}\right)>-\infty$ and $\tilde{\rho}^{*}$ is not constant on any neighborhood of \tilde{z}_{1}. Without loss of generality we may assume that $\tilde{\rho}^{*}\left(\tilde{z}_{1}\right)<\rho\left(\tilde{z}_{1}\right)$. Let $-\infty<M<\tilde{\rho}^{*}\left(\tilde{z}_{1}\right)$ and $M \leq \rho$ on D. The function $\psi:=\max \left\{M, \frac{\rho+\tilde{\rho}^{*}}{2}\right\}$ defined on D is subharmonic, bounded from below, satisfies $\psi \leq \rho, \tilde{\rho}^{*}\left(\tilde{z}_{1}\right)<\psi\left(\tilde{z}_{1}\right)<\rho\left(\tilde{z}_{1}\right)$, and is not constant on any neighborhood of \tilde{z}_{1}.

Let $\tilde{\psi}$ denote the function defined for ψ in the same way as the function $\tilde{\rho}$ was defined for ρ. Note that $\tilde{\psi}^{*} \leq \tilde{\rho}^{*}$ on D, so $\tilde{\psi}^{*}\left(\tilde{z}_{1}\right) \leq \tilde{\rho}_{\sim}^{*}\left(\tilde{z}_{1}\right)<\psi\left(\tilde{z}_{1}\right)$. However, it follows from Lemma 4 applied to ψ that $\psi\left(\tilde{z}_{1}\right)=\tilde{\psi}^{*}\left(\tilde{z}_{1}\right)$, which is a contradiction.

Consequently, $(*)$ is satisfied, so $\tilde{\rho}^{*} \equiv \tilde{C} \in[-\infty, \infty)$ on V_{1}.
We want to show that $\tilde{\rho}^{*} \equiv \tilde{C}=C \equiv \rho$ on V_{1}. If $D \backslash V_{1}$ is polar, then ρ is constant on D, which is a contradiction. Therefore $D \backslash V_{1}$ is not polar, so $\partial V_{1} \cap D$ is not polar either. Hence there is a point $\tilde{z}_{1} \in \partial V_{1} \cap D$ such that V_{1} is not thin at \tilde{z}_{1}, so $\tilde{\rho}^{*}\left(\tilde{z}_{1}\right)=\tilde{C}$. Moreover, ρ is not constant on any neighborhood of \tilde{z}_{1}, so in view of Lemma 4 , $\tilde{\rho}^{*}\left(\tilde{z}_{1}\right)=\rho\left(\tilde{z}_{1}\right)=C$, so $C=\tilde{C}$.

As a consequence of Lemmas 4 and 5 we get the following result.

Corollary 6. Let ρ be bounded from below and not constant. Then $\rho=\tilde{\rho}^{*}$ on D.

Let us define \hat{D} to be the set of points from D and those points $\hat{z}_{1} \in \mathcal{S}$ for which $\lim \sup _{D \ni z_{1} \rightarrow \hat{z}_{1}} \rho\left(z_{1}\right)<\infty$. Note that \hat{D} is a domain with $D \subset \hat{D} \subset$ $D \cup \mathcal{S}$. We may also define the function

$$
\hat{\rho}\left(\tilde{z}_{1}\right):= \begin{cases}\rho\left(z_{1}\right), & \text { if } z_{1} \in D \\ \lim \sup _{D \ni z_{1} \rightarrow \hat{z}_{1}} \rho\left(z_{1}\right), & \text { if } z_{1} \in \tilde{D} \backslash D .\end{cases}
$$

Note that $\hat{\rho}$ is subharmonic on \hat{D}.
Proof of Theorem 3. Let $\rho \geq M$ on D.
If ρ is constant, $\mathcal{S}=\emptyset$ and $\mathbb{C} \backslash D$ is not polar, then the domain D is an L_{h}^{2}-domain of holomorphy (see Theorem 2) and $G_{D, \rho}=D \times e^{-M_{1}} \mathbb{D}$ for some $M_{1} \in \mathbb{R}\left(M_{1} \equiv \rho\right)$. Consequently, $G_{D, \rho}$ is an L_{h}^{2}-domain of holomorphy.

First we show the sufficiency of the condition.
Assume that $\lim \sup _{D \ni z \rightarrow z_{0}} \rho(z)=\infty$ for any $z_{0} \in \mathcal{S}$ and that ρ is not constant. (In the case $\mathcal{S} \neq \emptyset$ the second condition follows directly from the first one.) Suppose that $G_{D, \rho}$ is not an L_{h}^{2}-domain of holomorphy. Then there are discs $P_{j}, Q_{j}, j=1,2$, such that $P_{j} \subset \subset Q_{j}, j=1,2, P:=P_{1} \times P_{2} \subset G_{D, \rho}$, $\partial G_{D, \rho} \cap \partial P \neq \emptyset$, and for any $f \in L_{h}^{2}\left(G_{D, \rho}\right)$ there is a $g \in \mathcal{O}\left(Q_{1} \times Q_{2}\right)$ such that $f=g$ on $P_{1} \times P_{2}$.

Let us consider three cases.
Case I. $\quad \partial P \cap \partial G_{D, \rho} \subset \mathcal{S} \times \mathbb{C}$. Then our assumption implies that there is a point $\left(z_{1}^{0}, z_{2}^{0}\right) \in \partial P \cap \partial G_{D, \rho}$ such that $z_{1}^{0} \in \mathcal{S}, z_{2}^{0} \neq 0$ and $z_{2}^{0} \in P_{2}$. Consider the set

$$
U:=\left\{z_{1} \in Q_{1} \cap D:\left(z_{1}, z_{2}^{0}\right) \in G_{D, \rho}\right\} .
$$

Note that $U \neq \emptyset$ (because $P_{1} \subset U$). Note also that $Q_{1} \backslash U$ is not polar. In fact, the assumption on the boundary behaviour of ρ implies that there is a point $\tilde{z}_{1} \in Q_{1} \cap D$ such that $\left(\tilde{z}_{1}, z_{2}^{0}\right) \notin G_{D, \rho}$, so $\rho\left(\tilde{z}_{1}\right) \geq-\log \left|z_{2}^{0}\right|$. The existence of only a polar set of such points would, however, lead to a contradiction with the mean value property of subharmonic functions. Therefore there is a function $f \in L_{h}^{2}(\tilde{U})$, where $\tilde{U}:=\left\{z_{1} \in D:\left(z_{1}, z_{2}^{0}\right) \in G_{D, \rho}\right\}$, which does not have a holomorphic continuation on Q_{1} (see [Con]). There is a function $F \in$ $L_{h}^{2}\left(G_{D, \rho}\right)$ such that $F\left(z_{1}, z_{2}^{0}\right)=f\left(z_{1}\right), z_{1} \in \tilde{U}$ (apply [Ohs] with $\Psi\left(z_{1}, z_{2}\right):=$ $\left.2 g_{e^{-M \mathbb{D}}}\left(z_{2}^{0}, z_{2}\right)\right)$. But such a function F has a holomorphic continuation on $Q_{1} \times Q_{2}$, from which we conclude the existence of a holomorphic continuation of f on Q_{1}, which is a contradiction.

Case II. $\quad \partial P \cap \partial G_{D, \rho} \cap((\partial D \backslash \mathcal{S}) \times \mathbb{C}) \neq \emptyset$. The proof in this case is similar to that in Case I. There is a point $\left(z_{1}^{0}, z_{2}^{0}\right) \in \partial P \cap \partial G_{D, \rho}$ such that $z_{1}^{0} \in \partial D \backslash \mathcal{S}$ and $z_{2}^{0} \in P_{2}$ (but not necessarily $z_{2}^{0} \neq 0$). Consider the set

$$
U:=\left\{z_{1} \in Q_{1} \cap D:\left(z_{1}, z_{2}^{0}\right) \in G_{D, \rho}\right\}
$$

Note that $U \neq \emptyset$ (because $P_{1} \subset U$). Note also that $Q_{1} \backslash U$ is not polar. In fact, this follows directly from the fact that $z_{1}^{0} \in \partial D \backslash \mathcal{S}$, the definition of \mathcal{S} and the inclusion $Q_{1} \backslash D \subset Q_{1} \backslash U$. Therefore there is a function $f \in L_{h}^{2}(\tilde{U})$, where $\tilde{U}:=\left\{z_{1} \in D:\left(z_{1}, z_{2}^{0}\right) \in G_{D, \rho}\right\}$, which does not have a holomorphic continuation on Q_{1} (see Theorem 2). But then the function F defined by the formula $F\left(z_{1}, z_{2}\right):=f\left(z_{1}\right),\left(z_{1}, z_{2}\right) \in G_{D, \rho}$ is from the class $L_{h}^{2}\left(G_{D, \rho}\right)$. But such a function F has a holomorphic continuation on $Q_{1} \times Q_{2}$, from which we conclude the existence of a holomorphic continuation of f on Q_{1}, which is a contradiction.

Case III. $\quad \partial P \cap \partial G_{D, \rho} \cap(D \times \mathbb{C}) \neq \emptyset$. Set $M_{1}:=\sup \left\{\left|z_{2}\right|: z_{2} \in P_{2}\right\}$, $M_{2}:=\sup \left\{\left|z_{2}\right|: z_{2} \in Q_{2}\right\}$. Then $0<M_{1}<M_{2}$. From our assumption we conclude the existence of a point $\tilde{z}_{1} \in \bar{P}_{1} \cap D$ such that $\rho\left(\tilde{z}_{1}\right) \geq-\log M_{1}$. On the other hand, the extension property implies that for any $f \in L_{h}^{2}\left(G_{D, \rho}\right)$ and for any $z_{1} \in P_{1}$ the inequality $e^{-\rho_{f}\left(z_{1}\right)} \geq M_{2}$ holds, so $\tilde{\rho}^{*}\left(z_{1}\right) \leq-\log M_{2}$, $z_{1} \in P_{1}$. This implies the inequality $\tilde{\rho}^{*}\left(\tilde{z}_{1}\right) \leq-\log M_{2}<-\log M_{1}$, which contradicts the equality $\rho\left(\tilde{z}_{1}\right)=\tilde{\rho}^{*}\left(\tilde{z}_{1}\right)$ that holds by Corollary 6 .

Now we prove the necessity of the condition.
Recall that $\hat{D} \backslash D$ is a polar set. Therefore $(\hat{D} \backslash D) \cap G_{\hat{D}, \hat{\rho}}$ is pluripolar. Since L_{h}^{2}-holomorphic functions extend through pluripolar sets, it is easy to see that $L_{h}^{2}\left(G_{D, \rho}\right)=L_{h}^{2}\left(G_{\hat{D}, \hat{\rho}}\right)_{\mid G_{D, \rho}}$, which gives us the necessity of the condition.

The following description of L_{h}^{2}-holomorphic hulls of domains $G_{D, \rho}$ follows from Theorem 3 and its proof.

Corollary 7. Assume that ρ is bounded from below. Assume that $\mathbb{C} \backslash D$ is not polar or ρ is not constant. Then the L_{h}^{2}-holomorphic hull of $G_{D, \rho}$ equals $G_{\hat{D}, \hat{\rho}}$. If $\mathbb{C} \backslash D$ is polar and ρ is constant, then the L_{h}^{2}-holomorphic hull of $G_{D, \rho}$ equals \mathbb{C}^{2}.

Remark. We are far from a full understanding of the structure of L_{h}^{2} domains of holomorphy. For instance, the natural question whether we may remove the assumption of lower boundedness of the function ρ in Theorem 3 remains open. On the other hand, the methods used in the paper may be easily transferred to Hartogs domains with higher dimensional bases. However, because of the lack of a full description of L_{h}^{2}-domains of holomorphy in \mathbb{C}^{n}, $n \geq 2$, the results obtained in this case would be much more incomplete. We believe that to obtain a complete characterization of L_{h}^{2}-domains of holomorphy in the class of Hartogs domains in the two-dimensional case (as well as in higher dimensional cases of Hartogs domains or even in the general case of unbounded domains), a completely different approach is needed.

Some other problems remain also open. For instance: Is it true that if D is a pseudoconvex domain and locally an L_{h}^{2}-domain of holomorphy (which means
that the geometric condition from Theorem 1 is satisfied) and $L_{h}^{2}(D) \neq\{0\}$, then D must be an L_{h}^{2}-domain of holomorphy? Another natural problem is to find a description of L_{h}^{p}-domains of holomorphy.

We conclude this paper by presenting a sufficient condition for a pseudoconvex domain D to have an infinite-dimensional Bergman space $L_{h}^{2}(D)$. This gives a partial answer to the following question: Is there a pseudoconvex domain having a finite-dimensional but non-trivial Bergman space? A non-pseudoconvex example of that type was given in [Wie].

Proposition 8. Let $D \subset \mathbb{C}^{n}, D \neq \mathbb{C}^{n}$, be an L_{h}^{2}-domain of holomorphy and let $\left\{\varphi_{j}\right\}_{j \in J}$ be a complete orthonormal system in $L_{h}^{2}(D)$. Assume that there is an open set U such that $U \cap D \neq \emptyset, U \not \subset D$, and for any $j \in J$ the function φ_{j} has an analytic continuation onto U. Then $\operatorname{dim} L_{h}^{2}\left(G_{D, \rho}\right)=\infty$. In particular, any L_{h}^{2}-domain of holomorphy which is balanced, a Hartogs domain or a Laurent-Hartogs domain different from \mathbb{C}^{n}, has infinite-dimensional Bergman space.

Proof. Suppose the contrary. Then J is finite and $J \neq \emptyset$. Since D is an L_{h}^{2}-domain of holomorphy, there is a function $f \in L_{h}^{2}(D)$ which does not have an analytic continuation onto U. But $f=\sum_{j \in J} \lambda_{j} \varphi_{j}$, where $\lambda_{j} \in \mathbb{C}$. Since J is finite, f has an analytic continuation onto U, which is a contradiction.

References

[CKO] B.-Y. Chen, J. Kamimoto, and T. Ohsawa, Behavior of the Bergman kernel at infinity, Math. Z. 248 (2004), 695-708. MR 2103537 (2005h:32005)
[Con] J. B. Conway, Functions of one complex variable. II, Graduate Texts in Mathematics, vol. 159, Springer-Verlag, New York, 1995. MR 1344449 (96i:30001)
[Irg] M. A. S. Irgens, Continuation of L^{2}-holomorphic functions, Math. Z. 247 (2004), 611-617. MR 2114431 (2005h:32022)
[JP] M. Jarnicki and P. Pflug, Existence domains of holomorphic functions of restricted growth, Trans. Amer. Math. Soc. 304 (1987), 385-404. MR 906821 (88k:32040)
[Ohs] T. Ohsawa, On the extension of L^{2} holomorphic functions. V. Effects of generalization, Nagoya Math. J. 161 (2001), 1-21. MR 1820210 (2001m:32011)
[OT] T. Ohsawa and K. Takegoshi, On the extension of L^{2} holomorphic functions, Math. Z. 195 (1987), 197-204. MR 892051 ($88 \mathrm{~g}: 32029$)
[PZ1] P. Pflug and W. Zwonek, L_{h}^{2}-domains of holomorphy and the Bergman kernel, Studia Math. 151 (2002), 99-108. MR 1917227 (2003e:32017)
[PZ2] , Bergman completeness of unbounded Hartogs domains, Nagoya Math. J. 180 (2005), 121-133. MR 2186672 (2006k:32019)
[Wie] J. Wiegerinck, Domains with finite-dimensional Bergman space, Math. Z. 187 (1984), 559-562. MR 760055 (86a:32049)

Peter Pflug, Carl von Ossietzky Universität Oldenburg, Institut für Mathematik, Postfach 2503, D-26111 Oldenburg, Germany

E-mail address: pflug@mathematik.uni-oldenburg.de
WŁodzimierz Zwonek, Uniwersytet Jagielloński, Instytut Matematyki, Reymonta 4, 30-059 Kraków, Poland

E-mail address: Wlodzimierz.Zwonek@im.uj.edu.pl

[^0]: Received June 30, 2005; received in final form August 31, 2005.
 2000 Mathematics Subject Classification. Primary 32A07, 32D05.
 The research was supported by DFG Project No. 227/8-1 and was a part of Research Grant No. 1 PO3A 005 28, which is supported by public means in the programme promoting science in Poland in the years 2005-2008. The second author is a fellow of the Rector's Scholarship Fund at Jagiellonian University.

