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L?-DOMAINS OF HOLOMORPHY IN THE CLASS OF
UNBOUNDED HARTOGS DOMAINS

PETER PFLUG AND WLODZIMIERZ ZWONEK

ABSTRACT. A characterization of Li—domains of holomorphy in the
class of Hartogs domains in C2 is given.

There is a precise geometric characterization of bounded L3?-domains of
holomorphy. Namely, we have the following theorem:

THEOREM 1 (see [PZ1]). Let D be a bounded pseudoconver domain in C™.
Then D is an L} -domain of holomorphy if and only if U \ D is not pluripolar
for any open set U with U\ D # ().

As noted by M. A. S. Irgens, there is no hope that an analogous result
holds in the unbounded case (see [Irg]); it is sufficient to consider the domain
C x D which is not an L?-domain of holomorphy (the space L (C x D) is
trivial), although the geometric condition from Theorem 1 is satisfied.

Therefore it is natural to try to find a characterization of unbounded L?-
domains of holomorphy. Recall that there is such a characterization in the
case of planar domains.

THEOREM 2 (see, e.g., [Con], Chapter 21.9). Let D be a domain in C.
Then D is an L,%—domain of holomorphy if and only if U \ D is not polar for
any open set U with U \ D # (). More precisely, for a point a € 0D and an
open neighborhood U of a there is an analytic continuation of any function
f € LZ(D) onto U if and only if U \ D is polar.

Another class of domains in which a full description of L?-domains of holo-
morphy is known is the class of Reinhardt domains (see [JP]).
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In this paper we present a characterization of L%—domains of holomorphy in
the class of unbounded Hartogs domains whose base is a planar domain. The
results of the paper may also be seen as a continuation of results from [PZ2],
where Bergman completeness in the class of unbounded Hartogs domains is
studied.

For a domain D C C™ denote by L,%(D) the class of square integrable
holomorphic functions on D.

Recall that a domain D C C" is called an L?-domain of holomorphy if
there are no domains Dy, D; C C" with § # Dg C D1 D, D1 ¢ D such that
for any f € L3 (D) there exists an f e O(D,) with f = f on Dy.

For a subharmonic function p : D — [—00,00), where D is a domain in C,
we define

Gp,p:={(21,22) € DxC: 2| < 67”(21)};

we call this domain a Hartogs domain with base D.
For f € Li(GDW) define

. 1
pr(z1) :==limsup - log | f;(#1)|, 21 € D,
j—oo J

where f(z1,22) = Z;io fi(21)2), (21,22) € D; the f;’s are the coefficients of
the Hartogs expansion of f in Gp ,. Certainly, py < p on D, so p}} <pon D,
where g* denotes the upper regularization of the function g.

Then define p := supy, L2(Gp.,) py on D. Clearly, p* is a subharmonic
function on D, and p* < p.

For a domain D C C define

S:=8(D):={z€ 9D :U\ D is polar for some open neighborhood U of z}.

We can then reformulate Theorem 2 as follows: The domain D C C is an
L,%—domain of holomorphy if and only if S = (.

We denote by D the unit disc in C.

Our main aim is to prove the following theorem:

THEOREM 3. Assume that p is bounded from below.
(a) If D # C, then Gp,, is an L}-domain of holomorphy if and only if
limsupps, ., p(z) = oo for any z € S.
(b) If D = C, then Gc,, is an L} -domain of holomorphy if and only if p
18 not constant.

Let us begin with some lemmas.

LEMMA 4. Assume that p is bounded from below and let 29 € D be such
that there is no open connected neighborhood U C D of 20 such that pu 18
constant. Then p(29) = p*(29).
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Proof. Assume that p > M on D. Suppose that p*(z?) < My < p(z9).
Then there is an open disc U C D centered at 27 such that pf(z1) < p}(21) <
p(z1) < My for any z; € U and f € L?(Gp,,). Therefore, for any f €
L?(Gp,p) the function Fy defined as

o0

Fi(z1,22) = ij(zl)zg, (21,20) €U x e ™MD
j=0

is a well defined holomorphic function—it follows from the Hartogs Lemma
that the Hartogs series defining F; is locally uniformly convergent in U x
e ™D. Certainly, Fy = f on Gp, N (U x e"*1D). Therefore F; is a
holomorphic continuation of f onto U x e~ M,

On the other hand, let 29 € C be such that |23] = e=?(). Note that
(29,29) € (0Gp,, N (U x e~ *1D)). For 25 € e ™D define

U(ze) :={z1 €U :(21,22) € Gp,}.

We claim that there is a 23 € e 71D such that U(Z;) # 0 and U \ U(Z,) is
not polar. Actually, since pi; is not constant, we easily get the existence of a
73 € e MiD such that U(%2) # () and U(%2) # U. Note that U(Z) = {z; € U :
p(z1) < —log|Za|}. Suppose that U \ U(Z2) is polar. Then p(z1) > —log |Z2|
for any z; € U(22). Since U\ U(Z2) is polar, p(z1) > —log |Z2| for any z; € U,
so U(%1) = 0, which is a contradiction. Therefore U \ U(Z2) # U is not polar.
In particular, there is a function f € L?(V; x {Z2}), where V; := {z; € D :
(21, 22) € Gp,,}, which does not have a holomorphic continuation on U x {25}
(see Theorem 2).

It follows from a result of T. Ohsawa (see [Ohs]), applied to ¥(:) :=
2ge-mp(Za,+) (where gp(p,-) denotes the Green function of the domain D
with logarithmic pole at p), that there is a function F' € L3 (Gp,,) such that
Fiv,x{z,y = [. (Here and in the sequel, when referring to the result of Oh-
sawa, we use the formulation in [CKO, p. 706].) But it follows from the earlier
property that F extends to a holomorphic function on U x e~™1ID. Therefore
f extends holomorphically onto U x {Z}, which is a contradiction. O

REMARK. Let us make a remark on the proof of the above lemma. We
provided the proof with the help of a new extension result of Ohsawa. The
result in [Ohs] applies to the unbounded case (unlike the one in the standard
version of the extension theorem in [OT]), but there are some limits. Namely,
the possibility of the extension of an L?-function from the hyperplane depends
on the existence of a suitable plurisubharmonic function ¥—in our proof this
is the Green function of the projection of the domain Gp , onto the second
variable. At this place it is important that the projection is bounded, in other
words, that the function p is bounded from below.
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LEMMA 5. Let p be bounded from below and not constant and let 2{ € D
be such that there is an open connected neighborhood U C D of 29 such that
piu is constant. Then p* =p on U.

Proof. Let f/l denote the set of all z1 € D such that there is an open
neighborhood V' of z; such that pjy is constant. Certainly Vi is open and
f/l D U. Denote by V; the connected component of Vl such that V; D U.
Then pjy, = C for some C' € R.

We claim that

(%) p* is constant on Vj.

Without loss of generality assume that 5* # —oo. Then (p*)~!(—00) is polar.
We observe that in order to prove (k) it is sufficient to show the following
property:

(%) For any z; € V; such that p*(z1) > —oo there is an open neigh-
borhood U(z1) C V; of z; such that p* is constant on U(zy).

First we prove the implication “(xx) = (x)”. Assume that (**) holds.
Then the set {21 € V; : p*(21) > —oo} is open, so (5*)~!(—o0) N V; is closed
in V7 and polar. Therefore the set {z3 € Vi : p*(21) > —oo} is connected.
But g* is locally constant there, so it is constant on V; \ (p*)~'(—o00). The
subharmonicity of p* implies that p* is constant on V;.

Now we show the property ().

Suppose that there is a Z; € V; such that (p)*(Z;) > —oo and p* is not
constant on any neighborhood of Z;. Without loss of generality we may as-
sume that §*(21) < p(%1). Let —oo < M < p*(%1) and M < p on D. The
function ¢ := max{M, ”"’2’3*} defined on D is subharmonic, bounded from
below, satisfies ¢ < p, p*(21) < ¥(%1) < p(%1), and is not constant on any
neighborhood of z;.

Let 1 denote the function defined for ¢ in the same way as the function
p was defined for p. Note that ¥* < p* on D, so ¥*(1) < p*(z1) < ¥(Z1).
However, it follows from Lemma 4 applied to 1 that (1) = ¥*(;), which is
a contradiction.

Consequently, (x) is satisfied, so p* = C' € [—00,00) on Vi.

We want to show that j* = C = C = pon V4. If D \ V1 is polar, then
p is constant on D, which is a contradiction. Therefore D \ V; is not polar,
so OV; N D is not polar either. Hence there is a point Z; € 9V, N D such
that V7 is not thin at Z1, so p*(Z1) = C. Moreover, p is not constant on
any neighborhood of %, so in view of Lemma 4, p*(Z;) = p(%1) = C, so
Cc=cC. O

As a consequence of Lemmas 4 and 5 we get the following result.
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COROLLARY 6. Let p be bounded from below and not constant. Then
p=p"onD.

Let us define D to be the set of points from D and those points Z2; € S for
which limsupp,, .z p(21) < oo. Note that D is a domain with D C D C
D US. We may also define the function

() = p(z1), if 21 € ]_?,
limsupps,, .z p(21), ifz1€ D\D.

Note that p is subharmonic on D.

Proof of Theorem 3. Let p > M on D.

If p is constant, S = () and C \ D is not polar, then the domain D is an
L?-domain of holomorphy (see Theorem 2) and Gp, , = D x e~ 1D for some
M; € R (M; = p). Consequently, Gp,, is an L?-domain of holomorphy.

First we show the sufficiency of the condition.

Assume that limsupp,, ., p(z) = oo for any 2o € S and that p is not
constant. (In the case S # () the second condition follows directly from the
first one.) Suppose that Gp , is not an L?-domain of holomorphy. Then there
are discs P;, Q;,j = 1,2, such that P; CC Q;,j=1,2, P:= Pix P, CGp,,
0Gp,,NOP # 0, and for any f € L?(Gp,,) there is a g € O(Q1 x Q2) such
that f =g on P, x Ps.

Let us consider three cases.

Case I. OPNJGp,, CS x C. Then our assumption implies that there is
a point (27, 29) € 9PNAGp,, such that 2{ € S, 29 # 0 and 29 € P,. Consider
the set

Ui={z€QiND:(2,29) € Gp,}.

Note that U # @) (because P; C U). Note also that Q1 \U is not polar. In fact,
the assumption on the boundary behaviour of p implies that there is a point
Z1 € @1 N D such that (Z1,29) € Gp,p, so p(Z1) > —log|z9|. The existence
of only a polar set of such points would, however, lead to a contradiction
with the mean value property of subharmonic functions. Therefore there is a
function f € L3 (U), where U := {2 € D : (21,29) € Gp,,}, which does not
have a holomorphic continuation on @ (see [Con]). There is a function F' €
L3(Gp,,) such that F(21,29) = f(z1), 21 € U (apply [Ohs] with ¥(zy, 25) :=
2g.-mp(23,22)). But such a function F has a holomorphic continuation on
@1 X Q2, from which we conclude the existence of a holomorphic continuation
of f on Q1, which is a contradiction.

Case II. OPNOGp, ,N((0D\S)xC) # 0. The proof in this case is similar
to that in Case I. There is a point (27, 29) € 9PNIGp,, such that 20 € 9D\ S
and 2§ € P, (but not necessarily z3 # 0). Consider the set

U:i={z€QiND:(z1,29) € Gp,}
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Note that U # () (because P; C U). Note also that @1 \ U is not polar. In
fact, this follows directly from the fact that 20 € 9D\ S, the definition of S
and the inclusion Q; \ D C Q, \ U. Therefore there is a function f € L3 (U),
where U := {21 € D : (21,23) € Gp,,}, which does not have a holomorphic
continuation on Qi (see Theorem 2). But then the function F defined by the
formula F (21, 22) := f(21), (21,22) € Gp,, is from the class L?(Gp,,). But
such a function F' has a holomorphic continuation on Q1 X @2, from which
we conclude the existence of a holomorphic continuation of f on @1, which is
a contradiction.

Case III. OPNJGp, N (D x C) # 0. Set My := sup{|z2| : 22 € P»},
My = sup{|za| : 22 € Q2}. Then 0 < M; < M,. From our assumption we
conclude the existence of a point Z; € P N D such that p(Z;) > —log M;.
On the other hand, the extension property implies that for any f € LZ(Gp,,)
and for any z; € P; the inequality e=?/(*1) > M, holds, so p*(z1) < —log Mo,
z1 € P;. This implies the inequality p*(21) < —log My < —log M;, which
contradicts the equality p(Z1) = p*(21) that holds by Corollary 6.

Now we prove the necessity of the condition.

Recall that D\ D is a polar set. Therefore (D\D)QG[M; is pluripolar. Since
L,%—holomorphic functions extend through pluripolar sets, it is easy to see that
L} (Gp,,) = L3( Gp ;)|Gp,,» Which gives us the necessity of the condition. [

The following description of L%—holomorphic hulls of domains G p,, follows
from Theorem 3 and its proof.

COROLLARY 7. Assume that p is bounded from below. Assume that C\ D
s not polar or p is not constant. Then the L%-holomorphic hull of Gp,, equals
Gf),ﬁ' If C\ D is polar and p is constant, then the L2 -holomorphic hull of

Gp,p equals C2.

REMARK. We are far from a full understanding of the structure of L3-
domains of holomorphy. For instance, the natural question whether we may
remove the assumption of lower boundedness of the function p in Theorem 3
remains open. On the other hand, the methods used in the paper may be eas-
ily transferred to Hartogs domains with higher dimensional bases. However,
because of the lack of a full description of L?-domains of holomorphy in C",
n > 2, the results obtained in this case would be much more incomplete. We
believe that to obtain a complete characterization of L?-domains of holomor-
phy in the class of Hartogs domains in the two-dimensional case (as well as
in higher dimensional cases of Hartogs domains or even in the general case of
unbounded domains), a completely different approach is needed.

Some other problems remain also open. For instance: Is it true that if D is a
pseudoconvex domain and locally an L?-domain of holomorphy (which means
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that the geometric condition from Theorem 1 is satisfied) and L? (D) # {0},
then D must be an L,Ql-domain of holomorphy? Another natural problem is
to find a description of L}-domains of holomorphy.

We conclude this paper by presenting a sufficient condition for a pseu-
doconvex domain D to have an infinite-dimensional Bergman space L? (D).
This gives a partial answer to the following question: Is there a pseudocon-
vex domain having a finite-dimensional but non-trivial Bergman space? A
non-pseudoconvex example of that type was given in [Wie].

PROPOSITION 8. Let D C C", D # C™, be an L}-domain of holomorphy
and let {p;}jes be a complete orthonormal system in L3 (D). Assume that
there is an open set U such that UND # 0, U ¢ D, and for any j € J the
function p; has an analytic continuation onto U. Then dim L3 (Gp,,) = .
In particular, any L} -domain of holomorphy which is balanced, a Hartogs do-
main or a Laurent-Hartogs domain different from C™, has infinite-dimensional
Bergman space.

Proof. Suppose the contrary. Then J is finite and J # ). Since D is an
L?-domain of holomorphy, there is a function f € L? (D) which does not have
an analytic continuation onto U. But f = ZjGJ Ajpj, where A\; € C. Since J
is finite, f has an analytic continuation onto U, which is a contradiction. [
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