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PROXIMALITY AND REGIONAL PROXIMALITY IN
MINIMAL FLOWS

JOSEPH AUSLANDER

Abstract. We obtain a number of facts about the proximal and re-
gionally proximal relations in minimal flows, as well as the product of

these two relations. The property of the latter relation coinciding with
the equicontinuous structure relation is shown to be an invariant of the
Ellis group of the flow.

A flow (X,T ) is a jointly continuous (right) action of the topological group
T on the compact Hausdorff space X. A subset K of X is said to be minimal
if it is non-empty, closed, T -invariant, and minimal with respect to these
properties. Equivalently, if x ∈ K then the orbit xT is dense in K. A
point x ∈ X is called almost periodic if its orbit closure xT is a minimal set.
It follows by an application of Zorn’s Lemma that minimal sets (and hence
almost periodic points) always exist in flows with a compact phase space.

We say that (X,T ) is a minimal flow if X is itself a minimal set—that is,
xT = X for all x ∈ X.

If (X,T ) is a flow, the product flow (X × X,T ) is defined by the coordi-
natewise action: (x, y)t = (xt, yt).

If (X,T ) and (Y, T ) are flows, a homomorphism is a continuous surjective
map π : X → Y such that π(xt) = π(x)t, for x ∈ X, t ∈ T . In this case we
say that Y is a factor of X and X is an extension of Y .

We now review proximality and regional proximality. We say that x and y
in X are proximal, if, for any neighborhood W of the diagonal ∆ of X ×X
there is a t ∈ T such that (xt, yt) ∈W . Equivalent formulations are:

(i) There is a net {tn} in T and a z ∈ X such that xtn → z and ytn → z.
(ii) (x, y)T ∩∆ 6= ∅.

The points x and y are said to be regionally proximal if for every neighbor-
hood U of x, V of y and W of ∆ there are x′ ∈ U , y′ ∈ V and t ∈ T such that
(x′t, y′t) ∈ W . Equivalently, there are nets {xn} and {yn} in X and {tn} in
T such that xn → x, yn → y and (xn, yn)tn → ∆.
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We denote the proximal and regionally proximal relations by P and Q,
respectively. Note that P ⊂ Q, P and Q are reflexive, symmetric, T invariant
relations, and that Q is closed. In general, neither P nor Q is an equivalence
relation. By definition, the flow (X,T ) is distal if and only if P = ∆ and it is
easily shown that (X,T ) is equicontinuous if and only if Q = ∆.

These dynamical notions can be relativized. If π : X → Y is a homomor-
phism of flows, π is said to be proximal if all points in a fiber are proximal
(π(x) = π(x′) implies (x, x′) ∈ P ) and π is distal if all points in a fiber are
distal (not proximal).

The smallest closed T -invariant equivalence relation containing Q is the
equicontinuous structure relation Seq(X). That is, the quotient flow
(X/Seq(X), T ) is equicontinuous, and every equicontinuous factor of X is
a factor of X/Seq. (Thus if Q is an equivalence relation then Seq(X) = Q.)
Similarly, the smallest closed T -invariant equivalence relation containing P is
the distal structure relation Sd ([A1], [E2]).

Let (X,T ) be a flow, and let Ω(X) = Ω denote the almost periodic points of
the product flow (X×X,T ). It is an immediate but fundamental observation
that P ∩ Ω ⊂ ∆. That is, there are no non-trivial proximal pairs which
are almost periodic in X × X. For, if (x, y) ∈ P ∩ Ω, and z ∈ X with
(z, z) ∈ (x, y)T , then (x, y) ∈ (z, z)T , so x = y.

Theorem 1. Let (X,T ) be a flow. Then P is an equivalence relation if
and only if, whenever (x, y) ∈ P , (x, y)T ⊂ P .

Proof. Suppose P is an equivalence relation. We first show that if (x, y) ∈
P and K is a minimal subset of (x, y)T , then K ⊂ ∆. Now, a point in a flow
is proximal to a point in each minimal set in its orbit closure ([A1], [E1]), so
there is an (x′, y′) ∈ K with ((x′, y′), (x, y)) ∈ P . Therefore (x′, x) ∈ P and
(y, y′) ∈ P . Since P is an equivalence relation, (x′, y′) ∈ P . Since also (x′, y′)
is almost periodic, x′ = y′. Therefore K ⊂ ∆. Now let (x0, y0) ∈ (x, y)T .
Since (x0, y0)T ⊂ (x, y)T , (x0, y0)T has no non-trivial almost periodic points,
so (x0, y0) ∈ P .

Conversely, suppose the orbit closure condition holds. Let (x, y) and (y, z)
in P , and consider the point (x, y, z) ∈ X×X×X. Let (x′, y′, z′) ∈ (x, y, z)T
be almost periodic. Then (x′, y′) ∈ (x, y)T , so (x′, y′) ∈ P ∩ Ω and x′ = y′.
Similarly y′ = z′, so x′ = z′ and therefore (x′, x′) = (x′, z′) ∈ (x, z)T , which
is to say (x, z) ∈ P . �

It can be shown that Q is an equivalence relation if and only if D(x, y) ⊂ Q
for all (x, y) ∈ Q, [AGu]. (D is the prolongation, defined below.)

It is well known that the property “proximal is an equivalence relation” is
preserved under factors. The following theorem and corollary give necessary
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and sufficient conditions for this property to be lifted by a homomorphism of
minimal flows.

The proof makes use of properties of the enveloping semigroup of a flow
(X,T ). This is the pointwise closure of T (more precisely, the maps defined
by T ) in XX (see [E1] and [A1]).

Theorem 2. Let (X,T ) and (Y, T ) be flows, and let π : X → Y be a
homomorphism. Suppose P (Y ) is an equivalence relation. Then P (X) is an
equivalence relation if and only if, whenever x ∈ X and y′ ∈ Y , then x′1,
x′2 ∈ π−1(y′) ∩ P (x) implies (x′1, x

′
2) ∈ P (X).

Proof. Certainly, if P is an equivalence relation, the above condition holds.
Suppose the condition holds. We will show that the enveloping semigroup
E(X) has a unique minimal right ideal. (This is equivalent to proximal being
an equivalence relation ([E1]).) Suppose I and I ′ are minimal right ideals in
E(X). Let v and v′ be idempotents in I and I ′, respectively, with v ∼ v′ (that
is, vv′ = v and v′v = v′([A1]) and let x ∈ X. Let θ : E(X) → E(Y ) be the
induced homomorphism. Since P (Y ) is an equivalence relation, θ(I) = θ(I ′)
and θ(v) = θ(v′). Let x ∈ X and let y = π(x). Then yθ(v) = yθ(v′) =
y∗. Since π(xv) = y∗ = π(xv′) and (x, xv) ∈ P (X), (x, xv′) ∈ P (X), the
hypothesis implies that (xv, xv′) ∈ P (X). But (xv, xv′) ∈ Ω, so xv = xv′.
Since x ∈ X is arbitrary, v = v′, so I ∩ I ′ 6= ∅ and I = I ′. �

Corollary 3. Let (X,T ) and (Y, T ) be flows and suppose P (Y ) is an
equivalence relation. Suppose π : X → Y is distal. Then P (X) is an equiva-
lence relation if and only if, whenever (y, y′) ∈ P (Y ) and x ∈ π−1(y), there
is a unique x′ ∈ π−1(y′) with (x, x′) ∈ P (X).

In general, “proximal is an equivalence relation” is not preserved by distal
extensions. An example is provided by the Morse minimal set, [A1].

We now consider the product relation QP . By definition (x, z) ∈ QP if
and only if there is a y ∈ X such that (x, y) ∈ Q and (y, z) ∈ P .

The next lemma contains elementary properties of QP . The proof makes
use of the capturing operation, a kind of reverse orbit closure, which was
introduced in [AGl] in order to characterize the distal and equicontinuous
structure relations.

Let (X,T ) be a flow, and K ⊂ X. The capturing set of K is C(K) = {x ∈
X | xT ∩ K 6= ∅}. In the product flow (X × X,T ), C(∆) is the proximal
relation.

Lemma 4.

(i) QP ∩ Ω ⊂ Q.
(ii) If (X,T ) is minimal, QP = PQ.
(iii) Let π : X → Y be a homomorphism of minimal flows. Then

π(QXPX) = QY PY .
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Proof. (i) Let (x, z) ∈ QP ∩ Ω. Let y ∈ X such that (x, y) ∈ Q and
(y, z) ∈ P . Let I be a minimal right ideal in E(X) such that yr = zr for
all r ∈ I, and let u be an idempotent in I such that (x, z)u = (x, z). Then
(x, z) = (x, z)u = (x, y)u ∈ Qu ⊂ Q.

(ii) Note that if the relation R is symmetric, so is C(R). Therefore C(Q) is
symmetric. Now C(Q) = PQ ([AGl]), so QP = (PQ)−1 = C(Q)−1 = C(Q) =
PQ.

(iii) Let (y1, y2) ∈ QY and (y2, y3) ∈ PY . Let v be a minimal idempotent
in E(Y ) such that y3 = y2v, and let w be a minimal idempotent in E(X)
such that θ(w) = v. Let (x1, x2) ∈ Q(X) such that π(x1, x2) = (y1, y2). Then
π(x1, x2w) = (y1, y2v) = (y1, y3) and (x1, x2w) ∈ QXPX . �

For a fixed group T there is a universal minimal flow (M,T ) whose defining
property is that it has every minimal flow with acting group T as a factor.
(M,T ) is regular—that is, if (m,n) is an almost periodic point of (M ×M,T )
there is an automorphism ϕ of M such that ϕ(m) = n ([A1], [E2]). It follows
easily from regularity that (M,T ) is unique up to isomorphism.

This is the point of departure for the “Galois theory” of minimal flows.
Let G be the group of automorphisms of (M,T ). Let (X,T ) be a minimal
flow and let π : M → X be a homomorphism. The (Ellis) group of (X,T ) is
G(X) = {α ∈ G | πα = π}. Clearly G(X) is a subgroup of G. (The group
depends on the homomorphism π; another choice of a homomorphism yields
a conjugate subgroup of G.)

Moreover there is a compact T1 (but not Hausdorff) topology on G such
that G(X) is closed. In fact, every closed subgroup of G is the Ellis group of
some minimal flow. The Ellis groups are invariants of “proximal equivalence”.
The minimal flows (X,T ) and (Y, T ) are proximally equivalent if they have a
common proximal extension. Two minimal flows have the same Ellis group if
and only if they are proximally equivalent.

Let H be the set of h ∈ G whose graphs are contained in Q. That is,
H = {h ∈ G | (m,h(m)) ∈ Q for all (equivalently some) m ∈ M}. In general
H is not a subgroup of G.

The flow (X,T ) is said to be proximally equicontinuous if the proximal
relation P is closed (hence an equivalence relation, by Theorem 1) and the
quotient flow (X/P, T ) is equicontinuous.

Lemma 5. Let (X,T ) be a minimal flow. Then the following are equiva-
lent:

(i) H ⊂ G(X).
(ii) Q(X) ∩ Ω = ∆.
(iii) (X,T ) is proximally equicontinuous.
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Proof. (i) =⇒ (ii): Let π : M → X, and let (x, x′) ∈ Q(X) ∩ Ω. Let
(m,m′) ∈ Q(M) ∩ Ω with π(m,m′) = (x, x′). Then m′ = h(m) for some
h ∈ H. Since H ⊂ G(X) we have πh = π and it follows that x = x′.

(ii) =⇒ (iii): Let (x, x′) ∈ Q(X), and let u be a minimal idempotent.
Then (xu, x′u) ∈ Q ∩ Ω, so xu = x′u Hence (x, x′) ∈ P . Since P = Q,
P is closed, and therefore an equivalence relation. Then X/P = X/Q is
equicontinuous, so (X,T ) is proximally equicontinuous.

(iii) =⇒ (i): Since (X,T ) is proximally equicontinuous, it has the same
group as its maximal equicontinuous factor. Thus we may suppose (X,T ) is
equicontinuous, so Q(X) = ∆. Then, if h ∈ H and if m ∈ M , (m,h(m)) ∈
Q(M). Then (if π : M → X) πh(m) = π(m), so πh = π and h ∈ G(X). �

Our next theorem provides several equivalent conditions to QP being the
equicontinuous structure relation of a minimal flow.

We say that Q is an equivalence relation on almost periodic points if,
whenever (x, y) ∈ Q, (y, z) ∈ Q with (x, z) ∈ Ω, then (x, z) ∈ Q.

If (X,T ) is a flow, and x ∈ X, the prolongation of x, denoted by D(x), is
the intersection of the closed invariant neighborhoods of x, so y ∈ D(x) if and
only if there are nets {xn} in X and {tn} in T with xn → x and xntn → y.
Note that xT ⊂ D(x). The prolongation defines a closed invariant reflexive
symmetric (but not in general transitive) relation in X. If x ∈ X, it is easy
to see that D(x, x) ⊂ Q (with equality if (X,T ) is minimal).

Theorem 6. Let (X,T ) be a minimal flow, with G(X) = A. Then the
following are equivalent:

(i) QP = Seq, the equicontinuous structure relation.
(ii) Q is an equivalence relation on almost periodic points.
(iii) AH is a group.
(iv) Seq ∩ Ω ⊂ Q.
(v) QP is an equivalence relation.
(vi) QP is closed.
(vii) D(QP ) = QP .
(viii) D(Q) = QP .
(ix) Q2 ⊂ QP .

Proof. (i) =⇒ (ii): Suppose QP = Seq and let (x, y), (y, z) ∈ Q with
(x, z) ∈ Ω. Then (x, z) ∈ Seq ∩ Ω = QP ∩ Ω ⊂ Q, by Lemma 4.

(ii) =⇒ (iii): Suppose Q is an equivalence relation on almost periodic
points. We show that AH is a group. Let a1, a2 ∈ A and h1, h2 ∈ H. Let
x ∈ X and m ∈ M with π(m) = x. Let m′ = a1h1a2h2(m), and let x′ =
π(m′). Since Q is an equivalence relation on almost periodic points, it follows
easily that (x, x′) ∈ Q ∩ Ω. Let m∗ ∈ M such that (m,m∗) ∈ Q(M) ∩ Ω(M)
and π(m∗) = x′. Then there is an α ∈ A such that α(m′) = m∗. Thus
αa1h1a2h2 ∈ H and so a1h1a2h2 ∈ AH.
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(iii) =⇒ (iv): LetB = AH. SinceB is a group, withH ⊂ B it follows from
Lemma 5 that there is an equicontinuous minimal flow (Y, T ) with G(Y ) = B.
Since (Y, T ) is equicontinuous, Y is a factor of X (in fact Xeq, the maximal
equicontinuous factor of X).

Let π : X → Y , γ : M → X, and ψ = πγ. Let (x, x′) ∈ Seq(X) ∩ Ω.
Let (m,m′) ∈ M × M be almost periodic with π(m,m′) = (x, x′). Then
ψ(m) = ψ(m′), so, since G(Y ) = B, we have m′ = ah(m) with a ∈ A and
h ∈ H. Then x′ = γ(m′) = γ(ah(m)) = γ(h(m)) ∈ γ(Q(m)) ⊂ Q(x). That
is, (x, x′) ∈ Q.

(iv) =⇒ (i): Suppose (x1, x2) ∈ Seq(X), and let u be a minimal idem-
potent with x1u = x1. Then (x1, x2u) ∈ Seq ∩ Ω, so (x1, x2u) ∈ Q, and
(x2u, x2) ∈ P . Therefore (x1, x2) ∈ QP .

Obviously (i) =⇒ (v) and (vi).
(v) =⇒ (ix) and (ii): Since QP is an equivalence relation, Q2 = QQ ⊂

QPQP = QP and Q2 ∩ Ω ⊂ QP ∩ Ω ⊂ Q, by Lemma 4.
(vi) =⇒ (i): Since QP is closed, PQ = (QP )−1 is closed. Thus C(Q) =

PQ is closed and capturing, so ([AGl]) PQ = Seq and therefore QP = Seq.
(i) =⇒ (vii): If QP = Seq, then D(QP ) = D(Seq) = Seq = QP .
If D(QP ) = QP then QP = C(Q) ⊂ D(Q) ⊂ D(QP ) = QP so QP =

D(Q), which is closed. Hence (vii) =⇒ (vi) and (viii). The same argument
shows that (viii) =⇒ (vi).

(i) =⇒ (ix): Q2 ⊂ Seq = QP .
(ix) =⇒ (ii): Let (x, y), (y, z) ∈ Q with (x, z) almost periodic. Then

(x, z) ∈ Q2 ∩ Ω ⊂ QP ∩ Ω ⊂ Q, by Lemma 4. �

Note that (iii) is an Ellis group condition, so the various equivalent prop-
erties hold for any minimal flow which is proximally equivalent to (X,T ).

I conjecture that “Q is an equivalence relation” is not an Ellis group con-
dition. That is, it is likely that there is a minimal flow (X,T ) for which Q is
an equivalence relation, but (X,T ) has a proximal extension (X ′, T ) with Q
not an equivalence relation for (X ′, T ). In such an example, the acting group
T would have to be non-abelian ([AEE], [AGu]).

Let E be the group of the universal equicontinuous minimal flow. Then
another condition equivalent to those in Theorem 6 is that AH = AE ([AEE,
Theorem 1.12]).

Of course, (ix) implies that QP = Q2. If QP = Q, then Q is an equivalence
relation ([AGl]).

Using Lemma 4, and, for instance, (vi) it follows that the conditions in
Theorem 6 are preserved when passing to factors. In particular, we have:

Corollary 7. Let A and B be closed subgroups of G with A ⊂ B. Sup-
pose AH is a group. Then BH is a group.

It is not difficult to give a purely algebraic proof of Corollary 7.
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Our final results concern weak mixing. A flow is weakly mixing if the
product flow (X ×X,T ) is topologically transitive. (That is, every nonempty
open invariant subset of (X × X) is dense. In case X is metrizable, this is
equivalent to the existence of a dense orbit.) If the acting group T is abelian,
equivalent conditions (for minimal flows) are Xeq is trivial, and Q = X ×X
([A1]). Still another condition is group theoretic. It involves a subgroup G′

of G: g ∈ G′ if and only if there is a net {gn} in G such that gn → g and
gn → id, the identity automorphism. If T is abelian, then (X,T ) is weakly
mixing if and only if G = AG′ (where, as usual, A = G(X)) ([A2]).

Ellis has proposed this group theoretic property as the definition of weak
mixing in general. However, it does not coincide with weak mixing (see below),
so we will refer to it as Ellis weak mixing.

Our next lemma concerns the condition G = AH. This is implied by both
weak mixing and Ellis weak mixing. (Clearly G′ ⊂ H, so if G = AG′ we have
G = AH. If (X,T ) is weak mixing, then Q = X × X, and it follows from
Lemma 8 (below) that G = AH.)

Lemma 8. Suppose (X,T ) is minimal. Then the following are equivalent:

(i) Ω ⊂ Q.
(ii) QP = X ×X.
(iii) G = G(X)H.

In this case, Xeq is trivial.

Proof. (i) =⇒ (ii): If Ω ⊂ Q for the minimal flow (X,T ), clearly the
same holds for the maximal equicontinuous factor Xeq. Always Xeq ×Xeq is
pointwise almost periodic. So Xeq × Xeq = Q and since Q is trivial for an
equicontinuous flow, Xeq is trivial. Equivalently, Seq = X × X. Using the
implication (iv) =⇒ (i) of Theorem 6, we see that QP = Seq = X ×X.

(ii) =⇒ (i): Ω = X ×X ∩ Ω = QP ∩ Ω ⊂ Q by Lemma 4.
The equivalence of (i) and (iii) follows easily from Lemma 5 and Theorem 6.

�

In [AEE] the group theoretic condition H ⊂ AG′ was shown to imply that
Q is an equivalence relation. In [A3] this condition was shown to be equivalent
to “locally Bronstein”—namely, if (x, y) ∈ Q ∩ Ω there are nets {(xn, yn)} in
Ω and {tn} in T such that (xn, yn) → (x, y) and (xntn, yntn) → ∆. (This is
clearly implied by the “Bronstein condition”—Ω is dense in X ×X.)

Theorem 9. Let (X,T ) be a minimal flow.

(i) (X,T ) is Ellis weakly mixing if and only if it is locally Bronstein and
Ω ⊂ Q.

(ii) If (X,T ) is Ellis weakly mixing, then Q = X ×X.
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Proof. (i) If (X,T ) is Ellis weakly mixing, clearly H ⊂ AG′. Also, G =
AG′ ⊂ AH, so Ω ⊂ Q by Lemma 8. The converse follows by a similar
argument.

(ii) G ⊂ AH, so it follows from Lemma 8 that Seq = X ×X. Now AH =
AG′, so by [AEE], Q is an equivalence relation, and Q = Seq = X ×X. �

In fact, it is the case that Ellis weak mixing implies weak mixing. This has
recently been shown by Glasner ([G]) and (independently) by the author.

In conclusion, we present four examples. (We thank Eli Glasner for pointing
out their properties.)

These are all based on an example of McMahon. This is an action of the free
group on two generators on the circle K. The generating homeomorphisms ϕ
and ψ are defined as follows. ϕ is just an irrational rotation. This guarantees
that the action is minimal. The homeomorphism ψ has four equally spaced
fixed points, call them a, b, c and d, and maps each arc between the fixed
points to itself in (the same) increasing manner. (For example, if x is on the
open arc formed by a and b, limn→∞ ψn(x) = b and limn→−∞ ψn(x) = a.) It
is easily checked that if x, y ∈ K, (x, y) ∈ Q if and only if (assuming K has
length 1) y is in the closed arc of length 1/2 centered at x, and (x, y) ∈ P if
and only if y is in the corresponding open arc. Hence (x, y) ∈ QP unless x
and y are diametrically opposite points. Therefore QP is not closed, so not
an equivalence relation (Theorem 6).

To obtain an example where QP is an equivalence relation but Q is not,
we modify McMahon’s example by requiring that ψ have three equally spaced
fixed points. Then an analysis similar to the one above shows that QP =
K × K, and (x, y) ∈ Q if and only if y is in the closed arc of length 2/3
centered at x. Thus Q is not an equivalence relation.

If ψ has two fixed points, say at 1 and −1, then, for the action of the group
generated by ϕ and ψ on K, Q = K ×K, but the action is not weak mixing.
(This is in contrast to the action of an abelian group.)

Finally, we show that weak mixing does not imply Ellis weak mixing. Let
ψ as in the previous example (two fixed points), and let T be the group
generated by ϕ, ψ and the homeomorphism σ, the complex conjugation map
on K, z 7→ z̄. It is easily checked that the action of T on K is weakly mixing.
To see that the action is not Ellis weak mixing, note that all pairs in K ×K
are proximal, with the exception of diametrically opposite pairs, which are
almost periodic. Since the latter pairs are limits of proximal pairs, they are
in fact in Ω ∩ Q. From this, it is clear that the local Bronstein condition is
violated. Then H * AG′, so certainly G 6= AG′.
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