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TRANSFERENCE OF BILINEAR MULTIPLIER OPERATORS
ON LORENTZ SPACES

OSCAR BLASCO AND FRANCISCO VILLARROYA

Abstract. Let m(ξ, η) be a bounded continuous function in R×R, let
0 < pi, qi < ∞ for i = 1, 2, and let 0 < p3, q3 ≤ ∞, be such that

1/p1 + 1/p2 = 1/p3. It is shown that

Cm(f, g)(x) =

∫
R

∫
R

f̂(ξ)ĝ(η)m(ξ, η)e2πix(ξ+η)dξdη

is a bounded bilinear operator from Lp1,q1 (R)×Lp2,q2 (R) into Lp3,q3 (R)
if and only if

PD
ε−1m(f, g)(θ) =

∑
k∈Z

∑
k′∈Z

f̂(k)ĝ(k′)m(εk, εk′)e2πiθ(k+k′)

are bounded bilinear operators from Lp1,q1 (T)×Lp2,q2 (T) into Lp3,q3 (T)
with norm bounded by a uniform constant for all ε > 0.

1. Introduction

Let m(ξ1, ξ2, . . . , ξn) be a bounded measurable function in Rn and define

Cm(f1, f2, . . . , fn)(x)

=
∫
Rn

f̂1(ξ1) . . . f̂n(ξn)m(ξ1, ξ2, . . . , ξn)e2πix(ξ1+ξ2+···+ξn)dξ

for Schwartz test functions fi in S for i = 1, . . . , n.
Let now 0 < pi ≤ ∞, i = 1, . . . , n, be given, and let 1/q = 1/p1 + 1/p2 +

· · ·+1/pn. The function m is said to be a multilinear multiplier of strong type
(p1, p2, . . . , pn) (resp. weak type (p1, p2, . . . , pn)) if Cm extends to a bounded
bilinear operator from Lp1(R)× · · · × Lpn(R) into Lq(R) (resp. to Lq,∞(R)).

The study of such multilinear multipliers had been started by R. Coifman
and Y. Meyer (see [4], [5], [6]) for smooth symbols. The interest in this area
has increased in recent years following the work by M. Lacey and C. Thiele
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([20], [21], [22]) who showed that m(ξ, ν) = sign(ξ + αν) are multipliers of
strong type (p1, p2) for 1 < p1, p2 ≤ ∞, p3 > 2/3 and each α ∈ R \ {0, 1}.

New results for non-smooth symbols, extending those given by the bilinear
Hilbert transform, have been achieved by J.E. Gilbert and A.R. Nahmod (see
[10], [11], [12]) and by C. Muscalu, T. Tao and C. Thiele (see [25]).

We refer the reader to [13], [19], [9], and [14] for results on bilinear multi-
pliers and related topics.

The first transference methods for linear multipliers were given by K.
DeLeeuw. It is known that if m is continuous, then

Tm(f)(x) =
∫
R

f̂(ξ)m(ξ)e2πixξdξ

(defined for f ∈ S(R)) is bounded on Lp(R) if and only if the operators

T̃mε(f)(θ) =
∑
k∈Z

f̂(k)m(εk)e2πiθk

(defined for trigonometric polynomials f) are uniformly bounded on Lp(T)
for all ε > 0 (see [8] and [29, p. 264]).

Although the results in this paper hold true for multilinear multipliers, for
simplicity of the notation we restrict ourselves to bilinear multipliers and only
state and prove the theorems in this situation.

Let (mk,k′) be a bounded sequence. We use the notation

Pm(f, g)(θ) =
∑
k∈Z

∑
k′∈Z

a(k)b(k′)mk,k′e
2πiθ(k+k′)

for f(t) =
∑
n∈Z a(n)e2πint and g(t) =

∑
n∈Z b(n)e2πint.

Let 0 < p1, p2 ≤ ∞ and let p3 be such that 1/p1 + 1/p2 = 1/p3. We write
PDt−1m when the symbol is m(tk, tk′) and call m(tk, tk′) a bounded multiplier
of strong (resp. weak) type (p1, p2) on Z × Z if the corresponding operator
PDt−1m is bounded from Lp1(T)× Lp1(T) into Lp3(T) (resp. Lp3,∞(T)).

In a recent paper, D. Fan and S. Sato [9] obtained certain DeLeeuw type
theorems for transferring multilinear operators on Lebesgue and Hardy spaces
from R

n to Tn. They showed that the multilinear version of the transference
between R and Z holds, namely that for a continuous function m(ξ, η) one
has that m is a multiplier of strong (resp. weak) type (p1, p2) on R×R if and
only if (Dε−1m)k,k′ = (m(εk, εk′))k,k′ are uniformly bounded multipliers of
strong (resp. weak) type (p1, p2) on Z× Z.

The first author [3] proved a DeLeeuw type theorem for transferring bilinear
multipliers from Lp(R) to bilinear multipliers acting on `p(Z). The aim of this
paper is to extend the results in [9] to bilinear multipliers acting on Lorentz
spaces (see [9, Remark 3]).

We shall show that if m is a bounded continuous function on R2, then Cm
defines a bounded bilinear map from Lp1,q1(R) × Lp2,q2(R) into Lp3,q3(R) if
and only if the operators PDt−1m, defined as the restriction to m(tk, tk′) for
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k, k′ ∈ Z, define bilinear maps from Lp1,q1(T)× Lp2,q2(T) into Lp3,q3(T) that
are uniformly bounded for t > 0.

Throughout the paper |A| denotes the Lebesgue measure of A and we
identify functions f on T and periodic functions on R with period 1 defined
on [−1/2, 1/2), that is, f(x) = f(e2πix) and

∫
T
f(z)dm(z) =

∫ 1/2

−1/2
f(t)dt. For

0 < p ≤ ∞, we write Dp
t f(x) = t−1/pf(t−1x) (with the notation Dt = D∞t ),

Myf(x) = f(x)e2πiyx and Tyf(x) = f(x−y) for the dilation, modulation and
translation operators. In this way (Dq

t f )̂ = Dq′

t−1 f̂ , where, as usual, q′ stands
for the conjugate exponent of q.

Acknowledgement. We want to thank the referee for his or her careful
reading.

2. Preliminaries

Let (Ω,Σ, µ) be a σ-finite and complete measure space. Given a complex-
valued measurable function f we shall denote the distribution function of f
by µf (λ) = µ(Eλ) for λ > 0, where Eλ = {w ∈ Ω : |f(w)| > λ}. The
nonincreasing rearrangement of f is denoted by f∗(t) = inf{λ > 0 : µf (λ) ≤
t}, and we set f∗∗(t) = 1

t

∫ t
0
f∗(s)ds.

Now the Lorentz space Lp,q consists of those measurable functions f such
that ‖f‖∗pq <∞, where

‖f‖∗pq =


{
q

p

∫ ∞
0

tq/pf∗(t)q
dt

t

}1/q

, 0 < p <∞, 0 < q <∞,

sup
t>0

t1/pf∗(t) 0 < p ≤ ∞, q =∞.

It is well known that
‖f‖p∞ = sup

λ>0
λµf (λ)1/p.

Here we shall use the following fact: If 0 < p, q < ∞ and f is a measurable
function, then

(1) ‖f‖∗pq =
(
q

∫ ∞
0

λq−1µf (λ)q/pdλ
)1/q

.

(This can be easily checked for simple functions.)
Let us recall some facts about these spaces. Simple functions are dense in

Lp,q for q 6= ∞, and we have (Lp,1)∗ = Lp
′,∞ for 1 ≤ p < ∞, and (Lp,q)∗ =

Lp
′,q′ for 1 < p, q < ∞. Replacing f∗ by f∗∗ and putting ‖f‖pq = ‖f∗∗‖∗pq,

we get a functional equivalent to ‖ · ‖∗pq (for 1 < p < ∞) for which L1,1 and
Lp,q for 1 < p ≤ ∞, 1 ≤ q ≤ ∞, are Banach spaces.

The reader is referred to [17], [2], [29] or [24] for basic information on
Lorentz spaces. We only consider the case when µ is either the Lebesgue
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measure on R or the normalized Lebesge measure on T, and the distribution
function will be denoted by mf in both cases.

Definition 2.1. Let m be a bounded measurable function on R2. Let
0 < pi, qi ≤ ∞ for i = 1, 2, 3. For t > 0 we define

CDt−1m(f, g)(x) = Ct(f, g)(x) =
∫
R

∫
R

f̂(ξ)ĝ(η)m(tξ, tη)e2πi(ξ+η)xdξdη

for f, g ∈ S(R) .
We say that m is a bilinear multipier in (Lp1,q1(R)× Lp2,q2(R), Lp3,q3(R))

if there exists C > 0 such that

‖C1(f, g)‖Lp3,q3 (R) ≤ C‖f‖Lp1,q1 (R)‖g‖Lp2,q2 (R)

for all f, g ∈ S(R) .

Definition 2.2. Let (mk1,k2)k1∈Z,k2∈Z be a bounded sequence. Let pi, qi >
0 be such that p−1

3 = p−1
1 + p−1

2 . We define

Pm(f, g)(x) =
∑
k1∈Z

∑
k2∈Z

ak1bk2mk1,k2e
2πi(k1+k2)x

for all trigonometric polynomials

f(x) =
∑
|k|≤N

ake
2πikx, g(x) =

∑
|k|≤M

bke
2πikx

and N,M ∈ N.
We say thatmk,k′ is a bilinear multiplier in (Lp1,q1(T)×Lp2,q2(T), Lp3,q3(T))

if there exists C > 0 such that

‖Pm(f, g)‖Lp3,q3 (T) ≤ C‖f‖Lp1,q1 (T)‖g‖Lp2,q2 (T)

for all trigonometric polynomials f and g.

Remark 2.1. A function m is a multiplier in (Lp1,q1(R) × Lp2,q2(R),
Lp3,q3(R)) if and only if Dt−1m(ξ, η) = m(tξ, tη) is also a multiplier for each
t > 0.

Note that for each t > 0 we have mDtf (λ) = tmf (λ). Hence

(2) ‖Dtf‖Lp,q(R) = t1/p‖f‖Lp,q(R)

for 0 < p, q ≤ ∞. The above claim now follows easily from the formula

Ct(f, g) = DtC1(Dt−1f,Dt−1g).

Actually we have ‖Ct‖ = ‖C1‖ for all t > 0.

Let us start by recalling some facts to be used in the sequel.
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Definition 2.3. If f is a measurable function on R such that max{|f(x)|,
|f̂(x)|} ≤ A/(1 + |x|)α for some A > 0 and α > 1, we define f̃ as the well-
defined periodic function (see [29, pp. 250–253])

f̃(x) =
∑
k∈Z

f(x+ k) =
∑
k∈Z

f̂(k)e2πikx.

Lemma 2.4. Let 0 < p <∞ and 0 < q ≤ ∞. If f ∈ S(R) we have

4−1/r‖f‖Lp,q(R) ≤ lim inf
t→0

t−1/p‖D̃tf‖Lp,q(T),

lim sup
t→0

t−1/p‖D̃tf‖Lp,q(T) ≤ 41/r‖f‖Lp,q(R),

where r = log−1
2 (21/p+1 max (2(1/q)−1, 1)) and D̃tf(x) =

∑
k∈ZDtf(x + k) is

defined on T.

Proof. Assume first that f has compact support. For t > 0 small enough
we have supp(Dtf) ⊂ [−1/2, 1/2]. This implies that

D̃tfχ[−1/2,1/2] = Dtfχ[−1/2,1/2] = Dtf.

In particular, for such t we have

m
D̃tf

(λ) = |{x ∈ [−1/2, 1/2]/|Dtf(x)| > λ}|

= |{x ∈ R/|f(t−1x)| > λ}| = tmf (λ)

and

(D̃tf)∗(x) = Dt(f∗)(x), x > 0.

Hence

‖D̃tf‖qLp,q(T) =
q

p

∫ 1

0

(
x1/p(D̃tf)∗(x)

)q dx
x

=
q

p

∫ 1

0

(
x1/pf∗(t−1x)

)q dx
x

= tq/p
q

p

∫ t−1

0

(
x1/pf∗(x)

)q dx
x

and therefore

lim
t→0

t−1/p‖D̃tf‖Lp,q(T) = lim
t→0

(
q

p

∫ t−1

0

(
x1/pf∗(x)

)q dx
x

)1/q

= ‖f‖Lp,q(R).

The case q =∞ is simpler.
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For the general case, set fn = fχ[−n,n] and observe that, for |x| < 1/2

D̃tf(x)− D̃tfn(x) =
∑
k∈Z

f(t−1(x+ k))− fn(t−1(x+ k))

=
∑

|k+x|>tn

f(t−1(x+ k)).

Hence, for any m > 0 we have

|D̃tf(x)− D̃tfn(x)| ≤
∑

|k+x|>tn

Cm
(1 + t−1|x+ k|)m

≤ tm
∑

|k+x|>tn

Cm
|x+ k|m

≤ Cmtm.

Selecting m > 1/p, we get

lim
t→0

t−1/p‖D̃tfn − D̃tf‖L∞(T) ≤ Cm lim
t→0

tm−1/p = 0.

Given ε > 0, choose n ∈ N such that

(1− ε)‖f‖Lp,q(R) ≤ ‖fn‖Lp,q(R) ≤ ‖f‖Lp,q(R).

Since ‖ · ‖Lp,q(R) is a quasi-norm with constant C = 21/p max(2(1/q)−1, 1) , by
the Aoki-Rolewic theorem [26] it is equivalent to an r-norm, namely | · |, for
r = log−1

2 (2C). More precisely, we have

|f | ≤ ‖f‖Lp,q(R) ≤ 41/r|f |,

and thus we obtain the following triangle inequality for rth powers:

‖f + g‖rLp,q(R) ≤ 4(‖f‖rLp,q(R) + ‖g‖rLp,q(R)).

Using this triangle inequality for ‖.‖rLp,q(T) for the power r ≤ 1 corresponding
to the different values of p and q, and the previous case, we get the desired
formula. �

Lemma 2.5. Let 0 < p, q ≤ ∞, ϕ = χ[−1/2,1/2], f ∈ Lp,q(T) and k ∈ N.
Then

‖f‖Lp,q(T) = ‖fDp
kϕ‖Lp,q(R).

Proof. Using the periodicity of f , we get

mfDpkϕ
(λ) =

∣∣∣{x ∈ R : |f(x)k−1/pχ[−1/2,1/2](k−1x)| > λ
}∣∣∣

=
∣∣∣∣{x ∈ [−k

2
,
k

2
] : |f(x)| > k1/pλ

}∣∣∣∣
= k

∣∣∣∣{x ∈ [−1
2
,

1
2

] : |f(x)| > k1/pλ

}∣∣∣∣ = kmf (k1/pλ).
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Hence

(fDp
kϕ)∗(t) = inf{λ > 0 : kmf (k1/pλ) < t}

= k−1/p inf{λ > 0 : mf (λ) < k−1t}
= Dp

kf
∗(t) = (Dp

kf)∗(t).

Therefore

‖fDp
kϕ‖

q
Lp,q(R) =

q

p

∫ ∞
0

tq/p(fDp
kϕ)∗(t)q

dt

t

=
q

p

∫ ∞
0

tq/pk−q/pf∗(k−1t)q
dt

t

=
q

p

∫ ∞
0

tq/pf∗(t)q
dt

t
= ‖f‖qLp,q(T). �

Lemma 2.6. Let 0 < p <∞ and f ∈ Lp,∞(T). If ϕ ∈ S(R) is radial and
decreasing, then

lim sup
ε→0

‖fDp
ε−1ϕ‖Lp,∞(R) ≤ ‖ϕ‖Lp(R)‖f‖Lp,∞(T).

Proof. Note that for each ε > 0 and λ > 0 we have

|{x ∈ R : |f(x)ϕ(εx)| > t}| =
∣∣{|x| ≤ 2−1λε−1 : |f(x)ϕ(εx)| > t

}∣∣
+
∞∑
n=0

∣∣{2n−1λε−1 < |x| ≤ 2nλε−1 : |f(x)ϕ(εx)| > t
}∣∣

≤
∣∣{|x| ≤ 2−1λε−1 : |f(x)| > tϕ(0)−1

}∣∣
+
∞∑
n=0

∣∣{2n−1λε−1 < |x| ≤ 2nλε−1 : |f(x)| > tϕ(λ2n−1)−1
}∣∣

≤
∣∣{|x| ≤ 2−1([λε−1] + 1) : |f(x)| > tϕ(0)−1

}∣∣
+
∞∑
n=0

∣∣{2n−1[λε−1] < |x| ≤ 2n([λε−1] + 1) : |f(x)| > tϕ(λ2n−1)−1
}∣∣

= ([λε−1] + 1)
∣∣{x ∈ T : |f(x)| > tϕ(0)−1

}∣∣
+
∞∑
n=0

(
2n+1

(
[λε−1] + 1

)
− 2n[λε−1]

) ∣∣∣{x ∈ T : |f(x)| > tϕ
(
λ2n−1

)−1
}∣∣∣

≤ (λε−1 + 1)
∣∣{x ∈ T : |f(x)| > tϕ(0)−1

}∣∣
+
∞∑
n=0

2n(λε−1 + 2)
∣∣{x ∈ T : |f(x)| > tϕ(λ2n−1)−1

}∣∣ .
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Hence we get

mfDε−1ϕ(t) ≤ (λε−1 + 1)mf (tϕ(0)−1)(3)

+ (λε−1 + 2)
∞∑
n=0

2nmf (tϕ(λ2n−1)−1).

Therefore, using that mf (t) ≤ ‖f‖pp∞/tp, we get

mfDp
ε−1ϕ

(s) = mfDε−1ϕ(sε−1/p)

≤ (λε−1 + 1)εs−pϕ(0)p‖f‖pLp,∞(T)

+
∞∑
n=0

2n(λε−1 + 2)εs−pϕ(λ2n−1)p‖f‖pLp,∞(T)

≤ s−p(λ+ ε)|ϕ(0)|p‖f‖pLp,∞(T)

+ s−p
∞∑
n=0

2n(λ+ 2ε)ϕ(λ2n−1)p‖f‖pLp,∞(T).

Hence, if

ϕλ = ϕ(0)χ[−λ2−1,λ2−1] +
∑
n≥0

ϕ(λ2n−1)χ[−λ2n,λ2n]\[−λ2n−1,λ2n−1],

we have

lim sup
ε→0

‖fDp
ε−1ϕ‖pLp,∞(R) ≤ ‖ϕλ‖

p
Lp(R)‖f‖

p
Lp,∞(T) .

Passing to the limit as λ goes to zero, we get the result. �

Lemma 2.7. Let 0 < p, q <∞ and f ∈ Lp,q(T). If ϕ ∈ S(R) is radial and
decreasing, then

Cp,s‖ϕ‖Lp,s(R)‖f‖Lp,q(T) ≤ lim inf
ε→0

‖fDp
ε−1ϕ‖Lp,q(R)

≤ lim sup
ε→0

‖fDp
ε−1ϕ‖Lp,q(R)

≤ Cp,r‖ϕ‖Lp,r(R)‖f‖Lp,q(T),

where Cp1,p2 = (2p2/p1 − 1)−1/p2 , r = min(p, q) and s = max(p, q).

Proof. Use (1) to write

‖fDp
ε−1ϕ‖qLp,q(R) =

∫ ∞
0

qtq−1(mfDε−1 (ε−1/pt))q/pdt

=
∫ ∞

0

qtq−1(εmfDε−1 (t))q/pdt.
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By the estimate in the previous lemma we have

εmfDε−1ϕ(t) ≤ (λ+ ε)mf (tϕ(0)−1) + (λ+ 2ε)
∞∑
n=0

2nmf (tϕ(λ2n−1)−1).

Now we see that for r = min(p, q) we have

(4) lim sup
ε→0

‖fDp
ε−1ϕ‖Lp,q(R)

≤

(
λr/pϕ(0)r +

∞∑
n=0

(λ2n)r/pϕ(λ2n−1)r
)1/r

‖f‖Lp,q(T).

If q ≤ p, then for all λ we have

‖fDp
ε−1ϕ‖qLp,q(R) =

∫ ∞
0

qtq−1 (ε|{x ∈ R|f(x)ϕ(εx)| > t}|)q/p dt

≤
∫ ∞

0

qtq−1

(
(λ+ ε)mf (tϕ(0)−1) + (λ+ 2ε)

∞∑
n=0

2nmf (tϕ(λ2n−1)−1)

)q/p
dt

≤
∫ ∞

0

qtq−1(λ+ ε)q/pmf (tϕ(0)−1)q/pdt

+
∫ ∞

0

qtq−1(λ+ 2ε)q/p
∞∑
n=0

2nq/pmf (tϕ(λ2n−1)−1)q/pdt

= (λ+ ε)q/pϕ(0)q
∫ ∞

0

qtq−1mf (t)q/pdt

+ (λ+ 2ε)q/p
∞∑
n=0

2nq/pϕ(λ2n−1)q
∫ ∞

0

qtq−1mf (t)q/pdt

=

(
(λ+ ε)q/p|ϕ(0)|q + (λ+ 2ε)q/p

∞∑
n=0

2nq/pϕ(λ2n−1)q
)
‖f‖qLp,q(T).

Therefore

lim sup
ε→0

‖fDp
ε−1ϕ‖Lp,q(R)

≤

(
λq/pϕ(0)q +

∞∑
n=0

(λ2n)q/pϕ(λ2n−1)q
)1/q

‖f‖Lp,q(T),

which gives (4).
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In the case q > p we use Minkowski’s inequality and get

‖fDp
ε−1ϕ‖pLp,q(R) =

(∫ ∞
0

(
qp/qtp(1−

1
q )ε |{x ∈ R : |f(x)ϕ(εx)| > t}|

)q/p
dt

)p/q
≤

(∫ ∞
0

(
qp/qtp(1−

1
q )(λ+ ε)mf (tϕ(0)−1)

+ (λ+ 2ε)
∞∑
n=0

2nqp/qtp(1−
1
q )mf (tϕ(λ2n−1)−1)

)q/p
dt

)p/q

≤ (λ+ ε)
(∫ ∞

0

(
qp/qtp(1−

1
q )mf (tϕ(0)−1)

)q/p
dt

)p/q
+ (λ+ 2ε)

∞∑
n=0

2n
(∫ ∞

0

(
qp/qtp(1−

1
q )mf (t|ϕ(λ2n−1)|−1)

)q/p
dt

)p/q
= (λ+ ε)ϕ(0)p

(∫ ∞
0

qtq−1mf (t)q/pdt
)p/q

+ (λ+ 2ε)
∞∑
n=0

2nϕ(λ2n−1)p
(∫ ∞

0

qtq−1mf (t)q/pdt
)p/q

=

(
(λ+ ε)ϕ(0)p + (λ+ 2ε)

∞∑
n=0

2nϕ(λ2n−1)p
)
‖f‖pLp,q(T).

Therefore

lim sup
ε→0

‖fDp
ε−1ϕ‖Lp,q(R) ≤

(
λϕ(0)p +

∞∑
n=0

λ2nϕ(λ2n−1)p
)1/p

‖f‖Lp,q(T),

and (4) is proved.
If

ϕλ = ϕ(0)χ[−λ2−1,λ2−1] +
∑
n≥0

ϕ(λ2n−1)χ[−λ2n,λ2n]\[−λ2n−1,λ2n−1],

then clearly

‖ϕλ‖p =

(
λϕ(0)p +

∞∑
n=0

λ2nϕ(λ2n−1)p
)1/p

.

Since ϕ and ϕλ are radial and decreasing, we have ϕ∗λ(t) = ϕλ(t/2) for t > 0
and

‖ϕλ‖Lpr(R) =

(
λr/pϕ(0)r + (2r/p − 1)

∞∑
n=0

(λ2n)r/pϕ(λ2n−1)r
)1/r

.



TRANSFERENCE OF BILINEAR MULTIPLIER OPERATORS 1337

Hence, using r ≤ p, we obtain(
λr/pϕ(0)r +

∞∑
n=0

(λ2n)r/pϕ(λ2n−1)r
)1/r

≤ (2r/p − 1)−1/r‖ϕλ‖Lp,r(R).

Finally, taking the limits as λ→ 0 gives

lim sup
ε→0

‖fDp
ε−1ϕ‖Lp,q(R)

≤ lim
λ→0

(
λr/pϕ(0)r +

∞∑
n=0

(λ2n)r/pϕ(λ2n−1)r
)1/r

‖f‖Lp,q(T)

≤ (2r/p − 1)−1/r lim sup
λ→0

‖ϕλ‖Lp,r(R)‖f‖Lp,q(T)

= (2r/p − 1)−1/r‖ϕ‖Lp,r(R)‖f‖Lp,q(T).

This gives one of the inequalities of the lemma.
To get the other inequality, we use estimates from below to obtain

lim inf
ε→0

‖fDp
ε−1ϕ‖Lp,q(R)

≥

(
λs/pϕ(λ2−1)s +

∞∑
n=0

(λ2n)s/pϕ(λ2n)s
)1/s

‖f‖Lp,q(T),

where s = max(p, q).
Using now that s ≥ p, we get, arguing as above,(
λs/pϕ(λ2−1)s +

∞∑
n=0

(λ2n)s/pϕ(λ2n)s
)1/s

≥ (2s/p − 1)−1/s‖ϕλ‖Lp,s(R),

where

ϕλ = ϕ(λ2−1)χ[−λ2−1,λ2−1] +
∑
n≥0

ϕ(λ2n)χ[−λ2n,λ2n]\[−λ2n−1,λ2n−1].

Hence

lim inf
ε→0

‖fDp
ε−1ϕ‖Lp,q(R) ≥ (2s/p − 1)−1/s‖ϕ‖Lp,s(R)‖f‖Lp,q(T).

The proof is now complete. �

Corollary 2.8. Let 0 < p < ∞ and f ∈ Lp(T). If ϕ ∈ S(R) is radial
and decreasing, then

‖ϕ‖Lp(R)‖f‖Lp(T) = lim
ε→0
‖fDp

ε−1ϕ‖Lp(R).

In particular, for p = 1 and the periodic function f defined by f = χ̃A on
A ⊂ [−1/2, 1/2] we get

lim
ε→0

∫
R

f(x)D1
ε−1ϕ(x)dx = lim

ε→0

∫
R

Dεf(x)ϕ(x)dx = m(A)
∫
R

ϕ(x)dx.
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We are now ready to prove our main result.

Theorem 2.9. Let m be a bounded continuous function on R2. Let 0 <
pi, qi <∞, i = 1, 2, and let 0 < p3, q3 ≤ ∞ be such that 1/p1 + 1/p2 = 1/p3.
Then m is a multiplier in (Lp1,q1(R) × Lp2,q2(R), Lp3,q3(R)) if and only if
the functions (Dt−1m)t>0 restricted to Z2 are uniformly bounded multipliers
in (Lp1,q1(T) × Lp2,q2(T), Lp3,q3(T)); i.e, setting Pt = P(Dt−1m)k,k′

, where
(Dt−1m)k,k′ = m(tk, tk′), there exists a constant C > 0 such that

‖C1(f, g)‖Lp3,q3 (R) ≤ C‖f‖Lp1,q1 (R)‖g‖Lp2,q2 (R)

for f, g ∈ S(R) if and only if there exists a constant C ′ > 0 such that

‖Pt(f, g)‖Lp3,q3 (T) ≤ C ′‖f‖Lp1,q1 (T)‖g‖Lp2,q2 (T)

uniformly in t > 0 for all trigonometric polynomials f, g.

Proof. “⇒”: Let ϕ = χ[−1/2,1/2] and ψ(x) = π−1/2e−x
2

Let t > 0 and let
f(x) =

∑
k1∈Z ak1e

2πik1x and g(x) =
∑
k2∈Z bk2e

2πik2x.
Since m is continuous we can write

Pt(f, g)(x) =
∑
k1∈Z

∑
k2∈Z

ak1bk2m(tk1, tk2)e2πi(k1+k2)x

=
∑
k1∈Z

∑
k2∈Z

ak1bk2 lim
ε→0

∫
R

∫
R

D1
εψ(k1 − r)D1

εψ(k2 − s)m(tr, ts)e2πi(r+s)xdrds

= lim
ε→0

∫
R

∫
R

∑
k1∈Z

ak1D
1
εψ(r − k1)

∑
k2∈Z

bk2D
1
εψ(s− k2)m(tr, ts)e2πi(r+s)xdrds.

That is,

(5) Pt(f, g)(x) = lim
ε→0

Ct(fε, gε)(x),

where
f̂ε =

∑
k1∈Z

ak1Tk1D
1
εψ, ĝε =

∑
k2∈Z

bk2Tk2D
1
εψ,

or, in other words,

fε(x) =
∑
k1∈Z

ak1Mk1D
∞
ε−1 ψ̌(x) =

∑
k1∈Z

ak1 ψ̌(εx)e2πik1x = ψ̌(εx)f(x),

and a similar formula for gε. Moreover, the convergence is uniform since

|Pt(f, g)(x)− Ct(fε, gε)(x)|

≤
∑
k1∈Z

∑
k2∈Z

|ak1‖bk2 |×

×
∫
R

∫
R

|m(tk1, tk2)−m(t(k1 − εr), t(k2 − εs))|ψ(r)ψ(s)drds,
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which tends to zero uniformly in x ∈ R because the continuity of m. Thus

(6) Pt(f, g) = lim
n→∞

Ct(fn, gn),

where fn(x) = ψ̌(n−1x)f(x) and gn(x) = ψ̌(n−1x)g(x) and the convergence
is uniform. From Lemma 2.5 we also have for k ∈ N
(7) ‖Pt(f, g)‖Lp3,q3 (T) = ‖Pt(f, g)Dp3

k ϕ‖Lp3,q3 (R).

Combining these two facts we obtain

‖Pt(f, g)‖Lp3,q3 (T) = ‖Pt(f, g)Dp3
n ϕ‖Lp3,q3 (R)

≤ C
(
‖Ct(fn, gn)Dp3

n ϕ‖Lp3,q3 (R)

+ ‖Dn−1(Pt(f, g)− Ct(fn, gn))ϕ‖Lp3,q3 (R)

)
.

For the first summand we use the estimate

‖Ct(fn, gn)Dp3
n ϕ‖Lp3,q3 (R) = ‖Dp3

n (ϕDn−1Ct(fn, gn))‖Lp3,q3 (R)

= ‖ϕDn−1Ct(fn, gn)‖Lp3,q3 (R)

≤ ‖Dn−1Ct(fn, gn)‖Lp3,q3 (R)‖ϕ‖L∞(R)

= n−1/p3‖Ct(fn, gn)‖Lp3,q3 (R)

≤ n−1/p3C‖fn‖Lp1,q1 (R)‖gn‖Lp2,q2 (R)

= Cn−1/p1‖fn‖Lp1,q1 (R)n
−1/p2‖gn‖Lp2,q2 (R).

By Lemmas 2.6 and 2.7 we have

lim
n→∞

n−1/p1‖fn‖Lp1,q1 (R) ≤ (2r1/p1 − 1)−1/r1‖f‖Lp1,q1 (T)‖ψ̌‖Lp1,r1 (R)

and

lim
n→∞

n−1/p2‖gn‖Lp2,q2 (R) ≤ (2r2/p2 − 1)−1/r2‖g‖Lp2,q2 (T)‖ψ̌‖Lp2,r2 (R)

with ri = min(pi, qi) for i = 1, 2. Thus

‖Pt(f, g)‖Lp3,q3 (T) ≤ C
(

lim
n→∞

‖Ct(fn, gn)Dp3
n ϕ‖Lp3,q3 (R)

+ lim
n→∞

‖Pt(f, g)− Ct(fn, gn)‖L∞(R)

)
= A(p1, p2)‖f‖Lp1,q1 (T)‖g‖Lp2,q2 (T),

and the implication “⇒” is proved.
“⇐”: Assume that Dt−1m restricted to Z2 are uniformly bounded multi-

pliers on Z2 and let f, g ∈ S(R) be such that f̂ and ĝ have compact support
contained in K.

By the Poisson formula we have

t
∑
k1

f̂(tk1)e2πik1x =
∑
k1

(Dtf )̂(k1)e2πik1x =
∑
k1

Dtf(x+ k1) = D̃tf(x).
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Therefore, since m is continuous, we can write

C1(f, g)(x) =
∫∫

K×K
f̂(ξ)ĝ(η)m(ξ, η)e2πi(ξ+η)xdξdη

= lim
t→0

t2
∑
k1

∑
k2

f̂(tk1)ĝ(tk2)m(tk1, tk2)e2πit(k1+k2)x

= lim
t→0

Pt(D̃tf, D̃tg)(tx).

Note that

|{x ∈ R : |C1(f, g)(x)| > λ}|

≤ lim inf
t→0

∣∣∣{|x| ≤ t−1/2 : |Pt(D̃tf, D̃tg)(tx)| > λ
}∣∣∣

≤ lim inf
t→0

t−1
∣∣∣{|x| ≤ 1/2 : |Pt(D̃tf, D̃tg)(x)| > λ

}∣∣∣ .
Therefore, formula (1) and Fatou’s lemma give

‖C1(f, g)‖p3
Lp3,q3 (R) ≤ lim inf

t→0
t−1‖Pt(D̃tf, D̃tg)‖p3

Lp3,q3 (T).

Using the assumption and Lemma 2.4 we obtain

‖C1(f, g)‖Lp3,q3 (R) ≤ lim inf
t→0

t−1/p3‖D̃tf‖Lp1,q1 (T)‖D̃tg‖Lp2,q2 (T)

≤ C‖f‖Lp1,q1 (R)‖g‖Lp2,q2 (R).

This completes the proof. �

It is known that transference theorems can be extended to symbols that are
more general than continuous symbols (see [8], [7], [9]). Actually, a bounded
measurable function m1 defined on R is called regulated if

lim
ε→0+

1
2ε

∫ ε

−ε
m1(x+ t)dt = m1(x)

for all x ∈ R. As was pointed out in [8, Corollary 2.5], if m1 is regulated and φ
is non-negative, symmetric, smooth with compact support and

∫
R
φ(t)dt = 1,

then

lim
ε→0+

∫
R

m1(x− εt)φ(t)dt = lim
ε→0

m1 ∗D1
εφ(x) = m1(x)

for all x ∈ R. This actually implies that

(8) lim
ε→0+

∫
R

m1(x− εt)ψ(t)dt = lim
ε→0

m1 ∗D1
εψ(x) = m1(x),

where ψ is non-negative symmetric, smooth and satisfies
∫
R
ψ(t)dt = 1. In-

deed, given a function ψ, take non-negative, symmetric, smooth functions φn
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with compact support and satisfying
∫
R
φn(t)dt = 1 such that limn→∞ ‖ψ −

φn‖1 = 0 and observe that∣∣∣∣∫
R

(m1(x− εt)−m1(x))ψ(t)dt
∣∣∣∣

≤ 2‖m1‖∞
∫
R

|D1
εψ(t)−D1

εφn(t)|dt

+
∣∣∣∣∫
R

(m1(x− εt)−m1(x))φn(t)dt
∣∣∣∣

= 2‖m1‖∞‖ψ − φn‖1 +
∣∣∣∣∫
R

(m1(x− εt)−m1(x))φn(t)dt
∣∣∣∣ .

Definition 2.10. Let G(t, s) = π−1e−(t2+s2). A bounded measurable
function m defined on R2 is G-regulated if

lim
ε→0

∫
R2
m(x− εt, y − εs)G(t, s)dtds = lim

ε→0
m ∗D1

εG(x, y) = m(x, y)

for all (x, y) ∈ R2.

An inspection of the proof of the preceding theorem shows that m need
not be continuous but only G-regulated in order for the argument to work.

Theorem 2.11. Let m be a bounded G-regulated function on R
2, 0 <

pi, qi <∞, i = 1, 2, and let 0 < p3, q3 ≤ ∞ be such that 1/p1 + 1/p2 = 1/p3.
If m is a multiplier in (Lp1,q1(R)×Lp2,q2(R), Lp3,q3(R)), then m restricted to
Z

2 is a bounded multiplier in (Lp1,q1(T)× Lp2,q2(T), Lp3,q3(T)).

This result can be applied to transfer results for the bilinear Hilbert trans-
form in view of the following remark.

Remark 2.2. If m1 is a regulated function defined in R, then mα(x, y) =
m1(x + αy) is G-regulated in R2. In particular, m(x, y) = sign(x + αy) is
G-regulated.

Indeed, observe that∫
R2
m1(x− t+ α(y − s))D1

εG(t, s)dtds

=
∫
R

∫
R

m1(x+ αy − ε(t+ αs))G(t, s)dtds

=
∫
R

m1(x+ αy − εt)
(∫

R

G(t− αs, s)ds
)
dt

=
∫
R

m1(x+ αy − εt)ψα(t)dt,



1342 OSCAR BLASCO AND FRANCISCO VILLARROYA

where ψα(t) =
∫
R
G(t− αs, s)ds. Hence we have, from (8), that

lim
ε→0

∫
R2
mα(x− t, y − s)D1

εG(t, s)dtds = mα(x, y).

References

[1] P. Auscher and M. J. Carro, On relations between operators on Rn,Tn,Zn, Studia
Math. 101 (1992), 165–182. MR 94b:42007

[2] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathemat-

ics, vol. 129, Academic Press Inc., Boston, MA, 1988. MR 89e:46001
[3] O. Blasco Bilinear multipliers and transference, preprint.
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1991. MR 93i:42004
[7] R. R. Coifman and G. Weiss, Transference methods in analysis, American Mathemat-

ical Society, Providence, R.I., 1976. MR 58#2019

[8] K. DeLeeuw, On Lp-multipliers, Ann. of Math. (2) 91 (1965), 364–379. MR 30#5127
[9] D. Fan and S. Sato, Transference on certain multilinear multiplier operators, J. Aust.

Math. Soc. 70 (2001), 37–55. MR 2002c:42013

[10] J. E. Gilbert and A. R. Nahmod, Boundedness of bilinear operators with nonsmooth
symbols, Math. Res. Lett. 7 (2000), 767–778. MR 2002e:42011

[11] , Bilinear operators with non-smooth symbol. I, J. Fourier Anal. Appl. 7 (2001),

435–467. MR 2002m:42009
[12] , Lp boundedness for time-frequency paraproducts. II, J. Fourier Anal. Appl. 8

(2002), 109–172. MR 2002m:42010
[13] L. Grafakos and N. J. Kalton, The Marcinkiewicz multiplier condition for bilinear

operators, Studia Math. 146 (2001), 115–156. MR 2002f:42007

[14] L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165
(2002), 124–164. MR 2002j:42029

[15] L. Grafakos and G. Weiss, Transference of multilinear operators, Illinois J. Math. 40
(1996), 344–351. MR 97k:43010

[16] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. II, Grundlehren der math-
ematischen Wissenschaften, Band 152, Springer-Verlag, New York, 1970. MR 41#7378

[17] R. A. Hunt, On L(p, q) spaces, Enseign. Math. (2) 12 (1966), 249–276. MR 36#6921

[18] C. E. Kenig and P. A. Thomas, Maximal operators defined by Fourier multipliers,
Studia Math. 68 (1980), 79–83. MR 82c:42016

[19] C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math.
Res. Lett. 6 (1999), 1–15. MR 2000k:42023a

[20] M. Lacey and C. Thiele, Lp bounds on the bilinear Hilbert transform for 2 < p < ∞,

Ann. of Math. (2) 146 (1997), 693–724. MR 99b:42014
[21] , On the bilinear Hilbert transform, Proc. Intern. Congress of Mathematicians,

Doc. Math. 1998, Extra Volume II, pp. 647–656. MR 99h:42015

[22] , On Calderón’s conjecture, Ann. of Math. (2) 149 (1999), 475–496. MR
2000d:42003

[23] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathe-
matik und ihrer Grenzgebiete, vol. 97, Springer-Verlag, Berlin, 1979. MR 81c:46001



TRANSFERENCE OF BILINEAR MULTIPLIER OPERATORS 1343

[24] G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37–55. MR
11,442d

[25] C. Muscalu, T. Tao, and C. Thiele, Multi-linear operators given by singular multipliers,
J. Amer. Math. Soc. 15 (2002), 469–496. MR 2003b:42017

[26] S. Rolewicz, Metric linear spaces, PWN-Polish Scientific Publishers, Warsaw, 1972.

MR 55#10993
[27] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton

Mathematical Series, vol. 30, Princeton University Press, Princeton, N.J., 1970. MR
44#7280

[28] , Harmonic analysis: real-variable methods, orthogonality, and oscillatory in-

tegrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton,
N.J., 1993. MR 95c:42002

[29] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Prince-

ton University Press, Princeton, N.J., 1971. MR 46#4102
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