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TRANSFERENCE OF BILINEAR MULTIPLIER OPERATORS
ON LORENTZ SPACES

OSCAR BLASCO AND FRANCISCO VILLARROYA

ABSTRACT. Let m(&,n) be a bounded continuous function in R X R, let
0 < pi,qg < oo for ¢ = 1,2, and let 0 < p3,q3 < oo, be such that
1/p1 + 1/p2 = 1/p3. It is shown that

Con(f,9)(x) = /R /R F©3(mm(e, n)e i€ agdn

is a bounded bilinear operator from LP1:91(R) x LP2:92 (R) into LP3:93 (R)
if and only if

Pp _m(£,9)(0) =3 3" f(R)G(K ym(ck, ek )e? 0k kD
‘ kEZK' €T

are bounded bilinear operators from LP1:91 (T)x LP2:92(T) into LP3:93(T)
with norm bounded by a uniform constant for all € > 0.

1. Introduction

Let m(&1,&a,...,&,) be a bounded measurable function in R™ and define
Cm(fla f2a ey f?’b)(x)
= . fl (61) v fn(é-n)m(fla 527 B agn)e2ﬂix(€1+€2+m+£n)d§

for Schwartz test functions f; in S for i =1,...,n.

Let now 0 < p; < 00,4 =1,...,n, be given, and let 1/qg = 1/p; + 1/ps +
-++4+1/py,. The function m is said to be a multilinear multiplier of strong type
(p1,p2,---,0n) (resp. weak type (p1,p2,...,pn)) if Cp, extends to a bounded
bilinear operator from LP*(R) x - -+ x LP»(R) into L4(R) (resp. to LT*(R)).

The study of such multilinear multipliers had been started by R. Coifman
and Y. Meyer (see [4], [5], [6]) for smooth symbols. The interest in this area
has increased in recent years following the work by M. Lacey and C. Thiele
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1328 OSCAR BLASCO AND FRANCISCO VILLARROYA

([20], [21], [22]) who showed that m(&,v) = sign(€ + av) are multipliers of
strong type (p1,p2) for 1 < p1,ps < 00, p3 > 2/3 and each @ € R\ {0,1}.

New results for non-smooth symbols, extending those given by the bilinear
Hilbert transform, have been achieved by J.E. Gilbert and A.R. Nahmod (see
[10], [11], [12]) and by C. Muscalu, T. Tao and C. Thiele (see [25]).

We refer the reader to [13], [19], [9], and [14] for results on bilinear multi-
pliers and related topics.

The first transference methods for linear multipliers were given by K.
DeLeeuw. It is known that if m is continuous, then

T(f)(e) = | FOm(©)em<de
(defined for f € S(R)) is bounded on LP(R) if and only if the operators
T (£)(0) = f(k)m(ek)e>™

kEZ
(defined for trigonometric polynomials f) are uniformly bounded on LP(T)
for all € > 0 (see [8] and [29, p. 264]).

Although the results in this paper hold true for multilinear multipliers, for
simplicity of the notation we restrict ourselves to bilinear multipliers and only
state and prove the theorems in this situation.

Let (my k) be a bounded sequence. We use the notation

PulF,0)0) = 32 3 alk)b(k Ym0
kEZ K€L
for f(t) =3, ez a(n)e*™™ and g(t) = 3, o5 b(n)e .

Let 0 < p1,p2 < co and let p3 be such that 1/p; + 1/ps = 1/p3. We write
Pp, ,m when the symbol is m(tk, tk") and call m(tk,tk’) a bounded multiplier
of strong (resp. weak) type (p1,p2) on Z x Z if the corresponding operator
Pp,_,m is bounded from LP1(T) x LP1(T) into LP*(T) (resp. LP*>*(T)).

In a recent paper, D. Fan and S. Sato [9] obtained certain DeLeeuw type
theorems for transferring multilinear operators on Lebesgue and Hardy spaces
from R™ to T™. They showed that the multilinear version of the transference
between R and Z holds, namely that for a continuous function m(€,n) one
has that m is a multiplier of strong (resp. weak) type (p1,p2) on R x R if and
only if (D.-1m)g = (m(ek,ek’))r r are uniformly bounded multipliers of
strong (resp. weak) type (p1,p2) on Z X Z.

The first author [3] proved a DeLeeuw type theorem for transferring bilinear
multipliers from LP(R) to bilinear multipliers acting on £,(Z). The aim of this
paper is to extend the results in [9] to bilinear multipliers acting on Lorentz
spaces (see [9, Remark 3]).

We shall show that if m is a bounded continuous function on R?, then C,,
defines a bounded bilinear map from LP*%(R) x LP29(R) into LP*%(R) if
and only if the operators Pp _,m, defined as the restriction to m(tk,tk’) for
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k,k' € Z, define bilinear maps from LP+9(T) x LP2:%2(T) into LP3:%(T) that
are uniformly bounded for ¢ > 0.
Throughout the paper |A| denotes the Lebesgue measure of A and we

identify functions f on T and periodic functions on R with period 1 defined
1/2

on [-1/2,1/2), that is, f(z) = f(e*™) and [} f(z)dm(z) = f71/2 f(t)dt. For
0 < p < oo, we write DY f(x) = t~ /P f(t~'x) (with the notation D; = D§®),
M, f(z) = f(z)e*™* and T}, f(z) = f(z —y) for the dilation, modulation and
translation operators. In this way (D f)'= Dj_, f, where, as usual, ¢’ stands
for the conjugate exponent of q.

Acknowledgement. We want to thank the referee for his or her careful
reading.

2. Preliminaries

Let (2, %, 1) be a o-finite and complete measure space. Given a complex-
valued measurable function f we shall denote the distribution function of f
by pr(A) = p(Ey) for A > 0, where E\ = {w € Q : |f(w)] > A}. The
nonincreasing rearrangement of f is denoted by f*(t) = inf{A > 0: ps(A) <
t}, and we set f**(t) = L [ f*(s)ds.

Now the Lorentz space LP>? consists of those measurable functions f such
that || f||;, < oo, where

q dt 1/q
Hf” = {p/ tq/ f*(t)qt } 5 O<p<<>0, 0<q<oo,
* 0
rq
Sll[)tl/lf*(t) 0< P < 00, q = 00.
t>0 =

It is well known that
£ llpoe = sup Ay (A)/P.
A>0

Here we shall use the following fact: If 0 < p,q¢ < oo and f is a measurable
function, then

00 1/q
(1) T (q / )\q_luf(k)q/”dA> |

(This can be easily checked for simple functions.)

Let us recall some facts about these spaces. Simple functions are dense in
L7 for g # oo, and we have (LP1)* = [P for 1 < p < oo, and (LP9)* =
LP4 for 1 < p,q < co. Replacing f* by f** and putting 1 £llpg = 1155
we get a functional equivalent to || - [|%, (for 1 < p < co) for which L' and
LP7 for 1 <p < oo, 1< q< oo, are Banach spaces.

The reader is referred to [17], [2], [29] or [24] for basic information on
Lorentz spaces. We only consider the case when p is either the Lebesgue
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measure on R or the normalized Lebesge measure on T, and the distribution
function will be denoted by m/ in both cases.

DEFINITION 2.1. Let m be a bounded measurable function on R2. Let
0<pi,q <oofori=1,2,3. For t > 0 we define

Cp, ym(f.9)(x) = Ci(f,9) //f m(te, tn)e>™ EENT gedy

for f,g € S(R) .
We say that m is a bilinear multipier in (LP*9(R) x LP2:%2(RR), LP#93(R))
if there exists C' > 0 such that

1L (f, 9)||LP3*Q3(R) < Clfllrerm (R)HQHLW"M(R)
for all f,g € S(R) .

DEFINITION 2.2.  Let (M, k, )k, ez,kyez be a bounded sequence. Let p;, g; >
0 be such that p; ' =p; " +p;'. We define

Pm(fv g)(x) = Z Z ak1bk2mklykze27ri(kl+k2)z
k1E€Z ko €Z
for all trigonometric polynomials
_ Z akeZﬂ'ikI7 g(l’) _ Z bk627rikz
|[k|<N |k|<M

and N, M € N.
We say that my, - is a bilinear multiplier in (LP1:9 (T) x LP2-92(T), LPs-%(T))
if there exists C' > 0 such that

1P (fs )| Loswas (1) < Cllf |l ovar (mllgll ez a2 ()

for all trigonometric polynomials f and g.

REMARK 2.1. A function m is a multiplier in (LP*%(R) x LP2:22(R),
LPs93(R)) if and only if D;—im(€,n) = m(t&,tn) is also a multiplier for each
t>0.

Note that for each ¢t > 0 we have mp, (A\) = tmy()). Hence

(2) IDefllray = 7 fll oaqw)

for 0 < p,q < co. The above claim now follows easily from the formula
Ct(fa g) = Dtcl(Dt_lfv Dt_lg)'
Actually we have ||Cy]| = ||Cy]| for all ¢ > 0.

Let us start by recalling some facts to be used in the sequel.
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DEFINITION 2.3. If f is a measurable function on R such that max{|f(z)|,
lf(z)]} < A/(1+ |z])* for some A > 0 and o > 1, we define f as the well-
defined periodic function (see [29, pp. 250-253])

=3 e+ k) = 3 fR)e

kez keZ
LEMMA 2.4. Let0<p<oo and0< g <oo. If f € S(R) we have
477\ fllznaqey < liminf £/ Def | o),
liftn_il)lpfl/p”thHLp,q(T) < 41/ | fllLeam),
where r = log; 1(21/P+ max (20/9-1 1)) and D, f(z) = Yorer Dif(x + k) is
defined on T.

Proof. Assume first that f has compact support. For ¢ > 0 small enough
we have supp(D;f) C [-1/2,1/2]. This implies that

lf);.JfX[fl/Q,l/ﬂ = DifX1-1/2,1/2) = D+ f-

In particular, for such ¢ we have

mp(A) =Kz € [-1/2,1/2]/|D: f(z)| > A}
=z e R/|f(t 2)| > A} = tmg(N)

and
(Do f)*(x) = Dy(f*)(z),  x>0.

Hence

q 7 dx
||th||Lp a(T) = ]_3/ (xl/p ) =

and therefore

41 1/q
N 7 dx
hmt 1/p||th||Lp o) = hm (%/0 (ml/”f (m)) ?> = || fllLeoa(r)

—0

The case ¢ = oo is simpler.
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For the general case, set f, = fX|—n,n and observe that, for |z| < 1/2

Dif(x) = Difalz) = 3 f(t @ + k) — fult " (z + k)

kEZ
= Y ftN@+k).
|k4z|>tn

Hence, for any m > 0 we have

— — Cnm
D D fo(z)] <
| tf(‘r) t.f ($)| = k+z|>t (1+t71|1}+k‘)m
C
< m Z 7mm < O™,
|k4z|>tn |I+k|

Selecting m > 1/p, we get
. —1/p v P - < 3 m—1/p —
Given € > 0, choose n € N such that

(L= fllzram) < [ fallzeaw) < 1 fllzram)-

Since || - || pr.a(r) is @ quasi-norm with constant C' = 21/P max(2(1/9=1 1) | by
the Aoki-Rolewic theorem [26] it is equivalent to an r-norm, namely | - |, for
r = log; *(2C). More precisely, we have

1< I lmay < 4V,

and thus we obtain the following triangle inequality for rth powers:

1+ 9l 0@y < 4 ooy + 190700 (w))-

Using this triangle inequality for ||.||TL,),q(T) for the power r < 1 corresponding
to the different values of p and ¢, and the previous case, we get the desired
formula. O

LEMMA 2.5. Let 0 < p,q < 00, ¢ = X[-1/2,1/2), [ € LP4(T) and k € N.
Then

[fllzeacry = [1F D@l Lova(ry-
Proof. Using the periodicity of f, we get

me;)SD()\) = ‘{{17 eR: ‘f(l')k_l/pX[_l/Q’l/Q](k_ll')l > )\}’
- Hx € [—g,g] | f(z)| > k’l/p)\}’

- Hx c [—%, %] L f(2)] > kl/PAH = kmy(k'/P)).



TRANSFERENCE OF BILINEAR MULTIPLIER OPERATORS 1333

Hence
(fDYp)*(t) = inf{\ > 0 : km(EY/P)) < t}
=k~ YPinf{A > 0:mp(\) < k71t}
= DV f*(t) = (DVf)*(t).
Therefore
o g dt
D8 ey = 2 [ /7 DR) (0
PJo

_ 4 /OO tQ/Pk*Q/Pf*(kflt)qg
pJo t

_4q = /e O
p/o 108 £ (07 = 170

LEMMA 2.6. Let 0 <p < oo and f € LP>(T). If p € S(R) is radial and
decreasing, then

lim sup 1fD?_ |l oo my < ol Loy | fllLosoo (1)
Proof. Note that for each ¢ > 0 and A > 0 we have

{z e R:[f(x)p(ex)| > t}] = [{|a] <27 A" | f(2)p(ex)| > t}]

+ i {27 "X < |z < 2"Ae " 1 | f(2)p(ex)| > t}]
< \{Ix\n?TlAe‘l (@) > t(0) 7}

+ i {2 "Ae™ < |z <27 A 1| f(a)] > tp(A2" )T

n=0

< Hlzl <27H (e T+ 1) [ f(@)] > t(0)

+ Z {2 e < Jal < 22 (D] + 1) 1 [£(@)] > tp(A2" ) 7|
:([Ae’l} 1) [{z e T:|f(2)] > tp(0)"'}|

+§: 2+ (e + 1) 2D )) [z € T1 11(@)] > 1o (A2 ) T
< (Ne” 1+1 ) {z € T:|f(z)] > te(0)~}]

+Y 2" 4 2) [{z e T [ f(2)] > tp(A2" )71}



1334 OSCAR BLASCO AND FRANCISCO VILLARROYA

Hence we get
(3) myp,_p(t) < (et + )my(tp(0)71)
+ et +2) i 2"m s (tp(A2" 1)),
n=0
Therefore, using that m(t) < || f[|b.,/t?, we get
mef,lw(S) = me;w(Sf_l/p)
< A+ Des (0P [ 11T e )

+ Z 2n + 2 es P ()\2”71)1)”.}6”%?,00(?)
n=0

< 5P+ RO I )

4+ gP Z 2”()\ + 26)()0()\2”71) ”f”Lp oo (T)"
n=0

Hence, if

Px = @(O)X[f)\Z*l,)\Z*l] + Z Sﬁ(A2n71)X[7A2n’)\271]\[7)\2’nr71’)\271/*1]’

n>0
we have
i up [ D21 @l ey < ol a1 ey
Passing to the limit as A goes to zero, we get the result. O

LEMMA 2.7. Let0 <p,q < oo and f € LP9(T). If ¢ € S(R) is radial and
decreasing, then

Cp sl ellLos @1 fl| Loy < Timinf || f D7 @l| Loary
< llrelljélp ||fD€71<P||Lp,q(R)
< Cprllell o @l fll ey,
where Cp, p, = (27271 —1)71/P2 1 = min(p, q) and s = max(p, q).

Proof. Use (1) to write

o0

”fo—“pH%P-,Q(R /O qt?™ 1 me ( 71/Pt))¢1/pdt

/0 gt (emyp,__ ()Pt
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By the estimate in the previous lemma we have

o0

emyp () < (A + e)m s (tp(0) 1) + (A + 2¢) Z 2"my (bp(A2" ) 7).

n=0

Now we see that for » = min(p, ¢) we have

(4) limsngfo_lsOIILm(R)
oo 1/r
< (W%(O)T + Z(/\T)T“’@()\?"_l)r) I fllLowa(T)-
n=0

If ¢ < p, then for all A we have

1f D1 llT .y :/0 gt (el{x € R|f(2)p(ex)| > t}))"/7 dt

[e’e} 00 q/p
< /0 qtq‘1<(A+e)mf(tso(0)‘1)+(A+26)22"mf<tso<A2"‘1)‘1)> dt

n=0

< / gL (A + €)9/Pm  (tp(0)~1)1/Pdt
0

+ / gtt™ (A + 260 37 2P s (b (A2 ) )0/ Pde
0

n=0

— A+ QV7p0)" [ qt g (e)9/nde
0

£ (A4 207/7 S amalrp(aontys / gtV p(1)9/Pdt

n=0 0

- ((A + VPO + (A + 2077 2”q/pso<m“>q> T

n=0

Therefore

hm S(l)lp HfDilﬁO”Lqu(R)
[e%) 1/q
< <X1/”<P(0)q + Z(/\2")q/”<ﬂ(k2”1)q> [FAIPZRTEN
n=0

which gives (4).
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In the case ¢ > p we use Minkowski’s inequality and get
oo . a/p p/q
D7 il = ([ (/0o € R f@pten > )" )

< (/j’( Pl (A + e)mg (t(0) 1)

n=0

<tra ([ (@0 Dmto0 )" i)

+ A+ 26)53 Qn(/ooo ( p/ap(i—3 mf(t|<,0( 2n—1)|—1))q/pdt>p/q
n=0

r/q

o a/p p/q
+(A+20)> 2an/Qtp<1—%>mf(w(A2”1)1)) dt)

p/q

= vt el ([ aer i)

o) 0 p/q
+ (A +2e¢) Z 2" (A2 P (/ qtq_lmf(t)q”’dt)
0

n=0

:((/\—i-e) (0) + (A +2¢) 22" (A2 )IIfIIqu

Therefore

1/p
limsup ||/ D7 ¢l oacwy < (w BT 1)) 1 llzacoys
€ n=0

and (4) is proved.
If
Px = w(o)x[f)\Q*l,)\Z*l] + Z w<>‘2”71)X[7)\2”7)\2"]\[*)\2n711)‘2n71]’
n>0

then clearly

1/p
wllp—< +ZA2” 2“) :

Since ¢ and ¢y are radial and decreasing, we have ¢} (t) = ¢a(t/2) for t > 0
and

o0

1/r
lealler@ = <V/p<ﬂ(0)r + (2P 1) Z()\Q")T/pw(mnl)r) :

n=0
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Hence, using r < p, we obtain

0o 1/r
()\T/pQD(O)T + Z()Qn)r/p(p()anl)r) < (27‘/13 _ 1)71/T||80>\||LPW(R)'
n=0

Finally, taking the limits as A — 0 gives
limsgp I fDE_s ol Lraqm)

50 1/r
< T r/p r n\r/p n—1\r .
< lim (A Q0 + 3002 (32 )) I£llna

n=0
< (/P —1)7Mr 1ifilsblp lexll Lo @) 1| rar)

= 277 =17V o]| Lo @) | Il oo (-

This gives one of the inequalities of the lemma.
To get the other inequality, we use estimates from below to obtain

lim inf | f D | Loar)

oo

1/s
> (A%(Az1>S+Z<A2">S/%<A2">S> I £l o),

n=0
where s = max(p, q).
Using now that s > p, we get, arguing as above,

oo 1/s
(W RN Az”f) > @7 = ),
where
ot = e xmaemt e+ D P2 a2 s [ azet aze
n>0
Hence

liminf | f D7l o) > (277 = )7 (loll o @y | f oo r).

The proof is now complete. O

COROLLARY 2.8. Let 0 < p < oo and f € LP(T). If ¢ € S(R) is radial
and decreasing, then

el L@l flle(ry = llm 1 fDP_ || e (w)-

In particular, for p = 1 and the periodic function f defined by f = xa on
AC[-1/2,1/2] we get

tim [ @)D pla)de = iy [ Dofa)o(e)ds = m(a) [ pla)d.

R
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We are now ready to prove our main result.

THEOREM 2.9. Let m be a bounded continuous function on R%. Let 0 <
iy @ < 00,4 =1,2, and let 0 < p3,q3 < 0o be such that 1/p1 + 1/p2 = 1/ps.
Then m is a multiplier in (LP»%(R) x LP2%2(R), LP*%(R)) if and only if
the functions (Dy—1m)y>o restricted to Z2 are uniformly bounded multipliers
n (LPra(T) x LP2@(T), LP>%(T)); i.e, setting Py = P(p,_,m) where
(Dy—1m) g g = m(tk,tk’), there exists a constant C > 0 such that

kK’

1C1(f, )l Lrsas ®) < CllfllLovar )|l o2z (w)
for f,g € S(R) if and only if there exists a constant C' > 0 such that
1P (f, 9) | Lrsias(ry < Ol fll oo (xy gl Loaaz (T

uniformly in t > 0 for all trigonometric polynomials f, g

Proof. “=": Let ¢ = X[_1/2,1/2) and ¢(z) = 7=1/2¢=2" Let t > 0 and let

f(l‘) — Zkl 7 Uy eQm’klx and g(x) — ZkzeZ bkz eQm‘kzx_
Since m is continuous we can write

Pi(fg) (@) =Y Y anbeymi(thy, thy)e>™ (F1tka)e
k1€EZ ko €Z
Z Z g, by, 1im //D Y(ky — 1) Dp(ky — s)m(tr, ts)e> T+ drds
k1E€EZ ko €Z 7
= lim // > ar, DIp(r — ki) Y br, DEp(s — ka)m(tr, ts)e”™ )7 drds.
k1€Z ko€Z
That is,
5) Pi(f9)(x) = lm Cul e, 90)(2),
where

== Z aleleglwa ge = Z bszkzDel’L/)v
k1EZ ko E€Z
or, in other words,

=3 ax, My, DX () = > ap,(ex)e™ M = i (ex) f(x),
k1€EZ k1EZ

and a similar formula for g.. Moreover, the convergence is uniform since

[Pi(f,9)(@) — Cilfe, ge) ()]

< Z Z |ak1||bk2|x

k1€Z ko €Z

y /R /]R Im(thy, th) — m(t(kr — er), t(ka — €8)) | (r) 0 (s)drds,



TRANSFERENCE OF BILINEAR MULTIPLIER OPERATORS 1339

which tends to zero uniformly in € R because the continuity of m. Thus

where f,(z) = ¥ (n~z)f(z) and g, (z) = ¥(n"'z)g(x) and the convergence
is uniform. From Lemma 2.5 we also have for kK € N

(7) 1P (fs 9 rsoas (ry = 1 Pe(f 9) D7 @l Losoas (ry-

Combining these two facts we obtain

|Pe(f, 9)llLrssas (my = | Pe(f, 9) DP? || prsias (m)
< C<||Ct(fnvgn)Dﬁg’Sﬁ”Lz}s,qs(R)

+ 1D (Pil£,9) = Colfns gl was ey )-

For the first summand we use the estimate
1Ct(fris gn) D32 ll Lpssas (v) = D5 (9 D=1 Ce( frn, gn) )l raoaa ()
= lloDn-1Ct(fr: gn )l Lrsoa r)
<Dy Ct(fr, gn)llLos.as m) |2l L (w)
=077 Cy(fry gn) || oo as ()
<n VPO full porar () |Gl Lo2-ae (R)
= Cn Y2 full ovear yn 2| gn || L2z () -
By Lemmas 2.6 and 2.7 we have

im0V ol e @y < 277 = DTV e o 191 o vy

and

lim NP2 gl posiee ) < (2772 — 1)7TV72 | gl pogiaz (my 1] Loz e )

n—

with r; = min(p;, ¢;) for ¢ = 1,2. Thus
[ Ee(f5 9)l Lrasas (1) < C(nli}olo 1Ce(fn, 9n) D22l Lrs a5 (r)

+ lim |Pi(f,9) = Colfus ga)ll o) )

= A(p1, p2) | fllov.ar 1y |91 o2z (1) 5
and the implication “=" is proved.

“<”: Assume that D,—1m restricted to Z? are uniformly bounded multi-
pliers on Z2 and let f,g € S(R) be such that f and § have compact support
contained in K.

By the Poisson formula we have

tz f(thy)e*m e = Z(thﬂkl)e%“““ = Z Dif(x + ki) = Def(x).

kl kl kfl
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Therefore, since m is continuous, we can write

=[] feammenerernasan

= lim t? ZZf (th)g(tha)m(thy, thy)e2mittn +ha)e
kr K

— lim P,(D:f. Dig) (1)
Note that
Kz € R:[Ci(f,9)(@)| > A}
< lirtriiglf‘{|x\ <t71/2: |P(Dyf, Dug)(tz)| > )\}‘
<liminft~!|{|z] <1/2: [P(D.f, Dug) ()] > A}
Therefore, formula (1) and Fatou’s lemma give
ICL(f, D 05 () < 11m1nft_1||Pt(th Dig)|5%,,. a3 (1)
Using the assumption and Lemma 2.4 we obtain
1C1(f5 9) || Lrsas () < liﬂiglft_l/paﬂbtvfﬂmwl )1 Degll Loz o2 ()

< Ol fllzrra ) llgll Loz oaz w) -
This completes the proof.

O

It is known that transference theorems can be extended to symbols that are
more general than continuous symbols (see [8], [7], [9]). Actually, a bounded

measurable function m; defined on R is called regulated if

[P —

for all z € R. As was pointed out in [8, Corollary 2.5], if m; is regulated and ¢

is non-negative, symmetric, smooth with compact support and fR t)dt =1,
then
lim [ mi(z — et)p(t)dt = lim my * Dp(x) = my(x)

e—0t R e—0
for all x € R. This actually implies that
(8) lim [ my(z — et)(t)dt = lim mq * D1p(z) = my(z),

e—0T R e—0
where 1 is non-negative symmetric, smooth and satisfies fR t)dt = 1. In-

deed, given a function 1, take non-negative, symmetric, smooth functlons On



TRANSFERENCE OF BILINEAR MULTIPLIER OPERATORS 1341

with compact support and satisfying [, ¢, (t)dt = 1 such that lim, . [[¢ —
¢n|l1 = 0 and observe that

[ mite et - m1<x>>w<t>dt\

< 2o / DY (t) — D2y (t))dt

+

/ (ma (e — ct) - ml(x))qbn(t)dt’
R
= 2l = énls -+ | [ (ma(o = et) = ma(e))o 0.
DEFINITION 2.10. Let G(t,s) = 7 'e~(*+s)) A bounded measurable
function m defined on R? is G-regulated if
1in(1) m(x — et,y — €s)G(t, s)dtds = lir%m * DIG(z,y) = m(z,v)
€—> RQ €E—

for all (x,y) € R%

An inspection of the proof of the preceding theorem shows that m need
not be continuous but only G-regulated in order for the argument to work.

THEOREM 2.11. Let m be a bounded G-requlated function on R2, 0 <
iy @ < 00,4 =1,2, and let 0 < p3,q3 < 0o be such that 1/p1 + 1/p2 = 1/ps.
If m is a multiplier in (LPY91(R) x LP2:92(R), LP*-%(R)), then m restricted to
72 is a bounded multiplier in (LP*%(T) x LP2:92(T), LP3:93(T)).

This result can be applied to transfer results for the bilinear Hilbert trans-
form in view of the following remark.

REMARK 2.2. If m; is a regulated function defined in R, then mg(z,y) =
my(z + ay) is G-regulated in R2. In particular, m(z,y) = sign(z + ay) is
G-regulated.

Indeed, observe that

mi(z —t + a(y — s))DLG(t, s)dtds
R2

:/R/le(x+ay—e(t+a5))G(t,s)dtds

:/le(x—i—ay—et) </RG(t—as,s)ds> dt

= / mi(x + ay — et)h,(t)dt,
R
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where ¥4 (t) = [; G(t — as, s)ds. Hence we have, from (8), that

(1]

lir% Mo (x —t,y — s)DIG(t, 8)dtds = me(x,y).
€E— ]RQ
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