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BROWNIAN MOTION IN RIEMANNIAN ADMISSIBLE
COMPLEXES

TAOUFIK BOUZIANE

Abstract. The purpose of this work is to construct a Brownian motion
with values in simplicial complexes with piecewise differential structure.

In order to state and prove the existence of such a Brownian motion,
we define a family of continuous Markov processes with values in an ad-
missible complex. We call a process in this family an isotropic transport
process. We first show that the family of isotropic processes contains
a subsequence which converges weakly to a measure which we call the

Wiener measure. Then, using the finite dimensional distributions of
this Wiener measure, we construct a new admissible complex valued
continuous Markov process, the Brownian motion. We conclude with a

geometric analysis of this Brownian motion and determine the recurrent
or transient behavior of such a process.

0. Introduction

It has been shown in [27], [21] and [26] that, on a wide class of Riemannian
manifolds, Brownian motion can be approximated in law by a Markov process
which generalizes the isotropic scattering transport process on the Euclidean
space [31]. On the other hand, Brownian motion has been used as a tool to
prove important results in Riemannian geometry and potential theory. This is
not surprising since Brownian motion is intimately connected with harmonic
functions [15], the Laplacian, and other fundamental objects in mathematics.
For instance, a complete Riemannian manifold is hyperbolic exactly when the
Brownian motion is transient.

The purpose of this work is to consider the problem of defining the concept
of a continuous random walk in the admissible Riemannian complexes and, in
particular, to construct a Brownian motion in singular spaces where second
order differential calculus is not available.

The first section gives some preliminaries on Riemannian admissible com-
plexes [3], [7] and concludes with a brief survey of the theory of general Markov
processes [14].
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The second section is devoted firstly to the construction of a Markov process
with values in an admissible complex which we call the isotropic transport
process, and secondly to the proof that this process is a strong Markov process.

In the third section we construct a family of isotropic processes and we
show that this family contains a subsequence which converges weakly to a
measure which we call the Wiener measure.

The aim of the fourth section is to construct a Brownian motion with values
in an admissible complex by using the finite dimensional distributions of the
Wiener measure we have constructed.

Finally, in the fifth section, we study the transience and recurrence proper-
ties of this Brownian motion. In particular, we show that, in the 2-dimensional
case, if the complex is complete, simply connected, of non-positive curvature,
and the number of branching faces is always greater than or equal to 3, then
the Brownian motion is transient although (surprisingly) the Euclidean Brow-
nian motion in dimension 2 is recurrent.

There is an interesting study by M. Brin and Y. Kifer [8] of Brownian
motion in singular spaces; to our knowledge, this is the only such study.
In their work, Brin and Kifer consider the case of 2-dimensional simplicial
complexes whose simplices are flat Euclidean. They define Brownian motion
in such a complex as the planar Brownian motion inside faces which, after
hitting an edge, goes into each of the adjacent faces “with equal probability”.
Our work is, in fact, the first one that shows the existence of Brownian motion,
not only in the case of 2-dimensional complexes with flat simplices, but also
in the general case of admissible Riemannian complexes.

We remark that the construction of admissible complex valued Brownian
motion can be extended to the case of general Hadamard spaces if we assume
a given uniform probability (or sub-probability) measure on the link of each
point of the space.

Acknowledgement. The author would like to express his thanks to Pro-
fessor A. Verjovsky for encouraging him to investigate this subject and for his
constant support over the years.

1. Preliminaries

1.1 General theory. (See [1], [2], [11], [17], [18].) Let X be a metric
space with a metric d. A curve c : I → X is called a geodesic if there is a
number v ≥ 0, called the speed, such that every t ∈ I has a neighborhood
U ⊂ I with d(c(t1), c(t2)) = v|t1 − t2| for all t1, t2 ∈ U . If the above equality
holds for all t1, t2 ∈ I, then c is called a minimal geodesic.

The space X is called a geodesic space if any two points in X are connected
by a minimal geodesic. We assume from now on that X is a complete geodesic
space.
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A triangle ∆ in X is a triple (σ1, σ2, σ3) of geodesic segments whose end
points match in the usual way. Denote by Hk the simply connected complete
surface of constant Gauss curvature k. A comparison triangle ∆̄ for a triangle
∆ ⊂ X is a triangle in Hk whose sides have the same lengths as ∆. A
comparison triangle in Hk exists and is unique up to congruence if the lengths
of the sides of ∆ satisfy the triangle inequality and, in the case k > 0, if the
perimeter of ∆ is < 2π/

√
k. Let ∆̄ = (σ̄1, σ̄2, σ̄3) be a comparison triangle for

∆ = (σ1, σ2, σ3). Then for every point x ∈ σi, i = 1, 2, 3, we denote by x̄ the
unique point on σ̄i which lies at the same distances to the ends as x.

Let d denote the distance functions in both X and Hk. A triangle ∆ in
X is called a CATk triangle if the sides satisfy the triangle inequality, the
perimeter of ∆ is < 2π/

√
k for k > 0, and if d(x, y) ≤ d(x̄, ȳ), for any two

points x, y ∈ X.
We say that X has curvature at most k, and write kX ≤ k, if every point

x ∈ X has a neighborhood U such that any triangle in X with vertices in
U and minimizing sides is CATk. Note that we do not define kX . If X is a
Riemannian manifold, then kX ≤ k iff k is an upper bound for the sectional
curvature of X.

A geodesic space X is called geodesically complete iff every geodesic can
be stretched in the two directions.

We say that a geodesic space X is without conjugate points if any two
points in X are connected by a unique geodesic.

1.2 Riemannian admissible complexes. (See [25], [30].) Let K be a
locally finite simplicial complex, endowed with a piecewise smooth Riemann-
ian metric g; i.e., g is a family of smooth Riemannian metrics g∆ on simplices
∆ of K such that the restriction g∆|∆′ equals g∆′ for any simplices ∆′ and ∆
with ∆′ ⊂ ∆.

Let K be a finite dimensional simplicial complex which is connected and
locally finite. A map f from [a, b] to K is called a broken geodesic if there is
a subdivision a = t0 < t1 < · · · < tp+1 = b such that f([ti, ti+1]) is contained
in some cell and the restriction of f to [ti, ti+1] is a geodesic inside that cell.
We define the length of the broken geodesic map f as

L(f) =
i=p∑
i=0

d(f(ti), f(ti+1)).

The length inside a cell is measured with respect to the metric of the cells.
We define d̃(x, y), for any two points x, y in K, as the lower bound of the
lengths of broken geodesics from x to y. d̃ is a pseudo-distance.

If K is connected and locally finite, then the space (K, d̃) is a length space
and hence a geodesic space if is complete (see also [6]).
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An l-simplex in K is called a boundary simplex if it is adjacent to exactly
one (l + 1)-simplex. The complex K is called boundaryless if there are no
boundary simplices in K.

We say that the complex K is admissible if for every connected open subset
U of K the open set U \ {U ∩ {the (k − 2) − skeleton}} is connected (where
k is the dimension of K).

Let x ∈ K be a vertex of K so that x is in the l-simplex ∆l. We view
∆l as an affine simplex in Rl, that is, ∆l =

⋂l
i=0Hi, where H0,H1, . . . ,Hl

are closed half spaces in general position, and we suppose that x is in the
topological interior of H0. The Riemannian metric g∆l

is the restriction to
∆l of a smooth Riemannian metric defined in an open neighborhood V of
∆l in Rl. The intersection Tx∆l =

⋂l
i=1Hi ⊂ TxV is a cone with apex

0 ∈ TxV , and g∆l
(x) turns it into a Euclidean cone. Let ∆m ⊂ ∆l (m < l) be

another simplex adjacent to x. Then the face of Tx∆l corresponding to ∆m

is isomorphic to Tx∆m and we view Tx∆m as a subset of Tx∆l.
Set TxK =

⋃
∆i3x Tx∆i. We call TxK the tangent cone of K at x. Let Sx∆l

denote the subset of all unit vectors in Tx∆l and set Sx = SxK =
⋃

∆i3x Sx∆i.
The set Sx is called the link of x in K. If ∆l is a simplex adjacent to x, then
g∆l

(x) defines a Riemannian metric on the (l − 1)-simplex Sx∆l. The family
gx of Riemannian metrics g∆l

(x) turns Sx∆l into a simplicial complex with a
piecewise smooth Riemannian metric such that the simplices are spherical.

As was shown in [4], a two dimensional complete locally finite simplicial
complex (K, g) is curvature bounded by k (kK ≤ k) iff the following three
conditions hold:

(1) The Gauss curvature of the open faces is bounded from above by k.
(2) For every edge e of K, any two faces f1, f2 adjacent to e, and every

interior point x ∈ e, the sum of the geodesic curvatures k1(x), k2(x)
of e with respect to f1, f2 is nonpositive.

(3) For every vertex x of K, every simple loop in SxK has length at least
2π (i.e., SxK is a CAT1 space).

1.3 The Liouville measure for the geodesic flow. We assume that K
is an admissible n-dimensional Riemannian complex. We denote by K(i) the
i-skeleton of K and by K ′ the set of points x ∈ K such that x is contained in
the interior of an (n− 1)-simplex.

Let x ∈ K ′. Then x is contained in the interior of an (n − 1)-simplex
∆′. For any n-simplex ∆ whose boundary ∂∆ contains x, let S′x∆ denote
the open hemisphere of unit tangent vectors at x pointing towards the inside
of ∆. Let ∆1, . . . ,∆m, m ≥ 2, be the n-simplices containing ∆′. We set
S′x =

⋃m
i=1 S

′
x∆i, S′ =

⋃
x∈K′ S

′
x and S′∆ =

⋃
x∈∂∆∩K′ S

′
x∆.

For v ∈ S′x∆ denote by θ(v) the angle between v and the interior normal
ν∆(x) of ∆′ with respect to ∆ at x. Let dx be the volume element on K ′ and
let λx be the Lebesgue measure on S′x. We define the Liouville measure on
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S′ by dµ′(x, v) = cos θ(v)dλx(v)⊗dx. Note that dµ′(x, v)⊗dt is the ordinary
Liouville measure that is invariant under the geodesic flow on each n-simplex
∆ of K. Therefore, for µ′-a.e. v ∈ S′∆, the geodesic γv in ∆ determined
by γ̇v(0) = v meets ∂∆ ∩K(n−1) \K(n−2) after a finite time tv > 0 so that
I(v) = −γ̇v(tv) ∈ S′∆. Note that γv(tv) ∈ K ′ since K is boundaryless. The
measure µ′ is invariant under the involution I.

Let I(v) = u + cos θ(I(v))ν∆n
(γv(tv)), where u is tangent to K ′, and set

F (v) =
⋃
i{−u + cos θ(I(v))ν∆i

n
(γv(tv))}, where the union is taken over all

n-simplices containing γv(tv) except ∆. Thus there is a subset S1 ⊂ S′ of
full µ′-measure such that F (v) is defined for any v ∈ S1. We set recursively
Si+1 = {(x, v) ∈ S1\F (v) ⊂ Si} and define S∞ =

⋂∞
i=0 Si, V = S∞ ∩ I(S∞).

By construction, V has full µ′-measure.
We define the geodesic flow on the space SK (or TK) in the following way:

For (x, v) ∈ V we let{
gt(x, v) = (X(x,v)(t), Ẋ(x,v)(t)),
g0(x, v) = (x, v),

where gt is the ordinary geodesic flow in the interior of every n-simplex and
in the case when X(x,v)(t0) ∈ K ′ for t0 ∈ R+ we set Ẋ(x,v)(t0) = Ẋ(x,v)(t0+)
(so that Ẋ(x,v)(t0) ∈ F (Ẋ(x,v)(t0−)).

1.4 General Markov processes. Assume that K is an admissible n-
dimensional Riemannian complex with metric g and corresponding distance
function d. When K is not compact, let KD = K ∪ {D} be the one-point
compactification of K. Then we can define a metric δ on KD such that the
topology on K generated by δ is the same as the topology generated by d.
In case K is already compact, we simply adjoin D as an isolated point and
define the metric δ on KD by letting d = δ on K × K and δ(p,D) = 1 for
p ∈ K. Therefore, the restriction of δ to K ×K is uniformly continuous with
respect to d.

Let C(K) be the space of bounded continuous real-valued functions on K,
C0(K) the subspace of C(K) consisting of functions that have limit zero at
infinity, and Cc(K) the space of functions in C(K) with compact support.
Clearly, these three spaces are the same if K is compact. The space C(K)
endowed with sup-norm is a (real) Banach space and C0(K) and Cc(K) are
Banach subspaces of C(K). The space Cc(K) is dense in the space C0(K).

Finally, whenever the term measurable is used, it will refer to the basic
σ-algebra of Borel sets in K (or KD).

The usual setup for the theory of temporally homogeneous Markov processes
defined on a measurable space (Ω× [0,∞[,M×R) (where R is the Borel σ-
algebra in [0,∞[) with values in a topological measurable space (E,B) consists
of the following objects:
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(1) A point D adjoined to the space E. We write ED = E ∪ {D} and let
BD be the σ-algebra in ED generated by B.

(2) For each x ∈ ED, a probability measure Px on (Ω,M).
(3) An increasing family (a filtration) (Mt)t≥0 of sub-σ-algebras of M

and a distinguished point ωD of Ω.
(4) For each t ∈ [0,∞[ a measurable map Yt : (Ω,M) → (ED,BD) such

that if Yt(ω) = D then Ys(ω) = D for all s ≥ t, Y∞(ω) = D for all ω
and Y0(ωD) = D.

(5) For each t ∈ [0,∞[ a translation operator θt : Ω → Ω such that
θ∞ω = ωD for all ω.

We call the collection Y = (Ω,M,Mt, Yt, θt, Px) a (temporally homogeneous)
Markov process with state space (E,B) if and only if the following axioms
hold:

(1) For each t ≥ 0 and fixed Γ ∈ B, the function x 7→ P (t, x,Γ) = Px{Yt ∈
Γ} is B measurable.

(2) For all x ∈ E, P (0, x, E \ {x}) = 0 and PD{X0 = D} = 1.
(3) For all t, h ≥ 0, Yt ◦ θh = Yt+h (homogeneity).
(4) For all s, t ∈ R+, x ∈ ED and Γ ∈ BD, Px{Xt+s ∈ Γ|Mt} =

P (s,Xt,Γ) (Markov property).
The point D may be thought of as a “cemetery” when we regard t 7→ Yt(ω)
as the trajectory of particle moving randomly in the space E. With this
interpretation in mind, we call the random variable ξ(ω) = inf{t;Xt(ω) = D}
the lifetime.

2. Isotropic transport processes

In this section, K will denote a complete admissible Riemannian complex
with dimension n, and we will use all notations of the first section.

2.1 An intuitive approach. Let ΣK denote the space of links of the
complex K. Choose a point (x0, v0) from the space ΣK and assume that the
point x0 is in the topological interior of a maximal simplex ∆0. Intuitively,
a particle starting from the point x0 travels geodesically, in a direction v0

chosen randomly, during an exponentially distributed waiting time s1 to a
new position x1 assumed to be in the interior of ∆0. At x1, the particle
chooses a new direction v1 in the link Sx1 over x1 with the uniform probability
P[v1 ∈ dλ] = λx1(dλ), where λ denotes the normalized Lebesgue measure on
Sx1 . From the point x1 and in the direction v1, the particle travels geodesically
during an exponentially distributed waiting time s2 to a position x2 in the
interior of the simplex ∆0. The particle continues its motion in the interior of
∆0 until it hits transversally (because of the construction of the generalized
geodesic flow on the admissible complexes) the border of the simplex ∆0 at
an interior point of an (n − 1)-simplex adjacent to ∆0. Call this point xn.
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Starting now from xn and choosing randomly a new direction in the link
over xn, the particle travels geodesically during an exponentially distributed
waiting time sn to a new position in the interior of a maximal simplex (which
may be ∆0), and so on.

2.2 Mathematical approach. We now give a precise mathematical def-
inition of the random walk described above.

Consider the product space L = ΣK × R+ and the product σ-algebra
F = E×B, where E and B are, respectively, the Borel σ-algebra of ΣK and
the Borel σ-algebra of R+. Set Ω = LN and G = FN, where N is the set
of positive integers. Thus (L,F) and (Ω,G) are measurable spaces and the
points ω ∈ Ω are sequences {((xl, vl), tl) ∈ ΣK × R+; l ∈ N}.

Next, let {((xl, vl), tl) ∈ ΣK ×R+; l ∈ N} be a point of Ω and set Ỹk(ω) =
((xk, vk), tk), Zk(ω) = (xk, vk) and τk(ω) = tk. The functions Ỹk : (Ω,G) →
(L,F), Zk : (Ω,G)→ (ΣK,E) and τk : (Ω,G)→ (R+,B) are measurable.

Finally, consider the space of events

Ω′ = {ω ∈ Ω | ∀k ∈ N, Zk+1(ω) 6= Zk(ω), τ0 = 0, τk+1(ω) > τk(ω)}.

Put ξ(ω) = limn→∞ τn(ω) (lifetime) and let KD = K ∪ {D} denote the one
point compactification of K. The space K is assumed to be semi-compact, so
we can endow KD with a metric d′ such that the space (KD, d

′) is compact
and the restriction of d′ to K coincides with the original metric on K.

We now define the K-valued geodesical random walk by setting, for t ≥ 0,

Yt(ω) =

{
XZi(ω)(t− τi(ω)) if τi(ω) ≤ t ≤ τi+1(ω) ,
D if ξ(ω) ≤ t ,

where X is the K-projection of the generalized geodesic flow on the complex
K. According to this definition, we have Y∞(ω) = D for every ω ∈ Ω.

2.3 The Markov property. We complete the preceding construction by
defining an admissible complex valued isotropic transport process and then
showing that this process is a strong Markov process.

Let K denote an admissible Riemannian complex and define the transition
density on the measurable space (L,F) as

N(z, t; dz, ds) =

{
0 if t < s ,
λx(dz)e−(s−t)ds if s ≤ t ,

where z = (x, v), dz = (x, dv), and λx is the uniform measure on the link
SxK.

Proposition 2.1. Let γ denote a probability measure on the measurable
space (L,F). Then there exists a probability measure P γ on the measurable
space (Ω,G) such that the coordinate mappings {Ỹn;n ∈ N} form a temporally
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homogeneous Markov process on the measure space (Ω,G, P γ), with γ as initial
distribution and N the transition function, i.e., we have

P γ(Ỹn+1 ∈ A | Ỹ0, . . . , Ỹn) =
∫
A

N(Zn, τn; dz, ds),

for all A belonging to F and n ∈ N.

Proof. The proposition is an immediate corollary of I. Tulcea’s Theorem
(see [12, pp. 613–615]). �

If γ is the measure λx ⊗ δ0, with δ0 the Dirac mass at 0 ∈ R, then we will
write Pλx or P x for P γ . Consequently, we have, for every x ∈ K, P x(Ω′) = 1,
and the process {Ỹn;n ∈ N} is Markov on the measure space (Ω′,G′, P x).
We let Ω be the set of sequences {(zn, tn) ∈ L;n ≥ 0} such that zn+1 6= zn
and 0 = t0 < t1 < · · · < tn < · · · , and G the σ-algebra of Ω generated by
{Ỹn;n ∈ N}. In the sequel we will use the probability space(s) (Ω,G, P x).

Let (Yt)t≥0 denote the K-valued random walk constructed above. For all
ω ∈ Ω, the map t 7→ Yt(ω) is continuous on R+ and has left-hand limits on
[0, ξ(ω)[. We complete the σ-algebra G by adjoining a point ωD to Ω such
that Yt(ωD) = D for all t, {ωD} ∈ G and P x({ωD}) = 0 for all x ∈ K. We
set Zn(ωD) = D and τn(ωD) =∞ for all n ∈ N and denote by PD the Dirac
mass at ωD.

Next we define translation operators (θt)t≥0 as follows: for all t ≥ 0, θtωD =
ωD; if t ≥ ξ(ω), then θtω = ωD, while if tk ≤ t < tk+1, k ≥ 0, then θtω =
{(zn+k, (tn+k − t) ∨ 0);n ≥ 0}, where ω = {(zn, tn);n ≥ 0}. Thus, we have
Ys ◦ θt = Ys+t for all s, t ∈ R+.

Definition 2.2. We call the stochastic process Y = (Ω,G, Yt, θt, P x)
the (an) isotropic transport process (motion) with values in the admissible
Riemannian complex K.

Let Gn := σ{Ỹi; 0 ≤ i ≤ n} and F0
t := σ{Ys; s ≤ t} denote, respectively,

the σ-algebra of Ω generated by {Ỹi; 0 ≤ i ≤ n} and the one generated by
{Ys; s ≤ t}.

Lemma 2.3. Let Λ ∈ F0
t . Then, for all n ≥ 0, there exists Λn ∈ Gn such

that
Λ ∩ {τn ≤ t < τn+1} = Λn ∩ {t < τn+1}.

Proof. Set

Gt := σ
{

Λ ∈ F0
t | (∀n ≥ 0)(∃Λn ∈ Gn),

Λ ∩ {τn ≤ t < τn+1} = Λn ∩ {t < τn+1}
}
.
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We can easily check that, for all A ∈ ED, the sets {Ys ∈ A}s≤t belong to the
σ-algebra Gt. This completes the proof since the sets {Ys ∈ A}s≤t generate
the σ-algebra F0

t . �

We define, for real functions g ∈ C0(ΣK) and f ∈ C0(K) (or simply
measurable functions):

(1) Pg(x) :=
∫

ΣxK
g(x, η)dλx(η).

(2) For all t > 0, T 0
t f(x) :=

∫
ΣxK

f(X(x,η)(t))dλx(η) and Ttf(x) :=
Ex[f(Yt)], the expectation with respect to Yt.

(3) For all λ > 0, R0
λf(x) :=

∫
R+ e

−λtT 0
t f(x)dt and Rλf(x) :=

∫
R+ e

−λt

Ttf(x)dt, the resolvent operators of T 0
t and Tt, respectively.

Proposition 2.4. Let f ∈ C0(K). Then for all λ > 0 we have

Rλf =
∞∑
n=0

(R0
λ+1)n+1f,

where (R0
n+1)0 := Id is the identity map.

Proof. First we write

Rλf(x) =

[∫ τ1

0

+
∞∑
i=1

∫ τi+1

τi

]
e−λtf(Yt)dt.

Taking into account the distribution of τ1 and the initial distribution of the
process Y , the first integral becomes∫ ∞

0

e−(1+λ)sT 0
s f(x)ds = R0

1+λf(x).

For the second part of the decomposition, we will prove by induction that for
all i ≥ 1 we have

(R)
[∫ τi+1

τi

e−λtf(Yt)dt
]

= (R0
λ+1)i+1f(x).

Let us first check the case i = 1:[∫ τ2

τ1

e−λtf(Yt)dt
]

=
[
e−λτ1

∫ τ2−τ1

0

e−λtf(Yt+τ1)dt
]
,

which is equal to[
e−λτ1(R0

λ+1)f(XZ1(0))
]

=
[
e−λτ1(PR0

λ+1)f(XZ0(τ1))
]
.

Using the distribution of τ1, we obtain

(R0
λ+1)(R0

λ+1)f(x).
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Assume that property (R) holds up to order l. We will verify the property
for order l + 1. We have[∫ τl+2

τl+1

e−λtf(Yt)dt

]
=
[
e−λτl+1

∫ τl+2−τl+1

0

e−λtf(Yt+τl+1)dt
]
,

which is equal to[
e−λτl+1(R0

λ+1)f(XZl+1(0))
]

=
[
e−λτle−λ(τl+1−τl)(PR0

λ+1)f(XZl(τl+1 − τl))
]
.

Using the distribution of (τl+1 − τl), this becomes[
e−λτl(R0

λ+1)(R0
λ+1)f(XZl(0))

]
,

which is equal to [∫ τl+1

τl

e−λtR0
λ+1f(Yt)dt

]
.

Hence, applying the induction hypothesis to the function R0
λ+1f , we obtain

(R) for order l + 1.
To complete the proof, note that the series

∑∞
n=0(R0

λ+1)n+1f converges
uniformly since for all function f ∈ C0(K) we have ‖R0

λ+1‖ ≤ 1/(λ+ 1)
(where ‖.‖ is the sup norm). �

Lemma 2.5. Let f be a measurable real (positive) function on (K,B).
Then we have, for all t ≥ 0 and λ > 0,

E

{∫ ∞
t

e−λuf(Yu)du | F0
t

}
= e−λtRλf(Yt).

Remark 2.6. By Lemma 2.3, to establish Lemma 2.5 it suffices to show
that this equality holds on sets Λn ∈ F0

t with

Λn ∩ {τn ≤ t < τn+1} = Λn ∩ {t < τn+1},
i.e., it suffices to show that

(†) E

{∫ ∞
t

e−λuf(Yu)du | Λn
}

= E
{
e−λtRλf(Yt) | Λn

}
.

Proof of Lemma 2.5. Consider the left side of the equality (†)and write it
in the form

E

{∫ ∞
t

e−λuf(Yu)du | Λn
}

=

[(∫ τn+1

t

+
∞∑

i=n+1

∫ τi+1

τi

)
e−λuf(Yu)du | Λn

]
.

Using the Markov property of the process {Ỹn;n ≥ 0}, the fact that Λn ⊂
{τn ≤ t ≤ τn+1} and the exponential distribution of the random variable
τn+1 − t ∧ τn+1 − τn, the first integral of the decomposition becomes[

e−λte−(t−τn)

∫ ∞
0

e−(λ+1)uPf(XZn(u+ (t− τn)))du | Λn
]
,
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which is equal to [
e−λte−(t−τn)R0

λ+1f(XZn(t− τn)) | Λn
]
.

For the second part of the decomposition, we will show by induction that for
all i ≥ 1 we have

(R)tn

[∫ τn+i+1

τn+i

e−λuf(Yu)du | Λn

]
=
[
e−λte−(t−τn)(R0

λ+1)i+1f(XZn(t− τn)) | Λn
]
.

Let us first check the case i = 1: We have[∫ τn+2

τn+1

e−λuf(Yu)du | Λn

]

=
[
e−λτn+1

∫ τn+2−τn+1

0

e−λuf(Yu+τn+1)du | Λn
]
,

which is equal to[
e−λτn+1(R0

λ+1)f(XZn+1(0)) | Λn
]

=
[
e−λte−λ(τn+1−t)(R0

λ+1)f(XZn(τn+1 − τn)) | Λn
]
,

which is the same as[
e−λte−λ(τn+1−t)(R0

λ+1)f(XZn((τn+1 − t) + (t− τn))) | Λn
]
.

Using the Markov property of {Ỹn;n ≥ 0} and the distribution of (τn+1− t)∧
(τn+1 − τn), we obtain[

e−λte−(t−τn)

∫ ∞
0

e−(λ+1)uP (R0
λ+1)f(XZn(u+ (t− τn)))du | Λn

]
,

which is equal to[
e−λte−(t−τn)R0

λ+1(R0
λ+1)f(XZn(t− τn)) | Λn

]
.

Now assume that property (R)tn holds up to order l. We will show that it
holds for order l + 1. We have[∫ τn+(l+2)

τn+(l+1)

e−λuf(Yu)du | Λn

]

=
[
e−λτn+(l+1)

∫ τn+(l+2)−τn+(l+1)

0

e−λuf(Yu+τn+(l+1))du | Λn
]
,

which is equal to [
e−λτn+(l+1)(R0

λ+1)f(XZn+(l+1)(0)) | Λn
]
,
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which is[
e−λτn+le−λ(τn+(l+1)−τn+l)(PR0

λ+1)f(XZn+l(τn+(l+1) − τn+l)) | Λn
]
.

Using the distribution of (τn+(l+1) − τn+l), the above becomes[
e−λτn+l(R0

λ+1)(R0
λ+1)f(XZn+l(0)) | Λn

]
.

The latter expectation is equal to[∫ τn+(l+1)

τn+l

e−λuR0
λ+1f(Yu)du | Λn

]
.

Thus, applying the induction hypothesis to the function R0
λ+1f , we obtain

the equality (R)tn for the order l + 1.
We have now shown that the left side of the equality (†)is equal to[
e−λte−(t−τn){R0

λ+1f(XZn(t− τn)) +
∞∑
i=1

(R0
λ+1)i+1f(XZn(t− τn))} | Λn

]
.

By Proposition 2.4 of this section this sum is equal to[
e−λte−(t−τn)Rλf(XZn(t− τn)) | Λn

]
.

Using once again the Markov property of {Ỹn;n ≥ 0}, we get[
e−λte−(t−τn)Rλf(XZn(t− τn)) | Λn

]
=
[
e−λtRλf(Yt) | Λn

]
,

which was to be proved. �

We have now collected all the ingredients to prove the following theorem:

Theorem 2.7. Let Y = (Ω,F0
t , Yt, θt, P

x) be the isotropic transport pro-
cess with values in the admissible Riemannian complex K. Then Y is a strong
Markov process.

Remark 2.8 ([14, I, pp. 97–100]). It suffices to show that the process Y
is a Markov process because a right continuous Markov process (with right
continuous trajectories) is always strongly Markov for the filtration {F0

t+}.
But we know that for continuous stochastic processes the filtration {F0

t+} is
equal to the filtration {F0

t}, which includes the case of the isotropic transport
process (with continuous trajectories).

Proof of Theorem 2.7. By Lemma 2.5 we have

E

{∫ ∞
t

e−λuf(Yu)du | F0
t

}
= EYt

{∫ ∞
0

e−λ(t+u)f(Yu)du
}
.

Therefore, if the function f is bounded, we have

E

{∫ ∞
t

ϕ(u)f(Yu)du | F0
t

}
= EYt

{∫ ∞
0

ϕ(t+ u)f(Yu)du
}
,
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whenever ϕ is a linear combination of exponentials, and hence, by uniform
approximation, whenever ϕ is continuous and vanishes at infinity. We apply
this to the following sequence of functions:

ϕn(s+ t+ u) =

{
0 if 1/n ≤ u ,
1
n − u if 0 ≤ u < 1/n .

The sequence (ϕn)n≥0 is a sequence of continuous functions vanishing at in-
finity and converging to the Dirac mass at s+ t, while the map u 7→ f(Yu) is
a bounded (right) continuous function. Consequently, if we take the limit as
n tends to infinity, we obtain

E
{
f(Yt+s)du | F0

t

}
= EYt{f(Ys)}.

In other words, Y is Markov process. �

3. The Wiener measure

3.1 Construction. Let Y = (Ω,F0
t , Yt, θt, P

x) be the isotropic transport
process in the complete admissible Riemannian complex K constructed in the
last section. For a real η > 0 and z = (x, v) ∈ ΣK set ηz := (x, ηv).

Define a process Y η from Y = (Ω,F0
t , Yt, θt, P

x) by

Y ηt (ω) =

{
XηZi(ω)

(
t
η2 − τi(ω)

)
if τi(ω) ≤ t/η2 ≤ τi+1(ω) ,

D if ξ(ω) ≤ t/η2 .

The process Y η = (Ω,F0
t , Y

η
t , θt, P

x) has continuous trajectories, and it is,
like the process Y , strongly Markov.

Proposition 3.1. Let K be an admissible Riemannian complex and let
C(R+,K) be the space of continuous paths in K. Then, for each η > 0, the
process Y η generates a measure µη on the space C(R+,K).

Proof. For η > 0, define P ηs,t(p,A) for p ∈ K and A ∈ B(KD) as the tran-
sition probability of the process Y η (i.e., P ηs,t(p,A) := Prob{Y ηt+s ∈ A;Y ηs =
p}).

Consider the finite sets of reals J = {t1 < t2 < · · · < tn} ⊂ (R+)n. For
each such finite set J = {t1 < t2 < · · · < tn} define the probability measure

P ηJ (B) =
∫
B

P x(dx0)
∫
P η0,t1(x0, dx1)

∫
. . .

∫
P ηtn−1,tn(xn−1, dxn)

for B ⊂ Kn
D. Let Φ(R+) denote the set of the finite subsets of R+. Then,

thanks to the Markov property of Y η, the system {P ηJ ; J ∈ Φ(R+)} is a
projective system on (KD,B(KD)) (i.e., if πIJ (respectively, πJ) is the natural
projection of KI (respectively, Ω)) to KJ , then P ηI (πIJ)−1 = P ηJ ).
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On the other hand, the trajectories of Y η are continuous and the space K
is Hausdorff and σ-compact. Consequently, using the Kolmogorov theorem
[5], we get a probability measure µη on the space C(R+,K). �

3.2. The Wiener measure. We now state the main theorem of this
section.

Theorem 3.2. Let K be an admissible Riemannian complex, consider
the family {Y η}η>0 of isotropic transport processes constructed above, and let
(µη)η>0 be the family of the generated probability measures on C(R+,K). Let
the space C(R+,K) be endowed with the compact-open topology. Then the
family (µη)η>0 has a convergent subsequence.

To prove this theorem we need the following lemma:

Lemma 3.3. Under the hypothesis of Theorem 3.2, the family of the prob-
ability measures (µη)η>0 is tight, i.e.,

lim
η→0
c→0

Prob

{
sup

t−c<t1<t2<t+c
0≤t1<t2≤N

min
[
d(Y ηt1 , Y

η
t ); d(Y ηt , Y

η
t2)
]
> ε

}
= 0.

Remark 3.4. Before proceeding with the proof of the lemma, we recall
the following two facts:

(1) When the space C(R+,K) is endowed with the compact-open topol-
ogy, the tightness property is equivalent to the equality of Lemma 3.3
by a result of Stone [29].

(2) According to a result of Jørgensen [27, Lemma 1.4], if the property

∀ε > 0∃α > 0, sup
p∈KD
0<s

1
s
P η0,s(p,B

c
D(p, ε)) ≤ α

holds, then the equality of Lemma 3.3 also holds.

Proof of Lemma 3.3. By Remark 3.4, if we show that

∀ε > 0∃α > 0, lim
η→0

sup
p∈KD

0<t

Prob{Y ηt ∈ BcD(p, ε)}
t/η2

≤ α,

then the sequence (µη)η>0 is tight.
We will assume that ε < η (otherwise the probability in question is zero,

in which case there is nothing to prove) and that t/η2 < τ1 (see the induction
argument in proof of Lemma 2.5), which does not affect the result. We may
also assume that ε is less than or equal to t/η2, since otherwise the probability
is again zero.

Thus, we have

Prob
{
Y ηt ∈ BcD(p, ε)

}
= E

{
IBcD(p,ε)(Y

η
t ) | ε ≤ t/η2 < τ1

}
.
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Using the Markov property, we obtain

Prob {Y ηt ∈ BcD(p, ε)}

= E

{
e−t/η

2
∫ ∞

0

PIBcD(p,ε)

(
X(p,ηζ)

(
t

η2
+ s

))
e−sds | ε ≤ t

η2

}
,

which is equal to

E

{
e−t/η

2
R0

1IBcD(p,ε)

(
X(p,ηζ)

(
t

η2

))
| ε ≤ t

η2

}
.

Using the fact that ‖R0
1‖ ≤ 1, we obtain

E

{
e−t/η

2
R0

1IBcD(p,ε)

(
X(p,ηζ)

(
t

η2

))
| ε ≤ t

η2

}
≤ e−t/η

2
.

So for all t > 0 we get

Prob{Y ηt ∈ BcD(p, ε)}
t/η2

≤ e−t/η
2

t/η2
.

Since, for each t > 0, e
−t/η2

t/η2 goes to zero if η goes to zero, the result follows. �

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Consider the space C(R+,K) endowed with the com-
pact-open topology, where K is an admissible Riemannian complex. Let
(µη)η>0 be the sequence of probability measures generated by the family of
isotropic transport processes {Y η}η>0.

By Lemma 3.3, the sequence (µη)η>0 is tight; moreover, the space C(R+,K)
endowed with the compact-open topology is separable. Thus, by Prohorov’s
theorem (see [5]), the sequence (µη)η>0 is relatively compact. The proof is
now complete. �

We showed above that the sequence (µη)η>0 has a subsequence which con-
verges to a probability measure. Let W denote this limit. We make the
following definition:

Definition 3.5. The measure W on the space C(R+,K) is called a
Wiener measure.

Example 3.6 (The smooth case). Assume K is a smooth Riemannian
manifold of dimension n and let 4 denote the operator of Laplace-Beltrami
on K. Then 4 is the infinitesimal generator of a Markov process, called
the Brownian motion [16], and denoted by {Bxt }t<ζ′ . Let (Ut)t>0 denote the
semigroup associated to the Brownian motion. Suppose that, for all f ∈
C0(K), Utf ∈ C0(K). Then we have the following theorem:
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Theorem. The sequence of processes {Y η}η>0 converges weakly to the
process {Bxt }t<ζ′ .

Proof. Set T ηt f(x) = Ex[f(Y ηt )]. By a result of Pinsky (see [26]), we have,
for all f ∈ C0(K),

lim
η→0

T ηt f = Ut/nf,

where n is the dimension of K. By Theorem 3.2, there exists a subsequence
(µη′)η′>0 of the sequence of probability measures (µη)η>0, such that (µη′)η′>0

converges to a probability measure W on the space C(R+,K).
Thus, by Stone’s theorem [29], W is the classical Wiener measure generated

by the Brownian motion {Bxt }t<ζ′ . �

4. Brownian motion

We let K denote a complete admissible Riemannian complex and consider
{Y η}η>0, the family of the isotropic transport processes, and (µη)η>0, the
corresponding sequence of probability measures.

Let (µηk)k be a subsequence of the sequence (µη)η>0 which converges to
the Wiener measure W .

For ηk > 0 and for each finite set J = {t1 < t2 < · · · < tn} let P ηkJ be the
probability measure on the product space Kn defined by

P ηkJ (B) =
∫
B

P x(dx0)
∫
P ηk0,t1

(x0, dx1)
∫
. . .

∫
P ηktn−1,tn(xn−1, dxn)

for B ⊂ Kn
D.

Proposition 4.1. Let Φ(R+) denote the set of all finite subsets of R+.
Then, for all J in the set Φ(R+), the sequence of probability measures (P ηkJ )k
has a subsequence converging to a probability measure µJ on the space K |J|D
(where |J | is the cardinality of J). Moreover, the system {µJ ; J ∈ Φ(R+)} is
projective on the space (KD,B(KD)).

Proof. Recall that for all s ∈ R+, t ∈ R+ and all p ∈ K, the sequence
of transition functions (P ηks,t (p, .))k (P ηks,t (p,A) := Prob{Y ηkt+s ∈ A;Y ηks = p},
where A ∈ B(KD)) defines a sequence of probability measures on the space
(KD,B(KD)).

Moreover, the space KD is σ-compact. Thus, by Prohorov’s theorem [5],
there exists a probability measure µps,t and a subsequence (P ηks,t (p, .))k con-
verging weakly to µps,t.

By a diagonal argument, we obtain, for all J = {t1 < t2 < · · · < tn} in
Φ(R+)), a probability measure µJ on the product space K |J|D given by

µJ(B) =
∫
B

P x(dx0)
∫
µx0

0,t1
(dx1)

∫
. . .

∫
µ
xn−1
tn−1,tn(dxn)
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for B ⊂ K |J|D . The proof is now complete. �

Remark 4.2. The sequence (µηk)k is weakly convergent to the Wiener
measure W . Thus, for every set J belonging to Φ(R+), the finite dimensional
distribution W (πJ)−1 coincides with µJ . In particular, for all s > 0, t > 0
and p ∈ KD, we have W p(π{s,t})−1 := µps,t.

Corollary 4.3. The function which maps a point (t, p,Γ) ∈ R+×KD×
B(KD) to W (t, p,Γ) := W p(π{0,t})−1(Γ) is a transition function on the mea-
surable space (KD,B(KD)).

Proof. The result is an immediate consequence of Proposition 4.1 and Re-
mark 4.2 . �

We are now ready to state the main theorem of this section.

Theorem 4.4. Let (t, p,Γ) 7→ W (t, p,Γ) denote the transition function
on the measurable space (KD,B(KD)), corresponding to the Wiener measure
on the space C(R+,K) (see Corollary 4.3). Then there exists a continuous
KD-valued Markov process {Bpt }t≥0 with W (t, p,Γ) as transition function.

Before proceeding with the proof, we make the following definition:

Definition 4.5. The continuous KD-valued Markov process {Bpt }t≥0 is
called a Brownian motion.

Proof of Theorem 4.4. By a corollary of Kolmogorov’s theorem (see [14, I,
p. 91, Theorem 3.5]), the conclusion of Theorem 4.4 holds if we show that the
transition functions (t, p,Γ) 7→ W (t, p,Γ) satisfy the following two conditions
for each compact set Γ ⊂ KD:

(1) For all N > 0, limy→∞ supt≤N W (t, y,Γ) = 0.
(2) For all ε > 0, limt↓0 supp∈Γ(1/t)W (t, p, BcD(p, ε)) = 0.

To prove the first condition, consider a compact set Γ ( KD (if Γ = KD,
then the first condition is trivially satisfied). Let (µηk)k be a sequence of
measures associated to the sequence of isotropic processes which converges
weakly to the Wiener measure W and let P ηkt (p,A) := Prob{Y ηkt ∈ A;Y ηk0 =
p} denote the associated transition functions.

Recall that, for each η > 0, all trajectories of the random walk Y η are
concatenations of geodesic segments each of which has length less than or
equal to η. Consequently, we have, for each ηk > 0, d(p, Y ηkt ) ≤ ηkt if Y ηk0 = p.

Let N > 0 be some (fixed) real number. Then, for all t ≤ N , if Y ηk0 = y,
d(y, Y ηkt ) ≤ ηkN . Thus, if, for some ε > 0, we consider the points y ∈ KD

for which the distance d(y,Γ) is strictly greater than (ηk + ε)N , then the
probability P ηkt (y,Γ) vanishes.

In a nutshell, we proved that, for all ηk > 0, N > 0 and y ∈ KD, we have:
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For all ε > 0, there exists α = (ηk + ε)N such that if d(y,Γ) ≥ α then
supt≤N P

ηk
t (y,Γ) < ε.

So if we take the limit of an appropriate subsequence, then the desired con-
clusion follows.

To prove the second condition, we recall that during the proof of Lemma
3.3 we obtained the inequality

sup
p∈KD

Prob{Y ηkt ∈ BcD(p, ε)}
t/η2

k

≤ e−t/η
2
k

t/η2
k

for all t > 0 and all ηk > 0. The second condition follows by letting ηk and t
both go to zero.

This completes the proof. �

5. Recurrent and transient behavior of the Brownian motion

In the literature on Brownian motion in the smooth case one usually in-
vestigates the recurrent or transient behavior of this stochastic process. It is
known, for example, that the Euclidian Brownian motion is recurrent in the
two-dimensional case, and transient in dimensions greater than or equal to
three. Moreover, it is known that the noncompact hyperbolic surface valued
Brownian motion is transient.

For more results and details, we refer the reader to the papers by H.P
Mckean and D. Sullivan [22] and T.J. Lyons and H.P Mckean [20].

5.1 The geometric behavior of the admissible Riemannian comp-
lex valued Brownian motion. Let K denote a complete admissible Rie-
mannian complex of dimension n and let p ∈ K. We recall that the K-valued
Brownian motion {Bpt }t≥0, was obtained as a weak limit of the sequence of
isotropic transport processes.

On the other hand, we have seen that the trajectories of the isotropic
processes are concatenations of geodesic segments. When a trajectory joins
(a.e.) transversally the (n − 1)-skeleton\(n − 2)-skeleton, it then chooses
isotropically a new maximal face (i.e., all adjacent maximal faces have the
same probability to be chosen).

Consequently, the K-valued Brownian motion {Bpt }t≥0 behaves, inside an
n-simplex ∆n, like the standard Brownian motion with values in a Riemannian
n-dimensional manifold endowed with the metric g∆n .

Moreover, the process hits (a.e.) “transversally” the (n− 1)-skeleton\(n−
2)-skeleton, then chooses isotropically a maximal face. Thus we obtain a new
discrete random walk corresponding to the isotropic choices of the maximal
faces. To give a rigorous mathematical construction of this discrete process,
we introduce the following concept.

The dual graph X of a complex K is a 1-dimensional simplicial complex
defined as follows:
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Consider a point inside (i.e., in the topological interior of) each n-simplex
of K and, for each (n − 1)-simplex, a point in its topological interior. Then
connect these points with geodesic segments and let E(X) denote the set of
such segments. In this way we obtain a graph consisting of a set Vn(X) of
vertices of degree n+ 1 (the points inside n-simplexes) and a set Vn−1(X) of
vertices corresponding to the interior points of the (n − 1)-simplexes, where
the degree of a vertex is equal to the number of the n-simplexes adjacent to
it.

Next, consider the Markov chain (discrete Markov process) {Cn}n∈N with
transition probabilities given by the function

p(x, y) =


1

deg x if x, y ∈ Vn−1(X) and there exists z ∈ Vn(X)
such that xz, zy ∈ E(X),

0 otherwise,

where deg x is the degree of x and xz is an edge (geodesic segment) connecting
x to z.

Thus this random walk is a discrete “jump” process on the set Vn−1(X).

5.2 Brownian motion in an admissible complex with nonpositive
curvature and with dimension at the most 2. This subsection is devoted
to the study of the transient or recurrent behavior of the Brownian motion in
an admissible complex with nonpositive curvature (in the sense of Alexandrov)
and with dimension at the most 2.

We first recall the definition of a recurrent or transient process:

Definition 5.2. Let {Xp
t }t denote a stochastic process in a metric space

K. Then {Xp
t }t is said to be recurrent if, for every ball Bp containing the

point p, the process {Xp
t }t returns to the ball Bp (and does so infinitely often)

with probability equal to one. Otherwise, the process is called transient.

Remark 5.3. When the space K is a discrete space, we consider the point
p instead of the ball Bp in the above definition.

Theorem 5.4. Let K denote a 2-dimensional (respectively, 1-dimensional)
non-compact complete simply connected admissible Riemannian complex with
nonpositive curvature. Then, if for every 1-simplex (respectively, vertex) there
are at least three 2-simplices (respectively, 1-simplices) adjacent to it, the
Brownian motion is transient.

Before proceeding with the proof of Theorem 5.4, let us first give a short
description of a simple random walk on a graph.

Let X = (V (X), E(X)) denote a connected locally finite graph (i.e., a
1-dimensional admissible Riemannian complex), where V (X) is the set of
vertices and E(X) is the set of edges. By a simple random walk on the graph
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X we mean the Markov chain for which the transition probability p(x, y) from
vertex x to vertex y is given by the function

p(x, y) =

{
1

deg x , if xy ∈ E(X),
0, otherwise,

where xy is an edge connecting x to y.
We say that X is recurrent (respectively, transient) if the simple random

walk is recurrent (respectively, transient).
The word metric on the graph X is an intrinsic metric in which each edge

has unit length.

Remark 5.5 ([13, Ch. 6]). Let X denote a connected locally finite graph
with uncountably many ends. If every vertex has degree greater than or equal
to three, then X is transient.

Proof of Theorem 5.4. Let K be an admissible complex and let X denote
the dual graph of K. In the following, we will construct a new graph Y from
the graph X.

Let x1 be a vertex belonging to the set V1(X) and let z1 ∈ V2(X) be such
that x1z1 ∈ E(X). Recall that the degree of z1 is equal to three. We delete
an edge adjacent to z1, different from x1z1. We do the same thing with the
other faces adjacent to x1.

Now consider again z1. This vertex is connected to another vertex x2 ∈
V1(X) (x1, z1 and x2 are all in the same 2-simplex). We do the same thing
with x2 that we have done with x1. At the end of this construction, ignoring
the vertices of degree equal to two, and using the hypothesis on the complex
K, we get a graph Y that is isometrically equivalent to a connected locally
finite graph with uncountably many ends and in which each vertex has degree
greater than or equal to three. Moreover, the random walk resulting from the
isotropic choice of maximal faces by the Brownian motion induces a simple
random walk on the graph Y .

Now suppose that the K-valued Brownian motion {Bpt }t≥0 is recurrent.
We can assume that the point p is in the interior of an edge. Take as compact
neighborhood of the point p the union of all its adjacent 2-simplices and denote
this neighborhood by Bp.

Thus, if {Bpt }t≥0 returns to the ball Bp with probability equal to one,
then the associated simple random walk on Y returns to the point p with
probability one. In other words, the graph Y is recurrent. This contradicts
Remark 5.5, and so the theorem is now proven. �
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