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ON THE FIRST EIGENVALUE OF THE LINEARIZED
OPERATOR OF THE HIGHER ORDER MEAN CURVATURE

FOR CLOSED HYPERSURFACES IN SPACE FORMS

LUIS J. ALÍAS AND J. MIGUEL MALACARNE

Abstract. In this paper we derive sharp upper bounds for the first
positive eigenvalue of the linearized operator of the higher order mean

curvature of a closed hypersurface immersed into a Riemannian space
form. Our bounds are extrinsic in the sense that they are given in

terms of the higher order mean curvatures and the center(s) of gravity
of the hypersurface, and they extend previous bounds recently given by
Veeravalli [24] for the first positive eigenvalue of the Laplacian operator.

1. Introduction

A classical result of Reilly [21] establishes that the first positive eigenvalue
λ1 of the Laplacian operator ∆ of a closed (that is, compact and without
boundary) hypersurface Mn immersed into the Euclidean space Rn+1 satisfies

λ1 ≤
n

vol(M)

∫
M

H2dM,

where H denotes the mean curvature of M , with equality if and only if M is
a round sphere in Rn+1 (see also [7] for an earlier version due to Bleecker and
Weiner). More generally, Reilly obtained that

λ1

(∫
M

HrdM
)2

≤ n vol(M)
∫
M

H2
r+1dM,

for every 0 ≤ r ≤ n− 1, where Hr stands for the r-th mean curvature of the
hypersurface, and equality holds precisely when M is a round sphere (recall
that H0 = 1 by definition, and H1 = H). More recently, Veeravalli [24]
has extended Reilly’s inequalities to the case of hypersurfaces immersed into
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hyperbolic and spherical spaces. See also [16], [10], [14] and [11] for extensions
of Reilly’s inequalities to some other ambient spaces, including hyperbolic
space, given by Heintze, by El Soufi and Ilias, by Grosjean, and by Giménez,
Miquel and Orengo, respectively.

Let us recall that the Laplacian operator ∆ of a hypersurface M immersed
into a Riemannian space form naturally arises as the linearized operator of
the mean curvature for normal variations of the hypersurface. From this
perspective, ∆ can be thought of as the first of a sequence of n opera-
tors, L0 = ∆, L1, . . . , Ln−1, where Lr stands for the linearized operator of
the (r + 1)-th mean curvature arising from normal variations of the hyper-
surface (see, for instance, [20], [22] and [3]). These operators are given by
Lr(f) = divM (Tr∇f) for every smooth function f on M , where Tr denotes
the r-th classical Newton transformation associated to the second fundamen-
tal form of the hypersurface. In general, the operators Lr are not elliptic, but
under appropriate natural geometric hypotheses on the hypersurface, they are
elliptic, which makes it possible to consider the first positive eigenvalue λLr1 of
Lr. Inspired by Reilly’s inequalities and their subsequent generalizations and
extensions, our objective here is to derive sharp upper bounds for λLr1 , not
only for hypersurfaces in Euclidean spaces but also in hyperbolic and spher-
ical spaces. Like Veeravalli’s bounds, our bounds are extrinsic in the sense
that they are given in terms of the total higher order mean curvatures and
the center(s) of gravity of the hypersurface. We refer the reader to [2], [12],
[13] and [1] for other previous work on the subject.

The main results of this paper are contained in Sections 4, 5, and 6. Specifi-
cally, in Section 4, Lemma 6, we establish a general version of a classical result
of Reilly (Main Lemma in [21]) for the case of the linearized operator Lr of
the (r + 1)-th mean curvature of a hypersurface in Euclidean space Rn+1, in
the case when Lr is elliptic (see also equation (1.7) in [2]). As an application
of this result, in Section 5, Theorem 9 and Theorem 10, we derive Reilly-type
inequalities for the case of the first positive eigenvalue of Lr, which extend
Theorem 1.1 and Theorem 1.3 by Alencar, do Carmo and Rosenberg [2]. Our
inequalities are sharp, with equality holding if and only if the hypersurface is
a round sphere in Rn+1. On the other hand, it is not difficult to see that, for
every r = 0, . . . , n−2, the (r+2)-th mean curvature of a round sphere Sn(%) of
radius % in the Euclidean space Rn+1 satisfies crHr+2 = λLr1 , cr = (n− r)

(
n
r

)
(see Remark 7). Motivated by this fact, in Section 5, Theorem 12, we prove
that the first positive eigenvalue of Lr of a positively Ricci curved hypersur-
face in Rn+1 is bounded from above by cr maxHr+2, and equality holds if and
only if the hypersurface is a round sphere in Rn+1. This is a new upper bound
for the first positive eigenvalue of Lr which, for the case of the Laplacian op-
erator (r = 0) and the scalar curvature S (recall that S = n(n − 1)H2), was
first given by Deshmukh [9].
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Finally, in Section 6, we consider the cases of hypersurfaces in the sphere
and hypersurfaces in the hyperbolic space. Using Veeravalli’s approach for a
center of gravity of the hypersurface [24], we are able to extend Lemma 6 to the
spherical and hyperbolic cases (see Lemma 13 and Lemma 14, respectively).
In particular, when r = 0 we recover the results of Veeravalli [24] for the
first positive eigenvalue of the Laplacian operator. As already observed by
Veeravalli in the case r = 0, the result is sharp for hypersurfaces in the sphere,
but not for hypersurfaces in the hyperbolic space. Observe that the same
holds for the upper bound for the first positive eigenvalue given by Alencar,
do Carmo and Rosenberg [2, Theorem 3.1] for hypersurfaces in hyperbolic
space. As an application of Lemma 13, we derive Reilly-type inequalities for
the first positive eigenvalue of the operator Lr of a closed hypersurface in a
sphere Sn+1. Our inequalities are sharp, with equality holding if and only if
the hypersurface is a geodesic sphere in Sn+1.

2. Preliminaries

Let Mn+1
κ be an (n+ 1)-dimensional Riemannian space form with constant

sectional curvature κ, and let ψ : Mn →M
n+1
κ be a connected hypersurface

immersed intoMn+1
κ . Let A be the shape operator (or the second fundamental

form) of the hypersurface with respect to a (locally defined) normal unit vector
field N. As is well known, Ap is a self-adjoint linear operator on each tangent
plane TpM , for every p ∈ M , and its eigenvalues, κ1(p), . . . , κn(p), are the
principal curvatures of the hypersurface at the point p. Associated to the
shape operator there are n algebraic invariants given by

Sr(p) = σr(κ1(p), . . . , κn(p)), 1 ≤ r ≤ n,

where σr is the elementary symmetric function defined on Rn by

σr(x1, . . . , xn) =
∑

i1<···<ir

xi1 . . . xin .

Observe that the characteristic polynomial of Ap can be written in terms of
the Sr’s as

det(tI −Ap) =
n∑
r=0

(−1)rSr(p)tn−r.

The r-th mean curvature Hr(p) of the hypersurface at p is then defined by(
n

r

)
Hr(p) = Sr(p).

In particular, when r = 1, then H1(p) = (1/n)trace(Ap) = H(p) is the mean
curvature, which is the main extrinsic curvature of the hypersurface. On the
other hand, when r = 2, H2(p) defines a geometric quantity which is related
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to the (intrinsic) scalar curvature of the hypersurface. Indeed, it follows from
the Gauss equation that the Ricci curvature of M is given by

(1) Ricp(v, w) = (n− 1)κ〈v, w〉+ nH(p)〈Apv, w〉 − 〈Apv,Apw〉,
for v, w ∈ TpM . Therefore, the scalar curvature S of the hypersurface M at p
is S(p) = trace(Ricp) = n(n− 1)(κ+H2(p)). In general, the Gauss equation
implies that when r is odd, Hr is extrinsic (and its sign depends on the chosen
local orientation), while when r is even, Hr is intrinsic. Hn is classically called
the Gauss-Kronecker curvature of M .

The classical Newton transformations Tr(p) : TpM → TpM are defined
inductively from Ap by

T0(p) = Ip and Tr(p) = Sr(p)Ip −ApTr−1(p), 1 ≤ r ≤ n,
where Ip denotes the identity on TpM , or equivalently by

Tr(p) = Sr(p)Ip − Sr−1(p)Ap + · · ·+ (−1)r−1S1(p)Ar−1
p + (−1)rArp.

Note that by the Cayley-Hamilton theorem, we have Tn(p) = 0. As each Tr(p)
is polynomial in Ap, these transformations are also self-adjoint linear opera-
tors which commute with Ap. Indeed, Ap and Tr(p) can be simultaneously
diagonalized: if {e1, . . . , en} ⊂ TpM are eigenvectors of Ap associated to the
eigenvalues κ1(p), . . . , κn(p), respectively, then they are also eigenvectors of
Tr(p) associated to the eigenvalues µ1,r(p), . . . , µn,r(p) of Tr(p), where

(2) µi,r(p) =
∂σr+1

∂xi
(κ1(p), . . . , κn(p)) =

∑
i1<···<ir,ij 6=i

κi1(p) · · ·κir (p),

for every 1 ≤ i ≤ n. From this it can be easily seen that

trace(Tr(p)) = (n− r)Sr(p) = crHr(p)

and
trace(ApTr(p)) = (r + 1)Sr+1(p) = crHr+1(p),

where cr = (n− r)
(
n
r

)
= (r + 1)

(
n
r+1

)
. For the details, we refer the reader to

the classical paper by Reilly [20] (see also [5] and [22] for a more accessible
modern treatment).

In particular, when M is orientable we may choose a globally defined nor-
mal unit vector field N on M , and the shape operator A and its Newton trans-
formations Tr determine globally defined tensor fields A : X (M)→ X (M) and
Tr : X (M)→ X (M).

On the other hand, the divergence of Tr is defined by

divM Tr = trace(∇Tr) =
n∑
i=1

(∇eiTr)(ei),

where {e1, . . . , en} is a local orthonormal frame on M . Another interesting
property of the Newton transformations of a hypersurface in a space form is
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that they are divergence free, that is, divM Tr = 0 for each r, as shown by
Rosenberg [22]. We also refer the reader to [4] for a general computation of
divM Tr, in the case of a hypersurface immersed into an arbitrary Riemannian,
not necessarily with constant sectional curvature.

The Newton transformations Tr allow us to consider an interesting kind of
second order differential operators acting on the smooth functions on M . For
each r = 0, . . . , n− 1, consider Lr : C∞(M)→ C∞(M), the operator given by

Lr(f) = divM (Tr∇f).

As the Newton transformations are divergence free, it was shown in [22] that
the operator Lr is the linearized operator of the (r + 1)-th mean curvature
of M . Note that L0 = ∆ is the Laplacian operator on M with respect to
the induced metric. As is well known, the Laplacian operator ∆ is always an
elliptic operator on M . However, if r ≥ 1, the operator Lr does not in general
have this property. In the following section we will discuss several geometric
conditions which guarantee the ellipticity of Lr.

3. Ricci curvature, convexity and ellipticity

A classical theorem of Hadamard [15] gives three equivalent conditions on
a closed connected hypersurface Mn immersed into the Euclidean space Rn+1

which imply that M is a convex hypersurface. Here, by a convex hypersurface
in Rn+1 we mean that M is embedded in Rn+1and is the boundary of a convex
body.

Theorem 1 (Hadamard theorem). Let ψ : Mn → R
n+1 be a closed con-

nected hypersurface immersed into the Euclidean space. The following asser-
tions are equivalent:

(i) The second fundamental form is definite at every point of M .
(ii) M is orientable and its Gauss map is a diffeomorphism onto Sn.
(iii) The Gauss-Kronecker curvature never vanishes on M .

Moreover, any of the above conditions implies that M is a convex hypersurface.

For a proof of the Hadamard theorem see [8]. Here we observe that the con-
vexity of a hypersurface in Rn+1 is also closely related to the Ricci curvature.
In fact, we have the following result.

Theorem 2. Let ψ : Mn → R
n+1 be a closed connected hypersurface im-

mersed into the Euclidean space. The following assertion is also equivalent to
any of the above assertions in the Hadamard theorem, and therefore it also
implies that M is a convex hypersurface:

(iv) The Ricci curvature of M is positive everywhere on M .
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Proof. Let us show that condition (i) implies (iv), and that condition (iv)
implies (iii). In both proofs we will make use of the Gauss equation (1), which
in our case (κ = 0) can be written as

(3) Ricp(v, w) = 〈ApT1(p)v, w〉.

First, suppose that condition (i) holds. At every point p ∈ M , choose a unit
normal vector ξp so that Aξp is positive definite. Since the second funda-
mental form is definite everywhere, we conclude that such a vector field ξ
globally exists and is continuous on M . Therefore the principal curvatures
κ1(p), . . . , κn(p) of M are positive at each point p ∈ M . Hence from (2) the
eigenvalues of T1 are also positive at each p ∈M . Let {e1, . . . , en} ⊂ TpM be
an orthonormal basis of eigenvectors of A at a point p ∈M . From (3) we see
that

(4) Ricp(ei, ej) = 〈ApT1(p)ei, ej〉 = κi(p)µi,1(p)δij , i, j = 1, . . . , n,

which implies that the Ricci curvature tensor of M is positive definite at every
p ∈M .

Now, suppose that condition (iv) holds, and let us show that this implies
(iii), completing the proof. Let p ∈ M and take an orthonormal basis of
eigenvectors of A in TpM with ordered eigenvalues κ1(p) ≤ · · · ≤ κn(p),
which are continuous functions on M . Using (3) again, we have

Ricp(ei, ei) = κi(p)µi,1(p) > 0, i = 1, . . . , n,

so that κi(p) 6= 0 for every i = 1, . . . , n. Therefore, the Gauss-Kronecker
curvature of M , Hn(p) = κ1(p) · · ·κn(p), does not vanish on M . �

In particular, if the Ricci curvature of a closed hypersurface in Rn+1 is
positive, then it is orientable and, after an appropriate choice of its orientation,
its second fundamental form is positive definite. By (2), this implies that
every Newton transformation Tr is also positive definite, and so we have the
following corollary.

Corollary 3. Let ψ : Mn → R
n+1 be a closed connected hypersurface

immersed into the Euclidean space. If M has positive Ricci curvature, then
the operators Lr are all elliptic and all the r-th mean curvatures are positive.

For the case of hypersurfaces immersed into Mn+1
κ with κ 6= 0, equation

(3) becomes
Ricp(v, w)− κ〈v, w〉 = 〈AT1v, w〉.

Therefore, in that case it is also true that the operators Lr are all elliptic,
under the assumption that the Ricci curvature of the hypersurface is greater
than the curvature of the ambient space, κ.

On the other hand, as observed by Barbosa and Colares in [5, Proposition
3.2], if ψ : Mn →M

n+1
κ is a closed connected hypersurface immersed into a
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Riemannian space form M
n+1
κ (if κ > 0, assume further that ψ(M) is con-

tained in an open hemisphere) such that Hr+1 > 0 is positive for some r, then
each operator Lj is elliptic for j = 0, . . . , r.

Remark 4. In what follows, when Lr is elliptic on M (or, equivalently, Tr
is positive definite on M), we will always assume that the chosen orientation
on M is the one for which Hr > 0.

4. First results. A Reilly-type inequality for the first eigenvalue
of Lr

A classical result of Takahashi [23] establishes that the only immersed hy-
persurfaces in Euclidean space Rn+1 whose coordinate functions are eigen-
functions of the Laplacian operator, associated to the same eigenvalue λ,
are minimal hypersurfaces in Rn+1 (with λ = 0) and open pieces of round
spheres Sn(%) ⊂ R

n+1 of radius % (with λ = n/%2 > 0). In other words,
if ψ : Mn → R

n+1 is an immersed hypersurface in Euclidean space, then
∆ψ + λψ = 0 for a real constant λ if and only if either λ = 0 and M is
a minimal hypersurface in Rn+1, or λ > 0 and M is an open piece of a round
sphere of radius % =

√
n/λ centered at the origin of Rn+1. Below we estab-

lish the corresponding result for the case of the linearized operator Lr of the
(r + 1)-th mean curvature (since L0 = ∆, taking r = 0 we recover classical
Takahashi theorem).

Lemma 5. Let ψ : Mn → R
n+1 be an orientable connected hypersurface

immersed into the Euclidean space, and let Lr be the linearized operator of
the (r + 1)-th mean curvature of M , for some r = 0, . . . , n− 1. Then

Lrψ + λψ = 0

for a real constant λ if and only if either λ = 0 and M is (r + 1)-minimal in
R
n+1 (that is, Hr+1 = 0 on M), or λ 6= 0 and M is an open piece of a round

sphere Sn(%) ⊂ Rn+1 of radius % = (cr/|λ|)1/(r+2) centered at the origin of
R
n+1, where cr = (n− r)

(
n
r

)
.

Proof. For a fixed arbitrary vector a ∈ Rn+1, let us consider the height
function 〈ψ,a〉 defined on M . Observe that its gradient is given by ∇〈ψ,a〉 =
a>, where a> = a − 〈N,a〉N ∈ X (M) denotes the tangent component of a
along the immersion. Therefore, for every X ∈ X (M) we have

∇X(∇〈ψ,a〉) = 〈N,a〉AX,
so that

(5) Lr〈ψ,a〉 = 〈N,a〉 tr(A ◦ Tr) = crHr+1〈N,a〉.
In other words,

(6) Lrψ = crHr+1N.
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In particular, Lrψ = 0 for every (r + 1)-minimal hypersurface in Rn+1. On
the other hand, for a round sphere in Rn+1 of radius % centered at a point
c ∈ Rn+1, we have N = ±(1/%)(ψ− c) and Hr+1 = (∓1)r+1/%r+1, so that by
(6) we see that

Lrψ + λψ = λc,

where |λ| = cr/%
r+2 > 0. Therefore, a round sphere in Rn+1 satisfies Lrψ +

λψ = 0 if and only if it is centered at the origin of Rn+1.
Conversely, assume that Lrψ+λψ = 0 for a real constant λ. Then it follows

from (6) that

crHr+1N + λψ = 0.

By taking the covariant derivative here, we obtain that

crX(Hr+1)N− crHr+1AX + λX = 0

for every tangent vector field X ∈ X (M), which implies both that Hr+1 is
necessarily constant on M and that

(7) crHr+1AX = λX

for every X ∈ X (M). If Hr+1 = 0, then M is (r + 1)-minimal and there
is nothing else to prove. If Hr+1 is a non-zero constant, then by (7) M is
totally umbilical with non-zero umbilicity factor given by λ/(crHr+1) 6= 0.
Therefore, M is contained in a round sphere of Rn+1, necessarily centered at
the origin of Rn+1, of radius % = (cr/|λ|)1/(r+2). �

As a first application of Lemma 5, we establish a general version of a
classical result of Reilly (Main Lemma in [21]) for the case of the linearized
operator Lr of the (r + 1)-th mean curvature of a hypersurface in Rn+1, in
the case when Lr is elliptic (see also equation (1.7) in [2]).

Lemma 6. Let ψ : Mn → R
n+1 be an orientable closed connected hyper-

surface immersed into the Euclidean space, and let c be its center of gravity,

c =
1

vol(M)

∫
M

ψdM ∈ Rn+1,

where vol(M) denotes the n-dimensional volume of M . Assume that Lr is
elliptic on M for some r = 0, . . . , n − 1, and let λLr1 be the first positive
eigenvalue of Lr. Then

(8) λLr1

∫
M

|ψ − c|2dM ≤ cr
∫
M

HrdM, cr = (n− r)
(
n

r

)
,

and equality holds if and only if M is a round sphere in Rn+1 centered at c.
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Proof. Since Lr is assumed to be elliptic, we can use the minimax charac-
terization of λLr1 , as

(9) λLr1 = inf
{− ∫

M
fLr(f)dM∫
M
f2dM

;
∫
M

fdM = 0
}
.

For every 1 ≤ i ≤ n + 1, let fi = 〈ψ − c,ai〉 be i-th coordinate function
of ψ − c on M , where {a1, . . . ,an+1} is the standard orthonormal basis of

R
n+1, ai = (0, . . . , 0,

i
1, 0 . . . , 0). Then for every i = 1, . . . , n + 1 we have∫

M
fidM = 0, and by (5) we also get

Lrfi = Lr〈ψ,ai〉 = crHr+1〈N,ai〉.
Therefore, using (9) we obtain that

λLr1

∫
M

f2
i dM ≤ −

∫
M

fiLrfidM = −cr
∫
M

Hr+1fi〈N,ai〉dM.

Now we sum from i = 1 to n+ 1. Since
n+1∑
i=1

f2
i = |ψ − c|2, and

n+1∑
i=1

fi〈N,ai〉 = 〈ψ − c,N〉,

we get

(10) λLr1

∫
M

|ψ − c|2dM ≤ −cr
∫
M

Hr+1〈ψ − c,N〉dM.

On the other hand, let us consider now the function f = 1
2 |ψ − c|2 defined

on M . Observe that its gradient is given by ∇f = (ψ − c)>, where

(ψ − c)> = ψ − c− 〈ψ − c,N〉N ∈ X (M)

denotes the tangent component of ψ − c along the immersion ψ. Therefore,
for every X ∈ X (M) we have

∇X(∇f) = X + 〈ψ − c,N〉AX,
so that

(11) Lrf = tr(Tr) + 〈ψ − c,N〉 tr(A ◦ Tr) = cr (Hr +Hr+1〈ψ − c,N〉) .
Integrating this equality over M , the divergence theorem implies the well-
known Minkowski formulae, which were first obtained by Hsiung [17],

(12)
∫
M

(Hr +Hr+1〈ψ − c,N〉)dM = 0, r = 0, . . . , n− 1.

We will refer to (12) as the r-th Minkowski formula, and the integrand in (12)
will be called the r-th Minkowski-Hsiung integrand.

Finally, using the r-th Minkowski formula in (10), we conclude that

λLr1

∫
M

|ψ − c|2dM ≤ cr
∫
M

HrdM,
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as desired. Moreover, equality holds if and only if

Lr〈ψ − c,ai〉+ λLr1 〈ψ − c,ai〉 = 0

for every i = 1, . . . , n+ 1, that is, if and only if Lr(ψ − c) + λLr1 (ψ − c) = 0,
which by Lemma 5 means that ψ is a round sphere centered at c. �

Remark 7. As a first consequence of Lemma 6 and its proof, observe that,
for every r = 0, . . . , n− 1, the first positive eigenvalue of the operator Lr on a
round sphere Sn(%) ⊂ Rn+1 of radius % is given by λLr1 = cr/%

r+2 = crHr+2,
where cr = (n − r)

(
n
r

)
, and the n + 1 coordinate functions on S

n(%) are
eigenfunctions of Lr associated to λLr1 .

In fact, since Sn(%) ⊂ R
n+1 is totally umbilical with A = (1/%)I, the

r-th Newton transformation is simply Tr = (cr/n%r)I and Lr is a multiple
of the Laplacian operator, Lr = (cr/n%r)∆. Now, using the fact that the
first positive eigenvalue of the Laplacian operator of an Euclidean n-sphere of
radius % is λ∆

1 = n/%2, we easily conclude that λLr1 = (cr/n%r)λ∆
1 = crHr+2.

In view of Corollary 3, Lemma 6 holds in particular for positively Ricci
curved hypersurfaces in Rn+1, which are necessarily embedded.

Corollary 8. Let ψ : Mn → R
n+1 be a closed connected hypersurface in

Euclidean space with positive Ricci curvature (hence, necessarily embedded),
and let c be its center of gravity. Then for every r = 0, . . . , n − 1 it follows
that

λLr1

∫
M

|ψ − c|2dM ≤ cr
∫
M

HrdM, cr = (n− r)
(
n

r

)
,

and equality holds if and only if M is a round sphere in Rn+1 centered at c.

5. Upper bounds for the first eigenvalue of Lr

Let ψ : Mn → R
n+1 be an orientable closed connected hypersurface im-

mersed into the Euclidean space, and let λ1 be the first positive eigenvalue of
its Laplacian operator. In [21] Reilly proved that for every 0 ≤ s ≤ n − 1 it
follows that

λ1

(∫
M

HsdM
)2

≤ n vol(M)
∫
M

H2
s+1dM,

where vol(M) denotes the n-dimensional volume of M , and that equality holds
if and only if M is a round sphere in Rn+1. Lemma 6 allows us to derive the
following Reilly-type inequalities for the case of the first positive eigenvalue of
Lr, which extend Theorem 1.1 and Theorem 1.3 by Alencar, do Carmo and
Rosenberg [2].

Theorem 9. Let ψ : Mn → R
n+1 be an orientable closed connected hy-

persurface immersed into the Euclidean space. Assume that Lr is elliptic on
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M , for some 0 ≤ r ≤ n− 1, and let λLr1 be the first positive eigenvalue of Lr.
Then, for every 0 ≤ s ≤ n− 1 it follows that

(13) λLr1

(∫
M

HsdM
)2

≤ cr
∫
M

HrdM
∫
M

H2
s+1dM, cr = (n− r)

(
n

r

)
,

and equality holds if and only if M is a round sphere in Rn+1.

Theorem 10. Let ψ : Mn → R
n+1 be an orientable closed connected hy-

persurface immersed into the Euclidean space, and let c be its center of gravity,

c =
1

vol(M)

∫
M

ψdM ∈ Rn+1,

where vol(M) denotes the n-dimensional volume of M . Assume that Lr is
elliptic on M , for some 0 ≤ r ≤ n − 1, and let λLr1 be the first positive
eigenvalue of Lr. Then

(14) λLr1

(∫
M

〈ψ − c,N〉dM
)2

≤ cr vol(M)
∫
M

HrdM,

and equality holds if and only if M is a round sphere in Rn+1 centered at c.
In particular, if M is embedded in Rn+1, then

(15) λLr1 ≤
cr

(n+ 1)2

vol(M)
vol(Ω)2

∫
M

HrdM,

with equality if and only if M is a round sphere in Rn+1. Here Ω is the compact
domain in Rn+1 bounded by M , and vol(Ω) denotes its (n + 1)-dimensional
volume.

Proof of Theorem 9. Let c be the center of gravity of M . If we multiply
both sides of (8) by

∫
M
H2
s+1dM and use the Cauchy-Schwarz inequality, then

we obtain

cr

∫
M

HrdM
∫
M

H2
s+1dM ≥ λLr1

∫
M

|ψ − c|2dM
∫
M

H2
s+1dM

≥ λLr1

(∫
M

|ψ − c||Hs+1|dM
)2

≥ λLr1

(∫
M

Hs+1〈ψ − c,N〉dM
)2

.

Using now the s-th Minkowski formula we can replace the last integral above
by
∫
M
HsdM , yielding

λLr1

(∫
M

HsdM
)2

≤ cr
∫
M

HrdM
∫
M

H2
s+1dM.

Moreover, if equality occurs in (13), then equality occurs also in (8), which
implies that M is a round sphere centered at c. �
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Proof of Theorem 10. Multiply both sides of (8) by vol(M) =
∫
M

12dM
and use the Cauchy-Schwarz inequality to obtain

cr vol(M)
∫
M

HrdM ≥ λLr1

∫
M

|ψ − c|2dM
∫
M

12dM

≥ λLr1

(∫
M

|ψ − c|dM
)2

≥ λLr1

(∫
M

〈ψ − c,N〉dM
)2

,

which yields (14). Furthermore, if equality occurs in (14), then equality occurs
also in (8), which implies that M is a round sphere centered at c.

Moreover, in the case when M is embedded in Rn+1, let us denote by Ω the
compact domain in Rn+1 bounded by M , so that M = ∂Ω. Let us consider
the vector field Y (p) = p − c defined on Ω, with Euclidean divergence given
by Div Y = (n+ 1). Therefore

(n+ 1) vol(Ω) =
∫

Ω

Div Y dΩ =
∫
M

〈ψ − c,N〉dM.

Using this in (14) yields (15). �

Because of Corollary 3, Theorems 9 and 10 apply in particular to positively
Ricci curved hypersurfaces in Rn+1.

Corollary 11. Let ψ : Mn → R
n+1 be a closed connected hypersurface

in Euclidean space with positive Ricci curvature (hence, necessarily embedded),
let c be its center of gravity, and let Ω be the convex body in Rn+1 bounded by
M . Then for every r = 0, . . . , n− 1 it follows that

λLr1

(∫
M

HsdM
)2

≤ cr
∫
M

HrdM
∫
M

H2
s+1dM, 0 ≤ s ≤ n− 1,

λLr1

(∫
M

〈ψ − c,N〉dM
)2

≤ cr vol(M)
∫
M

HrdM,

and

λLr1 ≤
cr

(n+ 1)2

vol(M)
vol(Ω)2

∫
M

HrdM,

where vol(M) denotes the n-dimensional volume of M and vol(Ω) denotes the
(n + 1)-dimensional volume of Ω. Moreover, equality holds in one of these
three inequalities if and only if M is a round sphere in Rn+1.

On the other hand, as observed in Remark 7, for every r = 0, . . . , n−2, the
(r+2)-th mean curvature of a round sphere Sn(%) of radius % in the Euclidean
space Rn+1 satisfies crHr+2 = λLr1 . Because of this, it is natural to ask if a
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closed connected hypersurface in Rn+1 with positive Ricci curvature (hence,
necessarily embedded) whose (r + 2)-mean curvature Hr+2 satisfies

crHr+2 ≤ λLr1 , cr = (n− r)
(
n

r

)
,

for some r = 0, . . . , n − 2, λLr1 being the first positive eigenvalue of Lr, is
necessarily a round sphere in Rn+1. This question was positively answered
by Deshmukh [9] in the case when r = 0, that is, for the case of the scalar
curvature S (recall that S = n(n− 1)H2) and the Laplacian operator. Below
we will see that there is also an affirmative answer to this question in the
general case. This allows us to derive a new upper bound for the first positive
eigenvalue of Lr.

Theorem 12. Let ψ : Mn → R
n+1 be a closed connected hypersurface in

Euclidean space with positive Ricci curvature (hence, necessarily embedded).
Assume that, for some r = 0, . . . , n − 2, the (r + 2)-th mean curvature Hr+2

of M and the first positive eigenvalue λLr1 of Lr satisfy

crHr+2 ≤ λLr1 , cr = (n− r)
(
n

r

)
.

Then M is a round sphere in Rn+1 (and equality necessarily holds). Equiva-
lently, for every 0 ≤ r ≤ n− 2, it follows that

λLr1 ≤ cr maxHr+2,

and equality holds if and only if M is a round sphere in Rn+1.

Proof. As in the proof of Lemma 6, let us consider the function f = 1
2 |ψ−

c|2 defined on M , and let g = 〈ψ − c,N〉 be the support function on M , with
respect to its center of gravity c. We already know (see equation (11)) that

Lsf = cs (Hs + gHs+1)

for every s = 0, . . . , n − 1. On the other hand, the gradient of g is given by
∇g = −A((ψ − c)>) = −A(∇f), so that

div(gTr+1(∇f)) = −〈A ◦ Tr+1(∇f),∇f〉+ gLr+1f

= −〈A ◦ Tr+1(∇f),∇f〉+ cr+1

(
gHr+1 + g2Hr+2

)
.

Then,

(16)
∫
M

〈A ◦ Tr+1(∇f),∇f〉dM = cr+1

∫
M

(
gHr+1 + g2Hr+2

)
dM.

Since M has positive Ricci curvature, we have Hr+2 > 0 on M (see Corollary 3
and Remark 4) and from our hypothesis we also have Hr+2 ≤ λLr1 /cr. Then,
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taking into account that |ψ − c|2 = |∇f |2 + g2 ≥ g2, we obtain that

g2Hr+2 ≤
λLr1

cr
|ψ − c|2

on M , and by Corollary 8 we have∫
M

g2Hr+2dM ≤
∫
M

HrdM.

Putting this into the integral formula (16), and using the r-th Minkowski
formula (12), we conclude that∫

M

〈A ◦ Tr+1(∇f),∇f〉dM ≤ cr+1

∫
M

(Hr + gHr+1) dM = 0.

On the other hand, since the Ricci curvature of M is positive, it follows from
Remark 4 that the operator A ◦ Tr+1 is positive definite on M , from which
we conclude that ∇f ≡ 0 on M . That is, |ψ− c|2 = constant = %2 > 0 on M ,
and M is a round sphere in Rn+1. �

6. Hypersurfaces in the sphere and in the hyperbolic space

In this section we will consider both the case of hypersurfaces immersed
into the Euclidean sphere

S
n+1 = {x = (x0, . . . , xn+1) ∈ Rn+2 : 〈x, x〉 = 1},

and the case of hypersurfaces immersed into the hyperbolic space Hn+1. In
this last case, it will be appropriate to use the Minkowski space model of
hyperbolic space. Write Rn+2

1 for Rn+2, with coordinates (x0, . . . , xn+1), en-
dowed with the Lorentzian metric

〈, 〉 = −dx2
0 + dx2

1 + · · ·+ dx2
n+1.

Then
H
n+1 = {x ∈ Rn+2

1 : 〈x, x〉 = −1, x0 > 0}
is a complete spacelike hypersurface in Rn+2

1 with constant sectional curvature
−1. This provides the Minkowski space model for the hyperbolic space.

In order to simplify our notation, let us denote by Mn+1
κ either the sphere

S
n+1 ⊂ Rn+2 if κ = 1, or the hyperbolic space Hn+1 ⊂ Rn+2

1 if κ = −1, and
let ψ : Mn →M

n+1
κ ⊂ Rn+2 be an orientable closed connected hypersurface

immersed intoMn+1
κ . We will also denote by 〈, 〉, without distinction, both the

Euclidean metric on Rn+2 and the Lorentzian metric on Rn+2
1 , as well as the

corresponding (Riemannian) metrics induced on Mn+1
κ and on M . Following

Veeravalli’s approach [24], we define a center of gravity of M as a critical point
of the smooth function E : Mn+1

κ → R given by

E(p) =
∫
M

〈ψ,p〉dM, p ∈Mn+1
κ .
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Observe that our definition of a center of gravity is equivalent to Veeravalli’s,
because in our model for Mn+1

κ we have (in Veeravalli’s notation) hκ ◦ dp =
κ− 〈ψ,p〉 on M .

As for the existence and uniqueness of centers of gravity, observe that when
κ = 1, then every closed hypersurface in Sn+1 admits at least two different
centers of gravity (the values where E attains its maximum and minimum
values). For instance, it can be easily seen that every geodesic sphere in Sn+1

of radius % < π/2 centered at a point c ∈ Sn+1 has exactly two centers of
gravity, c and −c. In fact, it is well-known that the position vector field of
every oriented hypersurface ψ : Mn → S

n+1 ⊂ Rn+2 immersed into the sphere
satisfies

(17) ∆ψ = nHN− nψ,

which implies that

(18) E(p) =
∫
M

〈ψ,p〉dM =
∫
M

H〈N,p〉dM

for every p ∈ Sn+1. In particular, if M is a geodesic sphere in Sn+1 of radius
% < π/2 centered at a point c ∈ Sn+1, then

N =
1

sin %
(c− cos %ψ)

and H = cot %, so that by (18)

E(p) = cos % vol(M)〈c,p〉

for every p ∈ Sn+1. Now, it is clear that the function E has exactly two critical
points on Sn+1, which correspond to the points c and −c, where E attains its
maximum and minimum values, respectively. On the other hand, (18) also
implies that for every closed minimal hypersurface M in Sn+1 we have E ≡ 0 so
that every point of Sn+1 is a center of gravity of M . In particular, this holds
when the radius of the geodesic sphere is % = π/2 (that is, for an equator
of Sn+1). More generally, this also holds for every closed (not necessarily
minimal) hypersurface of the sphere for which

∫
M
ψdM = 0 ∈ Rn+2, such as,

for example, the family of tori S1(r)× S1(
√

1− r2) ⊂ S3, with 0 < r < 1.
On the other hand, as observed by Veeravalli, when κ = −1 the function

−E is strictly convex on Hn+1, which implies that M admits a unique center
of gravity. Even more, let ψ : Mn →M

n+1
κ ⊂ Rn+2 be an oriented closed

connected hypersurface immersed intoMn+1
κ , κ = ±1. Then a point c ∈Mn+1

κ

is a center of gravity of M if and only if

dEc(v) =
∫
M

〈ψ, v〉dM = 〈
∫
M
ψdM,v〉 = 0
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for every v ∈ TcM
n+1
κ = c⊥ = {x ∈ Rn+2 : 〈x, c〉 = 0}. That is, c ∈ Mn+1

κ is
a center of gravity of M if and only if

∫
M
ψdM is a multiple of c,∫

M

ψdM = κ〈
∫
M
ψdM, c〉c = κ

(∫
M

〈ψ, c〉dM
)

c.

Therefore, when κ = 1, then every closed hypersurface in Sn+1 with
∫
M
ψdM 6=

0 ∈ Rn+2 has exactly two centers of gravity, c and −c, where

c =
1

|
∫
M
ψdM |

∫
M

ψdM ∈ Sn+1.

On the other hand, when κ = −1, then 〈ψ,ψ〉 = −1 implies that

〈
∫
M
ψdM,

∫
M
ψdM〉 < 0,

so that the unique center of gravity of M is given by

c =
1

|
∫
M
ψdM |

∫
M

ψdM ∈ Hn+1,

where ∣∣∣∣∫
M

ψdM
∣∣∣∣ =

√
−〈
∫
M
ψdM,

∫
M
ψdM〉 > 0.

Using this terminology, we can extend Lemma 6 to the spherical and hy-
perbolic cases as follows. (When r = 0 we recover the results of Veeravalli for
the first eigenvalue of the Laplacian operator.)

Lemma 13. Let ψ : Mn → S
n+1 ⊂ Rn+2 be an orientable closed connected

hypersurface immersed into the sphere, and let c ∈ Sn+1 be a center of gravity
of M . Assume that Lr is elliptic on M , for some 0 ≤ r ≤ n− 1, and let λLr1

be the first positive eigenvalue of Lr. Then

(19) λLr1

∫
M

(1− 〈ψ, c〉2)dM ≤ cr
∫
M

HrdM, cr = (n− r)
(
n

r

)
,

and equality holds if and only if M is a geodesic sphere in Sn+1 centered at c.

Lemma 14. Let ψ : Mn → H
n+1 ⊂ Rn+2

1 be an orientable closed connected
hypersurface immersed into the hyperbolic space, and let c ∈ Hn+1 be its center
of gravity. Assume that Lr is elliptic on M , for some 0 ≤ r ≤ n− 1, and let
λLr1 be the first positive eigenvalue of Lr. Then

λLr1

∫
M

(〈ψ, c〉2 − 1)dM ≤ cr
∫
M

HrdM +
∫
M

〈Tr(c>), c>〉dM,(20)

cr = (n− r)
(
n

r

)
,

where c> = ∇〈ψ, c〉 is the tangent component of c along the immersion.
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As already observed by Veeravalli (in the case r = 0), the inequality (20)
is not sharp. The same holds for the upper bound for λLr1 given by Alencar,
do Carmo and Rosenberg in [2, Theorem 3.1] for hypersurfaces in Hn+1.

Proof of Lemma 13 and Lemma 14. As in the proof of Lemma 6, since Lr
is assumed to be elliptic, we can use the minimax characterization of λLr1

given by (9). In this case, observe that for a fixed arbitrary vector a ∈ Rn+2,
the gradient of the function 〈ψ,a〉 defined on M is given by ∇〈ψ,a〉 = a>,
where

a> = a− 〈N,a〉N− κ〈ψ,a〉ψ ∈ X (M)

is the tangent component of a along the immersion. Therefore, for every
X ∈ X (M) we have

∇X(∇〈ψ,a〉) = 〈N,a〉AX − κ〈ψ,a〉X,

and

Lr〈ψ,a〉 = 〈N,a〉 tr(A ◦ Tr)− κ〈ψ,a〉 tr(Tr)(21)

= cr(Hr+1〈N,a〉 − κHr〈ψ,a〉).

That is,

(22) Lrψ = crHr+1N− crκHrψ,

for every 0 ≤ r ≤ n− 1.
Let us consider an orthonormal basis {a1, . . . ,an+1} ⊂ Rn+2 of TcM

n+1
κ =

c⊥, and for every 1 ≤ i ≤ n+1, let fi = 〈ψ,ai〉. Then for every i = 1, . . . , n+1
we have

∫
M
fidM = 0, and by (21) we also get

Lrfi = Lr〈ψ,ai〉 = cr(Hr+1〈N,ai〉 − κHr〈ψ,a〉).

Therefore, using (9) we obtain that

λLr1

∫
M

f2
i dM ≤ −

∫
M

fiLrfidM

= crκ

∫
M

Hrf
2
i dM − cr

∫
M

Hr+1fi〈N,ai〉dM.

Now we sum from i = 1 to n+ 1. First, observe that

ψ =
n+1∑
i=1

fiai + κ〈ψ, c〉c,

and

N =
n+1∑
i=1

〈N,ai〉ai + κ〈N, c〉c,
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so that
∑n+1
i=1 f

2
i = κ(1 − 〈ψ, c〉2) and

∑n+1
i=1 fi〈N,ai〉 = −κ〈N, c〉〈ψ, c〉.

Therefore, using (21) with a = c, we obtain that

λLr1

∫
M

κ(1− 〈ψ, c〉2)dM ≤ cr
∫
M

HrdM + κ

∫
M

〈ψ, c〉Lr(〈ψ, c〉)dM(23)

= cr

∫
M

HrdM − κ
∫
M

〈Tr(c>), c>〉dM,

where c> = ∇〈ψ, c〉.
When κ = −1, then (23) directly gives (20). On the other hand, when

κ = 1, then (23) becomes

λLr1

∫
M

(1− 〈ψ, c〉2)dM ≤ cr
∫
M

HrdM −
∫
M

〈Tr(c>), c>〉dM.

We now remark that the ellipticity of Lr is equivalent to the positiveness of
the quadratic form associated to Tr. Therefore it follows that

λLr1

∫
M

(1− 〈ψ, c〉2)dM ≤ cr
∫
M

HrdM,

with equality if and only if c> = ∇〈ψ, c〉 ≡ 0, that is, if and only if M is a
geodesic sphere in Sn+1 centered at the point c. �

Remark 15. Integrating (21) over M , the divergence theorem implies the
corresponding Minkowski formulae for hypersurfaces immersed in the sphere
and in the hyperbolic space, first obtained by Bivens [6] (see also [19] for
another approach that is closer to ours, but with a different proof),

(24)
∫
M

Hr+1〈N,a〉dM = κ

∫
M

Hr〈ψ,a〉dM,

for each r = 0, . . . , n− 1 and a ∈ Rn+2 arbitrary.

As an application of Lemma 13, we derive the following Reilly-type inequal-
ities for the first positive eigenvalue of the operator Lr of a closed hypersurface
in sphere, which extend the Theorem in [24].

Theorem 16. Let ψ : Mn → S
n+1 ⊂ Rn+2 be an orientable closed con-

nected hypersurface immersed into the sphere, and let c ∈ Sn+1 be a center
of gravity of M . Assume that Lr is elliptic on M , for some 0 ≤ r ≤ n − 1,
and let λLr1 be the first positive eigenvalue of Lr. Then we have the following
inequalities:

(25) λLr1

(∫
M

Hs〈ψ, c〉dM
)2

≤ cr
∫
M

HrdM
∫
M

H2
s+1dM,

for every 0 ≤ s ≤ n− 1, and

(26) λLr1

(∫
M

〈N, c〉dM
)2

≤ cr vol(M)
∫
M

HrdM,
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where vol(M) denotes the n-dimensional volume of M . In particular, if M is
embedded in Sn+1, then (26) becomes

(27) λLr1

(∫
Ω

〈p, c〉dΩ(p)
)2

≤ cr
(n+ 1)2

vol(M)
∫
M

HrdM,

where Ω is any one of the two compact domains in S
n+1 bounded by M .

Moreover, equality occurs in one of these three inequalities if and only if M
is a geodesic sphere in Sn+1 centered at c.

Proof. If we multiply both sides of (19) by
∫
M
H2
s+1dM and use the Cauchy-

Schwarz inequality, then we obtain

cr

∫
M

HrdM
∫
M

H2
s+1dM ≥ λLr1

∫
M

(1− 〈ψ, c〉2)dM
∫
M

H2
s+1dM(28)

≥ λLr1

(∫
M

√
1− 〈ψ, c〉2|Hs+1|dM

)2

.

Observe now that c = c>+〈N, c〉N+〈ψ, c〉ψ, which implies that 1−〈ψ, c〉2 =
|c>|2 + 〈N, c〉2 and

(29)
√

1− 〈ψ, c〉2 ≥ |〈N, c〉|,

with equality if and only if c> = ∇〈ψ, c〉 ≡ 0, that is, if and only if M is a
geodesic sphere in Sn+1 centered at the point c. Putting this into (28), we
obtain

cr

∫
M

HrdM
∫
M

H2
s+1dM ≥ λLr1

(∫
M

|〈N, c〉||Hs+1|dM
)2

≥ λLr1

(∫
M

Hs+1〈N, c〉dM
)2

= λLr1

(∫
M

Hs〈ψ, c〉dM
)2

,

where in the last equality we have used the s-th Minkowski formula (24) with
a = c. This finishes the proof of inequality (25).

As for the proof of (26), multiply both sides of (19) by vol(M) =
∫
M

12dM
and use the Cauchy-Schwarz inequality and (29) to obtain

cr vol(M)
∫
M

HrdM ≥ λLr1

∫
M

(1− 〈ψ, c〉2)dM
∫
M

12dM

≥ λLr1

(∫
M

√
(1− 〈ψ, c〉2)dM

)2

≥ λLr1

(∫
M

〈N, c〉dM
)2

,
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which yields (26). Moreover, if equality occurs either in (25) or in (26), then
equality occurs also in (19), and M is a geodesic sphere in Sn+1 centered at
the point c.

Moreover, in the case when M is embedded in Sn+1, let us consider the
vector field on Sn+1 defined by Y (p) = c−〈p, c〉p, p ∈ Sn+1. Observe that Y is
a conformal vector field on Sn+1 with singularities at c and −c, with spherical
divergence given by Div Y (p) = −(n+ 1)〈p, c〉. Therefore, if Ω denotes one of
the two compact domains in Sn+1 bounded by M , then

−(n+ 1)
∫

Ω

〈p, c〉dΩ(p) =
∫

Ω

Div Y dΩ = ±
∫
M

〈Y,N〉dM = ±
∫
M

〈c,N〉dM,

since 〈Y,N〉|M = 〈c,N〉 − 〈ψ, c〉〈ψ,N〉 = 〈c,N〉. Thus(∫
M

〈N, c〉dM
)2

= (n+ 1)2

(∫
Ω

〈p, c〉dΩ(p)
)2

,

which together with (26) yields (27). �

Finally, let us remark that equation (21) (or, equivalently, (22)) is the gen-
eralization of the well-known formula ∆ψ = nHN−nκψ, which holds true for
the position vector of every hypersurface ψ : Mn →M

n+1
κ ⊂ Rn+2 immersed

into Sn+1 ⊂ R
n+2 or Hn+1 ⊂ R

n+2
1 . This allows us to extend the spheri-

cal and hyperbolic versions of Takahashi’s theorem, given by Markvorsen [18,
Corollaries A and B], as follows.

Corollary 17. Let ψ : Mn →M
n+1
κ ⊂ Rn+2 be an orientable connected

hypersurface immersed into Mn+1
κ , and let Lr be the linearized operator of the

(r + 1)-th mean curvature of M , for some r = 0, . . . , n− 1. Then

Lrψ + fψ = 0

for a smooth function f ∈ C∞(M) if and only if M is (r + 1)-minimal in
M
n+1
κ (and f = crκHr necessarily).
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L.J. Aĺıas, Departamento de Matemáticas, Universidad de Murcia, E-30100 Espi-

nardo, Murcia, Spain

E-mail address: ljalias@um.es

J.M. Malacarne, Departamento de Matemática, Universidade Federal do Esṕı-
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