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ADDITIVE PROCESSES AND STOCHASTIC INTEGRALS

KEN-ITI SATO

To the memory of J. L. Doob

Abstract. Stochastic integrals of nonrandom (l×d)-matrix-valued func-
tions or nonrandom real-valued functions with respect to an additive
process X on Rd are studied. Here an additive process means a sto-

chastic process with independent increments, stochastically continuous,
starting at the origin, and having cadlag paths. A necessary and suf-
ficient condition for local integrability of matrix-valued functions is
given in terms of the Lévy–Khintchine triplets of a factoring of X.
For real-valued functions explicit expressions of the condition are pre-
sented for all semistable Lévy processes on Rd and some selfsimilar ad-
ditive processes. In the last part of the paper, existence conditions

for improper stochastic integrals
∫∞−
0 f(s)dXs and their extensions are

given; the cases where f(s) � sβe−cs
α

and where f(s) is such that

s =
∫∞
f(s) u

−2e−udu are analyzed.

1. Introduction

By an additive process X = {Xt : t > 0} on Rd we mean an Rd-valued sto-
chastic process with independent increments, stochastically continuous, start-
ing at the origin, and having cadlag paths. A Lévy process is an additive
process with stationary increments. Stochastic integrals of nonrandom func-
tions with respect to additive processes on R and the class of locally integrable
functions were studied by Urbanik and Woyczyński [21], Rajput and Rosinski
[11], and Kwapień and Woyczyński [7]. Rosiński [13] extended some results to
the Banach space setting. Continuing the paper [17], we study, for additive
processes X on Rd, stochastic integrals

∫
B
F (s)dXs of nonrandom (l × d)-

matrix-valued functions F (s) and improper stochastic integrals
∫∞−

0
f(s)dXs

of nonrandom real-valued function f(s). Using the Lévy–Khintchine triplets
of a factoring of X, we give a description of the class Ll×d(X) of locally X-
integrable (l×d)-matrix-valued functions F for the integral

∫
B
F (s)dXs, which

generalizes the results of [21], [11], [7] in the case l = d = 1 and the results
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of [13] that deal with the case in which the distribution ρs in the factoring
does not depend on s. As a special case, a description of the class L(X) of lo-
cally X-integrable real-valued functions f for the integral

∫
B
f(s)dXs is given,

which extends the Musielak–Orlicz space type characterization in the papers
mentioned above. In some examples, including all stable and semistable Lévy
processes on Rd and the selfsimilar additive processes associated with stable
and Γ-distributions, we find explicit necessary and sufficient conditions for f
to belong to L(X). Then we analyze improper stochastic integrals, paying
special attention, with f fixed, to the class of Lévy processes X(µ) for which∫∞−

0
f(s)dX(µ)

s is definable (the superscript µ in X(µ) denotes the distribution
at time 1). The example of the function f(s) which is the inverse function
of s = g(r) =

∫∞
r
u−2e−udu shows that it is meaningful to consider some

extensions of the notion of improper integrals: essential improper integrals
and compensated improper integrals. This example and the case where f(s)
is asymptotically close to sβe−cs

α

(α > 0 and β real) for large s are fully
examined.

Some related results are as follows. Applications of some improper sto-
chastic integrals to Q-semi-selfsimilar additive processes and semi-stationary
Ornstein–Uhlenbeck type processes are given in [10]. Distributions of some
improper stochastic integrals related to Thorin and Goldie–Steutel–Bondesson
classes are studied in [1]. Applications of the results in this paper to infinitely
divisible Wald couples introduced by Roynette and Yor [14] will be given in
another paper. In the case of a special type of random integrands, the im-
proper integrals with respect to Lévy processes are studied by Erickson and
Maller [3].

In Section 2 we recall the results on factorings and stochastic integrals for
natural additive processes. Section 3 deals with conditions for the member-
ship of Ll×d(X), while Section 4 considers L(X) and examples. In Section 5
improper stochastic integrals are studied. (Added in revision: The material
in Section 5 is further developed in the papers [18] and [19].)

2. Preliminaries on factorings and stochastic integrals

The factoring structure of additive processes and stochastic integrals of
nonrandom functions with respect to them were studied by Rajput and Rosin-
ski [11], Kwapień and Woyczyński [7], and Sato [17]. We review those results
in the formulation given in [17].

We define an additive process in law by dropping the assumption of cadlag
paths in the definition of an additive process, as in [16]. A Lévy process in
law is similarly defined. All definitions and results in this paper remain true
if we replace an additive (or Lévy) process by an additive (or Lévy) process
in law. That is, our discussion is not related to cadlag property. On the other
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hand, any additive (or Lévy) process in law has an additive (or Lévy) process
modification.

The characteristic function of a distribution µ on Rd is denoted by µ̂(z),
z ∈ Rd; ID(Rd) is the class of infinitely divisible distributions on Rd; B0(Rd)
is the class of Borel sets B in Rd satisfying infx∈B |x| > 0; B0

[0,∞) is the class
of bounded Borel sets in [0,∞); δa is the distribution concentrated at point
a; L(X) is the distribution of a random element X; p-lim stands for limit in
probability; S+

d is the class of d× d symmetric nonnegative-definite matrices;
trA is the trace of A ∈ S+

d ; Ml×d is the class of l × d real matrices; Id×d is
the d × d identity matrix; Rd is the d-dimensional Euclidean space with the
canonical norm |x| and the canonical inner product 〈x, y〉. An element of Rd is
understood to be a column d-vector. For U ∈Ml×d, U ′ denotes the transpose
of U ; thus 〈z, Ux〉 = 〈U ′z, x〉 for x ∈ Rd and z ∈ Rl. The norm of U ∈Ml×d
is ‖U‖ = max|x|61 |Ux|. If µ ∈ ID(Rd), then the unique continuous function
ψ(z) on Rd with ψ(0) = 0 such that µ̂(z) = eψ(z) is called the cumulant
function of µ and written as Cµ(z). If µ = L(X), we write CX(z) = Cµ(z).
We use the Lévy–Khintchine triplet (A, ν, γ) of µ ∈ ID(Rd) in the sense that

Cµ(z) = −1
2
〈z,Az〉+

∫
Rd

g(z, x)ν(dx) + i〈γ, z〉,(2.1)

g(z, x) = ei〈z,x〉 − 1− i〈z, x〉
1 + |x|2

,(2.2)

where A is in S+
d , called the Gaussian covariance matrix of µ, ν is a measure

on Rd satisfying ν({0}) = 0 and
∫
Rd

(|x|2 ∧ 1)ν(dx) < ∞, called the Lévy
measure of µ, and γ is an element of Rd, called the location parameter of µ.
Given an additive process X = {Xt : t > 0} on Rd, we let µt = L(Xt) and
write (At, νt, γt) for the Lévy–Khintchine triplet of µt.

Definition 2.1. An additive process X on Rd is said to be natural if γt
is locally of bounded variation in t on [0,∞).

The location parameter γt depends on our choice of the integrand in the
expression (2.1), but we can prove that the definition of naturalness does not
depend on the choice.

Proposition 2.2. Let X be an additive process on Rd. Then, for every
B ∈ B0

[0,∞), there are a unique AB ∈ S+
d and a unique measure νB on Rd such

that AB and νB(D) for any D ∈ B0(Rd) are countably additive with respect
to B ∈ B0

[0,∞) and satisfy A[0,t] = At and ν[0,t] = νt. If, moreover, {Xt} is
natural, then there is a unique γB ∈ Rd such that γB is countably additive
with respect to B ∈ B0

[0,∞) and γ[0,t] = γt. For any natural additive process
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define

σ◦(B) = trAB +
∫
Rd

(|x|2 ∧ 1) νB(dx) + (var γ)B for B ∈ B0
[0,∞),

using the measure (var γ)B induced by the variation function (var γ)t of γt;
then σ◦ is an atomless locally finite measure on [0,∞).

Definition 2.3. Let X be an additive process on R
d. A pair

({ρs : s > 0}, σ) is called a factoring of X if the following five conditions
are satisfied:

(1) σ is a locally finite atomless measure on [0,∞),
(2) ρs ∈ ID(Rd) for all s ∈ [0,∞),
(3) Cρs(z) is measurable (that is, Borel measurable) in s for each z ∈ Rd,
(4)

∫ t
0
|Cρs(z)|σ(ds) <∞ for all t ∈ [0,∞) and z ∈ Rd,

(5) it holds that

µ̂t(z) = exp
∫ t

0

Cρs(z)σ(ds) for all t ∈ [0,∞) and z ∈ Rd.

Proposition 2.4. Let ({ρs}, σ) be a factoring of an additive process X
on Rd. Denote by (Aρs , νρs , γρs) the triplet of ρs. Then,

(1) Aρs , γρs , and νρs(B) for any B ∈ B0(Rd) are measurable in s,
(2) for all t ∈ [0,∞)∫ t

0

(
tr(Aρs) +

∫
Rd

(|x|2 ∧ 1)νρs(dx) + |γρs |
)
σ(ds) <∞,

(3) At =
∫ t

0
Aρsσ(ds), νt(D) =

∫ t
0
νρs(D)σ(ds) for all D ∈ B0(Rd), and

γt =
∫ t

0
γρsσ(ds),

(4) it holds that Cµt(z) =
∫ t

0
Cρs(z)σ(ds), which is continuous.

Proposition 2.5. An additive process is natural if and only if it has a
factoring.

Definition 2.6. For a natural additive process X on Rd the measure
σ◦ defined in Proposition 2.2 is called the canonical measure of X. A pair
({ρs}, σ) is called a canonical factoring of X if it is a factoring of X such that
σ = σ◦.

Proposition 2.7. Let X be a natural additive process on Rd. Then there
exists a canonical factoring of X. It is unique in the sense that, if ({ρ◦s}, σ◦)
is a canonical factoring of X, then ρ◦s is uniquely determined for σ◦-a. e. s;
moreover,

esssup
s∈[0,∞)

sup
|z|6a

|Cρ◦s (z)| <∞ for a ∈ (0,∞),
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esssup
s∈[0,∞)

(
tr(Aρ

◦
s ) +

∫
Rd

(|x|2 ∧ 1)νρ
◦
s (dx) + |γρ

◦
s |
)
<∞ ,

where the essential suprema are relative to σ◦.

Proposition 2.8. If {ρs : s > 0} and σ satisfy conditions (1), (2) of
Definition 2.3 and (1), (2) of Proposition 2.4, then ({ρs}, σ) is a factoring of
some natural additive process X on Rd.

Proposition 2.9. An additive process is natural if and only if it is a
semimartingale at the same time.

This is essentially a result found in Jacod and Shiryaev [4].

Definition 2.10. A class {X(B) : B ∈ B0
[0,∞)} of Rd-valued random vari-

ables is called an independently scattered random measure if
(1) for any sequence B1, B2, . . . of disjoint sets in B0

[0,∞) with
⋃∞
n=1Bn ∈

B0
[0,∞),

∑∞
n=1X(Bn) converges a. s. and equals X(

⋃∞
n=1Bn) a. s.,

(2) for any finite sequence B1, . . . , Bn of disjoint sets in B0
[0,∞), X(B1),

. . . , X(Bn) are independent,
(3) X({a}) = 0 a. s. for every a ∈ [0,∞).

Proposition 2.11. Any independently scattered random measure {X(B) :
B ∈ B0

[0,∞)} induces a natural additive process in law Xt = X([0, t]). Con-
versely, any natural additive process in law is induced from a unique indepen-
dently scattered random measure. For any B ∈ B0

[0,∞), L(X(B)) is infinitely
divisible with triplet coinciding with (AB , νB , γB) in Proposition 2.2. For any
factoring ({ρs}, σ) of {Xt} and any B ∈ B0

[0,∞),

CX(B)(z) =
∫
B

Cρs(z)σ(ds).

Example 2.12. Let X = {Xt} be a Lévy process on Rd. Then it is natural
and it has a factoring given by ρs = L(X1) for all s > 0 with σ being the
Lebesgue measure on [0,∞).

Example 2.13. Let Q ∈Ml×d be such that all of its eigenvalues have pos-
itive real parts. A stochastic process X = {Xt} on Rd is called Q-selfsimilar
if, for each a > 0, {Xat} and {aQXt} have common finite-dimensional mar-
ginal distributions. Here aQ =

∑∞
n=0(n!)−1(log a)nQn. If X is a Q-selfsimilar

additive process on Rd, then it is natural.

In the rest of this section, let X = {Xt} be a natural additive process on Rd

and let {X(B) : B ∈ B0
[0,∞)} be the corresponding Rd-valued independently

scattered random measure. Let ({ρs : s > 0}, σ) be a factoring of {Xt} and
let σ◦ be the canonical measure of {Xt}.
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Definition 2.14. An Ml×d-valued function F on [0,∞) is called a simple
function if F (s) =

∑n
j=1 1Bj (s)Rj for some n, where B1, . . . , Bn are disjoint

Borel sets in [0,∞) and R1, . . . , Rn ∈Ml×d. If F is a simple function of this
form, then we define the integral of F over B ∈ B0

[0,∞) with respect to X as∫
B

F (s)dXs =
n∑
j=1

Rj X(B ∩Bj).

Proposition 2.15. Suppose that F is a measurable Ml×d-valued function
and that there is a sequence of simple functions Fn, n = 1, 2, . . ., such that

(1) Fn(s)→ F (s) σ◦-a. e., and
(2) for every B ∈ B0

[0,∞), the sequence
∫
B
Fn(s)dXs is convergent in prob-

ability as n→∞.
Suppose that there is another sequence of simple functions Gn, n = 1, 2, . . .,
satisfying (1) and (2) with Gn in place of Fn. Then, for every B ∈ B0

[0,∞),

p-lim
n→∞

∫
B

Fn(s)dXs = p-lim
n→∞

∫
B

Gn(s)dXs, a. s.

The proof uses the Nikodým theorem as in [2] and [21].

Definition 2.16. An Ml×d-valued function F on [0,∞) is said to be
locally X-integrable if it is measurable and if there is a sequence of simple
functions Fn, n = 1, 2, . . ., satisfying (1) and (2) of Proposition 2.15. The
class of locally X-integrable Ml×d-valued functions is denoted by Ll×d(X). If
F ∈ Ll×d(X), then we define∫

B

F (s)dXs = p-lim
n→∞

∫
B

Fn(s)dXs, B ∈ B0
[0,∞) .

Note that this is Rl-valued. Sometimes we write
∫ t

0
F (s)dXs for

∫
[0,t]

F (s)dXs.
The class of real-valued functions f such that fId×d ∈ Ld×d(X) is denoted
by L(X) and we write

∫
B
f(s)dXs for

∫
B
f(s)Id×ddXs.

It can be proved from Proposition 2.15 and Definition 2.16 that the classes
Ll×d(X) and L(X) are linear spaces and that

∫
B
F (s)dXs and

∫
B
f(s)dXs

are linear in F and f , respectively.

Proposition 2.17. Let F ∈ Ll×d(X) and let Y (B) =
∫
B
F (s)dXs. Then

{Y (B) : B ∈ B0
[0,∞)} is an Rl-valued independently scattered random measure,

and ∫ t

0

|Cρs(F (s)′z)|σ(ds) <∞ for t ∈ (0,∞), z ∈ Rl,(2.3)

CY (B)(z) =
∫
B

Cρs(F (s)′z)σ(ds) for B ∈ B0
[0,∞), z ∈ R

l.(2.4)
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Proposition 2.18. Let F ∈ Ll×d(X). Then, for any Borel set E in
[0,∞), 1E(s)F (s) is in Ll×d(X) and∫

B

1E(s)F (s)dXs =
∫
B∩E

F (s)dXs for B ∈ B0
[0,∞).

Proof. Let Fn(s) be the simple functions in the definition of
∫
B
F (s)dXs.

Then we can prove that 1E(s)Fn(s) are simple functions and conditions (1)
and (2) in Proposition 2.15 are satisfied with 1E(s)Fn(s) and 1E(s)F (s) in
place of Fn(s) and F (s). Thus 1E(s)F (s) belongs to Ll×d(X). The equality
asserted follows from the additivity of the integral with respect to integrands
and to sets and from (2.4). �

For each s > 0 and U ∈ Ml×d, denote by ρUs the distribution on Rl with
characteristic function ρ̂s(U ′z). The triplet (Aρ

U
s , νρ

U
s , γρ

U
s ) of ρUs is given by

Aρ
U
s = UAρsU ′,(2.5)

νρ
U
s (D) =

∫
Rd

1D(Ux) νρs(dx) for D ∈ B0(Rd),(2.6)

γρ
U
s = Uγρs +

∫
Rd

Ux

(
1

1 + |Ux|2
− 1

1 + |x|2

)
νρs(dx).(2.7)

Sometimes we write (A{ρUs }, ν{ρUs }, γ{ρUs }) for this triplet.

Corollary 2.19. Let F and Y (B) be as in Proposition 2.17. Let Yt =
Y ([0, t]) =

∫ t
0
F (s)dXs. Then Y = {Yt} is a natural additive process in law

on Rl with a factoring ({ρF (s)
s }, σ). We have, for any t ∈ (0,∞),∫ t

0

(trAρ
F (s)
s )σ(ds) <∞,(2.8) ∫ t

0

σ(ds)
∫
Rd

(|x|2 ∧ 1)νρ
F (s)
s (dx) <∞,(2.9) ∫ t

0

|γρ
F (s)
s |σ(ds) <∞.(2.10)

The triplet (AY (B), νY (B), γY (B)) of Y (B) is given by

AY (B) =
∫
B

Aρ
F (s)
s σ(ds) =

∫
B

F (s)AρsF (s)′σ(ds),(2.11)

νY (B)(D) =
∫
B

νρ
F (s)
s (D)σ(ds) =

∫
B

σ(ds)
∫
Rd

1D(F (s)x) νρs(dx),(2.12)

γY (B) =
∫
B

γρ
F (s)
s σ(ds)(2.13)

=
∫
B

(
F (s)γρs +

∫
Rd

F (s)x
(

1
1 + |F (s)x|2

− 1
1 + |x|2

)
νρs(dx)

)
σ(ds).
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This is a consequence of Propositions 2.4 and 2.17 combined. As this
corollary says, a natural additive process in law X on Rd and a function F ∈
Ll×d(X) give a natural additive process in law Y on Rl. Up to modifications,
this is a transformation from a natural additive process to a natural additive
process.

Definition 2.20. If F ∈ Ll×d(X) and if
∫ t

0
F (s)dXs converges in proba-

bility as t → ∞, then the limit is denoted by
∫∞−

0
F (s)dXs and we say that

the improper integral
∫∞−

0
F (s)dXs is definable.

Proposition 2.21. The definability of the improper integral
∫∞−

0
F (s)dXs

is equivalent to almost sure convergence of the additive process modification
{Ỹt} of Yt =

∫ t
0
F (s)dXs as t → ∞. It is also equivalent to its convergence

in distribution.

3. Conditions for local integrability

Let X = {Xt} be a natural additive process on Rd. Let ({ρs}, σ) be a
factoring of X and (Aρs , νρs , γρs) the triplet of ρs. Denote

(3.1) ϕ0(s) = trAρs +
∫
Rd

(|x|2 ∧ 1)νρs(dx) + |γρs |.

The property (2) of Proposition 2.4 says that

(3.2)
∫ t

0

ϕ0(s)σ(ds) <∞ for 0 < t <∞.

As in the previous section, for U ∈ Ml×d, we denote by ρUs the distribution
on Rl with characteristic function ρ̂s(U ′z) and by (Aρ

U
s , νρ

U
s , γρ

U
s ) the triplet

of ρUs , which has the expression (2.5)–(2.7). Define

(3.3) ϕ(s, U) = trAρ
U
s +

∫
Rl

(|x|2 ∧ 1)νρ
U
s (dx) + |γρ

U
s |.

The following theorem is a main result of this section.

Theorem 3.1. Let F be an Ml×d-valued measurable function on [0,∞).
Then F ∈ Ll×d(X) if and only if

(3.4)
∫ t

0

ϕ(s, F (s))σ(ds) <∞ for 0 < t <∞.

Before proving this theorem, we study properties of ϕ(s, U).

Proposition 3.2. Let s > 0 and U, V ∈Ml×d.
(i) ϕ(s, U) = ϕ(s,−U) > 0 and ϕ(s, 0) = 0.
(ii) ϕ(s, U) is continuous in U .
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(iii) ϕ(s, cU) 6 (3/2)(c2 ∨ 1)ϕ(s, U) for c ∈ R.
(iv) ϕ(s, U + V ) 6 (7/2)[ϕ(s, U) + ϕ(s, V )].
(v) We have

(3.5) ϕ(s, U) 6 (3/2)(‖U‖2 + 1)ϕ0(s)

and

ϕ(s, U) 6 ‖U‖2 trAρs + 2−1‖U‖2
∫
Rd

(|x|2 ∧ 1)νρs(dx)(3.6)

+
∫
Rd

(|Ux|2 ∧ 1)νρs(dx) +
∫
Rd

(|Ux| ∧ 2−1)(|x|2 ∧ 1)νρs(dx) + ‖U‖ |γρs |.

Proof. The proof of (i) and (ii) is easy and omitted. Sometimes we will not
explicitly write the measure νρs(dx) in the integral.

(iii) Let c > 0. We have

|γρ
cU
s | 6 c|γρ

U
s |+

∫
|cUx|

∣∣|Ux|2 − |cUx|2∣∣
(1 + |cUx|2)(1 + |Ux|2)

and |cUx|/(1+ |cUx|2) 6 1/2. Thus the integral is 6 (|1−c2|/2)
∫

(|Ux|2∧1),
and

ϕ(s, cU) 6 c2 tr(UAρsU ′) +
(

(c2 ∨ 1) +
|1− c2|

2

)∫
(|Ux|2 ∧ 1) + c|γρ

U
s |

6 (3/2)(c2 ∨ 1)ϕ(s, U).

(iv) We have trAρ
U+V
s 6 2 trAρ

U
s + 2 trAρ

V
s and

∫
(|Ux + V x|2 ∧ 1) 6

2
∫

(|Ux|2 ∧ 1) + 2
∫

(|V x|2 ∧ 1). Further

γρ
U+V
s = Uγρs + V γρs +

∫
Ux

(
1

1 + |Ux|2
− 1

1 + |x|2

)
+
∫
V x

(
1

1 + |V x|2
− 1

1 + |x|2

)
+
∫
J,

where
J =

Ux+ V x

1 + |Ux+ V x|2
− Ux

1 + |Ux|2
− V x

1 + |V x|2
.

We have |J | 6 3/2, since each term has norm not exceeding 1/2. On the other
hand,

J = Ux(f(|Ux+ V x|)− f(|Ux|)) + V x(f(|Ux+ V x|)− f(|V x|)),

where f(r) = (1 + r2)−1. Since |f(r)− f(s)| 6 (
√

3/2)3|r− s| for all r and s,

|J | 6 2(
√

3/2)3|Ux| |V x| 6 (
√

3/2)3(|Ux|2 + |V x|2).

Hence we get

|γρ
U+V
s | 6 |γρ

U
s |+ |γρ

V
s |+ 3

2

∫
(|Ux|2 ∧ 1) +

3
2

∫
(|V x|2 ∧ 1).
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This completes the proof of (iv).
(v) For any A ∈ S+

d and U ∈Ml×d, tr(UAU ′) 6 ‖U‖2 trA. Thus trAρ
U
s 6

‖U‖2 trAρs . We have∫
(|Ux|2 ∧ 1)νρs(dx) 6 (‖U‖2 ∨ 1)

∫
(|x|2 ∧ 1)νρs(dx),

|γρ
U
s | 6 ‖U‖ |γρs |+

∫
|Ux| |Ux|2 + |x|2

(1 + |Ux|2)(1 + |x|2)

6 ‖U‖ |γρs |+ ‖U‖
2

2

∫
|x|2

1 + |x|2
+
∫

(|Ux| ∧ 2−1)
|x|2

1 + |x|2

6 ‖U‖ |γρs |+ ‖U‖
2 + 1
2

∫
|x|2

1 + |x|2
.

These estimates together yield (3.5). Looking back at this proof, we see also
the estimate (3.6). �

Let us denote by L]l×d(X) the class of Ml×d-valued measurable functions
F that satisfy (3.4). This class is a linear space by virtue of (iii) and (iv) of
Proposition 3.2. It contains all simple functions by virtue of (3.2) and (3.5).

Proposition 3.3. Let F ∈ L]l×d(X) and let Fn, n = 1, 2, . . ., be Ml×d-
valued measurable functions. Suppose that there are En ∈ B0

[0,∞) and εn > 0
such that En ↑ [0,∞), εn ↓ 0, Fn(s) = 0 for s ∈ Ecn, and ‖Fn(s)−F (s)‖ 6 εn
for s ∈ En. Then Fn ∈ L]l×d(X), n = 1, 2, . . ., and

(3.7)
∫ t

0

ϕ(s, Fn(s)− F (s))σ(ds)→ 0 for 0 < t <∞.

Proof. Using Proposition 3.2 (iv) and (3.5), we get Fn ∈ L]l×d(X). Further,∫ t

0

ϕ(s, Fn(s)− F (s))σ(ds)

=
∫

[0,t]∩En
ϕ(s, Fn(s)− F (s))σ(ds) +

∫
[0,t]∩Ecn

ϕ(s, F (s))σ(ds) = I1 + I2.

We see I2 → 0 since Ecn ↓ ∅ and
∫ t

0
ϕ(s, F (s))σ(ds) <∞. From (3.6) we see

I1 6
∫

[0,t]∩En

[
ε2
n trAρs + 2−1ε2

n

∫
(|x|2 ∧ 1) +

∫
((εn|x|)2 ∧ 1)

+
∫

((εn|x|) ∧ 2−1)(|x|2 ∧ 1) + εn|γρs |
]
σ(ds).

Since εn ↓ 0, we get I1 → 0, using the dominated convergence theorem. �
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Proof of Theorem 3.1. The theorem claims that Ll×d(X) = L]l×d(X). We
know Ll×d(X) ⊂ L]l×d(X) from Corollary 2.19. To show the converse inclu-
sion, assume that F ∈ L]l×d(X). Let En = [0, n] ∩ {s : ‖F (s)‖ 6 n} and let
εn ↓ 0. Choose Ml×d-valued simple functions Fn(s) such that Fn(s) = 0 for
s ∈ Ecn and the (j, k)-components satisfy |Fn(s)jk − F (s)jk| 6 εn(ld)−1/2 for
s ∈ En. Then Fn ∈ L]l×d(X) and ‖Fn(s)− F (s)‖ 6 εn for s ∈ En. Applying
Proposition 3.3, we get (3.7). Hence, by Proposition 3.2 (iv),∫ t

0

ϕ(s, Fn(s)− Fm(s))σ(ds)→ 0, n,m→∞.

Recalling (3.3) and using (2.11)–(2.13), we get

L
(∫

B

(Fn(s)− Fm(s))dXs

)
→ δ0, n,m→∞.

This means that
∫
B
Fn(s)dXs is convergent in probability as n→∞. Hence

F ∈ Ll×d(X). The proof is complete. �

The following two propositions are consequences of Theorem 3.1, Proposi-
tion 3.2, and Proposition 2.7.

Proposition 3.4. Suppose that F is an Ml×d-valued measurable function
satisfying one of the following two conditions:

‖F (s)‖ is locally bounded on [0,∞),(3.8) ∫ t

0

‖F (s)‖2σ(ds) <∞ for 0 < t <∞ and ({ρs}, σ) is canonical.(3.9)

Then F ∈ Ll×d(X).

Proposition 3.5. Let Fn, n = 1, 2, . . ., be Ml×d-valued measurable func-
tions such that g(s) = supn ‖Fn(s)‖ satisfies one of the following two condi-
tions:

g(s) is locally bounded on [0,∞),(3.10) ∫ t

0

g(s)2σ(ds) <∞ for 0 < t <∞ and ({ρs}, σ) is canonical.(3.11)

Suppose that Fn(s) → F (s), σ-a. e., for some F (s). Then Fn, F ∈ Ll×d(X)
and the convergence (3.7) holds.

Remark 3.6. The condition (3.9) is the best possible in the following
sense. Let {Bt} be Brownian motion on Rd. Given a locally finite atomless
measure σ on [0,∞), define Xt = Bσ([0,t])/d. Then X = {Xt} is a natural
additive process with canonical measure σ and Ll×d(X) is the totality of F
such that

∫ t
0
‖F (s)‖2σ(ds) <∞ for 0 < t <∞.
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The two kinds of convergence in Ll×d(X) are related as follows.

Proposition 3.7. Let Fn, n = 1, 2, . . ., and F be in Ll×d(X). If (3.7)
holds, then

(3.12)
∫
B

Fn(s)dXs →
∫
B

F (s)dXs in probability for all B ∈ B0
[0,∞).

If (3.12) holds and Fn(s)→ F (s), σ-a. e., then (3.7) holds.

Proof. If (3.7) holds, then L
(∫
B

(Fn(s)− F (s))dXs

)
→ δ0 and (3.12) holds.

To see the converse, assume (3.12) and Fn(s) → F (s), σ-a. e. Then,∫
B

tr(A{ρFn(s)−F (s)
s })σ(ds),

∫
B
σ(ds)

∫
Rl

(|x|2 ∧ 1)ν{ρFn(s)−F (s)
s }(dx), and∫

B
γ{ρFn(s)−F (s)

s }σ(ds) tend to 0 for any B ∈ B0
[0,∞). Since Fn−F ∈ Ll×d(X),

we have
∫ t

0
|γ{ρFn(s)−F (s)

s }|σ(ds) < ∞. Using the Vitali–Hahn–Saks theo-

rem (p. 158 of [2]), we see that
{
γ{ρFn(s)−F (s)

s }, s ∈ [0, t]
}

is uniformly inte-

grable with respect to σ. Since γ{ρFn(s)−F (s)
s } → 0, σ-a. s., it follows that∫

[0,t]
|γ{ρFn(s)−F (s)

s }|σ(ds)→ 0. Therefore (3.7) is true. �

Let us consider iteration of the transformation of additive processes by
stochastic integrals.

Theorem 3.8. Let F ∈ Ll×d(X) and let Y = {Yt} be the additive pro-
cess (in law) on Rl defined by Yt =

∫ t
0
F (s)dXs. Let G be an Mm×l-valued

measurable function. Then G ∈ Lm×l(Y ) if and only if GF ∈ Lm×d(X). If
G ∈ Lm×l(Y ), then

(3.13)
∫
B

G(s)dYs =
∫
B

G(s)F (s)dXs for B ∈ B0
[0,∞).

Proof. Denote ηs = ρ
F (s)
s . Then ({ηs}, σ) is a factoring of Y (Corollary

2.19). Define, for V ∈Mm×l,

ϕY (s, V ) = trAη
V
s +

∫
Rm

(|x|2 ∧ 1)νη
V
s (dx) + |γη

V
s |.

Since η̂Vs (z) = η̂s(V ′z), we see that ηVs = ρ
V F (s)
s , and hence ϕY (s, V ) =

ϕ(s, V F (s)). Now Theorem 3.1 for X and Y shows that G ∈ Lm×l(Y ) if and
only if GF ∈ Lm×d(X). If G is a simple function, then (3.13) is proved by
Proposition 2.18. For a general G in Lm×l(Y ), let En = [0, n]∩ {s : ‖F (s)‖ 6
n, ‖G(s)‖ 6 n}, choose simple functions Gn(s) such that Gn(s) = 0 for
s ∈ Ecn and ‖Gn(s)−G(s)‖ 6 n−2 for s ∈ En, and use Proposition 3.3. �

Let us introduce a partial order in Ml×d to give another characterization.
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Definition 3.9. Let U, V ∈ Ml×d. We say that V ≺ U if |V x| 6 |Ux|
for all x ∈ Rd. (Hence, V ≺ U if and only if there exists C ∈ Ml×l with
‖C‖ 6 1 such that V = CU .)

We define

(3.14) ϕ̃(s, U) = trAρ
U
s +

∫
Rl

(|x|2 ∧ 1)νρ
U
s (dx) + sup

V≺U
|γρ

V
s |.

Then we can prove the following four propositions. The proofs are omitted.

Proposition 3.10.

(i) If V ≺ U , then ϕ̃(s, V ) 6 ϕ̃(s, U).
(ii) We have ϕ(s, U) 6 ϕ̃(s, U) 6 3

2ϕ(s, U).

Proposition 3.11. Let F be an Ml×d-valued measurable function on
[0,∞). Then F ∈ Ll×d(X) if and only if

(3.15)
∫ t

0

ϕ̃(s, F (s))σ(ds) <∞ for 0 < t <∞.

Proposition 3.12. If F ∈ Ll×d(X) and if G(s) is an Ml×d-valued mea-
surable function satisfying G(s) ≺ F (s) for σ-a. e. s, then G ∈ Ll×d(X).

Proposition 3.13. Let G ∈ Ll×d(X). Let Fn, n = 1, 2, . . ., be Ml×d-
valued measurable functions such that Fn(s) ≺ G(s), σ-a. e. Suppose that
Fn(s) → F (s), σ-a. e., for some F (s). Then Fn, F ∈ Ll×d(X) and (3.7)
holds.

A description of Ll×d(X) directly in terms of the cumulant function of ρs
is of some interest.

Theorem 3.14. An Ml×d-valued measurable function F (s) is in Ll×d(X)
if and only if, for any 0 < t <∞, there is 0 < at <∞ such that

(3.16)
∫ t

0

sup
|z|6at

|Cρs(F (s)′z)|σ(ds) <∞.

Proof. Assume that F ∈ Ll×d(X). Since any µ ∈ ID(Rd) with triplet
(A, ν, γ) satisfies

|Cµ(z)| 6 1
2

(trA)|z|2 + 3(1 + |z|2)
∫
Rd

(|x|2 ∧ 1)ν(dx) + |γ| |z|,

we get (3.16) for arbitrary at from Theorem 3.1.
Conversely, assume the existence of at satisfying (3.16). We have

(3.17)
∫ t

0

sup
|z|6at

(−ReCρs(F (s)′z))σ(ds) <∞.
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Hence ∫ t

0

sup
|z|6at

〈z,Aρ
F (s)
s z〉σ(ds) <∞.

It follows that
∫ t

0
tr(Aρ

F (s)
s )σ(ds) <∞. We have∫ t

0

[
sup
|z|6at

∫
Rl

(1− cos〈z, x〉)νρ
F (s)
s (dx)

]
σ(ds) <∞

from (3.17). Thus, for |z| 6 at, we have∫ t

0

σ(ds)
∫ 1

0

dv

∫
Rl

(1− cos〈vz, x〉)νρ
F (s)
s (dx) <∞,

that is, ∫ t

0

σ(ds)
∫
Rl

(
1−

∣∣∣∣ sin〈z, x〉〈z, x〉

∣∣∣∣) νρF (s)
s (dx) <∞.

Since 1− |(sin θ)/θ| > (3π)−1(θ2 ∧ 1) for all θ, we have
∫ t

0
σ(ds)

∫
Rl

(|〈z, x〉|2 ∧
1)νρ

F (s)
s (dx) <∞ and hence

∫ t
0
σ(ds)

∫
Rl

(|x|2 ∧ 1)νρ
F (s)
s (dx) <∞. We have

(3.18)
∫ t

0

| ImCρs(F (s)′z)|σ(ds) <∞ for all z with |z| 6 at

from (3.16), that is,∫ t

0

∣∣∣∣〈γρF (s)
s , z〉+

∫
Rl

(
sin〈z, x〉 − 〈z, x〉

1 + |x|2

)
νρ

F (s)
s (dx)

∣∣∣∣σ(ds) <∞.

It follows that
∫ t

0
|〈γρF (s)

s , z〉|σ(ds) <∞ and hence
∫ t

0
|γρF (s)

s |σ(ds) <∞. Now
we have (3.4). Hence F ∈ Ll×d(X) from Theorem 3.1. �

Remark 3.15. The proof of Theorem 3.14 shows that an Ml×d-valued
measurable function F (s) belongs to Ll×d(X) if and only if, for any 0 < t <∞,
there is 0 < at <∞ such that (3.17) and (3.18) hold.

Remark 3.16. Let X = {Xt} be a natural additive process on Rd with
d > 2 and let F (s) = (Fjk(s)) be an Ml×d-valued function. Then, for each k,
the kth component Xk = {Xk

t } of X is a natural additive process on R. If
Fjk ∈ L1×1(Xk) for all j and k, then F ∈ Ll×d(X) and

(3.19)
∫
B

F (s)dXs =

(
d∑
k=1

∫
B

Fjk(s)dXk
s

)
16j6l

for B ∈ B0
[0,∞).

To see this, it is enough to choose for each j and k a sequence of simple
functions Fj,k,n and to consider Ml×d-valued simple functions Fn = (Fj,k,n) as
in the proof of Theorem 3.1. However, even if F ∈ Ll×d(X), the components
Fjk do not necessarily belong to L1×1(Xk). Thus we cannot always write
(3.19). For a simple example, let l = d = 2, let X be a Lévy process on
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R
2 satisfying X1

t = X2
t , and let F (s) =

(
f(s) −f(s)

0 1

)
, with f being a

measurable function. Then it follows from Definition 2.16 that F ∈ L2×2(X)
and

∫ t
0
F (s)dXs =

(
0
X2
t

)
while f is not necessarily in L1×1(X1).

4. Examples of locally integrable functions

Let X = {Xt} be a natural additive process on Rd with a factoring ({ρs}, σ)
as in the preceding section. We denote by L(X) the class of real-valued
functions f such that fId×d ∈ Ld×d(X) as in Definition 2.16. We write∫
B
f(s)dXs for

∫
B
f(s)Id×ddXs. The structure of the class L(X) is simpler

than that of Ll×d(X).
When u is a real number, we write ϕ(s, u) for ϕ(s, uId×d) and ρus for ρuId×ds .

Thus

ϕ(s, u) = trAρ
u
s +

∫
Rd

(|x|2 ∧ 1)νρ
u
s (dx) + |γρ

u
s |

= u2 trAρs +
∫
Rd

(|ux|2 ∧ 1)νρs(dx)

+
∣∣∣∣uγρs + u

∫
Rd

x

(
1

1 + |ux|2
− 1

1 + |x|2

)
νρs(dx)

∣∣∣∣ .
Proposition 4.1. Let f ∈ L(X). Then

∫ t
0
ϕ(s, f(s))σ(ds) = 0 for all

0 < t <∞ if and only if f(s) = 0, σ◦-a. e., where σ◦ is the canonical measure
of X.

We omit the proof. The latter condition is equivalent to saying that f(s) =
0, σ-a. e. on T = {s ∈ [0,∞) : ϕ0(s) > 0}, because, for any Borel set B,

d−1

∫
B

ϕ0(s)σ(ds) 6 σ◦(B) 6 d1/2

∫
B

ϕ0(s)σ(ds).

Proposition 4.2. If fn ∈ L(X), n = 1, 2, . . ., satisfy

(4.1)
∫ t

0

ϕ(s, fn(s)− fm(s))σ(ds)→ 0 as n,m→∞ for 0 < t <∞,

then there is f ∈ L(X) such that

(4.2)
∫ t

0

ϕ(s, fn(s)− f(s))σ(ds)→ 0 as n→∞ for 0 < t <∞,

and that, for some subsequence {fn′} of {fn}, fn′(s)→ f(s) σ◦-a. e. s.

This proposition can be proved by standard techniques. The following fact
is straightforward.
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Proposition 4.3. Define

(4.3) ϕ̃(s, u) = u2 trAρs +
∫
Rd

(|ux|2 ∧ 1)νρs(dx) + sup
v∈R, |v|6|u|

|γρ
v
s |

for s > 0 and u ∈ R. Then, as a function of u, ϕ(s, u) is continuous and even,
vanishes at 0, and increases on [0,∞). A real-valued measurable function f
belongs to L(X) if and only if

(4.4)
∫ t

0

ϕ̃(s, f(s))σ(ds) <∞ for 0 < t <∞.

We note that, for each t, the class of f for which
∫ t

0
ϕ̃(s, f(s))σ(ds) is finite

is a Musielak–Orlicz space (cf. [7]). In the case d = 1, this fact is due to
Rajput and Rosinski [11] and Kwapień and Woyczyński [7].

Let us give an explicit description of L(X) for some typical processes.

Example 4.4. Let X be a compound Poisson process on Rd. Then L(X)
is the class of all measurable functions on [0,∞).

Example 4.5. Let X be a strictly α-stable Lévy process or a strictly
α-semistable Lévy process on Rd with 0 < α 6 2. Let f be a measurable
function on [0,∞). Then f ∈ L(X) if and only if∫ t

0

|f(s)|αds <∞ for 0 < t <∞.

(Use the descriptions of the characteristic functions of semistable Lévy pro-
cesses in [16], Theorems 14.3, 14.7, and Proposition 14.9.)

Example 4.6. Stable (resp. semistable) processes which are not strictly
stable (resp. semistable) are called second-class stable (resp. semistable) as
in [20]. Let X be a second-class α-stable Lévy process or a second-class α-
semistable Lévy process on Rd with 0 < α 6 2. Let f be a measurable
function on [0,∞).

(i) Let 0 < α < 1. Then f ∈ L(X) if and only if∫ t

0

|f(s)|ds <∞ for 0 < t <∞.

(ii) Let α = 1. Then f ∈ L(X) if and only if∫ t

0

|f(s)| log+ |f(s)|ds <∞ for 0 < t <∞,

where log+ |u| = (log |u|) ∨ 0.
(iii) Let 1 < α 6 2. Then f ∈ L(X) if and only if∫ t

0

|f(s)|αds <∞ for 0 < t <∞.
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Example 4.7. Let X be the Γ-process on R. Then L(X) is the class of
measurable functions f satisfying∫ t

0

log+ |f(s)|ds <∞ for 0 < t <∞.

The class of Q-selfsimilar additive processes on Rd introduced in Sato [15]
is an interesting class of additive processes on Rd (Example 2.13). For a
characterization of this class by Q-selfdecomposable distributions, see [15].
When Q = hId×d with h > 0, we get the usual h-selfsimilarity and the usual
selfdecomposability. See [16].

Example 4.8. Let µ be a strictly α-stable distribution on Rd with 0 <
α 6 2. Let h > 0 and let Z = {Zt} be the h-selfsimilar additive process on
R
d with L(Z1) = µ. Then a measurable function f is in L(Z) if and only if∫ t

0

|f(s)|αsαh−1ds <∞ for 0 < t <∞.

If h 6= 1/α, here appears a phenomenon different from the case of Lévy pro-
cesses; namely, this condition requires a special property of f(s) in a neigh-
borhood of s = 0.

Example 4.9. Let µ be a second-class α-stable distribution on Rd with
0 < α 6 2 and let h > 0. Let Z = {Zt} be the h-selfsimilar additive process
on Rd with L(Z1) = µ. Recall that, even in the case h = 1/α, Z is not a Lévy
process. Let f be a measurable function.

(i) Let α 6= 1. Then f ∈ L(Z) if and only if∫ t

0

|f(s)|αsαh−1ds <∞ and
∫ t

0

|f(s)| sh−1ds <∞ for 0 < t <∞.

(ii) Let α = 1. Then f ∈ L(Z) if and only if∫ t

0

|f(s)|sh−1ds <∞ and
∫ t

0

|f(s)|
∣∣log |shf(s)|

∣∣sh−1ds <∞

for 0 < t <∞.

Example 4.10. Let µ be Γ-distribution with arbitrary parameters and
let h > 0. Let Z = {Zt} be the h-selfsimilar additive process on R with
L(Z1) = µ. A measurable function f is in L(Z) if and only if∫

[0,ε]∩{s : |f(s)|sh61}
s−1|f(s)|shds+

∫
[0,ε]∩{s : |f(s)|sh>1}

s−1ds <∞

for some ε > 0.
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5. Definability of improper stochastic integrals

Given a natural additive process X on R
d and a nonrandom function

f ∈ L(X), we are interested whether the improper integral
∫∞−

0
f(s)dXs

is definable, that is, whether
∫∞−

0
f(s)Id×ddXs is definable in the sense of

Definition 2.20. Examples suggest that it is meaningful to extend the no-
tion of the definability of improper integrals in two ways. In the following,
X = {Xt} denotes a natural additive process on Rd with a factoring ({ρs}, σ),
X(µ) = {X(µ)

t } denotes a Lévy process on Rd with L(X(µ)
1 ) = µ, and (A, ν, γ)

denotes the triplet of µ.

Definition 5.1. Let f ∈ L(X). We say that the essential improper in-
tegral of f with respect to X is definable if there is a nonrandom R

d-valued
function qt on [0,∞) such that

∫ t
0
f(s)dXs− qt is convergent in probability as

t→∞.

The term essential follows Loève [9], Section 18.2, where he used the words
essentially convergent and essentially divergent for series of independent ran-
dom variables. Earlier Lévy [8], Section 43, used the words réductible à une
série convergente and essentiellement divergente.

Definition 5.2. Let f ∈ L(X(µ)). We say that the compensated im-
proper integral of f with respect to the Lévy process X(µ) is definable if
there is a nonrandom vector q ∈ Rd such that f ∈ L(X(µ∗δ−q)) and that∫∞−

0
f(s)d(X(µ∗δ−q)

s ) is definable.

We use the word compensated because, usually, q is such that µ ∗ δ−q has
mean 0.

Remark 5.3. Suppose that f ∈ L(X(µ)) and that
∫ t

0
|f(s)|ds <∞ for all

t ∈ (0,∞). Then, definability of the compensated improper integral of f with
respect to X(µ) implies definability of the essential improper integral, since∫ t

0

f(s)dX(µ∗δ−q)
s =

∫ t

0

f(s)d(X(µ)
s − sq) =

∫ t

0

f(s)dX(µ)
s −

∫ t

0

f(s)qds.

Lemma 5.4. Let Y = {Yt} be an additive process on R
d with triplet

(AYt , νYt , γYt) and let qt be an R
d-valued function on [0,∞). Then

p-lim
t→∞

(Yt − qt) exists if and only if sup
t

trAYt <∞, sup
t

∫
Rd

(|x|2∧1)νYt(dx) <

∞, and lim
t→∞

(γYt − qt) exists in Rd. If p-lim
t→∞

(Yt − qt) exists, then its distri-

bution is in ID(Rd) and has triplet (Ã, ν̃, γ̃) given by Ã = lim
t→∞

AYt , ν̃(D) =

lim
t→∞

νYt(D) for D ∈ B0(Rd), and γ̃ = lim
t→∞

(γYt − qt).



ADDITIVE PROCESSES AND STOCHASTIC INTEGRALS 843

To see this lemma, use [16], Theorem 8.7, together with the argument in
the proof of Theorem 9.8. Now, recalling Corollary 2.19 for F (s) = f(s)Id×d,
we can show the following three propositions.

Proposition 5.5. Let f ∈ L(X) and Yt =
∫ t

0
f(s)dXs. Then∫∞−

0
f(s)dXs is definable if and only if the following conditions are satisfied:∫ ∞

0

f(s)2(trAρs)σ(ds) <∞,(5.1) ∫ ∞
0

σ(ds)
∫
Rd

(|f(s)x|2 ∧ 1)νρs(dx) <∞,(5.2)

γYt is convergent in Rd as t→∞.(5.3)

If
∫∞−

0
f(s)dXs is definable, then its distribution has triplet (Ã, ν̃, γ̃) given by

Ã =
∫ ∞

0

f(s)2(trAρs)σ(ds),(5.4)

ν̃(D) =
∫ ∞

0

σ(ds)
∫
Rd

1D(f(s)x)νρs(dx) for D ∈ B0(Rd),(5.5)

γ̃ = lim
t→∞

γYt .(5.6)

Proposition 5.6. Let f ∈ L(X). Then the essential improper integral of
f with respect to X is definable if and only if (5.1) and (5.2) hold.

Proposition 5.7. Let f ∈ L(X(µ)). Then the compensated improper
integral of f with respect to X(µ) is definable if and only if∫ ∞

0

f(s)2(trA)ds <∞,(5.7) ∫ ∞
0

ds

∫
Rd

(|f(s)x|2 ∧ 1)ν(dx) <∞,(5.8)

and there is q ∈ Rd such that∫ t

0

∣∣∣∣f(s)(γ − q) + f(s)
∫
Rd

x

(
1

1 + |f(s)x|2
− 1

1 + |x|2

)
ν(dx)

∣∣∣∣ ds <∞(5.9)

for t ∈ (0,∞)

and ∫ t

0

(
f(s)(γ − q) + f(s)

∫
Rd

x

(
1

1 + |f(s)x|2
− 1

1 + |x|2

)
ν(dx)

)
ds(5.10)

is convergent in Rd as t→∞.

Remark 5.8. Let us say that the symmetrized improper integral of f with
respect to X is definable if

∫∞−
0

f(s)d(Xs −X]
s) is definable, where X] is an
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independent copy of X. Then, the symmetrized improper integral is defin-
able if and only if the essential improper integral is definable. The limit in
the symmetrized improper integral is the symmetrization of the limit in the
essential improper integral.

Now, given a function f , we are interested in the three classes of Lévy
processes in law on Rd defined, in terms of the distributions at time 1, by

D[f,Rd] = {µ ∈ ID(Rd) :
∫ ∞−

0

f(s)dX(µ)
s is definable},

Dc[f,Rd] = {µ ∈ ID(Rd) : the compensated improper integral of f

with respect to X(µ) is definable},

Des[f,Rd] = {µ ∈ ID(Rd) : the essential improper integral of f with

respect to X(µ) is definable}.

How these classes depend on the choice of f and what is the description of
the class of the distributions of improper integrals for given f are interesting
subjects. Here we give several typical examples.

Another direction of research emphasized by Jurek [6] is, given a class of
distributions, to seek its stochastic integral representations.

Example 5.9. Consider the case where f(s) = e−s. It is well-known that
D[f,Rd] is identical with the class of µ ∈ ID(Rd) satisfying

(5.11)
∫
Rd

log+ |x| ν(dx) <∞,

where ν is the Lévy measure of µ. The class of all L(
∫∞−

0
e−sdX

(µ)
s ) with

µ ∈ D[e−s,Rd] coincides with the class of all selfdecomposable distributions
on Rd. This gives also a characterization of stationary processes of Ornstein–
Uhlenbeck type. See [12], [16] for references. In this case we have

(5.12) D[f,Rd] = Dc[f,Rd] = Des[f,Rd].

Example 5.10. Let f(s) = e−e
s

. Then we can prove that D[f,Rd] is the
class of µ ∈ ID(Rd) satisfying∫

|x|>e
log log |x|ν(dx) <∞.

We also have (5.12) in this case.

Let

g0(r) =
∫ ∞
r

u−1e−udu and g1(r) =
∫ ∞
r

u−2e−udu
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and, for j = 0, 1, let fj(s) be the inverse function of gj(r) (that is, s = gj(r)
if and only if r = fj(s)). Thus fj(s) strictly decreases from ∞ to 0 for
s ∈ (0,∞).

Example 5.11. The function g0(r) is ∼ r−1e−r as r →∞ and ∼ log(1/r)
as r ↓ 0; the function f0(s) is ∼ ce−s with some constant c > 0 as s→∞ and
∼ log(1/s) as s ↓ 0. The class D[f0,R

d] is the class of µ ∈ ID(Rd) satisfying
(5.11). The class of all L(

∫∞−
0

f0(s)dX(µ)
s ) with µ ∈ D[f0,R

d] coincides with
the Thorin class T (Rd). The proof is given in [1]. Also in this case (5.12)
holds with f = f0.

The following fact shows that each of the notions of essential improper
integral and compensated improper integral has its own significance.

Theorem 5.12.

(i) We have µ ∈ D[f1,R
d] if and only if∫
|x|>1

|x| ν(dx) <∞,(5.13)

lim
ε↓0

∫ 1

ε

r−1e−r

(∫
|x|>1

x
r2|x|2

1 + r2|x|2
ν(dx)

)
dr exists in Rd,(5.14)

γ = −
∫
Rd

x
|x|2

1 + |x|2
ν(dx).(5.15)

(ii) We have µ ∈ Dc[f1,R
d] if and only if (5.13) and (5.14) hold.

(iii) We have µ ∈ Des[f1,R
d] if and only if (5.13) holds.

(iv) We have

(5.16) D[f1,R
d] $ Dc[f1,R

d] $ Des[f1,R
d].

(v) Suppose that
∫
Rd
|x| log+ |x| ν(dx) < ∞. Then µ is always in

Dc[f1,R
d]; it is in D[f1,R

d] if and only if it satisfies (5.15).
(vi) Suppose that, with 0 < β 6 1,

(5.17) ν(D) =
∫
S

λ(dξ)
∫ ∞

2

1D(uξ)
du

u2(log u)1+β
for D ∈ B0(Rd),

where λ is a finite measure on the unit sphere S satisfying
∫
S
ξλ(dξ) 6=

0. Then µ ∈ Des[f1,R
d] but µ 6∈ Dc[f1,R

d].

Remark 5.13. Note that (5.13) is equivalent to saying that
∫
Rd
|x|µ(dx) <

∞; (5.15) is equivalent to
∫
Rd
xµ(dx) = 0. (Added in revision: The condition

(5.14) can be replaced by the condition that

lim
a→∞

∫
|x|>1

x log(|x| ∧ a) ν(dx) exists in Rd.
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See [18].)

Proof of Theorem 5.12. The function g1(r) is ∼ r−2e−r as r → ∞ and
∼ r−1 as r ↓ 0; f1(s) is ∼ s−1 as s → ∞ and ∼ log(1/s) as s ↓ 0. It follows
that f1 ∈ L(X(µ)) for all µ (Proposition 3.4).

(i) The condition for µ ∈ D[f1,R
d] is given by (5.7), (5.8) with f = f1, and

(5.10) with q = 0 for f = f1. Among them, (5.7) always holds. We have∫ ∞
0

ds

∫
Rd

(|f1(s)x|2 ∧ 1)ν(dx) =
∫ ∞

0

r−2e−rdr

∫
Rd

(|rx|2 ∧ 1)ν(dx)

=
∫ ∞

0

e−rdr

∫
|x|61/r

|x|2ν(dx) +
∫ ∞

0

r−2e−rdr

∫
|x|>1/r

ν(dx)

= I1 + I2, (say).

Since I1 =
∫
Rd
|x|2(1− e−1/|x|)ν(dx) and I2 =

∫
Rd
g1(1/|x|)ν(dx), we see that

(5.8) holds if and only if (5.13) holds. Under condition (5.13), condition (5.10)
with q = 0 is equivalent to the existence in Rd of

(5.18) lim
ε↓0

∫ 1

ε

r−1e−r
(
γ +

∫
Rd

x

(
1

1 + |rx|2
− 1

1 + |x|2

)
ν(dx)

)
dr,

since ∫ t

0

(
f1(s)γ + f1(s)

∫
Rd

x

(
1

1 + |f1(s)x|2
− 1

1 + |x|2

)
ν(dx)

)
ds

=
∫ ∞
f1(t)

r−1e−r
(
γ +

∫
Rd

x

(
1

1 + |rx|2
− 1

1 + |x|2

)
ν(dx)

)
dr

and ∫ ∞
1

r−1e−r
(
|γ|+

∫
Rd

|x|
∣∣∣∣ 1
1 + |rx|2

− 1
1 + |x|2

∣∣∣∣ ν(dx)
)
dr <∞.

Now we see that, under (5.13), condition (5.10) with q = 0 implies (5.15)
because, if (5.15) does not hold, then (5.18) does not exist, since∫

Rd

x

(
1

1 + |rx|2
− 1

1 + |x|2

)
ν(dx)→

∫
Rd

x|x|2

1 + |x|2
ν(dx), r ↓ 0.

If (5.15) holds, then

γ +
∫
Rd

x

(
1

1 + |rx|2
− 1

1 + |x|2

)
ν(dx) = −

∫
Rd

x
|rx|2

1 + |rx|2
ν(dx)

and∫ 1

0

r−1e−rdr

∫
|x|61

r2|x|3

1 + r2|x|2
ν(dx) 6

∫ 1

0

re−rdr

∫
|x|61

|x|3ν(dx) <∞.

Hence, under (5.13), condition (5.10) with q = 0 is equivalent to (5.14) com-
bined with (5.15). This finishes the proof of (i).
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(ii) Suppose that µ ∈ Dc[f1,R
d]. This means that µ ∗ δ−q ∈ D[f1,R

d] for
some q ∈ Rd. Hence, by (i), this means (5.13) and (5.14) together with

(5.19) γ − q = −
∫
Rd

x
|x|2

1 + |x|2
ν(dx).

Conversely, if (5.13) and (5.14) are satisfied, then we can find q satisfying
(5.19) and thus µ ∗ δ−q ∈ D[f1,R

d].
(iii) In order that µ ∈ Des[f1,R

d], it is necessary and sufficient that (5.7)
and (5.8) hold for f = f1. See Proposition 5.6. As is seen in the proof of (i),
(5.1) is always satisfied, and (5.2) is satisfied if and only if (5.13) is true.

(iv) Except for the strictness of inclusions, (5.16) follows from (i), (ii), and
(iii). The strictness is shown by (v) and (vi) to be proved below.

(v) The property (5.13) is evident. Notice that (5.14) also holds, as∫ 1

0

r−1e−rdr

∫
|x|>1

r2|x|3

1 + r2|x|2
ν(dx) 6

∫
|x|>1

|x|ν(dx)
∫ |x|

0

udu

1 + u2
<∞

since
∫ |x|

0
(1 + u2)−1udu ∼ log |x| as |x| → ∞. Now use (i) and (ii).

(vi) We have
∫
|x|>1

|x| ν(dx) <∞ since β > 0. For 0 < ε < 1 we have∫ 1

ε

r−1e−rdr

∫
|x|>1

x
r2|x|2

1 + r2|x|2
ν(dx) = cε

∫
S

ξλ(dξ),

where

0 < cε =
∫ ∞

2

du

u(log u)1+β

∫ 1

ε

r2u2

1 + r2u2
r−1e−rdr <∞.

However, since β 6 1,

lim
ε↓0

cε =
∫ ∞

2

du

u(log u)1+β

∫ u

0

ve−v/udv

1 + v2
=∞,

as
∫ u

0
(1 + v2)−1ve−v/udv ∼ log u. Thus (5.14) is not satisfied. �

Remark 5.14. (i) Assume that ν is symmetric. Then µ ∈ D[f1,R
d] if

and only if (5.13) holds and γ = 0. Further, µ ∈ Dc[f1,R
d] if and only if

µ ∈ Des[f1,R
d].

(ii) Let Yt =
∫ t

0
f1(s)dX(µ)

s . If µ ∈ D[f1,R
d], then E|Yt| <∞ and

EYt =
(
γ +

∫
Rd

x
|x|2

1 + |x|2
ν(dx)

)∫ ∞
f1(t)

r−1e−rdr = 0.

But, even if µ ∈ D[f1,R
d], it is possible that E

∣∣∣∫∞−0
f1(s)dX(µ)

s

∣∣∣ = ∞; this
will be shown in another paper.
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(iii) Consider the case (vi) of Theorem 5.12 and choose qt such that Yt− qt
is convergent in probability as t→∞. Then

E(Yt − qt) = γYt − qt + ct

∫
S

ξλ(dξ),

where ct =
∫∞
f1(t)

re−rdr
∫∞

2
(1 + r2u2)−1u(log u)−1−βdu→∞ as t→∞ while

γYt − qt tends to some finite vector in Rd. Thus E(Yt − qt) approaches the
point at infinity nearly in the direction of

∫
S
ξλ(dξ). The modification of Yt

to Yt − qt is not centering.

Let us describe D[f,Rd], Dc[f,Rd], and Des[f,Rd] in some situation in-
cluding Examples 5.9 and 5.11. For two functions f and g which are positive
for all large s we write f(s) � g(s), s→∞, if there are positive constants a1

and a2 such that a1g(s) 6 f(s) 6 a2g(s) for all large s.

Theorem 5.15. Suppose that f is a locally square-integrable function and
that there are constants α > 0, β ∈ R, and c > 0 such that

(5.20) f(s) � sβe−cs
α

, s→∞.
Then

(5.21) D[f,Rd] =
{
µ ∈ ID(Rd) :

∫
Rd

(log+ |x|)1/αν(dx) <∞
}
,

where ν is the Lévy measure of µ, and

(5.22) Des[f,Rd] = Dc[f,Rd] = D[f,Rd].

Proof. Step 1. Assume that, for some s0 > 0, f(s) = asβe−cs
α

for s > s0.
We have f ′(s) = f(s)s−1(β − cαsα) < 0 for large s. So we assume that s0 is
chosen so that f ′(s) < 0 for s > s0. Let r0 = f(s0). We further assume that
s0 is so big that r0 < 1. Let s = g(r), 0 < r 6 r0, be the inverse function of
r = f(s), s0 6 s <∞. Then

(5.23) lim
r↓0

g(r)
(− log r)1/α

= lim
s↑∞

s

(− log f(s))1/α
= c−1/α.

Let us prove (5.21). We will check (5.7)–(5.10) with q = 0. Since f is locally
square-integrable, it is enough to check these conditions with the integrals
having lower limit s0 (see Proposition 3.4). Condition (5.9) with q = 0 holds
since f ∈ L(X(µ)) for all µ. Condition (5.7) evidently holds.

Concerning (5.8),∫ ∞
s0

ds

∫
Rd

(|f(s)x|2 ∧ 1)ν(dx)

=
∫ ∞
s0

ds

∫
|f(s)x|61

|f(s)x|2ν(dx) +
∫ ∞
s0

ds

∫
|f(s)x|>1

ν(dx).
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Let I1 and I2 be the first and the second term. We have I2 <∞ if and only if

(5.24)
∫
Rd

(log+ |x|)1/αν(dx) <∞,

since I2 =
∫
|x|>1/r0

(g(1/|x|)− s0)ν(dx). We have

I1 =
∫
Rd

|x|2ν(dx)
∫ ∞
g(1/|x|)∨s0

f(s)2ds

=
∫
|x|>1/r0

|x|2ν(dx)
∫ ∞
g(1/|x|)

f(s)2ds+
∫
|x|61/r0

|x|2ν(dx)
∫ ∞
s0

f(s)2ds

= I1,1 + I1,2 (say).

Clearly I1,2 <∞. If α > 1, then

lim
r↓0

1
r2

∫ ∞
g(r)

f(s)2ds = lim
r↓0

s

2(cαsα − β)
=

{
0 (α > 1),
(2cα)−1 (α = 1),

and thus
∫∞
g(1/|x|) f(s)2ds = O(|x|−2) as |x| → ∞, which implies I1,1 <∞. If

0 < α < 1, then, denoting p = (1/α)− 1, we have

lim
r↓0

1
r2(− log r)p

∫ ∞
g(r)

f(s)2ds = (2cαcp)−1

and thus I1,1 6 const
∫
|x|>1/r0

(log |x|)pν(dx) <∞ whenever (5.24) holds.
Condition (5.10) with q = 0 is satisfied if

(5.25)
∫ ∞
s0

∣∣∣∣f(s)γ + f(s)
∫
Rd

x

(
1

1 + |f(s)x|2
− 1

1 + |x|2

)
ν(dx)

∣∣∣∣ ds <∞.
Condition (5.25) holds true if

(5.26)
∫ ∞
s0

∣∣∣∣f(s)
∫
Rd

x

(
1

1 + |f(s)x|2
− 1

1 + |x|2

)
ν(dx)

∣∣∣∣ ds <∞,
since we have

∫∞
s0
f(s)ds <∞. Further, (5.26) is true if

(5.27)
∫ ∞
s0

f(s)ds
∫
Rd

|x|3ν(dx)
(1 + |f(s)x|2)(1 + |x|2)

<∞.

We claim that (5.27) is true whenever (5.24) holds. Define h(u) as

h(u) =
∫ ∞
s0

f(s)u
1 + f(s)2u2

ds =
∫ r0

0

usdr

(1 + r2u2)(cαsα − β)
.

Then the iterated integral in (5.27) equals
∫
Rd
|x|2(1 + |x|2)−1h(|x|)ν(dx). If

α > 1, then, since s(cαsα − β)−1 is bounded and since
∫ r0

0
(1 + r2u2)−1udr 6∫∞

0
(1 + r2)−1dr <∞, we see that h(u) is bounded and (5.27) holds. Suppose
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that 0 < α < 1. Notice from (5.23) that sα−1 ∼ const (− log r)−p with
p = (1/α)− 1 and that

h(u) 6 b
∫ r0

0

u

1 + r2u2
(− log r)pdr = b(log u)1/α

∫ ∞
(− log r0)/(log u)

u1−yypdy

1 + u2−2y

with a constant b. The last integral is the sum of the integral from 1 to ∞
and that from (− log r0)/(log u) to 1, each of which can be shown to tend to 0
as u→∞. It follows that h(|x|) = o((log |x|)1/α), |x| → ∞, when 0 < α < 1.
Hence (5.27) is true whenever (5.24) holds.

Now the proof of (5.21) is complete. We also see (5.22) from this proof,
using Proposition 5.6 and Remark 5.3.

Step 2. Let us prove the theorem in general. We have f1(s) 6 f(s) 6 f2(s)
for s > s0, where fj(s) = ajs

βe−cs
α

, j = 1, 2, with positive constants a1, a2.
Use the results in Step 1. It is evident that f satisfies (5.7). We have∫ ∞

s0

ds

∫
Rd

(|f(s)x|2 ∧ 1)ν(dx) 6
∫ ∞
s0

ds

∫
Rd

(|f2(s)x|2 ∧ 1)ν(dx)

and the reverse inequality with f1 in place of f2. Hence f satisfies (5.8) if and
only if (5.24) holds. We have also (5.27) if (5.24) holds, since∫ ∞

s0

f(s)u
1 + f(s)2u2

ds 6
∫ ∞
s0

f2(s)u
1 + f1(s)2u2

ds =
a2

a1

∫ ∞
s0

f1(s)u
1 + f1(s)2u2

ds.

Thus the assertion (5.21) is shown. The second assertion (5.22) is proved
similarly. �

The integral in the representation of Jurek [5] for the nested subclasses
Lm, m = 0, 1, . . ., can be viewed as a special case of Theorem 5.15, where
α = 1/(m+ 1) and β = 0.

Acknowledgments. The author expresses his thanks to Víctor Pérez-
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[11] B. S. Rajput and J. Rosiński, Spectral representations of infinitely divisible processes,
Probab. Theory Related Fields 82 (1989), 451–487. MR 1001524 (91i:60149)

[12] A. Rocha-Arteaga and K. Sato, Topics in infinitely divisible distributions and Lévy
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