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PURIFICATION OF MEASURE-VALUED MAPS

PETER LOEB AND YENENG SUN

In memory of Joe Doob; his unique insights continue to illuminate our path

Abstract. Given a measurable mapping f from a nonatomic Loeb

probability space (T, T , P ) to the space of Borel probability measures on
a compact metric space A, we show the existence of a measurable map-

ping g from (T, T , P ) to A itself such that f and g yield the same values
for the integrals associated with a countable class of functions on T ×A.

A corollary generalizes the classical result of Dvoretzky-Wald-Wolfowitz

on purification of measure-valued maps with respect to a finite target
space; the generalization holds when the domain is a nonatomic, vector-

valued Loeb measure space and the target is a complete, separable met-
ric space. A counterexample shows that the generalized result fails even
for simple cases when the restriction of Loeb measures is removed. As

an application, we obtain a strong purification for every mixed strategy
profile in finite-player games with compact action spaces and diffuse and

conditionally independent information.

1. Introduction

In 1951, Dvoretzky, Wald and Wolfowitz used the Lyapunov theorem for
vector measures to establish the following result in [9, Theorem 4] (also an-
nounced in [8, Theorem 1] and in [10, Theorem 2.1]).

Theorem 1.1. Let A be a finite set, (T, T ) a measurable space, and
µk, k = 1, · · · ,m, finite, nonatomic signed measures on (T, T ). Let f be
a mapping from T to the space M(A) of probability measures on A such that
for each a ∈ A, f(·)({a}) is T -measurable. Then there exists a T -measurable
function g from T to A such that for each a ∈ A,∫

T

f(t)({a})µk(dt) = µk({t ∈ T : g(t) = a}).
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This theorem justifies the elimination, i.e., purification, of randomness in
various settings. In games, for example, T represents the space of information
available to the game’s players, and A represents the set of actions players may
choose, given the available information t ∈ T . Each player’s objective is to
maximize their own expected payoff, which depends not only on that player’s
choice of action but also on that of all the other players. (Our use of “their” is
consistent with the increasing use of some form of they with singular, generic
antecedents that has its origins in the fourteenth century; see [4].) For each
player, a mapping from the space of information T to particular actions in A is
called a pure strategy. If the mapping is not to A itself but to the spaceM(A)
of probability measures on A, then that mapping is called a mixed strategy;
here the player chooses a “lottery on A”. A Nash equilibrium is achieved
when every player is satisfied with their choice of strategy given the choices
of all the other players. In quite general settings, such an equilibrium can be
achieved when the players choose a mixed strategy. In the more restrictive
settings where Theorem 1.1 or an extension applies, those strategies can then
be purified to obtain an equilibrium with the same expected payoff for all the
players.

In fact, Theorem 1.1 was applied by Dvoretzky, Wald and Wolfowitz to
the purification of both statistical decision procedures (see [8, Theorems 5
and 6], [10, Theorems 3.1 and 3.2, Section 4, Theorems 5.1 and 5.2]), and
of mixed strategies in two-person zero-sum games with finite action sets (see
[8, Theorems 2 and 3], [10, Section 9] on two-person zero-sum games). The
relevance of Theorem 1.1 to the purification problem in finite games with finite
action spaces and incomplete and diffuse information was already suggested
in [20, Footnote 3] and in [19, Section 5]. A unified approach to purification
problems in finite-action games using Theorem 1.1 is presented in [14].

Theorem 1.1 and the applications just noted are restricted to the case of a
finite action space A. We will remove that restriction by establishing a result
valid for a compact metric space and even a complete separable metric space.
Even when A is a closed, finite interval in the real line, however, Example
2.7 below shows that there is no extension of Theorem 1.1 when T is the
unit interval supplied with Lebesgue measure and another measure having a
continuous density function. To obtain our extension, we require that T with
its associated measures are nonatomic measure spaces of the kind introduced
by the first author in [17], and now called “Loeb spaces” in the literature.
Using such a space T , we will obtain a general extension of Theorem 1.1 and
a corresponding application to games.

In Section 2, we consider the purification of measure-valued maps. The-
orem 2.2 shows that for a measurable mapping f from a nonatomic Loeb
probability space (T, T , P ) to the space of Borel probability measures on a
compact metric space A, one can find a measurable mapping g from (T, T , P )
to A such that f and g yield the same values for the integrals associated
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with a countable class of functions on T × A. Corollaries 2.4 and 2.6 then
generalize Theorem 1.1 to the case of a compact metric space and a complete
separable metric space. Corollary 2.4 is then applied in Section 3 to obtain
in Theorem 3.2 the existence of a strong purification for every mixed strat-
egy profile in finite-player games with compact action spaces and diffuse and
conditionally independent information. The example in [13] also shows that
such a purification result is no longer valid when a Loeb space is not used.

2. Main Theorem

Let N denote the natural numbers, R the reals, and R+ the nonnegative
reals. For this section, we fix an ℵ1-saturated extension of a standard super-
structure containing at least the real numbers. In that extension, we let T
be an internal set, T0 an internal algebra on T , and P0 an internal, finitely
additive set function from (T, T0) to ∗R+ with P0(T ) = 1. We let (T, T ,P ) be
the Loeb probability space generated by (T, T0, P0). (See, for example, [1] or
[18].) We assume that P is nonatomic. We will use st to denote the standard
part operation, and write a ' b when a− b is infinitesimal in ∗R.

Let A be a compact metric space. We denote the collection of Borel subsets
of A by B, and we let M(A) be the space of Borel probability measures on
A with the topology of weak convergence. For any mapping f from T to
M(A), the T -measurability of f with respect to this topology is equivalent
to the T -measurability of f(·)(B) for each B ∈ B. The space of continuous
real-valued functions on A is supplied with the sup-norm topology. For any
γ ∈M(A), supp γ is the support of γ, i.e., the complement of the union of all
open γ-null subsets of A.

Let F be the collection of functions φ from T × A to R such that φ(·, a)
is T -measurable on T for each a ∈ A and φ(t, ·) is continuous on A for each
t ∈ T ; assume that for each φ ∈ F there is a P -integrable function αφ from
T to R+ with |φ(t, a)| ≤ αφ(t) for all (t, a) ∈ T ×A.

By a uniform lifting of φ ∈ F (with respect to the internal measure P0),
one means an internal function φ0 : T × ∗A→ ∗

R such that for each a ∈ ∗A,
φ0(·, a) is T0-measurable and for P -almost all t ∈ T , φ0(t, a) ' φ0(t, st a) holds
for any a ∈ ∗A. The existence of such uniform liftings follows from essentially
the same proof as given by Keisler in [12] and generalized in Proposition 4.3.13
of [1].

Lemma 2.1. Let D be a countable subcollection of F . Assume that there
is a sequence of T -measurable mappings {gn, n ∈ N} from T to A such that
for each φ ∈ D, the sequence

∫
T
φ(t, gn(t))P (dt) converges; let cφ ∈ R denote

the limit. Then, there is a T -measurable mapping g from T to A such that
for each φ ∈ D,

(1)
∫
T

φ(t, g(t))P (dt) = cφ.
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Proof. For each n ∈ N, let hn : T → ∗A be a T0-measurable lifting of gn
with respect to the internal measure P0. For each φ ∈ D, let φ0 : T × ∗A →
∗
R+ be a uniform lifting of φ.

By our assumptions, for any φ ∈ D, φ0(·, hn(·)) is a T0-measurable lifting
of φ(·, gn(·)), whence∫

T

φ(t, gn(t))P (dt) '
∫
T

φ0(t, hn(t))P0(dt),

and so

(2) lim
n∈N
n→∞

(
st
∣∣∣∣∫
T

φ0(t, hn(t))P0(dt)− cφ
∣∣∣∣) = 0.

Using ℵ1-saturation, we may extend the sequence hn to an internal sequence
and choose an unlimited integer H ∈ ∗N so that for every φ ∈ D,

(3)
∫
T

∗φ0(t, hH(t))P0(dt) ' cφ.

The desired function g is obtained by setting g(t) := st(hH(t)) at each t ∈ T ,
since then

∫
T
φ(t, g(t))P (dt) = cφ for each φ ∈ D. �

Theorem 2.2. Let D be a countable subcollection of F . Given a T -
measurable mapping f from T to M(A), there is a T -measurable mapping
g from T to A itself such that for each φ ∈ D,

(4)
∫
T

∫
A

φ(t, a)f(t)(da)P (dt) =
∫
T

φ(t, g(t))P (dt).

Proof. We will first prove the result for the case that f : T → M(A) is
simple. We let {Sj}Nj=1 denote the corresponding T -measurable partition of
T such that f is identically equal to a measure γj ∈ M(A) on Sj . Now for
any φ ∈ D,

(5)
∫
T

∫
A

φ(t, a)f(t)(da)P (dt) =
N∑
j=1

∫
Sj

∫
A

φ(t, a)γj(da)P (dt).

For each m ≥ 1, fix a Borel measurable, finite partition Pm = {Am1 ,
. . . , Amkm} of A such that the diameter of each set in Pm is at most 1/2m,
and Pm+1 is a refinement of Pm. For each k with 1 ≤ k ≤ km, pick a point
amk in Amk .

For each φ ∈ D and positive integers m and k with k ≤ km, define a
real-valued, signed measure νφ,mk on (T, T ) by setting for each S ∈ T

(6) νφ,mk (S) :=
∫
S

φ(t, amk )P (dt).
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Note that for each S ∈ T ,∣∣∣νφ,mk (S)
∣∣∣ ≤ ∫

T

αφ(t)P (dt) < +∞.

Let ν be the vector measure on (T, T ) with values in Rkm for which the kth

component is νφ,mk . Since ν is nonatomic and
∑km
k=1 γj(A

m
k ) = 1, it follows

from the Lyapunov Theorem that each Sj can be decomposed by a finite,
T -measurable partition {T j,m1 , . . . , T j,mkm } so that for each k with 1 ≤ k ≤ km,

(7) ν
(
T j,mk

)
= γj(Amk )ν(Sj).

Taking components, this means that for each φ ∈ D, and all positive integers
j, m and k with j ≤ N and k ≤ km, we have

(8) νφ,mk

(
T j,mk

)
= γj(Amk )νφ,mk (Sj);

that is,

(9)
∫
T j,mk

φ(t, amk )P (dt) = γj(Amk )
∫
Sj

φ(t, amk )P (dt).

For each m ≥ 1, define a T -measurable mapping gm from T to A so that
for each k ≤ km and each j ≤ N ,

(10) gm(t) ≡ amk on T j,mk .

Given φ ∈ D, it follows from Equation (9) that

(11)
∫
T

φ(t, gm(t))P (dt) =
N∑
j=1

∫
Sj

km∑
k=1

φ(t, amk )γj(Amk )P (dt).

Now for each t ∈ T , φ(t, ·) is continuous on A and |φ(t, ·)| ≤ αφ(t). Moreover,∑km
k=1 φ(t, amk )γj(Amk ) is a Riemann-sum approximation to

∫
A
φ(t, a)γj(da), so

(12) lim
m→∞

km∑
k=1

φ(t, amk )γj(Amk ) =
∫
A

φ(t, a)γj(da).

By the Dominated Convergence Theorem, it follows from Equations (5), (11)
and (12) that

lim
m→∞

∫
T

φ(t, gm(t))P (dt) = lim
m→∞

N∑
j=1

∫
Sj

km∑
k=1

φ(t, amk )γj(Amk )P (dt)(13)

=
N∑
j=1

∫
Sj

∫
A

φ(t, a)γj(da)P (dt)

=
∫
T

∫
A

φ(t, a)f(t)(da)P (dt).
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Since this is true for each φ ∈ D, it follows from Lemma 2.1 that there is a
T -measurable mapping g from T to A such that for each φ ∈ D, Equation (4)
holds.

We continue with the proof for an arbitrary measurable f : T → M(A).
Since M(A) is a compact metric space under the Prohorov metric ρ (which
induces the topology of weak convergence of measures; see, for example, [6]),
there is a sequence of simple functions {fn}∞n=1 from (T, T ) to M(A) such
that

(14) ∀t ∈ T, lim
n→∞

ρ(fn(t), f(t)) = 0.

For each φ ∈ D and t ∈ T , φ(t, ·) is continuous, and fn(t) converges to f(t)
in the topology of weak convergence of measures on M(A). Moreover,∣∣∣∣∫

A

φ(t, a)fn(t)(da)
∣∣∣∣ ≤ αφ(t).

By the Dominated Convergence Theorem,

(15) lim
n→∞

∫
T

∫
A

φ(t, a)fn(t)(da)P (dt) =
∫
T

∫
A

φ(t, a)f(t)(da)P (dt).

Since for each n ≥ 1, fn is a simple function, there is a T -measurable
mapping gn from T to A such that for each φ ∈ D,

(16)
∫
T

∫
A

φ(t, a)fn(t)(da)P (dt) =
∫
T

φ(t, gn(t))P (dt),

whence

(17) lim
n→∞

∫
T

φ(t, gn(t))P (dt) =
∫
T

∫
A

φ(t, a)f(t)(da)P (dt).

By Lemma 2.1, there is a T -measurable mapping g from T to A such that for
each φ ∈ D, Equation (4) holds for f . �

Remark 2.3. An elementary proof by David Ross of Lyapunov’s theorem
can be found in [21]. Alternatively, one can use the first author’s Lyapunov
theorem [16] in proving Theorem 2.2, but then all of the simple functions must
be modified on a P -null set T0 so that for each of them, the corresponding
partition sets Sj of T are internal. In this case, the limit in Equation (14) is
for all t ∈ T \ T0. The simple proof in [16] employs a theorem of Steinitz [24],
which for our purposes says that for each n ∈ N, there is a positive constant
Cn such that for any collection of vectors from the unit ball of Euclidean space
R
n with sum 0 there is an ordering for which all partial sums are within the

closed ball of radius Cn. An easy proof of Bergström in a difficult to obtain
article [5] uses induction on n: Clearly, 1 suffices for C1. Given Cn and an
indexed collection of vectors from the unit ball of Rn+1 adding to 0, there
is a subset I1 of the index set with the sum of the corresponding vectors a
vector V of maximum norm. The complimentary collection I2 of indices gives
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a sum −V . Let H be the hyperplane through the origin perpendicular to the
line L through 0, V , and −V . Since the projections onto H of the vectors
indexed by I1 add to 0, we may order them so that every partial sum of those
projections is inside the closed ball of radius Cn in H. We may similarly order
the vectors indexed by I2. Since V has maximum norm, the inner product of
each vector indexed by I1 with V is positive, while the inner product of each
vector indexed by I2 with V is negative. Keeping the two orders in taking
vectors from I1 and I2, we may order the vectors indexed by I1 ∪ I2 so that
every partial sum has a projection on L of length at most 1. It follows that√

4C2
n + 1 suffices for Cn+1.

In addition, we note that the Lyapunov theorem in [16] still holds for the
case that n is an unlimited hyperinteger, and there is a hyperfinite internal
partition of T such that the weights for sets in the partition multiplied by n
are still infinitesimal. In some sense, this is related to the assumption that
the dimensionality of the measure space is bigger than the dimensionality of
the target space as used in [25], where markets with many more agents than
commodities are studied systematically.

Corollary 2.4. For each k in a finite or countably infinite set K, let µk
be a finite signed measure on (T, T ) that is absolutely continuous with respect
to P . For each j in a finite or countably infinite set J , let ψj be an element
of F . If f is a T -measurable mapping from T to M(A), then there is a T -
measurable mapping g from T to A such that g(t) ∈ supp f(t) for P -almost
all t ∈ T , and for all k ∈ K, j ∈ J , B ∈ B, and bounded Borel measurable
functions θ on A,

(1)
∫
A
ψj(t, a)f(t)(da)P (dt) =

∫
T
ψj(t, g(t))P (dt),

(2)
∫
T
f(t)(B)µk(dt) = µk

(
g−1[B]

)
,

(3)
∫
T

∫
A
θ(a)f(t)(da)µk(dt) =

∫
T
θ(g(t))µk(dt).

Proof. Let d denote the metric on A, and let Φ be the function from T ×A
to R defined by setting Φ(t, a) := d(a, supp f(t)). From the definition of the
support of f(t), it is clear that for any open set O, O ∩ supp f(t) 6= ∅ is
equivalent to f(t)(O) > 0, whence, by Theorem 14.78 in [2], Φ ∈ F . For each
k ∈ K, we let βk be the Radon-Nikodym derivative of µk with respect to
P . Let G be a countable dense set in the space of continuous functions on A
with the supnorm topology. Let D ⊆ F consist of all the functions, ψj , j ∈ J ,
together with Φ and all the functions βk(t)h(a) on T×A for h ∈ G and k ∈ K.
Now by Theorem 2.2, there is a T -measurable mapping g from T to A such
that for each φ ∈ D,

(18)
∫
T

∫
A

φ(t, a)f(t)(da)P (dt) =
∫
T

φ(t, g(t))P (dt).
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Since Equation (18) holds for φ = Φ,∫
T

d(g(t), supp f(t))P (dt)

=
∫
T

∫
supp f(t)

d(a, supp f(t))f(t)(da)P (dt) = 0.

Therefore, g(t) ∈ supp f(t) for P -almost all t ∈ T .
Conclusion 1 follows from Equation (18) applied to the functions φ = ψj ,

j ∈ J . Conclusion 2 is equivalent to Conclusion 3, and Conclusion 3 is a
consequence of the fact that for each k ∈ K, Equation (18) holds for all the
functions βk(t)h(a), h ∈ G. That is, we know that

(19)
∫
T

∫
A

h(a)f(t)(da)µk(dt) =
∫
T

h(g(t))µk(dt)

holds for all h ∈ G, thus for all continuous functions on A, and therefore for
all bounded Borel measurable functions on A. �

Remark 2.5. For a T -measurable mapping f from T toM(A), Theorem
3 in [23] shows that there is a T -measurable mapping g from T to A such that
g(t) ∈ supp f(t) for P -almost all t ∈ T , and

∀B ∈ B,
∫
T

f(t)(B)P (dt) = Pg−1(B).

This is related to the present work as a special case of Corollary 2.4 that
involves only the measure P . A more distant relationship exists with Cutland’s
work on control theory [7] in which he considers a probability-valued map on
[0, 1] supplied with the usual differential system, and replaces that “relaxed
control” with a point-valued control defined on a different, hyperfinite space.

The following generalization of the Dvoretzky-Wald-Wolfowitz theorem on
purification in a finite target space is a consequence of Corollary 2.4 for
the case that no function ψj is taken from F ; i.e., the index set J is empty.
Moreover, for this generalization we can let A be a complete separable metric
space since there always exists a Borel bijection from such a space to a compact
metric space. That is, if A is uncountable, then it follows from Kuratowski’s
theorem (see [22], p. 406) that there is a Borel bijection from A to [0, 1].
On the other hand, for a countable set A, one can use a bijection from A
to {0, 1, 1/2, . . . , 1/n, . . . }. We also note that given any finite or countably
infinite collection of finite, nonatomic, signed Loeb measures µk, one can
always find a nonatomic Loeb probability measure P with respect to which
they are all absolutely continuous. We fix the measurable space (T, T ) as
before.

Corollary 2.6. Let K be a finite or countably infinite set, and let A be
a complete separable metric space. For each k ∈ K, let µk be a nonatomic,
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finite, signed Loeb measures on (T, T ). If f is a T -measurable mapping from
T toM(A), then there is a T -measurable mapping g from T to A such that for
all k ∈ K and all Borel sets B in A,

∫
T
f(t)(B)µk(dt) = µk

(
g−1[B]

)
. This is

equivalent to the condition that for any bounded Borel measurable function θ
on A,

(20)
∫
T

∫
A

θ(a)f(t)(da)µk(dt) =
∫
T

θ(g(t))µk(dt).

The following example shows that Corollary 2.6 is false without the use of
Loeb measures. Since Corollary 2.6 is a special case of Theorem 2.2 and also
a special case of Corollary 2.4, each of those results fails without the use of
Loeb measures.

Example 2.7. Let (T, T ) be the unit interval with the Borel σ-algebra.
Let A = [−1, 1] and f(t) = (δt + δ−t)/2, where δt denotes the Dirac measure
at t for each t ∈ T . Let λ denote Lebesgue measure on R. We consider two
measures on (T, T ). The first, µ1, is λ on T , and the second, µ2, is λ on T
multiplied by the density 2t. Given any continuous even function ψ on A, and
any measure ν on T ,∫

T

∫
A

ψ(a)f(t)(da)ν(dt) =
∫

[0,1]

ψ(t)ν(dt).

Suppose that there is a g satisfying Equation (20) for k = 1, 2. Take k = 2
and φ(a) = |a| on A. Then,∫ 1

0

2t |g(t)|λ(dt) =
∫
T

∫
A

|a| f(t)(da)µ2(dt) =
∫ 1

0

2t2dt =
2
3
.

On the other hand, since µ1 = λ,∫ 1

0

(g(t))2
λ(dt) =

∫
T

∫
A

a2f(t)(da)λ(dt) =
∫ 1

0

t2dt =
1
3
.

Therefore,∫ 1

0

(t− |g(t)|)2
λ(dt) =

∫ 1

0

t2dt−
∫ 1

0

2t |g(t)|λ(dt) +
∫ 1

0

(g(t))2
λ(dt) = 0.

It follows that g(t) must take the value t or −t λ-a.e. But if g takes the
value t on a set E ∈ T , and θ is the characteristic function of E as a subset
of [−1, 1], then

1
2
λ(E) =

∫
T

∫
A

θ(a)f(t)(da)µ1(dt) =
∫
T

θ(g(t))µ1(dt) = λ(E),

so λ(E) = 0. Similarly λ (T \ E) = 0, and this is impossible.
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3. Finite games with incomplete information

As an application of the results in Section 2, we provide a strong purification
result for finite games with incomplete information as considered in Milgrom-
Weber [19]. A game with incomplete information Γ consists of a finite set
of ` players and the following associated spaces and functions. Each player
i chooses actions from a compact metric space Ai; the product Π`

j=1Aj is
denoted by A. For each player i, a measurable space (Ti, Ti) represents the
personal information and events based on which that player will choose actions
from Ai. However, the players’ information is incomplete in the sense that
they do not know the particulars of the other players’ information. The payoff
for the i-th player depends on the actions chosen by all the players, and player
i’s private information ti ∈ Ti, together with a common state t0 ∈ T0 that
affects the payoffs of all the players. That is, the i-th player’s payoff is given by
a function ui : A× T0 × Ti −→ R. We assume that T0 is a finite or countably
infinite set {t0k : k ∈ K}; T0 denotes the power set of T0. The product
measurable space (T, T ) := (Π`

j=0Tj ,Π
`
j=0Tj) equipped with a probability

measure η constitutes the information space of the game Γ. Let η0 be the
marginal probability measure on the countable set T0, and assume that its
only null set is the empty set. We also assume that there is an integrable
function α on (T, T , η) such that for each payoff function ui and each a ∈ A,
ui(a, t0, ti) viewed as a function on T is measurable and dominated by α.
Note that a boundedness condition on the payoffs is assumed in [19, p. 623].
We further assume that each payoff ui(·, t0, ti) is a continuous function on A
when t0 and ti are fixed.

A mixed strategy for player i is a Ti-measurable mapping from Ti toM(Ai);
a pure strategy is a Ti-measurable mapping from Ti to Ai. Of course, a pure
strategy can also be viewed as a mixed strategy using only Dirac measures.
A mixed (pure) strategy profile is a collection h = {hi}`i=1 of mixed (pure)
strategies that specifies a mixed (pure) strategy for each player. In what
follows, when i is given, we shall abbreviate a product over all indices 1 ≤ j ≤ `
except for j = i by Πj 6=i; i.e., Πj 6=i means Π1≤j≤`,j 6=i. We shall use the
following (conventional) notation: A−i = Πj 6=iAj , T−i = Πj 6=iTj , a = (ai, a−i)
for a ∈ A, t−0 = (t1, . . . , t`) = (ti, t−i) for (t0, t1, . . . , t`) ∈ T , and (hi, h−i)
denotes the strategy profile h.

Assume that the players play the mixed strategy profile f = {fi}`i=1. Then,
the resulting expected payoff for player i is

(21) Ui(f) :=
∫
T

∫
A

ui(a, ti, t0)f1(t1)(da1) · · · f`(t`)(da`)η(dt),

where for each t ∈ T , the inside integral on A is the iterated integral∫
A`

· · ·
∫
A1

ui(a1, . . . , a`, ti, t0)f1(t1)(da1) · · · f`(t`)(da`).
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The mixed strategy profile f is a Nash equilibrium for the game Γ if for each
player i, Ui(fi, f−i) ≥ Ui(f ′i , f−i) for any other mixed strategy f ′i player i can
choose. By introducing an appropriate dummy player 0 with constant payoff
u0 and information space (T0, T0), one can show as a corollary of Theorem 3.1
in [3] that there exists a mixed strategy profile that is a Nash equilibrium for
the game Γ.

The marginal probability measure of η on (Tj , Tj) will be denoted by ηj for
0 ≤ j ≤ `. For the principal result of this section, we will need a condition on
the probability measure η. For each t0k ∈ T0, k ∈ K, let η(·; t0k) denote the
conditional probability measure on the space (Π`

j=1Tj ,Π
`
j=1Tj) when t0 = t0k;

such a conditional probability measure always exists since T0 is countable. For
each player i, let ηi(·; t0k) be the marginal probability measure of η(·; t0k) on
the space (Ti, Ti). Following [14] and [19], we shall assume that

(22) η(·; t0k) = Π`
i=1ηi(·; t0k).

The latter equality is simply a formulation of the intuitive statement that
conditioned on t0 ∈ T0, each player’s information is independent of the infor-
mation of the other players. We shall denote the measure ηi(·; t0k) on (Ti, Ti)
by µik.

The following definition has been introduced in [14].

Definition 3.1. A pure strategy profile g = {gi}`i=1 is said to be a strong
purification of the mixed strategy profile f = {fi}`i=1 if the following four
conditions are satisfied for each player i.

(1) Ui(f) = Ui(g).
(2) For any given mixed strategy f ′i of the player i, Ui(f ′i , f−i) =

Ui(f ′i , g−i).
(3) For each k ∈ K, gi and fi have the same conditional distribution on

the action space Ai given that t0 = t0k; i.e.,∫
Ti

fi(ti)(·)µik(dti) =
∫
Ti

gi(ti)(·)µik(dti) = µikg
−1
i (·).

(4) For ηi-almost all ti ∈ Ti, gi(ti) ∈ supp fi(ti).

Item (2) above says that the expected payoff of player i from the choice of
an arbitrary mixed strategy is the same irrespective of whether the opponents
play f−i or g−i. It is thus clear that if two strategy profiles satisfy Items (1)
and (2) and one is an equilibrium of the game Γ, so is the other.

Now we can apply the results of Section 2 to obtain a strong purification
of any mixed strategy profile.

Theorem 3.2. Assume that (1) each player i’s information is indepen-
dent of the information of the other players conditioned on the common in-
formation as in Equation (22); (2) the marginal probability measure ηi of η
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on (Ti, Ti) is a nonatomic Loeb measure. Then every mixed strategy profile f
for the game Γ has a strong purification.

Proof. Fix player i. For each k ∈ K, let λk be the positive probability
weight η0({t0k}). It is clear that for each Si ∈ Ti, ηi(Si) =

∑
k∈K λkµik(Si).

Thus, each µik is absolutely continuous with respect to ηi; let βik be the
Radon-Nikodym derivative of µik with respect to ηi.

Based on our assumption for η of conditional independence as given by
Equation (22), the expected payoff Ui(f) of player i for a mixed strategy
profile f given by Equation (21) is (recall that t−0 represents (t1, . . . , t`))

(23)
∑
k∈K

λk

∫
t−0∈Π`j=1Tj

∫
a∈Π`j=1Aj

ui(a, ti, t0k)Π`
j=1fj(tj)(da)Π`

j=1µjk(dt−0)

which means that

(24) Ui(f) =
∫
Ti

∫
Ai

ψfi (ti, ai)fi(ti)(dai)ηi(dti),

where ψfi (ti, ai) (which depends on the mixed strategy profile f) equals
(25)∑

k∈K

λkβik(ti)
∫
T−i

∫
A−i

ui(ai, a−i, ti, t0k)Πj 6=ifj(tj)(da−i)Πj 6=iµjk(dt−i).

For each j = 1, · · · , `, denote the measure
∫
Tj
fj(tj , ·)µjk(dtj) on Aj by

γ
fj
jk. Then, from Formula (25) we obtain

(26) ψfi (ti, ai) =
∑
k∈K

λkβik(ti)
∫
a−i∈A−i

ui(ai, a−i, ti, t0k)dΠj 6=iγ
fj
jk(a−i).

Equations (24) and (26) imply that the i-th player’s expected payoff depends
on the actions of the other players only through the conditional distributions
(given t0 = t0k) of their strategies induced on their action spaces.

Recall that α is the η-integrable function that dominates all the payoff
functions. Let αi be the function from Ti to R+ such that for each ti ∈ Ti,

(27) αi(ti) =
∑
k∈K

λkβik(ti)
∫
t−i∈T−i

α(t0k, ti, t−i)Πj 6=iµjk(dt−i).

By the Fubini property, it is clear that αi is ηi-integrable and that
∫
T
α(t)η(dt)

=
∫
Ti
αi(ti)ηi(dti). Since, for any a ∈ A, and any t ∈ T , |ui(a, ti, t0)| ≤

α(t0, ti, t−i), Equations (25) and (27) imply that for each ti ∈ Ti, ai ∈ Ai,
ψfi (ti, ai) ≤ αi(ti). The function ψfi (·, ai) is obviously measurable on Ti, and
the function ψfi (ti, ·) is continuous on Ai.

We now apply Corollary 2.4. The Loeb probability space (Ti, Ti, ηi) and
the function ψfi here correspond respectively to the Loeb probability space
(T, T , P ) and the functions ψj , j ∈ J in Corollary 2.4. The objects µik, k ∈ K,
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Ai and fi correspond to those objects in Corollary 2.4 by dropping the sub-
index i. By Corollary 2.4, there exists a pure strategy gi for player i such that
for all k ∈ K,

(i)
∫
Ti

∫
Ai
ψfi (ti, ai)fi(ti)(dai)ηi(dti) =

∫
Ti
ψfi (ti, gi(ti))ηi(dti);

(ii) for all Borel set B in Ai,
∫
Ti
fi(ti)(B)µik(dti) = µikg

−1
i (B) = γfiik ;

(iii) gi(ti) ∈ supp fi(ti) for ηi-almost all ti ∈ Ti.
Applying the above procedure to each player i, we obtain a pure-strategy

profile g = (g1, · · · , g`). Now it follows from (ii) and (iii) above that (3) and
(4) in Definition 3.1 are satisfied.

To show (1) and (2) in Definition 3.1 are satisfied, consider any mixed
strategy f ′i for a fixed player i. Let (f ′i , f−i) be denoted by f ′ and (f ′i , g−i)
by g′.

By Equation (24), the expected payoffs of player i with f ′, g and g′ are
given, respectively, by

Ui(f ′) =
∫
Ti

∫
Ai

ψf
′

i (ti, ai)f ′i(ti)(dai)ηi(dti),(28)

Ui(g) =
∫
Ti

ψgi (ti, gi(ti))ηi(dti),(29)

Ui(g′) =
∫
Ti

∫
Ai

ψg
′

i (ti, ai)f ′i(ti)(dai)ηi(dti).(30)

Since Item (ii) above holds for all players, it is obvious that for j 6= i, γfjjk =
γ
gj
jk. By Equation (26 ), ψfi only depends on the probability distributions

γ
fj
jk, j 6= i. Hence, we have ψfi = ψgi = ψf

′

i = ψg
′

i . By Item (i) above together
with Equations (24) and (29), it follows that

Ui(f) =
∫
Ti

∫
Ai

ψfi (ti, ai)fi(ti)(dai)ηi(dti) =
∫
Ti

ψfi (ti, gi(ti))ηi(dti)

=
∫
Ti

ψgi (ti, gi(ti))ηi(dti) = Ui(g).

This means that (1) in Definition 3.1 holds. Similarly,

Ui(f ′) =
∫
Ti

∫
Ai

ψf
′

i (ti, ai)f ′i(ti)(dai)ηi(dti)

=
∫
Ti

∫
Ai

ψg
′

i (ti, ai)f ′i(ti)(dai)ηi(dti) = Ui(g′),

whence (2) in Definition 3.1 holds, and we are done. �

Remark 3.3. In Section 4 of [14], a finite-player game Γ0 with finite ac-
tion spaces, and diffuse and mutually independent private information, as
formulated by Radner-Rosenthal [20], is reformulated as a special case of the
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finite-action game considered in [19]. That allows a synthetic treatment of
finite-player and finite-action games with private information that is inde-
pendent or conditionally independent. It is shown in Theorem 2 of [14] that
in the game Γ0 with finite action spaces, every mixed strategy profile has a
strong purification. When the game Γ0 has compact metric action spaces,
Theorem 3 in [15] shows the existence of pure-strategy equilibria for Γ0 in
the case of nonatomic Loeb information spaces. By viewing a game Γ0 with
compact metric action spaces as a special case of the game Γ considered in
this section, Theorem 3.2 then implies that under the conditions of Theorem
3 in [15], every mixed strategy profile in the game Γ0 with compact metric
action spaces has a strong purification.

Remark 3.4. As noted in the third paragraph of this section, a Nash
equilibrium in mixed strategies exists in the game Γ. Theorem 3.2 then implies
that a Nash equilibrium in pure strategies exists in the game Γ with nonatomic
Loeb probability spaces modeling information. The example in [13] presents a
two-player game with the Lebesgue unit square as the joint information space
and the interval [−1, 1] as the action space for both players; it has no Nash
equilibrium. Thus, for games Γ and Γ0 with compact metric action spaces,
both the strong purification result and the existence of a pure-strategy Nash
equilibrium can fail if we remove the restriction that the private information
spaces are nonatomic Loeb probability spaces. A general purification result
is claimed by Fudenberg and Tirole in [11, Theorem 6.2, p. 236]. This result
holds when the private information spaces are nonatomic Loeb probability
spaces as shown in Theorem 3.2; it fails otherwise as in [13].

Finally, Theorem 5.2 of [26] shows that some version of purification exists in
terms of finding values from the extreme points of some compact and convex
sets in a finite-dimensional space with linear payoffs. It is also remarked in [26,
p. 42] that only an approximate pure strategy Bayesian equilibrium can be
obtained when the target space becomes infinite-dimensional. We note that
the spaces of Borel probability measures on infinite compact metric spaces
(such as the interval [−1, 1] considered in [13]) are infinite dimensional. Thus,
Theorem 5.2 of [26] is not applicable to our case.
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