THE SPACE OF HOMEOMORPHISMS ON A TORUS¹

BY Mary-Elizabeth Hamstrom

There have been several recent results concerning homotopy properties of the space of homeomorphisms on a manifold. Most of these properties have been local. In [4], Eldon Dyer and I proved that the space of homeomorphisms on a 2-manifold is locally contractible and in [5] and [6] it is proved that the space of homeomorphisms on a 3-manifold is locally homotopy connected in all dimensions. Global properties appear to be more difficult. A well known result of Alexander's [1] states that the space of homeomorphisms on an n-cell leaving its boundary pointwise fixed is contractible and locally contractible. In a recent paper [7] it is proved that the identity component of the space of homeomorphisms on a disc with holes leaving its boundary pointwise fixed is homotopically trivial. In the present paper, the identity component of the space of homeomorphisms on a torus is considered and it is proved that its homotopy groups are the same as those for the torus. For related results, see [2], [11], [12], and [13].

THEOREM 1. If k is an integer greater than 1, then the identity component of the space H of homeomorphisms of a torus T onto itself has the property that $\pi_k(H) = 0$.

Proof. Let C denote a meridian simple closed curve on T and P a point of C. A covering space of T is $C \times E^1$, where E^1 is the real line and the covering map π is such that $\pi(x, 0) = x$ for each x in C and, in general, $\pi(x, t) = \pi(y, t')$ if and only if x = y and t - t' is an integer. If n is a non-negative integer, S^n denotes an n-sphere and will be considered as the boundary of the (n + 1)-cell, R^{n+1} .

Let F denote a mapping of S^k into H and g the mapping of S^k into T defined by g(x) = F(x)(P). There exists a mapping G of S^k into $C \times E^1$ such that $\pi G(x) = g(x)$ and for each x in S^k , there is a unique mapping f(x) of C into $C \times E^1$ such that f(x)(P) = G(x) and for g in G, $\pi f(x)(g) = F(x)(g)$. The existence of G is a consequence of the various lifting properties of fiber spaces. (See [10, p. 63, Th 3.1.].) To see that $F(x) \mid C$ can be lifted, note that $F(x) \mid C$ is homotopic to the identity in G, since G is in the identity component of G. In particular, there is a mapping G of G into G is a homeomorphism onto a meridian of G into G is a strong deformation retract of G in G in G into G i

Received September 19, 1963.

¹ Presented to the American Mathematical Society April 29, 1963. This work was supported in part by the National Science Foundation.

that $\pi \tilde{\varphi} = \varphi \mid C \times 0$ and $\tilde{\varphi}(P, 0) = G(x)$, another form of the lifting property mentioned in [10] implies the existence of an extension of $\tilde{\varphi}$ to a map Φ of $C \times I$ into $C \times E^1$ such that $\pi \Phi(x) = \varphi(x)$. Since $\varphi(P, t) = g(x)$ for each t, $\Phi(P, t) = G(x)$. Then f(x) is the mapping $\Phi \mid C \times 1$ and it is obviously a homeomorphism.

The mapping f can be obtained in another instructive way. Coordinatize C by the reals mod 1, letting P have coordinate 0 and let k(x) be the mapping of I(=[0,1]) into T such that k(x)(y) = F(x)(y). Then the mapping $k^*(x)$ of I into $C \times E^1$ such that $k^*(x)(y) = f(x)(y)$ is the unique "lifting" of k(x) that takes 0 onto G(x). Note that $k^*(x)(0) = k^*(x)(1)$. Now consider $S^k \times I$. Let ψ be the mapping of this into T such that $\psi(x,y) = F(x)(y)$. For each $x, \psi(x,0) = \psi(x,1)$. But $S^k \times 0$ is a strong deformation retract of $S^k \times I$. Thus there is a mapping ψ^* of $S^k \times I$ into $C \times E^1$ such that $\pi \psi^* = \psi$ and $\psi^*(x,0) = G(x)$. Since $k^*(x)$ above is unique, $\psi^*(x,y) = k^*(x)(y) = f(x)(y)$ and $\psi^*(x,1) = \psi^*(x,0)$. This demonstrates the continuity of the mapping f of S^k into $C \times E^1$.

Since k > 1, the mapping g is homotopic to 0 in T. It thus follows from the theorems of [8] that F is homotopic in H to a mapping F' such that F'(x)(P) = P for each x in S^k . In what follows it will be assumed that F(x)(P) does not vary with x.

Let $N^+(F)$ denote the largest integer n such that there exist an x in S^k and a y in C such that the E^1 coordinate of f(x)(y) is in the half-open number interval [n, n + 1) and let $N^-(F)$ denote the least integer m for which there exist such x and y such that the E^1 coordinate of f(x)(y) is in (m - 1, m]. Denote by A_j the annulus $C \times [j, j + 1]$. Suppose that there exist an x and an x' such that f(x)(C) meets A_n and f(x')(C) meets A_{m-1} but that for no x does f(x)(C) meet A_{m-2} or A_{n+1} . An upper semicontinuous decomposition of A_n will be constructed that will be used to deform F in H to a mapping F' for which $N^+(F') - N^-(F') < N^+(F) - N^-(F)$ unless this last number is already -1, the least it can be.

For each x in S^k , denote by C_x , C'_x , J^+ and J^- the sets $A_n \cap f(x)(C)$, $A_{m-1} \cap f(x)(C)$ and the right and left boundary curves of A_n . Note that C_x does not intersect J^+ . Translate C'_x to the right through n+1-m units, i.e., take the point (a,b) of C'_x onto (a,b+n+1-m), to obtain C^*_x . Then C^*_x does not intersect $C_x \cup J^-$. Let G_x denote the collection whose elements are (1) the union of J^- , C_x and the components of $A_n - C_x$ whose closures do not intersect J^+ , (2) the union of J^+ , C^*_x and the components of $A_n - C^*_x$ whose closures do not intersect J^- and (3) the remaining points of A_n . It is seen that G_x is an upper semicontinuous decomposition of A_n whose decomposition space is homeomorphic to S^2 .

In $S^k \times A_n$, let G be the decomposition consisting of those sets (x, g), where g is an element of G_x . Since the convergence of the sequence $\{x_i\}$ of points of S^k to a point x implies the convergence of $\{f(x_i)(C)\}$ to f(x)(C), the collection G is upper semicontinuous. From [9] it follows that the de-

composition space X associated with G is homeomorphic to $S^k \times S^2$. If T represents the associated mapping of $S^k \times A_n$ onto X, or the homeomorphism of X onto $S^k \times S^2$ and α the projection map of $S^k \times S^2$ onto S^k , then if $(x, y) \in S^k \times A_n$, $\alpha rT(x, y) = x$. Note that there exist points p, q of S^2 such that for each x in S^k , $(rT)^{-1}(x, p)$ and $(rT)^{-1}(x, q)$ are nondegenerate and that if $\alpha \neq p$, q, then $(rT)^{-1}(x, \alpha)$ is degenerate.

Let K be a simple closed curve in S^2 separating p from q. Then for each x, $(rT)^{-1}(x, K)$ is a simple closed curve in (x, A_n) separating $(x, C_x \cup J^-)$ from $(x, C_x^* \cup J^+)$ in (x, A_n) and there is a homeomorphism β of $\bigcup (x, (rT)^{-1}(x, K))$ onto $S^k \times K$ such that the diagram,

$$U(x, (rT)^{-1}(x, K)) \xrightarrow{\beta} S^k \times K$$

$$\alpha \qquad \qquad \downarrow \alpha$$

$$S^k.$$

where α' is the projection map of $S^k \times A_n$ onto S^k , is commutative.

If K is coordinatized, as is C, by the reals mod 1, the mapping z(x), $x \in S^k$, that takes each point y of C onto the second coordinate of $\beta^{-1}(x, y)$ is a homeomorphism and z maps S^k continuously into G_C , the space of homeomorphisms of C into int A_n . Each z(x)(C) separates $C_x \cup J^-$ from $C_x^* \cup J^+$. The homeomorphism β may be chosen so that πz maps S^k into H_C , the space of orientation-preserving homeomorphisms of C into curves of C isotopic to meridian curves. Let C denote the mapping of $C \times S^k$ into C into that C into C into curves of C into that C into C into C into the interval C into the interval C into C into curves of C into the interval C interval C into the interval C interval C into the interval C interval C interval C interval C interval C int

$$\eta(C \times [0, 1] \times x) \subset T \times x, \qquad \eta(y, 0, x) = (y, x), \qquad \eta(y, 1, x) \in Z(C, x);$$

by [8, Th. 1.2], there is a homeomorphism γ of $T \times [0, 1] \times S^k$ onto itself such that if $y \in C$, $\gamma(y, t, x) = [\eta(y, t, x), t, x]$ and, for each $y, \gamma(y, 0, x) = (y, 0, x)$. Hence, by a projection of $T \times [0, 1] \times S^k$ onto T, there is obtained a mapping γ^* of $I \times S^k$ into H such that $\gamma^*(1, x)(C) = \pi z(x)(C)$ and $\gamma^*(0, x) = i$.

For each x in S^k , denote by Q(t, x) the mapping $\gamma^*(t, x)[\gamma^*(1, x)]^{-1}$. Then Q is a mapping of $I \times S^k$ into H, Q(1, x) = i and $Q(0, x) = [\gamma^*(1, x)]^{-1}$. Then if $F^*(t, x) = Q(t, x)F(x)$,

$$F^*(1, x) = F(x)$$
 and $F^*(0, x) = [\gamma^*(1, x)]^{-1}F(x)$.

Note that since $\gamma^*(1, x)(C) = \pi z(x)(C)$,

$$N^{+}[F^{*}(0, x)] - N^{-}[F^{*}(0, x)] < N^{+}(F) - N^{-}(F)$$

unless the latter number is -1. Precautions could have been made,

by using the theorems of [8], to keep $F^*(0, x)(P)$ independent of x or these theorems could be used now to achieve this result without changing $N^+[F^*(0, x)] - N^-[F^*(0, x)]$.

This process can be repeated until F is homotopic in H to a mapping F_1 such that for each x in S^k , $F_1(x)(C)$ does not intersect C. The same reasoning yields a homotopy in H of F_1 to a mapping F_2 such that $F_2(x)$ leaves C pointwise fixed. Since H is the *identity* component, the *angle change*, as defined in [4], along $F_2(x)(C')$, where C' is a longitudinal simple closed curve, is 0. Therefore, the techniques of [4] (see page 526) demonstrate that F_2 is homotopic to F_3 in H, where for each x, $F_3(x)$ is the identity homeomorphism on T. This proves that $\pi_k(H) = 0$ if k > 1.

Lemma A. Suppose that f is a member of H that leaves P fixed. Then f is isotopic to the identity in such a way that each homeomorphism in the isotopy leaves P fixed.

Proof. Let f_t , $0 \le t \le 1$ be an isotopy such that $f_1 = f$ and $f_0 = i$. Denote by g the mapping of $I \times I$ into T taking (t, s) onto $f_{t+s(1-t)}(P)$. There is a mapping G of $C \times I$ into T such that

$$G(x, 0) = x,$$
 $G(x, 1) = x,$ $G(P, t) = f_t(P),$

and $G \mid C \times t$ is a homeomorphism. For each t, $G \mid C \times t$ can be constructed by rigidly moving P to $f_t(P)$ and taking C along with it. It is then easy to extend $G \mid C \times t$ to $T \times t$ so that there is a mapping G^* of I into H such that $G^*(t) \mid C = G \mid C \times t$ and $G^*(0) = G^*(1) = i$.

In $T \times I \times I$, let Z be a homeomorphism of

$$(T \times I \times 0) \cup (T \times I \times 1) \cup (T \times 0 \times I)$$

onto itself such that $Z(x, t, 1) = (f_1(x), t, 1), Z(x, t, 0) = (G^*(t)(x), t, 0)$ and $Z(x, 0, s) = (f_s(x), 0, s)$. Also, there is a homeomorphism z of $P \times I \times I$ into $T \times I \times I$ such that z(P, t, s) = (g(t, s), t, s). Note that

$$z(P, 1, s) = (g(1, s), 1, s) = (f_1(P), 1, s) = (P, 1, s)$$

and that where Z is defined, Z extends z. It thus follows from Theorem 1.3 of [8] that there is a homeomorphism Z^* of $T \times I \times I$ onto itself that extends z and Z and carries each (T, t, s) onto itself. If $Z^*(x, 1, s) = (y, 1, s)$, let $f_s^*(x) = y$. It is seen that $f_s^*(P) = P$, $f_1^*(x) = f_1(x) = f(x)$ and $f_0^*(x) = G^*(1)(x) = x$. Then f_s^* is the required homotopy.

LEMMA B. If f is an orientation preserving map of $C \times I$ onto itself such that $f \mid C \times (0 \cup 1) = i$ and for each $t \neq 0, 1, f \mid C \times t$ is a homeomorphism into int $(C \times I)$ that leaves (P, t) fixed, then there is a homotopy f_s such that $(1) f_0 = f$, $(2) f_1 = i$, and (3) for each s, f_s maps $C \times I$ onto itself,

$$f_{s} \mid C \times (0 \cup 1) = i,$$

 $f_s \mid C \times t$ is a homeomorphism into int $(C \times I)$ for each $t \neq 0$, 1 and $f_s(P, t) = (P, t)$.

Proof. For each $t \geq \frac{1}{2}$, let g_t be the mapping of $C \times I$ into itself that takes (x, s) onto (x, s/2t). If $t \leq \frac{1}{2}$, let g_t take (x, s) onto

$$(x, 1 - (1 - s)/2(1 - t)).$$

For each t, $g_t(P, t) = (P, \frac{1}{2})$ and $g_t f(C, t) \subset \text{int } (C \times I)$. Also, $g_1(x, 1) = (x, \frac{1}{2}) = g_0(x, 0)$ and $g_{1/2}(x, s) = (x, s)$.

Let ϕ be the mapping of S^1 into the space H' of orientation-preserving homeomorphisms of C into int $(C \times I)$ that takes t into the homeomorphism mapping the point x of C into $g_t f(x, t)$. It follows from Theorem 3.1 of [8] that there is a mapping Φ of $S^1 \times I$ into H' such that $\Phi(t, 0) = \phi(t)$, $\Phi(t, 1)(x) = (x, \frac{1}{2})$, $\Phi(t, s)(P) = (P, \frac{1}{2})$ for each t, s and x, and $\Phi(1, s)(x) = (x, \frac{1}{2}) = \Phi(0, s)(x)$. Then if f_s maps $C \times I$ into itself in such a way that $f_s(x, t) = g_t^{-1}\Phi(t, s)(x)$, f_s is the required homotopy. The computations that demonstrate this are easily made.

Theorem 2. The group $\pi_1(H)$ is isomorphic to $\pi_1(T)$.

Proof. Coordinatize C and S^1 by the reals mod 1, consider T as $C \times C$, identify $0 \times C$ with C and suppose $\pi(x,t) = (x,t)$. Let F be a mapping of S^1 into H. Since H is the identity component, there is a mapping Z of I into H such that Z(0) = F(0) and Z(1) = i. Then $F(x)[Z(1-t)]^{-1}$ is a homotopy of F to a mapping taking 0 onto the identity. Hereafter, it will be assumed of F that F(0) = F(1) = i. Consider the mapping F(0) = I of F(0) = I into F(0) = I such that F(0) = I into F(0) = I into F(0) = I such that F(0) = I into that F(0) = I into that F(0) = I into the space of homeomorphisms of F(0) = I into F(0) = I into the space of homeomorphisms of F(0) = I into F(0) = I into F(0) = I into the space of homeomorphisms of F(0) = I into F

Consider the homeomorphisms α and β of S^1 into T such that $\alpha(x) = (0, x)$ and $\beta(x) = (x, 0)$. Then g is homotopic in T relative to 0 to $r\beta + s\alpha$, where r and s are integers, and this mapping may be assumed to "lift" under π to an arc in $C \times E^1$ that, if r > 0, goes along $0 \times [0, r - 1]$ and then wraps around $C \times [r - 1, r]$ s times, meeting each $C \times x$ exactly once. If r < 0, a similar remark holds. If r = 0, then $s\alpha$ takes each x of S^1 onto the point (0, sx).

Case 1. r > 0. By the theorems of [8], F may be assumed to be such that g actually is $r\beta + s\alpha$ and lifts into $C \times E^1$ as described above. Let $0 = t_0 < t_1 < \cdots < t_r = 1$ be such that $G(t_j)$ has coordinates (0, j). Note that $F(t_j)(0, 0) = (0, 0)$. In fact, it may be assumed that the second coordinate of g(t) is $(t - t_{j-1})/(t_j - t_{j-1})$ if $t_{j-1} \le t \le t_j$. It then follows from

Lemma A that in H there is an arc connecting $F(t_i)$ to a map $F_1(t_i) = i$ and that each homeomorphism in this arc leaves (0, 0) fixed. These arcs carry a partial homotopy of F in H which may be extended to a homotopy of F to a mapping F_1 of S^1 into H such that $F_1(t_i) = i$. Define g_1 , G_1 , f_1 as g, G, f were defined.

The proof of Theorem 1 may now be followed almost word for word to get a sequence of homotopies leaving $F_1(t)$ fixed if $t_1 \leq t \leq 1$. The first takes F_1 to a mapping F'_1 such that $F'_1(t)(C)$ doesn't intersect C if $0 < t < t_1$. Since g'_1 is homotopic to g under a homotopy leaving $g'_1(0) = g'_1(t)$ fixed, the second homotopy of the sequence takes F'_1 to F''_1 , where $F'''_1(t)(0, 0) = (0, t/t_1)$. The third homotopy takes F''_1 to F'''_1 , where $F''''_1(t)(x) = (x, t/t_1)$ for each x in C (see Lemma B). The fourth takes F'''_1 to F_2 where $F_2(t)(x, a) = (x, a + t/t_1)$ (see the final remarks on the proof of Theorem 1.) Similarly F_2 is homotopic to F_2 under a homotopy leaving $F_2(t)$ unchanged

Similarly, F_2 is homotopic to F_3 under a homotopy leaving $F_2(t)$ unchanged unless $t_1 < t < t_2$, in which case, $F_3(t)(x, a) = (x, a + (t - t_1)/(t_2 - t_1))$. Repeat this process until F_r is obtained by means of a homotopy leaving $F_{r-1}(t)$ unchanged unless $t_{r-2} < t < t_{r-1}$, in which case,

$$F_r(t)(x, a) = (x, a + (t - t_{r-2})/(t_{r-1} - t_{r-2}).$$

Finally, F_r is homotopic to F_{r+1} under a homotopy leaving $F_r(t)$ unchanged unless $t_{r-1} < t < t_r$, in which case,

$$F_{r+1}(t)(x, a) = (x + y, a + (t - t_{r-1})/(t_r - t_{r-1}),$$

where $g(t) = (y,(t-t_{r-1})/(t_r-t_{r-1}).$

If F is homotopic to F' in H, g and g' represent the same element of the fundamental group of T so that g' may also be taken as $r\beta + s\alpha$. Hence $F_{r+1} = F'_{r+1}$. Clearly $F_{r+1} = F'_{r+1}$ implies that F is homotopic to F' in H. Hence it follows that the function that maps the homotopy class of F onto that of g is well defined and one to one.

Case 2. r < 0 or r = 0 but $s \neq 0$. The same argument applies.

Case 3. r = 0 = s. In this case, g is homotopic to 0 in T and the argument for Theorem 1 may be applied to obtain the fact that F is homotopic to 0 in H, since in this case G(0) = G(1).

The three cases combine to show that the function mapping the homotopy class of F onto that of g is an isomorphism of $\pi_1(H)$ onto $\pi_1(T)$.

Theorem 3. If M is a torus from which the interiors of a finite (positive) number of disjoint discs have been removed, then the identity component of the space H of homeomorphisms of M onto itself that leave the boundary of M pointwise fixed is homotopically trivial.

Proof. The proof is essentially that of the Theorem of [8], which states a similar fact for discs with holes. Suppose that M is obtained by removing a disc D from a torus T and that f maps S^k into H. Let f(x) be extended to

 $f^*(x)$, a homeomorphism of T onto itself leaving D pointwise fixed. The mapping g^* of S^k into T associated with f^* as in the preceding arguments is, if P is considered to be in D, homotopic to 0 in an obvious way. Hence f^* is homotopic to 0 in the identity component of the space of homeomorphisms of T onto itself and the argument for the theorem of [8] now applies to prove that f is homotopic to 0 in H. As in the proof of the theorem of [8] an induction argument may now be applied.

These arguments may also be applied to obtain the

COROLLARY. If the mappings of H above are also required to leave fixed the points of some finite set, then H is homotopically trivial.

References

- J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. U.S.A., vol. 9 (1923), pp. 406-407.
- G. M. FISHER, On the group of all homeomorphisms of a manifold, Trans. Amer. Math. Soc., vol. 97 (1960), pp. 193-212.
- 3. ELDON DYER AND MARY-ELIZABETH HAMSTROM, Completely regular mappings, Fund. Math., vol. 45 (1958), pp. 103-118.
- 4. Mary-Elizabeth Hamstrom and Eldon Dyer, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J., vol. 25 (1958), pp. 521-532.
- MARY-ELIZABETH HAMSTROM, Regular mappings whose inverses are 3-cells, Amer. J. Math., vol. 82 (1960), pp. 393-429.
- 6. ———, Regular mappings and the space of homeomorphisms on a 3-manifold, Mem. Amer. Math. Soc., no. 40 (1961).
- 7. ———, Some global properties of the space of homeomorphisms on a disc with holes, Duke Math. J., vol. 29 (1962), pp. 657-662.
- 8. ——, Regular mappings and homotopy in homeomorphism spaces, Notices of the American Mathematical Society, vol. 10 (1963), p. 366.
- 9. ———, Regular mappings and decompositions of product spaces, Notices of the American Mathematical Society, vol. 10 (1963), p. 492.
- 10. S. T. Hu, Homotopy theory, New York, 1959.
- J. M. Kister, Isotopies on 3-manifold with boundaries, Trans. Amer. Math. Soc., vol. 97 (1960), pp. 213-224.
- G. S. McCarty, Jr., Local connectivity in homeomorphism groups, Bull. Amer. Math. Soc., vol. 67 (1961), pp. 420-421.
- 13. —, Homeotopy groups, Trans. Amer. Math. Soc., vol. 106 (1963), pp. 293-304.

University of Illinois Urbana, Illinois