THE SPACE OF HOMEOMORPHISMS ON A TORUS!

BY
MAary-Er1zaBeTH HAMSTROM

There have been several recent results concerning homotopy properties
of the space of homeomorphisms on a manifold. Most of these properties
have been local. In [4], Eldon Dyer and I proved that the space of homeo-
morphisms on a 2-manifold is locally contractible and in [5] and [6] it is proved
that the space of homeomorphisms on a 3-manifold is locally homotopy
connected in all dimensions. Global properties appear to be more difficult.
A well known result of Alexander’s [1] states that the space of homeomorphisms
on an n-cell leaving its boundary pointwise fixed is contractible and locally
contractible. In a recent paper [7] it is proved that the identity component
of the space of homeomorphisms on a disc with holes leaving its boundary
pointwise fixed is homotopically trivial. In the present paper, the identity
component of the space of homeomorphisms on a torus is considered and it is
proved that its homotopy groups are the same as those for the torus. For
related results, see [2], [11], [12], and [13].

TareoreEM 1. If k is an integer greater than 1, then the identity component
of the space H of homeomorphisms of a torus T onto tself has the property that
Tk(H ) = 0.

Proof. Let C denote a meridian simple closed curve on T and P a point
of C. A covering space of T is C X E', where E' is the real line and the
covering map = is such that =(x, 0) = z for each z in C and, in general,
w(x, t) = w(y, ') if and only if = y and ¢ — ¢’ is an integer. If nisa
non-negative integer, S" denotes an n-sphere and will be considered as the
boundary of the (n + 1)-cell, R"*".

Let F denote a mapping of S* into H and g the mapping of S* into 7' defined
by g(z) = F(x)(P). There exists a mapping G of S* into ¢ X E' such that
7G(z) = g(z) and for each z in S, there is a unique mapping f(x) of C into
C X E' such that f(z)(P) = G(z) and for y in C, =f(x)(y) = F(z)(y).
The existence of G is a consequence of the various lifting properties of fiber
spaces. (See [10, p. 63, Th 3.1.].) To see that F(z) | C can be lifted, note
that F(z) | C is homotopic to the identity in 7, since F is in the identity
component of H. In particular, there is a mapping ¢ of C X I into T such
that ¢ | C X 0 is a homeomorphism onto a meridian of T, ¢ |C X 1 = F(x)
and ¢(P,t) = g(z). (See Lemma A.) Since C X 0 is a strong deformation
retract of C X I and there is clearly a mapping @ of C X 0 into C X E' such
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that 7¢ = ¢ | C X 0and 3(P,0) = G(z), another form of the lifting property
mentioned in [10] implies the existence of an extension of @ to a map & of
C X I into C X E' such that 7®(x) = o(x). Since o(P,t) = g(x) for each
t, ®(P,t) = G(z). Then f(x) is the mapping ® | C X 1 and it is obviously
a homeomorphism.

The mapping f can be obtained in another instructive way. Coordinatize
C by the reals mod 1, letting P have coordinate 0 and let k(z) be the mapping
of I( = [0, 1]) into T such that k(z)(y) = F(z)(y). Then the mapping
K*(x) of I into ¢ X E" such that k*(x)(y) = f(x)(y) is the unique “lifting”
of k(x) that takes 0 onto G(z). Note that k*(x)(0) = k*(z)(1). Now
consider S* X I. Let ¢ be the mapping of this into T such that ¥(z, y) =
F(z)(y). TFor each z, ¢(x, 0) = ¢(x, 1). But S* X 0 is a strong deforma-
tion retract of S* X I. Thus there is a mapping ¢* of $* X I into C X E'
such that my* = ¢ and y*(z, 0) = G(x). Since k*(x) above is unique,
¥*(z, y) = K*()(y) = f(z)(y) and ¥*(z, 1) = ¢¥*(z, 0). This demon-
strates the continuity of the mapping f of S* into C X E'.

Since k > 1, the mapping ¢ is homotopic to 0 in 7. It thus follows from
the theorems of [8] that F is homotopic in H to a mapping F' such
that F'(z)(P) = P for each z in 8*. In what follows it will be assumed that
F(x)(P) does not vary with .

Let NT(F) denote the largest integer n such that there exist an z in S*
and a y in C such that the E' coordinate of f(x) (y) is in the half-open number
interval [n, n + 1) and let N~ (F) denote the least integer m for which there
exist such « and y such that the E' coordinate of f(x)(y) is in (m — 1, m].
Denote by A; the annulus C X [j, 7 + 1]. Suppose that there exist an x
and an 2’ such that f(z)(C) meets A, and f(z') (C) meets A1 but that for
no z does f(x)(C) meet A, s0r A,.1. An upper semicontinuous decomposi-
tion of A, will be constructed that will be used to deform F in H to a mapping
F’ for which NT(F') — N™(F') < NT(F) — N™(F) unless this last number
is already —1, the least it can be.

For each z in S¥, denote by C,, Cz, J* and J~ the sets 4. n f(z)(C),
A, n f(z)(C) and the right and left boundary curves of A,. Note that
C. does not intersect J*. Translate C; to the right through n + 1 — m
units, i.e., take the point (a, b) of Cy onto (a, b + n + 1 — m), to obtain
C¥. Then C; does not intersect C,u J~. Let G, denote the collection whose
elements are (1) the union of J~, C, and the components of A, — C, whose
closures do not intersect J¥, (2) the union of J*, C¥ and the components of
A, — C¥ whose closures do not intersect J~ and (3) the remaining points of
A,. It is seen that G, is an upper semicontinuous decomposition of 4,
whose decomposition space is homeomorphic to S

In 8 X 4., let G be the decomposition consisting of those sets (z, ¢),
where ¢ is an element of G,. Since the convergence of the sequence {x;} of
points of S* to a point x implies the convergence of {f(x:)(C)} to f(x)(C),
the collection G is upper semicontinuous. From [9] it follows that the de-
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composition space X associated with G is homeomorphic to §* X §%. If T
represents the associated mapping of S* X A, onto X, or the homeomorphism
of X onto 8* X & and a the projection map of S* X S* onto S*, then if
(x,y) eS* X An, arT(x, y) = x. Note that there exist points p, g of S*
such that for each x in S*, (*T)'(x, p) and (rT)™*(x, ¢) are nondegenerate
and that if a % p, ¢, then (rT)7 (, a) is degenerate.

Let K be a simple closed curve in S* separating p from ¢g. Then for each
z, (rT)7'(z, K) is a simple closed curve in (x, A,) separating (z, C, u J™)
from (x, C¥ v J) in (x, A,) and there is a homeomorphism 8 of
U (z,(rT) " (z, K)) onto S* X K such that the diagram,

U(z, (+T) Mz, K))—L—8* x K
’ o4
o
S,
where o' is the projection map of S* X A, onto S, is commutative.

If K is coordinatized, as is C, by the reals mod 1, the mapping z(x), = ¢ S*,
that takes each point y of C onto the second coordinate of 87'(x, ¥) is a
homeomorphism and z maps S* continuously into G¢, the space of homeo-
morphisms of € into int A,. Each z(x)(C) separates Cu J~ from Cx u J*.
The homeomorphism 8 may be chosen so that =z maps S* into H , the space
of orientation-preserving homeomorphisms of C into curves of T isotopic
to meridian curves. Let Z denote the mapping of C X S* into T X S* such
that Z(y, z) = (wz(z)(y), z) and let A, denote the annulus in (7, 2) bounded
by (C, ) and Z(C, =) (specifically, that annulus which, in 7, would be the
image under = of the annulus in A, bounded by J " and 8™ (z, K)). By

Theorem 2.9 of [9], there is a homeomorphism n of ¢ X [0, 1] X S* into
T X S* such that

77(0 X [Oa 1] X x) cTX x, "7(:% Or CB) = (y, x)y ?7(?!, 1) 113) GZ(Cy x);

by [8, Th. 1.2], there is a homeomorphism v of T X [0, 1] X S* onto itself
such that if y ¢ C, v(y, t, ) = [9(y, t, x), t, ] and, for each y, v(y, 0, ) =
(y,0,z). Hence, by a projection of T X [0, 1] X S* onto T, there is obtained
a*mapping ~v* of T X 8" into H such that v*(1, 2)(C) = =z(z)(C) and
v (0, z) = 1.

For each z in S*, denote by Q(t, x) the mapping v* (¢, )[y*(1, )]™. Then
Q is a mapping of I X 8" into H, Q(1, 2) = 7 and Q(0, 2) = [y*(1, «)]™
Then if F*(t, z) = Q(¢, z)F (),

F*(1,2) = F(z) and F*(0,2) = [y*(1, 2)]'F ().
Note that since v*(1, z)(C) = =z(z)(C),
N*F*(0, 2)] — NT[F*(0, z)] < N*(F) — N™(F)
unless the latter number is —1. Precautions could have been made,
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by using the theorems of [8], to keep F*(0, z)(P) independent of z or
these theorems could be used now to achieve this result without changing
NTIF*(0, )] — NTIF*(0, z)].

This process can be repeated until F is homotopic in H to a mapping F,
such that for each z in S*, Fi(x)(C) does not intersect C. The same reason-
ing yields a homotopy in H of F; to a mapping F, such that Fy(x) leaves C
pointwise fixed. Since H is the identity component, the angle change, as
defined in [4], along F.(z) (C"), where C’ is a longitudinal simple closed curve,
is 0. Therefore, the techniques of [4] (see page 526) demonstrate that F,
is homotopic to F; in H, where for each z, F3(x) is the identity homeomor-
phism on 7. This proves that m(H) = 0if &k > 1.

LemMma A.  Suppose that f is a member of H that leaves P fixed. Then f is
1sotopic to the identity in such a way that each homeomorphism in the isotopy
leaves P fixed.

Proof. Letf,,0 <t < 1 be an isotopy such that f; = fand fo = 7. De-
note by g the mapping of I X I into T taking (¢, s) onto fiisa—n(P). There
is a mapping G of C X I into T such that

G(x’ 0) = Z, G(z, 1) = =, G(P, t) = ft(P)r

and G | C X tis a homeomorphism. For each ¢, G | C X ¢ can be constructed
by rigidly moving P to f:(P) and taking C along with it. It is then easy to
extend G | C X t to T X t so that there is a mapping G* of I into H such
that G*(t) |C = G| C X tand G*(0) = G*(1) = 1.

InT X I X I,let Z be a homeomorphism of

(TXIX0Ou(TXIX1Du(TXO0XI)

onto itself such that Z(z, t, 1) = (fi(x), t, 1), Z(x, t, 0) = (G*(t)(x), t, 0)
and Z(z, 0, s) = (fi(x),0,s). Also, there is a homeomorphism zof P X I X I
into T X I X I such that z(P, t,s) = (g, s), t, s). Note that

Z(P’ 1, 8) = (g(ly 8)’ Ls) = (fl(P)3 1, 8) = (P, 1, 8)

and that where Z is defined, Z extends z. It thus follows from Theorem
1.3 of [8] that there is a homeomorphism Z* of T X I X I onto itself
that extends z and Z and carries each (T, ¢, s) onto itself. If Z*(z, 1, s) =
(y,1,s), let f¥(x) = y. Ttisseen that fi' (P) = P, fi(z) = fi(z) = f(=)
and fi(2) = G*(1)(z) = 2. Then f; is the required homotopy.

Lemma B. If f is an orientation preserving map of C X I onto tself such
that f|C X (0ul) = ¢ and for each t % 0, 1, f|C X t is a homeomorphism
wnto int (C X I) that leaves (P, t) fixed, then there is a homotopy f, such that
(1) fo =1, (2) fi = 1, and (3) for each s, f maps C X I onto itself,

f]C X (0ul) =3,
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fs | C X tis a homeomorphism into int (C X I) for eacht % 0, 1 and f,(P,t) =
(P, t).

Proof. For each t > %, let g; be the mapping of C X I into itself that
takes (z, s) onto (z, s/2t). Ift < %, let g, take (z, s) onto

(,1— (1 —s9)/2(1 = 1)).

For each ¢, ¢g,(P, 1) = (P, 3) and g; f(C, t) < int (C X I). Also,
gz, 1) = (2, %) = go(, 0) and gip(x, s) = (=, s).

Let ¢ be the mapping of S' into the space H’ of orientation-preserving
homeomorphisms of C into int (C X I) that takes ¢ into the homeomorphism
mapping the point z of C into g, f(x, ). It follows from Theorem 3.1 of [8]
that there is a mapping ® of S' X I into H’ such that &(¢, 0) =
o(t), @, 1)(z) = (x, 3), (¢, s)(P) = (P, %) for each ¢, s and u,
and ®(1, s)(z) = (x, 1) = &(0, s)(x). Then if f; maps C X I into itself
in such a way that f.(z, t) = g;'®(¢, s)(x), f. is the required homotopy.
The computations that demonstrate this are easily made.

TasoreM 2. The group m(H) s tsomorphic to m(T).

Proof. Coordinatize C and S' by the reals mod 1, consider 7' as C X C,
identify 0 X C with C and suppose 7(z, t) = (x,¢). Let F be a mapping of
S' into H. Since H is the identity component, there is a mapping Z of I
into H such that Z(0) = F(0) and Z(1) = 4. Then F(z)[Z(1 — t)] "is a
homotopy of F to a mapping taking 0 onto the identity. Hereafter, it will
be assumed of F that F(0) = F(1) = 5. Consider the mapping g of S" into
T such that g(x) = F(x)(0, 0). There is a unique mapping G of I into
C X E'such that #G(z) = g(x) and G(0) = (0,0). Note that G(1) = (0,r),
where r is some integer. There is, for « in I, a unique mapping f(z) of C into
C X E' such that f(x)(0) = G(x) and =f(z)(y) = F(x)(0, y). Note that
F(1)(C) is merely a translation of f(0)(C) and that, as in the proof of Theo-
rem 1, f is a continuous mapping of I into the space of homeomorphisms of
C into C X E'

Consider the homeomorphisms « and 8 of S' into T such that a(x) = (0, )
and B(z) = (z,0). Then ¢ is homotopic in T relative to 0 to 78 4+ sa, where
r and s are integers, and this mapping may be assumed to “lift”’ under = to an
arcin C X E' that, if »r > 0, goes along 0 X [0, r — 1] and then wraps around
C X [r — 1, r] s times, meeting each C X x exactly once. If r < 0, a similar
remark holds. If r = 0, then sa takes each z of S' onto the point (0, sz).

Case 1. r > 0. By the theorems of [8], F may be assumed to be such
that ¢ actually is 78 4 sa and lifts into C X E' as described above. Let
0=t <tH < --+ <t = 1Dbe such that G(¢;) has coordinates (0, j). Note
that F(t;)(0,0) = (0,0). Infact,it may be assumed that the second coordi-
nate of g(t) is (¢ — £;m1)/(t; — tj) if t;;1 <t < t;. It then follows from
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Lemma A that in H there is an arc connecting F(¢;) to a map Fi(t;) = 7 and
that each homeomorphism in this arc leaves (0, 0) fixed. These arcs carry
a partial homotopy of F in H which may be extended to a homotopy of F to a
mapping F; of S' into H such that Fi(t;) = 5. Define s, G4, fras g, G, f
were defined.

The proof of Theorem 1 may now be followed almost word for word to get
a sequence of homotopies leaving F1(t) fixed if ¢ < ¢t < 1. The first takes
Fy to a mapping F; such that F1(t)(C) doesn’t intersect C if 0 < t < t;.
Since g1 is homotopic to g under a homotopy leaving ¢1(0) = ¢1(¢) fixed, the
second homotopy of the sequence takes Fi to Fy, where F7(t)(0, 0) =
(0, ¢/t,). The third homotopy takes Fy to Fi', where F{'(¢)(z) = (z, t/t;)
for each z in C (see Lemma B). The fourth takes F{ to F. where
Fy(t)(z, a) = (2, @ + t/t) (see the final remarks on the proof of Theorem 1.)

Similarly, F, is homotopic to F; under a homotopy leaving F.(¢) unchanged
unless t; < t < ty, in which case, Fs(t)(z, a) = (x, 0 + (£ — t1)/(t2 — t1)).
Repeat this process until F, is obtained by means of a homotopy leaving
F,_1(t) unchanged unless {,_, < ¢t < t,_1, in which case,

F.(t)(z,a) = (2,0 + (t = t,2)/ (b1 — ).

Finally, F, is homotopic to F,,; under a homotopy leaving F.(¢) unchanged
unless ¢,y < ¢t < t,, in which case,

Fra®)(z,0) = (@ + 9,0 + (¢ — ta)/ (6 — b)),

where g(t) = (y,(t — t.—1)/(t — t,-1).

If F is homotopic to F’ in H, g and ¢’ represent the same element of the
fundamental group of T so that ¢’ may also be taken as r8 + sa. Hence
F.pn = Fly. Clearly F,.y = F;,; implies that F is homotopic to F’ in H.
Hence it follows that the function that maps the homotopy class of F onto
that of ¢ is well defined and one to one.

Case2. r <0Oorr = 0buts s 0. The same argument applies.

Case3. r = 0 = s. In this case, ¢ is homotopic to 0 in T and the argu-
ment for Theorem 1 may be applied to obtain the fact that F is homotopic
to 0 in H, since in this case G(0) = G(1).

The three cases combine to show that the function mapping the homotopy
class of F onto that of ¢ is an isomorphism of m;(H) onto m (7).

TarEorREM 3. If M s a torus from which the interiors of a finite (positive)
number of disjoint discs have been removed, then the identity component of the
space H of homeomorphisms of M onto itself that leave the boundary of M point-
wise fixed is homotopically trivial.

Proof. The proof is essentially that of the Theorem of [8], which states a
similar fact for dises with holes. Suppose that M is obtained by removing a
disc D from a torus T and that f maps S* into H. Let f(x) be extended to
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*(z), a homeomorphism of 7 onto itself leaving D pointwise fixed. The
mapping ¢* of S* into T associated with f* as in the preceding arguments is,
if P is considered to be in D, homotopic to 0 in an obvious way. Hence f*
is homotopic to 0 in the identity component of the space of homeomorphisms
of T onto itself and the argument for the theorem of [8] now applies to prove
that f is homotopic to 0 in H. As in the proof of the theorem of [8] an induc-
tion argument may now be applied.
These arguments may also be applied to obtain the

CoROLLARY. If the mappings of H above are also required to leave fized
the points of some finite set, then H is homotopically trivial.
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