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EXACT SEQUENCES IN ALGEBRAIC K-THEORY

BY

DANIEL R. GRAYSON

In this paper we provide a general framework for producing long exact
sequences in algebraic K-theory.

Recall the space S/t’, constructed in [8, p. 181] for any exact category ’, in
terms of which the K-groups can be defined: Kilt’= ri+tSJt’. Suppose
F: --, ’ is an exact functor such that for each admissible monomorphism
M N of t’ there exists an admissible monomorphism M N’ and a
commutative diagram of admissible monomorphisms

M =Lo L
II

NLIMN’= NO
).-, Nq

in which each N/N_ or L/L_ is isomorphic to an object in the image of
F. We prove that a certain square

OISF -’* S
SF

pt OlSg St’

is homotopy cartesian, thereby yielding a long exact sequence

The proof is based on the methods of [5].
It turns out that the criterion formulated above for F is often satisfied and

the space O ISF can often be brought into homotopy equivalence with other
interesting spaces. In this way we provide new proofs of the following
theorems:

(i) the cofinality theorem of Grayson and Waldhausen [4.1.1], [1]:
(ii) the drvissage theorem of Quillen [6, Theorem 4];
(iii) the resolution theorem of Quillen [6, Theorem 3];
(iv) the localization theorem for projection modules of Quillen [2], [3].

Received January 27, 1986.
Supported by a grant from the National Science Foundation.

(C) 1987 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

598



EXACT SEQUENCES IN ALGEBRAIC K-THEORY 599

The advantage of these new proofs is that they share substantial common
ground, and the unique portions are thereby reduced in complexity.

In the final section, we apply the main theorem to produce an infinite
sequence of definitions, for higher algebraic K-theory of an exact category,
which were suggested by H. Gillet, and should enable one to define h-oper-
ations on the higher K-groups of any exact category equipped with exterior
powers.

I thank Henri Gillet for useful discussions.

1. The main theorem

We assume known all the terminology of [5].
We fix exact categories and t’ and zero objects called 0 in each.
Let F: t’ be an exact functor such that F(0)= 0, and consider the

map

SF: S SAg.

For A A and M S./g(A) we consider the right fiber MISF; a q-simplex
W of it can be illustrated by the following diagram, which doesn’t show the
choices for the various quotients"

o Po,-, ,-,eq /_|,,,,,

O=Mo -- MaNo -- >-> Nq

Here the horizontal arrows are admissible monomorphisms,

A [a] {0<1 < <a},
"-’Ma),

the top row represents a q-simplex of S, the bottom row represents a
q + a + 1 simplex of S/4’, and the double line represents the identity

O=FPo FPq

O= No/No Nq/No

between the right hand q-face of the bottom row and F applied to the top
row. Here (and later) the notation N/Nj. refers to the chosen quotient
implicitly provided as part of the data constituting W.

In and ,At’ we choose direct sums M N for all M and N, and choose
pushouts LLIgN for all pairs L M N of admissible monomorphisms.
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We ensure the identities M @ 0 M 0 M, L]_ImM L MLImL, and
LLIoM L M. For each admissible monomorphism M N we choose a
cokemel coker(M N), ensuring that coker(0 M)= M and coker(lu)
--0.

It is an easy exercise to replace ,//t’ and # by equivalent categories and
provide direct sum operations which are strictly associative, have a strict
identity, and for which F is strictly additive. It is a little bit harder (but still
possible) to do the same thing for pushouts. Still, we will use some natural
isomorphisms later that can’t be made into identities, so we don’t bother to
make any of them into identities. Nevertheless, with our choice for direct sum,
we get a map

+" St’ St’ St’

which makes S’ into a homotopy associative H-space, with 0 as (strict)
identity.
We use the pushouts chosen above to define an operation

+" MISF MISF ---, MISF

by setting

W+ W’:=
0 =Mo Ma>-NoLIM,,ND>- NqIIMaN;

and specifying the undisplayed quotients as follows:

for 1 _< j < a.

We see that + is a simplicial map. The base-change map M[SF O ISF
which factors out M preserves + strictly. The projection map r: MI SF S
pr._eserves + strictly. As in [5], we use natural transformations to see that
MISF is ahomotopy associative and homotopy commutative H-space. This
gives %(MISF) an operation + and a homotopy identity element 0 which
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makes it into a (commutative) monoid. The simplex which represents 0 is:

I
THEOREM C’. Suppose for all A A and all M SJ/,I(A) that the monoid

ro(MI SF) is a group. Then the square

OISF $9

pt 01St’ SJ’

is homotopy cartesian.

Proof By Theorem B’ of [5],__we need only show for any f: A’ A in A,
that the base change map f*" MISF f*MISF is a homotopy equivalence.

Let g: [0] A’ be any map in A. It suffices to show that g’f* (fg)* and
g* are homotopy equivalences. Both fg and g have [0] as source, so replacing
f by either of them, we may assume that__f is the map f" [0] A, defined for

A by fi(0) i. Thus f* is a map MISF OISF (because 0 is the only
vertex of SJ/t’).
We define a map H: O ISF MISF by direct sum with M, i.e., by

H

The undisplayed quotients here are defined as follows.

(= F( Pj./P, ) ),
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The map f* H: 01SF --, 01SF is depicted thus"

0 e0,-, ,-, ’q

T
f?*H

0 P0 ,-,

Via Ma
O’--i N"

for 0 < < a, and fa* H is the identity. Thus the map f* H is the transla-
tion on the H-space O ISF obtained by adding the vertex

0

Mo0 ,-, -since its homotopy class is in the image of the monoid map %(01SF)---,
[OISF, OISF], and %(0ISF) is a group, we see that f* H is a homotopy
equivalence. (Here [-, -] denotes homotopy classes of maps.)

If we show H is a homotopy equivalence, then it will follow that f* is a
homotopy equivalence for each i. In order to show that H is a homotopy
equival___ence, it is enough to show that H o fa* is homotopic to the identity map
1 of MISF. The desired homotopy results from the natural isomorphism

1 + Hofa* -= 1 + 1,

which in turn amounts to the natural isomorphism

Nj ) _-NjI IMaNj" Q.E.D.U,o /a * a

2. Interpretation

In this section we interpret the hypothesis of Theorem C’, and say t__hat F is
dominant if the hypothesis is satisfied. The method is to describe %(MISF) in
terms of generators and relations.
An admissible monomorphism of t’ whose cokernel is isomorphic to an

object in the image of F will be called an F-mono.
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We start with the vertices as generators, and all 1-simplices as relations. If
two vertices are isomorphic, then they are joined by a 1-simplex. Thus we may
forget about the choices for quotients, and take as generators all admissible
monomorphisms (M N) (here N being variable, and Ma, as part of M,
being fixed). We take as elementary relations the following:

if there is an F-mono i" NO N such that

commutes. The operation + is expressed by

(Ua " V0) + (/a " ):= (/o " 0LI,,y),

and respects the relations.
If L N >-> M are F-monos, then so are all the arrows in the correspond-

ing pushout diagram. Thus we may convert any chain of elementary equiv-
alences into a chain where the arrows of the same sense are grouped together"

Mo=Mo Ma=Ma Ma=Ma

No _. NI >_.

_
Ni

Thus we arrive at the following theorem.

THEOREM 2.1. The exact functor F is dominant (and thus Theorem C’
applies to it) if and only if for each admissible monomorphism M N of
there exists an admissible monomorphism M >-> N’ and a commutative diagram

M =L0 >->L
II

NLIIN’= NO Nq

in which the horizontal arrows are F-monos.

Remark. Theorem C’ is asymmetric, in the sense that it may apply to Fp

when it doesn’t apply to F. A similar theorem which is symmetric is desirable.
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Remark. Edgewise subdivision of the square in Theorem C’ gives a homo-
topy cartesian square

of categories, where E is the extension construction of t’, and E’ is the
pullback. This fact can be deduced (as pointed out by Swan [7, p. 152]) from
the proof in [2], [3] that the square

S-1E, S-1E

O ---, O’
is homotopy cartesian, but that proof depends on the presence of the localiza-
tion S-1, for which one needs the additional hypothesis that every object in t’
have projective dimension < 1 within t’.

Define im F to be the set of those objects of t’ isomorphic to F(P) for
some P obj .
COROLLARY 2.2. ff im F obj ’ (i.e., F is surjective on isomorphism

classes of objects) then F is dominant.

Call im F cofinal in obj t’ if for any T obj Mr’ there is a T’ obj 4’ with
T. T’ imF.

COROLLARY 2.3. If im F is cofinal in obj ’, then F is dominant.

Proof Given M N as in the theorem, we find T’ so

N
T’ im F.

Set N’ M T’, so NLItN’ N T’. The inclusion M NlltN’ is
itself an F-mono. Q.E.D.

Call im F closed under direct summand if M N im F implies M im F.
Call im F closed under extension if exactness of

0 -, e(v’) -, -o e(v,,) --, o
in implies M im F.

Call im F closed under cokernel if exactness of

0-o F(P’) --* F(P) - M" -> 0

in ’ implies M" im F. Similarly for closed under kernel.
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COROLLARY 2.4. If im F is closed under direct summand, extension, and
cokernel, then F is dominant if and only if every M obj fits into an exact
sequence 0 - M F(P) - F(P") - O.

Proof Since im F is dosed under extension, the composition of two
F-monos is again an F-mono (to see this, apply the ker-coker exact sequence
for a composition).
Assuming F is dominant, we consider the mono 0 M and find M’

obj /and F-monos 0 L M M’. Thus we have an exact sequence

0 M M’ (f’g)F(P) - F(P") O.

Consider the ker-coker exact sequence for the composition

Me M’
o

F(P) e F(P)F(P);

it reduces to

0 F(P) F(P)M F(P)M, F(P") 0,

and allows us to deduce that F(P)/M im F, which is what we wanted.
Now we try to prove F is dominant, assuming the other hypothesis. Starting

with M N as in the theorem we find exact sequences

O M F(P) F(P") 0, O N F(Q) F(Q") 0

and

OM F(Q) L O.

Now form the pushout K as in the diagram:

0

O-oF(Q) K

L L

0 0

0

-.o F(P) -.o F(P") 0
II

-,F(V") -o0
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Exactness of the middle row shows K im F, and exactness of the middle
column shows L im F. The commutative diagram

M F(Q), II
N F(Q)

in which the horizontal arrows are F-monos shows F is dominant.

COROLLARY 2.5. If im F is closed under extension and cokernel, and every
M obj d/t’ fits into an exact sequence 0 M - F(P) - F(P") - 0, then F
is dominant.

Proof. Same as half of the proof of 2.4. Q.E.D.

Call im F closed under subobject if 0 M’ F(P) M" --, 0 being exact
implies M’ im F. Similarly for closed under quotient object.

COROLLARY 2.6. Suppose is an abelian category, and im F is closed
under subobject. Then F is dominant if and only if every object of[ has a finite
filtration whose consecutive quotients are in im F.

Proof First assume the condition about filtrations. Then given M N an
admissible mono as in 2.1, we may find such a filtration for N/M, which
expresses M N as a composition of F-monos, showing F is dominant.
Now assume F is dominant. Then by 2.1, for each M t’ we may find an

M’ and F-monos MM’=No Nq=Ls L0=0. We
have

L M L
L_tM c L_t imF,

so the consecutive quotients of the filtration

0=LoNMC CLqtM=M

are in im F. Q.E.D.

3. Application

Call an exact subcategory of an exact category t’ closed under exact
sequences if any exact sequence of t’ whose members are objects of , is also
an exact sequence of .
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THEOREM 3.1. Assume 9 c is a full exact subcategory closed under exact
sequences and under extension. Let F: 9a denote the inclusion. Then O ISF
is homotopy equivalent to the subcategory cF of whose arrows are all the
admissible monomorphisms of[ with cokernel isomorphic to an object of 9.

Proof. The set of arrows mentioned is dosed under composition because
is closed under extension in ’, and thus cgF is a category. The obvious map
g: O ISF rF depicted by

-G /O >o Mo >o >-> Mq

(Mo >--> >-> Mq)

simply forgets the choices for the quotients M/M. Choosing cokernels in 9
for all F-monos gives a map h" re

_
O iSF the other way, with g h 1. The

natural isomorphism h o g -= I provides a homotopy h g 1. Q.E.D.

4. The resolution theorem

Define i’ to be the subcategory of t’ whose arrows are the admissible
monomorphisms of t’. It has 0 as initial object, so is contractible.

THEOREM 4.1. Assume P c is a full exact subcategory closed under exact
sequences, extension, and cokernel. Assume that any M .I[ has a resolution

O-) M-’) P-) P" "-)0

with P, P" . Then the map SYa ---> Sg is a homotopy equivalence.

Proof By 3.1 and 2.5, it is enough to show that is contractible, where
F: --> t’ is the inclusion. It is enough to show that the inclusion map G:
i e is a homotopy equivalence. For this we will use Theorem A of [6],
so for any M we consider the fiber MIG (or M/G in the notation of
Quillen), and show M G is contractible.
Choose a resolution 0 M P0 P’ 0 with P, P’ ; the mono

M Po is an object of MIG. Suppose M P is any other object of M[ G.
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Pushout gives a diagram

0 0

0 -,M --, P -oM" -o 0

0 -oP0 --oP011mP M" --> 0

Pg=

0 0

from which we see that PoLIMP and hence M" are in . The arrows

(M P) (M POIIMP ) (M Po)

in M[ G constitute natural transformations which show that the identity map
on M[ G is homotopic to a constant map. Q.E.D.

5. The D6vissage theorem

THEOREM 5.1 [6]. Suppose g is an abelian category, and c g is a full
( abelian ) subcategory closed under direct sum, subobject, and quotient object. If
every object of dg has a finite filtration whose consecutive quotients are in ,
then the map S Sdg is a homotopy equivalence.

Proof Let F: ’ be the inclusion. By 2.6 it is enough to show that
O ISF is contractible. Since is a subcategory of t’, we see (by the same
argument as in the proof of 3.1) that OISF is homotopy equivalent to the
simplicial set F, whose q-simplices are all chains Mo Mq of
admissible monomorphisms in t’, such that Mq/Mo is in .

It will suffice to show that the inclusion map G: F it’ is a homotopy
equivalence. For this we will use Theorem A’ of [5], so for any M ./g we still
show the fiber GIM is contractible. Associating an admissible monomorphism
N M with the corresponding subobject of M gives a map g: GIM -o M,
where M is the simplicial set whose q-simplices are all chains NO c c

Nq M of subobjects of M such that Nq/No is in . The map g is a
homotopy equivalence, as it has an inverse up to natural isomorphism.
Now choose a filtration 0=M0c cM-M of M such that

Mi/Mi-1 for all i. Define a map F: M " M by

Fi. (No C C Nq M) (No + M c C Nq + Mi c M).
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Since Nq + M/No + M is a quotient of Nq/No, it is in and the latter chain
is a simplex of M.
The inclusions N. + Mi_ C Nj q- M give a homotopy from F/_ to /7/

because

+ Mi
+ M,_x

is a quotient of

and thus is in .
Since F0 1, and F is constant, we see that is contractible. Q.E.D.

6. Cofinality

THEOREM 6.1 [4, 1.1], [1]. Assume c g is a full exact subcategory closed
under exact sequences and extension. If obj is cofinal in obj t’, then

Ki Kicg is an isomorphism for > 1, and a monomorphism for O.

Proof. By 3.1, 2.3, and Theorem C’, we see that it is enough to show that
ri(cCF) 0 for > 1, where F denotes the inclusion ’. Let be the
connected component of 0 in cg

F.
If M is an object of , then as an object of t’, its class in K0’ lies in the

image of the map K0 K0’. By an elementary argument from [4, Section
1] there exists P so M P .
Now suppose s’c is any sub-simplicial set with a finite number of

objects. By summing the P’s found above for each M ’, we may find a
P so that M P for all M 0’. This P can be used to construct a
null-homotopy for from the following pair of simplicial homotopies:

(0 ,-,0)

Checking that these maps are actually simplicial homotopies amounts to the
assertion that (Mq P)/Mo and Mq P are in , which is what we have
arranged above.

It follows now that r (cCF) ri() 0 for > 1. Q.E.D.
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7. Localization for projective modules

Let R be a ring, and S c R a multiplicative set of central nonzerodivisors.
As usual #R denotes the exact category of finitely generated projective (left)
R-modules, and t’R denotes the exact category of finitely generated R-mod-
ules. We let Mr’ c s-xR be the full subcategory whose objects are those
isomorphic to S-1P for some P . It is closed under extensions (because
all extensions are sprit), so becomes an exact category in a natural way.

Let ’R denote the full subcategory whose objects are those P with
projective R-dimension < 1, and with S-1p . It is closed under exten-
sion, so is an exact category.

Let F: ---, send P to S-IP.
Let o’ be the full subcategory whose objects are those P with S-1p O.

It is closed under extensions, and is an exact category. For convenience, we
may assume t’ has only one zero object, so in fact S-XP O.

THEOREM 7.1. The square

So,’--’ S
$ SF ,
0---, Sg

is homotopy cartesian, and thus there is a long exact sequence

Ki+IS-1R --> Ki.--> KiR ---> KiS-1R --.>

which ends at KoS-1R.

Proof The cofinality theorem applied to t’ c s- justifies the "and
thus" part.
The functor F is dominant because it is surjective on isomorphism classes of

objects. We will apply Theorem C’ to Fp, which is also dominant. We get a
commutative diagram

G
Sgp 0ISFP --, SOp

SFP

0 OlSt’p S’p

in which the right hand square is homotopy cartesian, and the map marked
is a homotopy equivalence.

In the opposite of an exact category, the epis and monos interchange roles,
so we may depict a typical q-simplex of O[SFp by the following diagram of
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admissible epis:

The map G is then described by

(O=Ho-- --Z%)

0*- 0 - 0

where H
It is enough to prove that G is a homotopy equivalence, and for this we will

use Theorem A’ of [5]; so for each as above it is enough to show that the
fiber G It is contractible. A typical p-simplex u of it can be depicted by the
diagram

U

The second and third rows portray a p + q + 1-simplex of 0[SFp whose
lefthand p-face is in the image of G. The cartesian squares marked 3 are a
way of displaying some of the choices for kernels implicit in the data making
up a simplex, but not usually drawn: we do this so we can indicate that the
right hand q-face of this simplex is t. The first and third rows are fixed, and
the second is variable. Notice that because p > 0, the simplex u includes
isomorphisms S-P[ --- M as part of its data.
The simplicial set G It is easily seen to be homotopy equivalent to the

category W where an object is a diagram

0 -pl((- -- pq
$ ,, ,,

Mo((--M Mq
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in which the arrows marked are R-homomorphisms inducing isomorphisms
S-P[ M. An arrow V" V’ of rg is a diagram

which gives rise to V" and V’ by composition of the appropriate vertical
arrows (and coker(fi) for each i). In order to show that c is contract-
ible, it will suffice to show that c is filtering and nonempty.
To see the nonemptiness, we write Mo =-S-1P, P R, and split the

Mq Mo, allowing us to write Mi -- Mo S-1Pi. Then setting P/= P Pi
and filling the arrows in an obvious way gives an object of rg.
Now we check that rg is filtering. Suppose V’ and V" are any two objects of

rg, with parts labelled in the obvious way. We search for a third object V with
maps to both of these. For some s S we get maps f’, f" which make

PP P

P’ M0 P"0 ’’> 0

commute. Now because S consists of nonzerodivisors and P is projective, the
map

p>-->p

is an admissible monomorphism, and the map

is injective. It follows that f’ and f" are injective. From the exact sequence

where P is projective, and Pg has projective dimension < 1, it follows that T’
has projective dimension < 1, so T’ Aac . Thus f’ and f" are admissible
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monomorphisms of . By replacing each of V’ and V" by its pullback to P
we reduce to the case where P P’ P. Now we claim that we can pull
back further by

for some S so that V’ and V" both pull back to the same thing. For this
purpose, we state some simple lemmas.

LEMMA 7.2. Suppose 0 --, A --, B --, C ---> 0 is an exact sequence of R-mod-
ules, and A is an S-1R module. If two elements of B have the same images in C
and in S-IB then they are equal.

Proof Their difference is in A, and is S-torsion, thus zero. Q.E.D.

LEMMA 7.3. Suppose we have two exact sequences of R-modules,

E’O--,A J-,B q-,c-,o and E"O--,A LB’C-,O,

and suppose A is an S-1R-module. Assume we have an isomorphism f which
makes

0 --,A --, S-B --+ S-C -, 0

0 --,A --, S-B ---> S-C -, 0

commute. Then there is a unique isomorphism g such that S-Xg f and which
makes

commute.

Proof The uniqueness follows from the previous lemma. We define g(b)
as follows. Find b’ B’ so q’(b’) q(b); then find a A so

j’(a) f Z 1

Define g(b) b’ + j’(a). Q.E.D.
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If E: 0 A B C 0 is an exact sequence of R-modules, we let E
be the pushout along

and let E be the pullback along

In the next lemma, when we speak of an isomorphism E --- E’, we mean one
which is the identity on A and C.

LEMMA 7.4. Suppose

E’O--,A BCO and E"OA B’CO

are two exact sequences offinitely presented R-modules. If

h" S-1E S-1E

is an isomorphism, then for some s S there is an isomorphism f: E --, El, such
that S-If h. Moreover, if f, g are isomorphisms E E’ such that S-if
s-lg, then for some s S we have equality f, g" E,--, E. Finally, the
previous two statements apply equally well to pullbacks E.

Proof. The statement about pushouts follows from the previous lemmas
and the usual inductive limit argument. The statement about pullbacks follows
from the canonical isomorphism E -= E s. Q.E.D.

Continue the proof of 7.1. Consider the exact sequences

E’ (0 ---, Pi --" P’ --* P --* 0) and E"= (0 Pi P" P -" 0)

which can be extracted from V’ and V". By 7.4 we find S so for all i, there
is an isomorphism E;= E;’ compatible with the isomorphism S-XEf =-
S-1E/" provided by V’ and V". To see whether these isomorphisms assemble
into an isomorphism V’t= V’’t of the pullbacks by amounts to checking
commutativity of the squares

The maps
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(whose equality would mean the square commutes) agree on Pg+ 1, so their
difference factors through the quotient P, and is killed by some u S (all i).
The pullback by

u

PP

kills the difference, and thus we get an isomorphism Wttu Vtttu.
The final step in the proof that ’ is filtering is to take two arrows

V" V’
g

and produce an arrow

V# h V"

with fh gh. As before, we may pull V" back, replacing P’ with some
projective P. Then ker(f0 go) c P’ is S-torsion, but P’ is S-torsion free,
so f0 go- The differences fi g (i > 0) are zero on P, so factor through P;
they are also S-torsion. Thus we can find u S with uf ugi, so pulling back
along u: P P equalizes all the pairs f, gi. Q.E.D.

8. New definitions for K-theory

Let ’ be an exact category. We say that a sequence

in t’ is exact if it can be obtained by splicing together short exact sequences
of ’. Let dn be the category of exact sequences of length n (like E) in ’.
Define a short exact sequence of n to be one which is exact in each degree.

LEMMA 8.1. n is an exact category.

Proof. Let t’ be a full exact subcategory of an abelian category sO, closed
under extension and exact sequence. Let cg be the category of complexes in
; it is an abelian category, and d is a full subcategory of s/. One checks
easily that dn is closed under extension in cg, so is an exact category. Q.E.D.

Letting .//,n denote the n-fold cartesian product of ,g, we consider the
evident exact functor Fn: dn t’n defined by

Fn(E ) (M1,..., M).
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For any (M1,..., Mn) t’n we see that

(M,..., M,,) (0, M,..., M,,_ 3, M,,_ 2 M,,, M,,_) im F,,,

so im F is cofinal in obj t’", and F is dominant (2.3).

THEOREM 8.2. There is a natural homotopy equivalence G[ 0[SF, and
thus Ki/’ ri(0lSF).

Proof Any object E of , fits into a short exact sequence of ,:

From Waldhausen’s version of the additivity theorem [8, p. 183] we deduce
a natural fibration sequence Sn_1 S St’ for n > 3, and thus a
homotopy cartesian square

Therefore the map O ISF O ISF is a homotopy equivalence, by Theorem
Cp"

As for 01SF, observe that d2 is equivalent to t’, and 01SF2 is equivalent
to G’. Alternatively, one can see directly that the homotopy fiber of

A
S.//t’ St’2

is homotopy equivalent to the loop space on St’, and thus arrive at a second
proof that IGOr’ lSl [5]. Q.E.D.
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