ALGEBRAIC MODELS FOR MEASURES

BY
N. DincuLeanu anp C. Foiag

1. Introduction

The purpose of this paper is to study probability measure spaces (X, 2, u)
by means of algebraic models (T, ¢) consisting of an abelian group T and a
function of positive type ¢ on T (see Definitions 2 and 3). Algebraic models
determine uniquely the measures, in the sense that two measures are es-
sentially equal, or conjugate (see Definition 1) if and only if they possess
isomorphic algebraic models (Theorem 2). Every algebraic measure system
(T, ¢) is an algebraic model for a certain measure (Theorem 3). In particu-
lar, we obtain a new reduction of a measure u on an abstract set, to a regular
Borel measure p’ on an abelian compact group (Theorem 4), and we give
conditions in order that u’ should be a Haar measure ( Theorem 5).

2. Conjugate measures

Let (X, Z, u) be a probability measure space. We denote by I'(x) the set
of the (equivalence classes of) functions f ¢ L”(u) with |f| = 1. Then I'(x)
is a multiplicative group with the complex conjugate f as inverse of a function
feT(u). If we identify the circle group C with the constant functions of
T'(u), wehave C < T'(u).

Remark. Using the existence of a lifting (see [4]) we can consider that
T'(u) is a group of u-measurable functions f : T — E with | f| = 1, such that
f, 9 eT(p) and f(x) = g(x) (u-almost everywhere) imply f(z) = g(z) for
every = ¢ X.

We define the complex function ¢, on T'(u) by

a(f) = [fdu for feT(.

ProposiTIiON 1. @, 18 a function of positive type on T'(u) and
ou(f) =1 if and only if f = 1.

In fact, for every family (f;)1<i<a of functions of T'(x) and for every family
(ei)1sisn of complex numbers we have

Zaidiefifi) = 2oy ffffj du = f l;  fi " du > 0;
2] )
therefore ¢, is of positive type.
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If f = 1, we have ¢,(f) = u(X) = 1. Conversely, suppose that ¢,(f) = 1.
If we write f = g + ¢h where g and % are real valued, then
[oduti[nau=[fau=a(n) =1
therefore [ h du = 0. It follows that
1 =of) = fgdu = fg+du - fg_du < fg+du
<[lotaws [11au=1;
consequently [ ¢~ du = 0, hence g~ = Oandg = |g|. Then [|g|du = 1;

therefore |g| = 1, since |g| < 1. We deduce that h = Qand f = g =
lgl =1

Derinrrion 1. Let (X, Z, 1) and (X', 2/, ¢’) be two probability measure
spaces. We say that the measures u and u’ are conjugate if there exists a
linear isometry ¢ of L*(u) onto L*(y') such that ¢L*(p) < L*(x') and

¢(fg) = of-¢g for f, g e L"(w).
It follows then (see Theorem 1 below) that ¢L*(u) = ¢L”(x’) and
léfle = [flle for feL%(n).

Remark 1°. Let (B, u) and (B, u’) be the measure algebras associated
with (X, =, u) respectively (X', =/, u’). To say that u and u’ are conjugate
means that there exists a measure-preserving isomorphism S of the Boolean
o-algebra B onto the Boolean s-algebra B’ (see [3, p. 42-45]).

If, for example, there exists an invertible measure-preserving transformation
T : X’ — X, then x and y’ are conjugate, by the isometry ¢ : L*(n) — L*(u')
defined by ¢f = foT, for f e L*(n).

Remark 2°. Consider the identity mappings I and I’ of X and X’ respec-
tively. Then I and I’ are measure-preserving transformations. To say that
v and ' are conjugate means that I and I’ are conjugate (see [3, p. 44-45]).

ProrosiTiON 2. Let (X, 2, u) and (X', T, ') be two probability measure
spaces. If uwand u' are conjugate, then there exists an isomorphism

¢ : T(p) = T(x)
such that
(i) ¢T(p) = T(¥);
(ii) ¢c = cforceC;
(iii) if T < I'(u) s a set generating L*(w), then ¢T generates L*(u');
(i;r) if T C T(u) is an orthonormal system in L*(u), then ¢T is orthonormal
in L'(p');

(v)  ou(f) = ow(¢f), for f e T(u).
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Let ¢ : L*(u) — L*(4') be a linear isometry realizing the conjugacy between
wand u'.

Let f e I'(u) and prove that ¢f e I'(p'). Infact || ¢f [0 = || f ||« = 1; there-
fore, | ¢f | < 1 (u'-almost everywhere). If the set

A=Ay = {7 X5 (¢N() | < 1 — 1/n}
were not u’-negligible, for some n, then we would have

[roieaw =] tortaw+ [ 1w

<(1-Dwan +wex - 4y <w ) = wm = [ 157

which contradicts || ¢f [z = [|f]lz. It follows that A, is u'-negligible for
every n; therefore, | ¢f | = 1 (u'-almost everywhere).
The restriction of ¢ to T'(u), still denoted by ¢, is the required isomorphism.

Remark. We shall prove that, conversely, if there exists an isomorphism
¢ : T'(p) — T'(u') satisfying conditions (i) and (v), then u and ' are conjugate
(see corollary of Theorem 2).

3. Extension of linear isometries

Let (X, =, u) and (X', 2/, u') be finite measure spaces. In this section we
give sufficient conditions in order that u and p’ should be conjugate. We shall
prove first some lemmas.

Lemma 1. Let ¢ 2 LA(p) — L*(w’) be a linear isometry. If f e L*(u) and
(¢)" = ¢f" for every m,

léf lle = 15 llw-
Let A = {z;¢f(z) | 2 || f ll«}. Then we have

wOIFIE < [lef1™ aw = [ (60T aw

then ¢f e L™(n') and

= [rFa= 15 < 151E

If |fllo = O, then |¢f| = O (p-almost everywhere); if || ¢f || > O, then
w(A) = 0. Therefore || ¢f lo < || fll«. We have also || ¢f [l2n = || f ||24 for
every n. Passing to the limit, as n — «, we obtain || ¢f [|o = || f ||« .

Lemma 2. Let ¢ ¢ L2(u) — L:(w') be a linear isometry and let A < L*(n).
If f € L™(u) s such that ¢f e L™(u') and

o(fg) = ¢f-dg for every ged,

then this equality remains valid for every g in the closure A of A in L*(u).
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In fact, let g ¢ A and let g, ¢ A be such that g, — g in L*(u). Since f is
bounded, we have fg, — fg in L*(u). It follows that

¢9. — ¢g and ¢(fga) — o(fg) i L*(w).
Since ¢f is bounded we have also
¢f-dgn — ¢f-¢g in L'(w').

For every n we have
(fgn) = &f dgn
whence, passing to the limit in L*(u’), we obtain
o(fg) = ¢f-dg.

Lemma 3. Let ¢ : L*(n) — L*(¢') be a linear isometry, let A < L*(u) be an
additive group and let g e L’ (). If

o(fg) = ¢f-¢g
loflle = Ifllw

Jor every f e A, then these two equalities remain valid for every f in the closure
A of A in L™(u).

Let f ¢ A and let f, ¢ A be such that f, — f in L”(u). Then f,g — fg in
L*(u); therefore

and

¢(fag) > (fg) in L*(w').
We have also f, — f in L*(u) ; therefore

¢fs — ¢f in L*(u).

” ¢fn - ¢fm ”°° = “ fn "'fm "oo
we deduce that ¢f, — ¢f in L*(u’) ; therefore
¢fardg — ¢f-dg in L(w).
For every n we have
¢(fag) = ¢fa-dg and | ¢fullw = || falle

whence, passing to the limit, as n — c, we obtain

¢(fg) = ¢f-¢g and [ ¢flle = [[fllw-

TarorREM 1. Let A C L*(u) be a set such that

(1) A isdense in L*(u);

(2) af + Bg €A, forf, g eA and a, B rational complex numbers;
(8) Jed,iffeA;

(4) foeA,iff geA;

Let ¢ 1 A — L*(u') be a mapping such that

5) lleflla=17lls

From the equalities
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(6) o(af + Bg) = adf + Bog for f, g ¢ A and , B rational;

(7) of = ¢f for f e A (¢ is real);

(8) ¢(fg) = ¢f-¢g forf,geA.

Then ¢ can be extended to a linear isometry of L*(u) into L*(p'), still denoted
by ¢, such that

(i) o(fg) = of -dg forf,g e L”(n);

(G1) N &f lle = [1f lleo for f e L*(u).

Moreover, if A is dense in L*(u'), then
oL*(p) = L) and ¢L"(n) = L°(u').

Proof. The fact that ¢ can be extended to a linear isometry of L*(x) into
L*(y') follows immediately from conditions (1), (2) and (5), (6). From
conditions (3) and (7) we deduce also that ¢ is real. Applying Lemma 1,
it follows that

l¢fllo = || flle for fed.
Since A = L*(x), from Lemma 2 we deduce that

o(fg) = ¢f-¢g for feA and geL’(n).

By Lemma 3 we have

(%) &(fg) = ¢f-¢g for feA and geL’(u)
and
(%) | ¢f o = | flle for feA,

where 4 is the closure of A in L”(u). The rest of the proof is divided into
several parts.

(a) TFor every f e A and for every continuous complex function ¢ defined
on the complex plane we have gof € 4.

In fact, we remark first that 4 is a subalgebra of L”(u) such that § ¢ 4 for
geA. Leta > || f|l». There exists a sequence p,(z, Z) of polynomials in
2z and z converging uniformly to ¢ on the disc | 2| < a. Then p.(f(z), f(x))
converge uniformly to o(f(z)) on X. Since p.(f, f) e 4, it follows that
@of € A.

(b) We have ¢L”(n) C L*(u’).

Letf e L”(r) anda > || f ||« ;let ¢ be a continuous complex function defined
on the complex plane such that ¢(z) = zfor |2z | < aand | ¢(2) | < a for every
2. Thengof = f (u-almost everywhere).

Let further f, e A be a sequence such that f, — f in L’(u) and p-almost
everywhere. Then the functions h, = ¢of, belong to 4 and h, — ¢of = f
w-almost everywhere. Since

|ha| < @] < a forevery mn,
it follows that h, — fin L’(x). Then
ohn — ¢f in L(u)
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and we may assume that ¢h, — ¢f (u'-almost everywhere). Since, by (*x)
we have

| ¢k llo = || Bn ||« < @ for every n
it follows that

lof lo < a5

of e L(u').

(e) Takinginto account (*) and applying Lemma 2 for each f ¢ L*(u), we
deduce that

therefore

o(fg) = ¢f-¢g for feL®(p) and geL’(n).
From Lemma 1 it follows then that

l¢fllo = l|flle for feL®(u)

(d) If A is dense in L*(u’), then clearly ¢L*(n) = L*(n’). Considering
now the inverse isometry ¢~ : L*(x’) — L*(1) and applying the part of the
theorem already proved, we deduce that ¢ "L*(u’) C L™(n); therefore
L*(w') < ¢L”(u), consequently ¢L”(u) = L*(u’). The theorem is com-
pletely proved.

Remark. This theorem was not stated separately so far, but was used to

prove the main theorems in [1] and [2], and will be used also to prove Theorem
2 of this paper.

4. Algebraic measure systems
The considerations of the preceding sections lead to the following

DEeFINITION 2. A system (T, ¢) consisting of an abelian group T and a
complex function of positive type ¢ on I' such that

o(y) =1 ifandonlyif v =1,

is called an algebraic measure system (or a measure system).

Two measure systems (T, ¢) and (I, ¢’) are said to be isomorphic if there
exists an isomorphism ¢ of T onto IV such that

o(v) = ¢ (¢y) for vyel.

Example. If (X, Z, ) is a probability measure space and if T' < I'(u) is a
group, then (T, ¢,) is a measure system. In particular (1, ¢,), (C, ¢.) and
(T'(p), ¢u) are measure systems.

Remarks. Let I' be an abelian group and ¢ £ 0 a function of positive type
on I'. We can always consider that ¢(1) = 1, replacing, if necessary, ¢ by
the function of positive type ¢/o(1).

‘We might have ¢(v) = 1 for some v # 1, so that, in general, (T, ¢) is not
a measure system, in the sense of Definition 2. However, the following
proposition states that we can replace (T, ¢) by a measure system (T, @)
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which is not essentially different from (T, ¢). We shall call (T, @) the meas-
ure system associated with (T, ¢).

ProrosiTioN 3. Let T be an abelian group and ¢ a function of positive type
on T, such that (1) = 1.

(1) Theset C' = {yeT;|e(y)| = 1} is a group and
o(vv) = e(v)e(v) for v'eC’ and veT.
(2) Theset Cy = {yeT; o(y) = 1} is a group and
o(m) = o(v)) ¥m v €Ch.
(3) Thefunction 3definedon T = T/C, by
#(7) = o(v)
is of positive type, & is injective on C' and (T, &) is a measure system.

Consider T' equipped with the discrete topology. Then the dual G = T'*
is an abelian compact group. For every v ¢ I' and z ¢ G we denote by (x, v)
the value of the character z in v. By Bochner’s theorem there exists a pos-
itive regular Borel measure u on G such that

o) = [ @) du(a) for veT.

(a) If yeC’' and ¢(v) = ¢, then (z, v) = ¢ (u-almost everywhere). In
fact

[ @) duta) = otn) =
therefore
[1@ = cPau@ = [ = cTm) - & @) + 1) du
=0

whence (z, v) = ¢ (u-almost everywhere).
(b) Ify eC’andy eT,then o(v'y) = o(v')e(y). Infacto(y’) = ¢ with
| ¢| = 1;therefore {x,4’) = ¢ (u-almost everywhere). It follows that

o' 1) = [ @7 ) du@) = [ @) dule)

= ¢ [ @) du(@) = o(¥)e().

(e) C'is a group and ¢ is a homomorphism on C’. In fact, (1) = 1,
hence 1 e C’'. Ifv,+' eC’, then

o(vy') = o(¥)e(v) and |o(v') | = le() | le(¥) | =1,
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hence vy’ € C'. Finally, if v ¢ C’, then

o) = [ dute) = [Ty duta) = o;

therefore | (™) | = 1, hence v ¢ ¢’ and (v ™) = [o(¥)I"

(d) Wehave C; € €’ and C; = ¢ *(1); since ¢ is a homomorphism on ¢,
it follows that C; is a group.

If nowv; vs* € Cy, then o(m1 72_1) = 1; therefore

o) = e(1 Y1) = o(n 12 )e(12) = e(72).
The statement (3) is evident.

CoroLrARY. If (T, ¢) is a measure system, then ¢ is an injective homo-
morphism of C’ into the circle group C. Moreover, identifying an element v e C’
with the number o(v) = ¢ ¢ C, we have

o(cy) = co(y) for ceC’ and vel.
In fact, in this case C, = {1}.

Remark. If C' is divisible, then there exists a group IY C T such that
T = C'-T' (direct product).

We shall see that we can always imbed T in an abelian group T, containing
the whole circle group C (which is divisible) and write Ty = C- Ty (direct
product). The function ¢ can also be extended to a function of positive type
¢1 on T’y such that

fveli; la(v)| = 1} = C.

In this case, (T'1, ¢1) is again a measure system such that v e T and v 5 1
imply |e(v) | < 1.

5. Algebraic models of measures

DeriniTiON 3. Let (X, Z, u) be a probability measure space. We say
that a measure system (T, ¢) is an algebraic model of the measure u, if there
exists an injective homomorphism J : I' — I'(u) such that
(a) JT generates L*(n)
and

(b) o(v) = eu(Jv) foryeT.

It follows that if T' < T'(u) is a group generating L*(u), then (T, ¢) is an
algebraic model for u. In particular, (I'(u), ¢,) is an algebraic model for u.

If, in Definition 3 we identify I' and JT, we can always consider that an
algebraic model (T, ¢) of uis such that I' © I'(u) and ¢ = ¢, .

Algebraic models determine measures uniquely up to a conjugacy:

TueorEM 2. Two probability measures are conjugate if and only if they
possess isomorphic algebraic models.
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Let (X, Z, u) and (X, =, u’) be two probability measure spaces.

If u and u' are conjugate, then, by Proposition 2, the algebraic models
(T(u), ¢u) and (T'(n'), ¢u) are isomorphic.

Conversely, suppose that u and u’ possess isomorphic algebraic models
(T,9) and (I, ¢’). WemayconsiderI' C I'(p),¢ = g,and IV C I'(p'), ¢’ =
ow . Let ¢ be the isomorphism of T onto IV such that

eu(f) = ow(df) for feT.
Consider the space A © L*(u) of the linear combinations
f = Z?=1 a; fi with f;eT' and o; scalars.

For such a function we have
/]flzdn= fl 2o fi |’ du = fZai&'ffif}du
k %,

~TamaliF) = Dot d) = [ | woh .

It follows thatif f = D a; fi = 0 (u-almosteverywhere) then D a; ¢f: = 0
(w'-almost everywhere), so that we may define unambiguously

¢f = Z?:-l o; of; .
Then ¢ : A — L*(u') is a linear multiplicative mapping such that
lefll: = l|fllz for feA.

By Theorem 1, ¢ may be extended to a linear isometry of L*(u) onto L* ('),
still denoted by ¢, such that ¢L*(u) = ¢L*(u’) and

o(fg) = ¢f-¢g for f,geL”(u)
so that u and u’ are conjugate.

CoRrROLLARY. Two measures u and u’ are conjugate if and only if the measure
systems (T'(p), ou) and (T(u'), ) are isomorphic.

The following theorem states that every measure system is a model for a
certain measure.

TaroreEM 3. Every measure system (T, ¢) is a model for a regular Borel
probability measure u on an abelian compact group G.
Moreover, if o(v) = 0 forvy 5= 1, then u is the Haar measure on G.

Consider on T the discrete topology and take G = T'", the group of charac-
ters of I'. Let u be the unique positive regular Borel measure on G such that

o) = [ @y du@) for yer.
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For every v e T, denote by (-, v) both the function £ — {(z, ¥) on G' and the
equivalence class of this function in L*(x) and put

Jy = (" 7>'

It is clear that J is a homomorphism of I'into I'(x), that JT generates L*(u)
(since the continuous functions on G are uniform limits of linear combinations
of characters of @) and that

o(v) = o@uJy) for yel.

To prove that J is injective, suppose that

{z, v) = 1 (p-almost everywhere).
Then

o(y) = f(w, v) du(z) = 1;

therefore y = 1.
The statement concerning Haar measure is evident.

Remark. If T'is countable, then G is metrisable [2].

As a corollary we have the following theorem which reduces integration on
abstract sets to integration on a compact group, with respect to a regular Borel
measure.

TuaroREM 4. Every probability measure is conjugate to a regular Borel meas-
ure on an abelian compact group.

In fact, (T(u), ¢u) is an algebraic model for x, and, by the preceding theo-
rem, it is an algebraic model for a regular Borel measure ' on an abelian com-
pact group. We use then Theorem 2 to deduce that u and u" are conjugate.

Remark. If in Theorem 3, we identify an element v e I with the character
{-,v), we can consider I' C T'(x) and ¢ = ¢, . Then the group

Ty = {ev; ceC, veT}

contains T and the whole circle group C, and ¢, is an extension of ¢ from T to
T;. Wecan writenow I'y = C- Ty (direct product).

Evidently, (Ty, ¢,) and (TY/, ¢.) are algebraic models of x as well, and are
not isomorphie.

In case T is a direct product, the measure x in Theorem 3 can be made more
precise.

ProrosiTION 5. Let (T,¢) be a measure system such that T' = C'- TV (direct
product) and
o(c) = ¢ for ceC’

where C' is a subgroup of the circle group (equipped with the discrete topology).
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Let u and u' be the measures on G = T'* respectively on @ = TV" such that

o) = [ @) du(e) for yer
and

o(v) = [G (@,v) du'(®) for e

Then

G=0"XG and p=¢0®y
where z ¢ C' " is the character defined by (2, ¢) = ¢ for ¢ e C', and &, is the measure
on C'" defined by

ff(u) de,(u) = f(z2) for continuous f:C'" — C.

In particular, if o(v) = 0 for v ¢ C’, then ' is the Haar measure on G'.

We remark that C’- I is isomorphic (and homeomorphic) with ¢’ X TV so
that T* = C'" X IV".

By Proposition 3 we have ¢(cy) = co(v),forc e C' andy e I.

If we write an element cy ¢ C'- IV as a pair (¢, v) € ¢’ X T we have

oler) = [ 4 ),e,7)) duu, v).
On the other hand

[ (@), 6 1) deut) dw' )

= [ o) des(w) [ 09 W) = G o) = coly) = plom).

From the uniqueness of the measure u in Bochner’s theorem, we deduce that
p =& ® u.
The statement concerning the Haar measure is evident.

THEOREM 5. A probability measure u on a measurable space (X, =) 1s con-
Jugate to a Haar measure on an abelian compact group G if and only if there exists
a group T’ C T'(u) which is an orthonormal basis of L*(u).

Suppose first that u is conjugate to the Haar measure » on G and
let ¢ : L*(») — L*(u) be the linear isometry such that ¢L*(») = L*(u),
¢L*(») = L”(u) and

¢(fg) = ¢f-¢g for f,geL ().

The group G* of the characters of G is an orthonormal basis of L*(»), therefore,
I’ = ¢G* is an orthonormal basis of L*(u).
Conversely, suppose that there exists a group I C I'(u) which is an ortho-
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normal basis of L?(x). Then (T, ¢,) is an algebraic model of . Moreover
ou(y) =1 if and only if y = 1;

therefore, by Theorem 3, (T, ¢,) is an algebraic model of the Haar measure »
on the abelian compact group G = I'". By Theorem 2, u and » are conjugate.

Remark. The following two conditions are equivalent:

(a) there exists a group IV C T'(x) which is an orthonormal basis of L*(x);

(b) there exists an orthonormal basis T < T'(z) of L*(x) such that the
set T' = CT” = {cv;c e C,v e I'"} is a group.

Evidently condition (a) implies condition (b). Conversely, suppose condi-
tion (b) satisfied. Then there exists a group IV < T such that I' = C-T
(direct product). Ify eIV andvy # 1,theny = ¢y” withy” ¢ I'” and v” # 1,
therefore,

f'ydy=cf'y”dp=0.

It follows that if 71 5 . are two elementsof I”, then v, 72 = v1v5 " ¥ 1; there-
fore, [ 1 2 du = 0, consequently I” is an orthonormal basis of L*(u).
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