
ALGEBRAIC MODELS FOR MEASURES

BY

N. DINC,ANU AND C. FOA
1. Introduction

The purpose of his paper is o sudy probabilRy measure spces (X, , )
by means of algebraic models (1, ) consisting of an abelian group 1 and a
function of posRive ype on r (see Definitions 2 and ). Algebraic models
deermine uniquely he measures, in he sense ha wo measures are es-
sentially equal, or conjugate (see Definition 1) if and only if hey possess
isomorphic algebraic models (Theorem 2). Every algebraic measure system
(r, o) is an algebraic model for a certain measure (Theorem 3). In particu-
lar, we obtain a new reduction of a measure on an absrac se, Co a regular
Borel measure ’ on n abelian oompac group (Theorem 4), and we give
conditions in order ha ’ should be Haar measure (Theorem 5).

2. Conjugate measures
Let (X, 2, #) be a probability measure space. We denote by 1() the set

of the (equivalence classes of) functions f e L() with f 1. Then r(u)
is a multiplicative group with the complex conjugate ] as inverse of a function
f e r(). If we identify the circle group C with the constant functions of
1(), we have C c 1().

Remarl. Using the existence of a lifting (see [4]) we can consider that
r() is a group of -measurable functions f T -+ E with If[ 1, such that
f, g e r() and f(x) g(x) (-almost everywhere) imply f(x) g(x) for
every x X.

We define the complex function , on r() by

q,(f) f f d for f e r().

PIOPOSITION 1. is afunction of positive type on r() and

q(f) 1 if and only if f 1.

In fact, for every family (f) of functions of r() andfor every family
(ai)lisn of complex numbers we have

therefore , is of positive type.
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If f 1, we have ,(f) (X) 1. Conversely, suppose that ,(f) 1.
If we write f g + ih where g and h are real valued, then

therefore f h d 0. It follows that

1-.(f) f g d, f g+ d- f g-d <_ f g+ d#

consequently f g- d/ 0, hence g- 0 and g [g I. Then f lgid 1;
thereforelgl 1, since g[ -< 1. We deduce thath 0andf g

DEFINITION 1. Let (X, 2, z) and (X’, ’, z’) be two probability measure
spaces. We say that the measures z and z’ are conjugate if there exists a
linear isometry of L=(z) onto L=(z’) such thut OL(z) L(z’) and

(fg) f.Og for L g e L().
It follows then (see Theorem 1 below) that OL() L=(z’) and

f ll f II for IL=(g).

Remark 1. Let (B, ) and (B’, ’) be the measure algebras associated
with (X, 2;, z) respectively (X’, 2:’, z’). To say that z and z’ are conjugate
means that there exists a measure-preserving isomorphism S of the Boolean
z-algebra B onto the Boolean a-algebra B’ (see [3, p. 42-45]).

If, for example, there exists an invertible measure-preserving transformation
T X’ - X, then and ’ are conjugate, by the isometry L() -* L(’)
defined by f fo T, for f e L=().
Remark 2. Consider the identity mappings I and I’ of X and X’ respec-

tively. Then I and I’ are measure-preserving transformations. To say that
u and ’ are conjugate means that I and I’ are conjugate (see [3, p. 44-45]).

PROPOSITION 2. Let (X, , ) and (X’, ’, ’) be two probability measure
spaces. If and ’ are conjugate, then there exists an isomorphism

: r() -, r()
such that

(i)
(it)
(iii)

cr(,) r(d);
c c for c eC;
if F c F(/) is a set generating L(), then r generates L(’);

(iv) if F c r() is an orthonormaI system in L(), then F is orthonormal
in L(’);

(v) (f) ,,(f), for f r().
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Let L() -, L () be a linear isometry realizing the conjugacy between
and .
Letf r() and prove thatf r(). In fact II f [1 IIf I] 1; there-

fore, ifl - 1 (-almost everywhere). If the set

A’= A’ {’ X’; (,$)(’) < 1

were not u’-negligible, for some n, then we would hsve

(1 -In)v’(A’) + v’(X’ A’) < v’(X’) v(X)= f lf [ d,

Which contradicts f II. ][ f ]]. I follows that A is ’-negligible for
every n; therefore, Cf 1 (v’-lmost everywhere).
The restriction of to I’(#), still denoted by , is the required isomorphism.

Remark. We shll prove that, conversely, if there exists n isomorphism
I’() -- I(’) stisfying conditions (i) nd (v), then u nd #’ re conjugate

(see corollary of Theorem 2).

3. Extension of linear isometries

Let (X, 2, ) and (X’, ’, ’) be finite measure spaces. In this section we
give sufficient conditions in order that and ’ should be conjugate. We shall
prove first some lemmas.

LlVix 1. Let L() --, L(’) be a inear isometry. Iff e L’() and

(f) " f" for every n,
then $ L’(’) and

Let A {; ,() >- II $ I1}. Then we have

If ]! S II 0, then [ell 0 (-almost everywhere); if , II > 0, then
(A) 0. Therefore Sf I]* <- f il*. We have also Cf ll ]lf I[,- for
every n. Passing to the limit, as n -. o, we obtain Cf I[* ![ f [1-.

IEMMA 2. Le, L(u) L(’) be a linear isometry and let A c L().
Iff, e L’o() is such that $f e L (,) and

(fg) f.g ]or every g e A,

then this equality remains valid .for every g in the closure A of A in L(g).
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In fact, let g e 2: and let g e A be such that g - in L(). Since f is
bounded, we havefg ---fg in L(). It follows that

Cg Cg and (fg) (]g) in L(’).
Since Cf is bonded we have also

Cf.g, f.g in L(’).
For every n we have

(/) f..
whence, passing to thet in L(’), we obtn

(fg) cf..
LEMMA 3. Let L() L2(’) be a linear isotry, et A L() be an

additive group and let g

and

for every f A, then hese wo equalgies remain valid for every f in the closure
oy A in L().
Let f e and let f e A be such that f f in L(). Then f g fg in

L2() therefore
(A g) (fg) L(’)

We have also f. f in L(); therefore

CA L(’).
From the equalities

we deduce that f, f in L (’) therefore

f,.g f.g in L(u’).
For eve n we have

whence, passing to the lit, as n , we obtain

Taoa 1. Let A L() be a set such that
(1) A is dense in L
(2) af + #g A, for f, g A and a, # rational complex numbers;
(3) ],A, if f eA;

Let A L2() be a mapping such that
() oY 1 Y I1;
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(6) (af A- g) af A- gfor f, g A and a, rational;
(7) ] for f e A (b is real);
(8) (fg) f.g for f, g cA.
Then can be extended to a linear isometry of L() into L(tt’), still denoted

by , such that
() (fg) f.g for f, g
(jj) ]]f][ ][f]]forfeL().

Moreover, ifA is dense in L(z’), then

CL2(tz) L2(’) and CL(t) L(tt’).

Proof. The fact that can be extended to a linear isometry of ff() into
L2(/’) follows immediately from conditions (1), (2) and (5), (6). From
conditions (3) and (7) we deduce also that is real. Applying Lemma 1,
it follows that

Since fi_ L(), from Lemm 2 we deduce th

4,(fg) 4,f’g for f, A nd g, L(u).
By Lemma 3 we have

(.) b(fg) for fe and geL2(/)
and

where is the closure of A in L(g). The rest of the proof is divided into
several parts.

(a) For every f e J and for every continuous complex function defined
on the complex plane we have of e .

In fact, we remark first that is a subalgebr of L(u) such that # e for
g e A. Let a > f I1. There exists a sequence p,(z, ) of polynomials in
z and converging uniformly to on the disc z < a. Then p.(f(x), ](x) )
converge uniformly to q(f(x)) on X. Since p,(f, ]), it follows that
of e.

(b) We hve L(z) L(z’).
Letf e L(z) nd a > f ][ ;let be a continuous complex function defined

on the complex plane such that (z) z for z _< a nd (z) -< a for every
z. Then of f (z-almost everywhere).
Let further f e be a sequence such that f -, f in L(/) and z-almost

everywhere. Then the functions h f belong to . and h -f f
#-lmost everywhere. Since

it follows that h --, f in L(u). Then

for every n,
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and we may assume that hn -- f (’-almost everywhere).
we have

it follows that

therefore

Since, by (**)

IiChn][ i]hll-< a for every n

f e L*(’).
(c) Taking into account (.) and applying Lemma 2 for each f e L (), we

deduce that
4,(fg) ,f’g for f e L*() and g, L*().

From Lemma 1 it follows then that

][f[l ]]fl] for f eL(g)
(d) If cA is dense in L(l,d), then clearly L(g) L2(/’). Considering

now the inverse isometry -x. L.(#,) -- L.(/) and applying the part of the
theorem already proved, we deduce that b-XL**(/’) L**(g); therefore
L(I’) L(l.t), consequently L(g) L*(/’). The theorem is com-
pletely proved.

Remark. This theorem was not stated separately so far, but was used to
prove the main theorems in [11 and [2], and will be used also to prove Theorem
2 of this paper.

4. Algebraic measure systems
The considerations of the preceding sections lead to the following

DEFINITION 2. A system (1, ) consisting of an abelian group I and a
complex function of positive type on r such that

() 1 if and only if ,= 1,

is called an algebraic measure system (or a measure system).
Two measure systems (r, ) and (r’, ’) are said to be isomorphic if there

exists an isomorphism of r onto r’ such that

() ’(3’) for e r.

Example. If (X, Y,, g) is a probability measure space and if r r(g) is a
group, then (r, ,) is a measure system. In particular (1, ), (C, ) and
( r(g),) are measure systems.

Remarks. Let r be an abelian group and 0 a function of positive type
on r. We can always consider that (1) 1, replacing, if necessary, by
the function of positive type /(1).
We might have () 1 for some 3’ rs 1, so that, in general, r, ) is not

a measure system, in the sense of Definition 2. However, the following
proposition states that we can replace (1", ) by a measure system (, )



which is not essentially different from r, ). We shall call , ) the meas-
ure system associated with r, o).

POPOSITION 3. Let r be an abelian group and o a function of positive type
on ]?, such that (1) 1.

(1) ThesetC’ {7r; I() 1} isagroupand

(7’7) o(,’)o(7) for ,’ e C’ and , e r.
(2) The set C1 {’ e r; o(7) 1} is a group and

() (..) i/. .
(3) Thefunction defined on r/C.by

() ()

is of positive type, is injective on ’ and ( , ) is a measure system.

Consider r equipped with the discrete topology. Then the dual G r
is an abelian compact group. For every 7 e r and x e G we denote by (x, 7)
the value of the character x in -. By Bochner’s theorem there exists a pos-
itive regular Borel measure on G such that

(,) f (x,,} d(x) for er.

If 7 e C’ and (,) c, then (x, ,) c (-almost everywhere). In
fact

therefore
f(, ) d(x) () c;

f l(x,’) c d(x) f (1-- c-- (x,,) q- 1)

=0

whence (x, ) c (t-almost everywhere).
(b) If 7’ e C’ and e r, then (7’7) (7’)(7). In fact (’) c with

c 1; therefore (x, ’) c (-almost everywhere). It follows that

c J (, ) d,() (’)().

(c) C’ is a group and is a homomorphism on C’. In fact, (1) 1,
hence i e C. If , e C’, then

o(’) o()o(,’) and o(,.’) I() Io(’) 1,
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hence ’ e C’. Finally, if , C’, then

therefore (3"-1) 1, hence 3"-1 C’ -1and ( [(,)]-1.
(d) We have C1 c C’ and C1 1(1); since is a homomorphism on C’,

it follows that C1 is a group.
If now 3"1 3"71 C1, then (3"1 ’71) 1; therefore

The statement (3) is evident.

COROLLARY. If r, ) is a measure system, then is an injective homo-
morphism of C’ into the circle group C. Moreover, identifying an element 3" C’
with the number q(3") c C, we have

q(c, c(3") for c e C’ and 3" e r.
In fact, in this case C1 {1}.

Remark. If C’ is divisible, then there exists a group r’ c 1 such that
r C’. (direct product).

We shall see that we can always imbed I’ in an abelian group rl containing
the whole circle group C (which is divisible) and write I’ C. I’ (direct
product). The function can also be extended to a function of positive type

on r such that

1} C.

In this case, (rl, 1) is again a measure system such that 3" e rl and 3’ 1
imply (3") < 1.

5. Algebraic models of measures

DEFINITION 3. Let (X, 2:, g) be a probability measure space. We say
that a measure system (r, ) is an algebraic model of the measure g, if there
exists an injective homomorphism J 1" --. r(g) such that
(a) Jr generates Ls(g)
and

(b) () ,(J) for e r.
It follows that if 1" r(g) is a group generating L(g), then (r, ) is an

algebraic model for g. In particular, (r(g), ,) is an algebraic model for g.

If, in Definition 3 we identify r and Jr, we can always consider that an
algebraic ,model r, ) of g is such that 1" r(g) and ,.

Algebraic models determine measures uniquely up to a conjugacy-

THEOREM 2. Two probability measures are conjugate if and only if they
possess isomorphic algebraic models.



348 N. DINCULE&NU AND C. FOI&S

Let (X, , ) and (X, 2, ’) be two probability measure spaces.
If and #’ are conjugate, then, by Proposition 2, the algebraic models

1 (#), ,) and 1 (’), ,, ) are isomorpc.
Conversely, suppose that and g’ possess isomorpc algebraic models

(F,) and (F’,’).. We may consider r r(u), .and r’ r(d),’,. Let be the isomoMsm of F onto F’ such that

(f) ,(f) for

Consider the space A L() of the linear combinations

f = af with feP and a scalars.

For such a function we have

k

I followshif f f 0 (v-almos everywhere) hen f 0
(’-lmos% everywhere), so %h% we may define unambiguously

Then A + L=(v’) is linear mul,ipliive mpping suchh

a IIf II= for fA.
By Theorem 1,

sill denoted by , suchhSL() SL(v’) nd

sohv nd v’ re on]uge.
COROLLARY. Two measures v and v’ are conjugate if and only if the measure

systems F(), and r ’), , are isomorphic.

The following theorem states that every measure system is a model for a
certain measure.

THEOREM 3. Every measure system (F, ) is a model for a regular Borel
probability measure on an abelian compact group G.

Moreover, if() 0 for 1, then is the Haar measure on G.

Consider on F the discrete topology and take G r , the group of charac-
ters of F. Let be the ique positive regular Borel measure on G such that

f (x, d#(x) for e F.
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For every , e r, denote by ., ,) both the function x --., (x, ) on G and the
equivalence class of this function in L() and put

It is clear that J is a homomorpsm of r to r(), that Jr generates L()
(since the continuous functions on G are uniform limits of linear combinations
of characters of G) and that

() (J) for eP.
To prove that J is injective, suppose that

(x, ) 1 (g-almost everywhere).
Then

J
therefore 1.
The statement concerning Haar measure is evident.

Remark. If P is countable, then G is metrisable [2].

As a corollary we have the following theorem which reduces integration on
abstract sets to integration on a compact group, with respect to a regular Borel
measure.

THEOREM 4. Every probability measure is conjugate to a regular Borel meas-
ure on an abelian compact group.

In fact, (r(), ,) is an algebraic model for , and, by the preceding theo-
rem, it is an algebraic model for a regular Borel measure ’ on an abelian com-
pact group. We use then Theorem 2 to deduce that and ’ are conjugate.

Remark. If in Theorem 3, we identify an element , e P with the character
(., ,), we can consider r r() and q . Then the group

r {c; cC, ,r}

contains r and the whole circle group C, and is an extension of from P to
r. We can write now r C. r (direct product).

Evidently, (r, ,) and (r’, ,) are algebraic models of as well, and are
not isomorphic.
In case I’ is a direct product, the measure in Theorem 3 can be made more

precise.

PROPOSITION 5. Let ( r, q) be a measure system such that r C’. r’ (direct
product) and

q(c) c for ceC

where C is a subgroup of the circle group (equipped with the discrete topology).
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Let and ’ be the measures on G r respectively on G’ r’^ such that

f (x, 7) dg(x) for 7e

Then

and

,(. f (z, . d,’ (.) for 7 e F.
G C’^ X G’ and

where z C’ is the character defined by (z, c) c for c e C’, and e is the measure
on C’A defined by

f f(u) dz(u) f(z) for continuous f" ---+C, C.

In particular, if q(7) 0 for 7 C’, then

We remark that C’. r’ is isomorphic (and homeomorphic) with C’ r so
that r C’^ r’^.
By Proposition 3 we have (c) c(), for c e C’ and e r’.
If we write an element c7 e C’. r’ as a pair (c, 7) e C’ r’ we have

(c7) f ((u, v),(c, 7)) d(u, v).

On the other hand

f <(u, v), (c, d(u) dl’ (v

f (, > .() f <v, > .’() <z, >() () (c).

From the uniqueness of the measure # in Bochner’s theorem, we deduce that

The statement concerning the Haar measure is evident.

THEOREM 5. A probability measure on a measurable space X, is con-
jugate to a Haar measure onan abelian compact group G if and only if there exists
a group F’ c l?(g) which is an orthonormal basis of L(g).
Suppose first that g is conjugate to the Haar measure r on G and

let 6" L(r) - L(g) be the linear isometry such that 6L() L(g),
6L(r) L(g) and

(fg) f.Cg for f, g e L(r).

The group G of the characters of G is an orthonormal basis of L(r), therefore,
r’ G is an orthonormal basis of L(g).

Conversely, suppose that there exists a group r’ c r(g) which is an ortho-
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tion (b) satisfied.
direct product).

therefore,

normal basis of L2(z). Then (I, ) is an algebraic model of z. Moreover

(,) 1 if and only if 1;

therefore, by Theorem 3, I, ,) is an algebraic model of the Haar measure
on the abelan compact group G r ^. By Theorem 2, z and are conjugate.

Remark. The following two conditions are equivalent"
(a) there exists a group 1’ c r(z) which is an orthonormal basis of L(z)
(b) there exists an orthonormal basis I" c 1() of L(z) such that the

set r CF" {c,; c C, / 1’} is a group.

Evidently condition (a) implies condition (b). Conversely, suppose condi-
Then there exists a group r c r such that 1 C. r

If e r’ and , 1, then "r c’" with" I" and" 1,

cJ"d 0.

It follows that if 71 are two elements of 1’, then1% ,1 1; there-
fore, f % d 0, consequently r’ is an orthonormal basis of L().
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