A MONOTONIC MAPPING THEOREM FOR SIMPLY CONNECTED 3-MANIFOLDS ${ }^{1}$

BY
Edwin E. Moise

1. Statement of results

Theorem. Let M be a triangulated 3-manifold, and suppose that M is compact, connected and simply connected. Then there is a subcomplex K of a triangulation of the 3 -sphere S^{3}, and a mapping

$$
f: S^{3} \rightarrow M
$$

of S^{3} onto M, such that
(1) $\operatorname{dim} K \leqq 2$,
(2) $f \mid K$ is simplicial (relative to K and a subdivision of M),
(3) $f \mid\left(S^{3}-K\right)$ is one-to-one,
(4) $f(K) \cap f\left(S^{3}-K\right)=0$,
(5) f is monotonic, and
(6) Each set $f^{-1}(x)$ is either a point or a linear graph.

Here (5) means that each set $f^{-1}(x)$ is connected. By a linear graph we mean a 1 -dimensional polyhedron. ${ }^{2}$

2. Bing's example

R. H. Bing $[\mathrm{B}]$ has given a curious example of a mapping of the sort described in the above theorem. In Bing's example, M is S^{3}, but the inverseimage sets $f^{-1}(x)$ are of an unexpected sort. Consider (as shown on the left in Figure 1) two circular disks D_{1}, D_{2} which intersect each other in a common radius. Let their boundaries be the circles C_{1} and C_{2}. Each of these is decomposed into concentric circles. (In the figure, we show one such circle J_{1} in D_{1}, and one such circle J_{2} in D_{2}.) Thus we have a collection G of sets, consisting of (1) the points of $S^{3}-\left(D_{1} \cup D_{2}\right),(2)$ the circles C_{1} and C_{2} and (3) infinitely many "figure 8 's" of the type $J_{1} \cup J_{2}$.
The collection G is upper-semicontinuous in the usual sense: if X is any closed set in S^{3}, then the union of all elements of G that intersect X is also a closed set $[\mathrm{K}]$. Thus we can define a Hausdorff topology in G, by saying

[^0]

Figure 1
that a set $H \subset G$ is open in the space G if the union of its elements is open in the space S^{3}.

It was shown by Bing that the space G is homeomorphic to S^{3}. Following is a proof of this result, different from his.

Let us split D_{2} into two conical surfaces, as shown in the middle of Figure 1. Under this operation, C_{2} is fixed. To each other circle J_{2} in D_{2} there correspond two circles J_{2}, J_{2}^{\prime}, on the respective cones; and to the center of D_{2} there correspond two points N and S. Thus we get a new space G^{\prime} whose points are (1) the arc from N to S (corresponding to C_{1}) (2) sets of the type $J_{2} \cup J_{1} \cup J_{2}^{\prime}(3) C_{2}$ and (4) the points of the exterior of the figure. The region in the interior of the two conical surfaces is regarded as empty. While the splitting operation $G \rightarrow G^{\prime}$ is not continuous, or even one-to-one, if regarded as an operation in the 3 -sphere, it is rather easy to see that it induces a homeomorphism between G and G^{\prime}; the obvious correspondence $G \leftrightarrow G^{\prime}$ is one-to-one, and is continuous both ways. The point is that when a circle in D_{2} is split into two parallels of latitude J_{2}, J_{2}^{\prime}, these sets are still joined by an arc J_{1}.

Each circle J_{2} or J_{2}^{\prime} is the boundary of a plane disk. To get the space $G^{\prime \prime}$, we map each such disk onto a point, by a mapping $\phi: S^{3} \rightarrow S^{3}$ which is a homeomorphism except on the union of the disks (that is, except on the closed interior of the union of the two cones.) Obviously G^{\prime} and $G^{\prime \prime}$ are homeomorphic, because ϕ induces a one-to-one continuous mapping $G^{\prime} \leftrightarrow G^{\prime \prime}$.

It is now easy to see that the arcs in $G^{\prime \prime}$ can be mapped onto points by a mapping which is one-to-one elsewhere in S^{3}. Therefore G is homeomorphic to S^{3}.

3. A weaker form of the monotonic mapping theorem

For the sake of convenience, we state a weaker form of the Monotonic Mapping Theorem, incorporating into it some of the apparatus to be used in the proof. Sections 3 through 10 will be devoted to the proof of Theorem 3.1. In the rest of the paper, we shall show f can be chosen in such a way that each set $f^{-1}(P)$ is a point or a linear graph.

Theorem 3.1. Let M be a triangulated 3-manifold, and suppose that M is compact, connected and simply connected. Then there are subcomplexes K and D of a subdivision of the 3-sphere S^{3}, a subcomplex L of a subdivision of M, and a mapping

$$
f: S^{3} \rightarrow M
$$

of S^{3} onto M, such that
(1) $M-L$ is an open 3-cell,
(2) $\operatorname{dim} L=2$,
(3) $\operatorname{dim} K \leqq 2$,
(4) $f \mid K$ is simplicial,
(5) $f(K)$ is the 1 -skeleton L^{1} of L,
(6) f is monotonic,
(7) $f \mid\left(S^{3}-K\right)$ is one-to-one,
(8) $f(K) \cap f\left(S^{3}-K\right)=0$,
(9) $f(D)=L$,
(10) for each 2-simplex τ^{2} of L there is exactly one 2 -simplex σ^{2} of D such that $f \mid \sigma^{2}$ is a simplicial homeomorphism of σ^{2} onto τ^{2}.

The complex L is of a familiar type. If we represent M in the usual way as a singular 3 -cell with singularities only on its boundary, then L is the image of the boundary. K is like the set $D_{1} \cup D_{2}$ in Bing's example. Note, however, that under the conditions of the theorem, 2 -simplices of K may be mapped onto points. Note also that while Bing's D_{1} บ D_{2} is contractible, Theorem 3.1 tells us nothing at all about the topology of K, except that its dimension is $\leqq 2$. (Obviously $K \cup D$ must be contractible: $M-L$ is an open 3 cell,

$$
f\left(S^{3}-[K \cup D]\right)=M-L
$$

and f is a homeomorphism except on K. Therefore $S^{3}-[K \cup D]$ is an open 3 -cell, and its complement K u D is contractible.)

4. The topological contraction cell

If A is an n-manifold with boundary, then $\operatorname{Int} A$ denotes the interior of A, that is, the set of all points of A that have open neighborhoods U in A, homeomorphic to Euclidean n-space E^{n}. The "intrinsic boundary" A - Int A of A is denoted by $\operatorname{Bd} A$. If A is a subset of a space S, then $\operatorname{Fr} A$ is the boundary (or frontier) of A relative to S, that is, $\mathrm{Cl}(A) \cap \mathrm{Cl}(S-A)$.

Given a 3-manifold M as in Theorem 3.1, we first represent M as a singular

3 -cell with singularities only on its boundary. That is, we define a mapping

$$
\phi: \sigma^{3} \rightarrow M
$$

of a 3 -simplex onto M, such that (1) ϕ is simplicial, relative to M and a subdivision of σ^{3} and (2) $\phi \mid$ Int σ^{3} is a homeomorphism. It follows, of course, that ϕ maps no edge or 2 -face of $\mathrm{Bd} \sigma^{3}$ onto a point, and that the 2 -simplices of the subdivision of $\mathrm{Bd} \sigma^{3}$ are identified in pairs by the mapping ϕ. Let

$$
L=\phi\left(\mathrm{Bd} \sigma^{3}\right)
$$

After a suitable subdivision, this L will be the L of Theorem 3.1.
(Such a ϕ and L can be constructed by the following well known process. Let σ^{3} be any 3 -simplex of M, let $N=M-\operatorname{Int} \sigma^{3}$, and let $\phi_{1}: \sigma^{3} \rightarrow \sigma^{3}$ be the identity. Inductively, suppose that we have given a piecewise linear mapping $\phi_{i}: \sigma^{3} \rightarrow M_{i}$ of σ^{3} onto a set M_{i} which is the union of some or all of the 3 -simplices of M, such that $\phi_{i} \mid$ Int σ^{3} is a homeomorphism. If M_{i} is not all of M, then there is a 3 -simplex τ^{3} of which does not lie in M_{i} but has a 2 -face τ^{2} in common with $\operatorname{Fr} M_{i}$. There is therefore a piecewise linear mapping $\psi: M_{i} \rightarrow M_{i} \cup \tau^{3}$, such that if $\phi_{i+1}=\psi \phi_{i}$, then $\phi_{i+1} \mid$ Int σ^{3} is a homeomorphism. Let k be the number of 3 -simplices in M. Then ϕ_{k} is the ϕ that we were looking for.)

For each i, let

$$
N_{i}=M-\phi_{i}\left(\operatorname{Int} \sigma^{3}\right)
$$

Then

$$
N_{1}=N=M-\operatorname{Int} \sigma^{3}
$$

And if we carry out the above process in the usual way, then at each stage we have

$$
N_{i+1}=N_{i}-\operatorname{Int} \tau^{3} \cup \operatorname{Int} \tau^{2}
$$

Therefore N_{i+1} is a retract of N_{i}. By induction on i it follows that

Proposition $4.1 \quad L$ is a retract of N.

Proposition 4.2. N is contractible on itself to a point.
Proof. This is obtainable by standard methods, as follows. By hypothesis, we know that the fundamental group $\pi(M)$ is $=0$. It follows that the 1-dimensional homology group $H^{1}(M)$ (with integers as coefficients) is also $=0$, because $H^{1}(M)$ is isomorphic to the factor group of $\pi(M)$ by its commutator subgroup. (See [ST, p. 173].) By the Poincaré Duality Theorem [ST, p. 245] it follows that $H^{2}(M)=0$. Since $\pi(M)=0$, it follows that M is orientable [ST, p. 206], so that $H^{3}(M)$ is isomorphic to the group Z of integers. Since M is connected, $H^{0}(M)$ is obviously isomorphic to \mathbf{Z}.

Similarly, $H^{0}(N) \approx \mathrm{Z}$. It is readily verifiable that $\pi(N)=0$, because $M=N \cup \sigma^{3}$, and $N \cap \sigma^{3}$ is the 2 -sphere Bd σ^{3}. Therefore $H^{1}(N)=0$. We assert, finally, that $H^{2}(N)=0$.

Proof. Let Z^{2} be a 2 -cycle on N. Then $Z^{2} \sim 0$ on M, so that Z^{2} is homologous on N to a 2-cycle Y^{2} on $\operatorname{Bd} N$. Since $H^{3}(N)=0$, and $H^{3}(M) \approx \mathrm{Z}$, it follows by the Mayer-Vietoris Theorem that every 2 -cycle which generates $H^{2}(\operatorname{Bd} N)$ is homologous to zero not only on σ^{3} but also on N. Therefore

$$
Z^{2} \sim Y^{2} \sim 0 \text { on } N
$$

which was to be proved.
This means that N satisfies the hypothesis of the classical contractibility theorem of W. Hurewicz $\left[\mathrm{H}_{2}\right]$; and the proposition follows.

By the preceding two propositions we have immediately:
Proposition 4.3. L is contractible on itself to a point.
We recall that L was defined as

$$
L=\phi\left(\mathrm{Bd}^{3}\right)
$$

where

$$
\phi: \sigma^{3} \rightarrow M
$$

was a singular 3-cell with singularities only on its boundary. Let us now think of the domain of definition of ϕ as the closure $\mathrm{Cl}\left(S^{3}-B\right)$ of the complement of a 3 -simplex B in the 3 -sphere. Thus we have a piecewise linear mapping

$$
\begin{aligned}
\phi & : \mathrm{Cl}\left(S^{3}-B\right) \rightarrow M \\
& : \mathrm{Bd} B \rightarrow L
\end{aligned}
$$

such that $\phi \mid\left(S^{3}-B\right)$ is one to one. Since L is contractible, the mapping $\phi: \operatorname{Bd} B \rightarrow L$ can be extended to give a mapping $B \rightarrow L$. Thus we have the following:

Proposition 4.4. There is a 3 -simplex B in the 3 -sphere, and a mapping

$$
\phi: S^{3} \rightarrow M
$$

such that
(1) $\phi \mid\left(S^{3}-B\right)$ is one-to-one,
(2) $\phi \mid \mathrm{Bd} B$ is simplicial, relative to a suitable triangulation of B,
(3) $\phi(B) \cap \phi\left(S^{3}-B\right)=0$, and
(4) $\phi(B)=L$.

We might have added that (5) $\phi \mid\left(S^{3}-B\right)$ is piecewise linear. But this fact will not be needed, and will not be preserved under geometric operations soon to be performed.

5. The relative simplicial approximation theorem

Given a mapping

$$
\phi \mid S^{3} \rightarrow M
$$

as in Proposition 4.4, it follows from Zeeman's relative simplicial approxima-
tion theorem $[Z]$ that there is a mapping

$$
\Phi: S^{8} \rightarrow M
$$

such that (1) $\Phi\left|\left(S^{3}-B\right)=\phi\right|\left(S^{3}-B\right),(2) \Phi(B)=L$, and (3) Φ is simplicial (relative to M and a suitable subdivision of S^{3}. To sum up:

Theorem 5.1. There is a simplex B in the 3 -sphere, and a mapping

$$
\Phi: S^{3} \rightarrow M
$$

such that
(1) $\Phi \mid\left(S^{3}-B\right)$ is one-to-one,
(2) $\Phi \mid B$ is simplicial (relative to subdivisions of B and M),
(3) $\Phi(B) \cap \Phi\left(S^{3}-B\right)=0$, and
(4) $\Phi(B)=L$.

Hereafter, when we speak of a simplex of B, M or L, we shall mean a simplex of one of the subdivisions referred to in condition (2).

6. The operation α and the definitions of f, K and D

Consider the union W of two 3 -simplices σ^{3}, τ^{3} whose intersection is a face σ^{2} of each of them. Suppose that we have a mapping

$$
\psi: W \rightarrow X
$$

of W onto a subcomplex X of M, such that

$$
\begin{aligned}
& \psi \mid \tau^{3} \text { is one-to-one, } \\
& \psi \mid \sigma^{3} \text { is simplicial, } \\
& \psi\left(v_{3}\right)=\psi\left(v_{4}\right), \text { and } \\
& \psi \mid \sigma^{2} \text { is one-to-one. }
\end{aligned}
$$

(Here the condition that $\psi \mid \tau^{3}$ be one-to-one is not as restrictive as it looks; in practice, under the scheme now to be described, σ^{3} will be a simplex of the complex K on which a given mapping fails to be one-to-one, and σ^{2} will lie in $\operatorname{Fr} K$. We then take v_{0} as we please, close to the barycenter of σ^{2}, in the complement of K.)

Under these conditions, the sets $\psi^{-1}(x)(x \in X)$ are (1) the points of $\tau^{3}-\sigma^{2}$, (2) the points of $v_{1} v_{2}$ and (3) infinitely many linear segments in σ^{3}, one of these being $v_{3} v_{4}$ and the others being parallel to $v_{3} v_{4}$.

Obviously X is a 3-cell, and

$$
\operatorname{Bd} X=\psi \operatorname{Bd} W
$$

Now the sets

$$
\psi^{-1}(x), \quad x \in \operatorname{Bd} X
$$

form a hyperspace in $\mathrm{Bd} W$; and this hyperspace (under the natural topology)

Figure 2

$$
W=\sigma^{3} \mathbf{U} \tau^{3}
$$

is a 2 -sphere. In fact, it is easy to see that there is a mapping

$$
\rho: W \rightarrow \tau^{3}
$$

of W onto τ^{3}, such that
(1) $\rho\left(v_{1} v_{3} v_{4}\right)=v_{1} v_{3}$
(2) $\rho\left(v_{2} v_{3} v_{4}\right)=v_{2} v_{3}$
(3) $\rho\left(v_{1} v_{2} v_{4}\right)=v_{1} v_{2} v_{3}$, linearly, and
(4) $\rho \mid \mathrm{Cl}\left(\mathrm{Bd} \tau^{3}-\sigma^{2}\right)$ is the identity.

To get such a mapping, we mash σ^{3} against σ^{2} and slightly past σ^{2}, allowing the image to protrude slightly into τ^{3}.

Now let

$$
\psi^{\prime}: W \rightarrow X
$$

be defined by the condition

$$
\psi^{\prime}=\psi \rho
$$

When we replace ψ by ψ^{\prime}, the effect is to delete Int σ^{3} from the set on which ψ fails to be one-to-one. The operation α is the operation which replaces ψ by ψ^{\prime}. Thus

$$
\alpha \psi=\psi^{\prime}: W \rightarrow X=\psi(W)
$$

Starting with the mapping Φ given by Theorem 5.1 , we shall construct a new mapping by repeated applications of the operation α.

Let σ_{1}^{2} be a 2 -simplex of $\operatorname{Bd} B$. Then σ_{1}^{2} is a face of exactly one 3 -simplex σ^{3} of $B ; \Phi \mid \sigma_{1}^{2}$ is simplicial and one-to-one; $\Phi\left(\sigma_{1}^{2}\right)=\Phi\left(\sigma^{3}\right)$; and obviously there is a 3 -simplex τ^{3}, with σ_{1}^{2} as a face, such that

$$
\tau^{3} \cap B=\sigma_{1}^{2}
$$

We now apply the operation α. This gives a mapping

$$
\Phi^{\prime}=\alpha \Phi: S^{3} \rightarrow M
$$

And we have added Int σ^{3} to the set on which Φ is one-to-one.
Let

$$
B_{1}=B-\left(\operatorname{Int} \sigma^{3} \cup \operatorname{Int} \sigma_{1}^{2}\right)
$$

Then B_{1} is not necessarily a manifold with boundary. But there is a 2 -simplex σ_{2}^{2} of $\operatorname{Fr} B_{1}$ such that

$$
\Phi^{\prime}\left(\sigma_{2}^{2}\right)=\tau^{2}=\Phi\left(\sigma_{1}^{2}\right)
$$

If σ_{2}^{2} lies in a 3 -simplex σ_{2}^{3} of B_{1}, we repeat the operation α, so as to delete Int σ_{2}^{3} u Int σ_{2}^{2} from B_{1}. In a finite number of such steps, we get a complex B_{n}, a mapping

$$
\Phi_{n}: S^{3} \rightarrow M
$$

and a 2 -simplex σ_{n}^{2} of B_{n}, such that Φ_{n} is a simplicial homeomorphism of σ_{n}^{2} onto τ^{2}, and σ_{n}^{2} lies in no 3 -simplex of B_{n}. Here σ_{n}^{2} is one of the two 2 -simplices of $\operatorname{Bd} B$ which are mapped onto τ^{2} by Φ. Of course, $\Phi_{n} \mid\left(S^{3}-B_{n}\right)$ is a homeomorphism; this follows by an easy induction. Note also that B_{n} contains σ_{n}^{2}.

We do this for every 2 -simplex τ^{2} of L. Given τ^{2}, there are always exactly two 2 -simplices of $\mathrm{Bd} B$ which are mapped onto τ^{2}; we choose one of them, repeat the above process, and get a σ^{2} which is mapped onto τ^{2} and which lies in the interior of the set on which the new mapping is one to one. Let the final mapping thus obtained be f, and let D be the complex whose simplices are the 2 -simplices σ^{2} and their faces. Let B_{p} be the "ultimate B_{n} ", consisting of all simplices remaining in B after the operations just performed. Thus $B_{p}=D$ u K, where K is the set of all simplices of B_{p} other than the σ^{2} 's. Note that it is not necessarily true that $f(K) \cap f\left(S^{3}-K\right)=0$, because K may contain 3 -simplices σ^{3} such that $f\left(\sigma^{3}\right)=\tau^{2} \epsilon L$. The properties of f, K, and D are described in the following propositions.

Proposition 6.1. K ч D is a subcomplex of a subdivisoin of S^{3} and $f \mid(K \cup D)$ is simplicial.
(Because $K \cup D$ is a subcomplex of B, and $f|(K \cup D)=\Phi|(K \cup D)$.)
Proposition 6.2. $f(D)=L$. And for each $\tau^{2} \epsilon L$ there is exactly one $\sigma^{2} \epsilon D$ such that f maps σ^{2} simplicially onto τ^{2}.

By construction.
Proposition 6.3. $f \mid\left(S^{3}-K\right)$ is one-to-one.
By induction.
Proposition 6.4. $f(\operatorname{Bd} K) \cap f\left(S^{3}-K\right)=0$.
By induction.
Proposition 6.5. $f(K) \subset L$.
Because $f|K=\Phi| K$, and $K \subset B$.
Proposition 6.6. $f \mid \mathrm{Fr} K$ is monotonic.
This calls for a proof. We recall that

$$
\Phi: \mathrm{Cl}\left(S^{3}-B\right) \rightarrow M
$$

can be regarded as an identification mapping, representing M as a singular 3 -cell with singularities only on its boundary. We got f from Φ by a sequence of operations α. Thus we have a sequence

$$
\Phi, \Phi_{1}, \Phi_{2}, \cdots, \Phi_{p}=f
$$

and we have a corresponding sequence of complexes

$$
B, B_{1}, B_{2}, \cdots, B_{p}=K \cup D
$$

Let $C=\mathrm{Cl}\left(S^{3}-B\right)$; and for each i let

$$
C_{i}=\mathrm{Cl}\left(S^{3}-B_{i}\right) .
$$

Let ξ_{i} be the identification mapping on C_{i} which identifies two points x and y of C_{i} if (1) $\Phi_{i}(x)=\Phi_{i}(y)$, and this point lies in the interior of a 2 -simplex of L or (2) x and y lie in the same component of the same set

$$
\Phi_{i}^{-1}(z) \cap \operatorname{Fr} C_{i}
$$

We define ξ similarly for C. This gives a sequence of spaces

$$
\xi C, \xi_{1} C_{1}, \xi_{2} C_{2}, \cdots, \xi_{p} C_{p}
$$

We assert that ξC is a 3-manifold, homeomorphic to M. The proof is as follows. We know by rule (1) that in the interiors of the 2 -simplices of $\mathrm{Bd} C$, ξ performs all the identifications performed by Φ. Since $\left\{\Phi_{i}^{-1}(z)\right\}$ forms an upper-semicontinuous collection, so also does $\left\{\Phi_{i}^{-1}(z) \cap \operatorname{Fr} C_{i}\right\}$; and since the union of the latter sets is compact, it follows that the set of all their components forms an upper-semicontinuous collection. We see by continuity that for each $\sigma_{1}^{2}, \sigma_{2}^{2}$ in $\operatorname{Bd} C, \xi\left(\sigma_{1}^{2}\right)=\xi\left(\sigma_{2}^{2}\right)$ if and only if $\Phi\left(\sigma_{1}^{2}\right)=\Phi\left(\sigma_{2}^{2}\right)$. But when a 3 -manifold is represented by making identifications on the boundary of a 3-cell, edge-and vertex identifications are made if and only if they are
consequences (by continuity) of the 2 -face-identifications. It follows that for points $x, y, \xi(x)=\xi(y)$ if and only if $\Phi(x)=\Phi(y)$.

But it is also easy to see, by a re-examination of the operation α, that $\xi_{i+1} C_{i+1}$ is homeomorphic to $\xi_{i} C_{i}$ for each i. Therefore $\xi_{p} C_{p}$ is a 3-manifold.

Now

$$
\begin{aligned}
C_{p} & =\mathrm{Cl}\left(S^{3}-B_{p}\right) \\
& =\mathrm{Cl}\left[S^{3}-(K \cup D)\right] \\
& =\mathrm{Cl}\left(S^{3}-K\right)
\end{aligned}
$$

Consider the identification mapping ξ^{\prime} on C_{p}, defined by the condition that $\xi^{\prime}(x)=\xi^{\prime}(y)$ if $f(x)=f(y)$. Then $\xi^{\prime} C_{p}$ is a 3-manifold, because $\xi^{\prime} C_{p}$ is homeomorphic to M. If ξ^{\prime} performed any additional identifications, not performed by ξ_{p}, then these additional identifications would apply to the 1-dimensional set $\xi_{p} \operatorname{Fr}(K)$, and so they would destroy the property of being a 3manifold. Therefore $\xi_{p}=\xi^{\prime}$, and so each set $f^{-1}(z) \cap \operatorname{Fr} K$ has only one component, which was to be proved.

Proposition 6.7. f, K and D can be chosen in such a way that if v is a vertex of L, then $S^{3}-f^{-1}(v)$ is connected.
(From this it can be shown that every set $S^{3}-f^{-1}(z)(z \in M)$ is connected. But we shall not need this fact.)

Proof. Suppose that for the given f, some set $S^{3}-f^{-1}(v)$ is not connected. Some one component U of $S^{3}-f^{-1}(v)$ contains $S^{3}-K$. Let V be the union of all the others. Then $\mathrm{Cl}(V)$ forms a subcomplex of K, because $\mathrm{Fr} V$ does. We now define a new mapping

$$
f^{\prime}: S^{3} \rightarrow M
$$

by providing that

$$
f^{\prime}\left|\left(S^{3}-V\right)=f\right|\left(S^{3}-V\right)
$$

and

$$
f^{\prime}(V)=f(v)
$$

In a finite number of such steps we obtain the desired f.
Thus we have an f, K, D satisfying the conditions of Propositions 6.1-6.7. Let n be the number of 3 -simplices of K. The next few sections will be devoted to the proof of the fact that if f, K and D satisfy these conditions, and are chosen so as to minimize n, then $n=0$ and $\operatorname{dim} K \leqq 2$. This will complete the proof of Theorem 3.1, because in this case $\operatorname{Fr} K=K$.

Essentially, the proof is constructive; the geometric operations described below can be used to eliminate the 3 -simplices of a given K, one at a time. The notation is simpler, however, if we avoid the problem of giving names to the objects which appear in the intermediate stages.

7. The operations β, γ and δ

Consider the union W of two 3 -simplices σ^{3}, τ^{3} whose intersection σ^{2} is a face of each of them. (See Figure 2.) Suppose that we have a mapping

$$
\psi: W \rightarrow X
$$

such that $\psi\left(\sigma^{3}\right)$ is a point and $\psi \mid\left(\tau^{3}-\sigma^{2}\right)$ is a homeomorphism. Evidently the hyperspace formed by the sets $\psi^{-1}(x)$ is a 3-cell.

It follows that there is a mapping $\psi^{\prime}: W \rightarrow X$, such that $\psi^{\prime} \mid \mathrm{Bd} W=$ $\psi \mid \operatorname{Bd} W$ and $\psi^{\prime} \mid$ Int W is a homeomorphism. When we replace ψ by ψ^{\prime}, the effect is to delete Int σ^{3} from the set on which ψ fails to be one-to-one. The operation β is the operation which replaces ψ by ψ^{\prime}. Thus

$$
\beta \psi=\psi^{\prime}: W \rightarrow X=\psi(W)
$$

Proposition 7.1. If f, K and D satisfy the conditions of Propositions 6.1-6.7, and n is minimal, then K does not contain a 3-simplex σ^{3}, with a 2-face σ^{2} in $\mathrm{Fr} K$, such that $f\left(\sigma^{3}\right)$ is a point.

Proof. If there were such a σ^{3}, we could reduce n by the operation β. We need to verify, of course, that β preserves the conditions of Propositions 6.16.7 ; but all these verifications are trivial.

Consider now

$$
W=\sigma^{3} \mathbf{u} \tau^{3}
$$

as before, with

$$
\sigma^{3} \cap \tau^{3}=\sigma^{2}
$$

Suppose that we have a mapping

$$
\psi: W \rightarrow X
$$

$\psi\left(v_{2} v_{3} v_{4}\right)$ is a point, $\psi \mid \sigma^{3}$ is simplicial, $\psi\left(v_{1}\right) \neq \psi\left(v_{2}\right)$, and $\psi \mid\left(\tau^{3}-\sigma^{2}\right)$ is a homeomorphism. Thus the sets $\psi^{-1}(x)$ are (1) the points of $\tau^{3}-\sigma^{2}(2) v_{1}$ and (3) an infinite collection of 2 -simplices in planes parallel to the plane of $v_{2} v_{3} v_{4}$. As before, X is a 3 -cell. Now let H^{\cdot} be the space whose points are (1) the points of Int W and (2) the sets $\psi^{-1}(x) \cap \operatorname{Bd} W$. Then H is a 3-cell. It follows (as in the definition of β above) that $\psi \mid \operatorname{Bd} W$ has an extension

$$
\psi^{\prime}: W \rightarrow X
$$

such that $\psi \mid$ Int W is a homeomorphism. Let

$$
\gamma \psi=\psi^{\prime} .
$$

Proposition 7.2. If f, K and D satisfy the conditions of Propositions 6.16.7, and n is minimal, then K does not contain a 3 -simplex $\sigma^{3}=v_{1} v_{2} v_{3} v_{4}$ such that $v_{1} v_{2} v_{3} \in \mathrm{Fr} K$ and f maps v_{1} and $v_{2} v_{3} v_{4}$ onto two different points.

Proof. If there were such a σ^{3}, then n could be reduced by the operation γ. (As before, we verify trivially that γ preserves the conditions of Theorems 6.1-6.6.)

Consider next $W=\sigma^{3} \mathbf{u} \tau^{3}$ and $\psi: W \rightarrow X$; and suppose that (1) $\psi \mid\left(\tau^{3}-\sigma^{2}\right)$ is one-to-one, (2) $\psi \mid \sigma^{3}$ is simplicial and (3) $\psi\left(v_{1} v_{3}\right)$ and $\psi\left(v_{2} v_{4}\right)$ are two different points. The sets $\psi^{-1}(x)$ are then (1) the points of $\tau^{3}-\sigma^{2}$, (2) $v_{1} v_{3}$, (3) $v_{2} v_{4}$ and (4) an infinite collection of quadrilateral regions lying in parallel planes. In the figures, we show two quadrilateral regions $\psi^{-1}(x)$, one lying close to $v_{1} v_{3}$ and the other lying close to $v_{2} v_{4}$.

As in the preceding cases, the mapping $\psi \mid \mathrm{Bd} W$ has an extension

$$
\psi^{\prime}: W \rightarrow X
$$

such that $\psi^{\prime} \mid$ Int W is one to one. The verification is entirely analogous to the preceding ones. Let

$$
\delta \psi=\psi^{\prime}
$$

Proposition 7.3. If f, K and D satisfy the conditions of Propositions 6.1-6.6, and n is minimal, then K does not contain a 3 -simplex $\sigma^{3}=v_{1} v_{2} v_{3} v_{4}$ such that $v_{1} v_{2} v_{3} \in \mathrm{Fr} K$ and f maps $v_{1} v_{3}$ and $v_{2} v_{4}$ onto two different points.

The proof is like the preceding ones.

8. The operations ϵ and α^{\prime}

If we think of the proof of the Monotonic Mapping Theorem as a sequence of operations which replace a given mapping by a monotonic one, it is plain that not much of consequence has happened so far: α, β, γ and δ give monotonic mappings only when monotonic mappings were given to them. Under the conditions of Theorem 5.1, it is quite possible that some components of some

Figure 3
sets $\Phi^{-1}(x)$ lie entirely in Int B; and if this is true, it remains true after any number of applications of α, β, γ, and δ. In this section we describe a method of eliminating such components.

Consider $W=\sigma^{3} \cup \tau^{3}$, as before. (See Figure 2.)
Suppose that (1) $\sigma^{3} \in K$, (2) $\sigma^{2}=v_{1} v_{2} v_{3} \in \operatorname{Fr} K$, (3) $f\left(v_{1}\right)=f\left(v_{2}\right)$ and (4) $f \mid v_{1} v_{3} v_{4}$ and $f \mid v_{2} v_{3} v_{4}$ are one-to-one. This means, of course, that f maps σ^{3} simplicially onto a 2 -simplex ρ^{2} of L.

We assume further that (5) f maps $v_{0} v_{2} v_{3}$ simplicially onto $\rho^{2},(6) f \mid\left(\tau^{3}-\sigma^{2}\right)$ is one-to-one, and (7) $v_{0} v_{1} \notin K \cup D$.

Here condition (5) implies that $v_{0} v_{2} v_{3} \in D$. We know that there is a simplex of D which is mapped simplicially onto ρ^{2}; and since $f \mid\left(S^{3}-K\right)$ is one-to-one, this simplex must be $v_{0} v_{2} v_{3}$.

These are the hypotheses for the operation ε. Note that (5) is a very strong and special hypothesis. In the following section we shall show how one can get along without it.

The first stage in the operation ε is a sort of simplified inverse of the operation α. By (7), there is a polyhedral 3-cell E, containing $v_{0} v_{1} v_{2}$, such that

$$
(\operatorname{Bd} E) \cap v_{0} v_{1} v_{2}=v_{1} v_{2} \cup v_{0} v_{2}=E \cap(K \cup D)
$$

Let $\psi=f \mid E$. Then there is a mapping $\psi^{\prime}: E \rightarrow f(E)$, such that (i) $\psi^{\prime}|\operatorname{Bd} E=\psi| \operatorname{Bd} E$, (ii) ψ^{\prime} maps $v_{0} v_{1} v_{2}$ simplicially onto a 1 -simplex, and (iii) $\psi \mid\left(E-v_{0} v_{1} v_{2}\right)$ is a homeomorphism. The operation α^{\prime} replaces ψ by ψ^{\prime}, leaving f unchanged on $S^{3}-E$.

The next stage is to replace the resulting mapping by a mapping f^{\prime} which maps τ^{3} simplicially onto ρ^{2}. We get such an f^{\prime} by applying the inverse α^{-1} of the α defined in Sec. 6 .

Now let v be any point of the interior of σ^{2}; and let W^{\prime} be the subdivision of W in which v is the only new vertex. We define a new mapping $f^{\prime \prime}$ by the following conditions:

$$
\begin{gathered}
f^{\prime \prime}\left|\mathrm{Cl}\left(S^{3}-W\right)=f^{\prime}\right| \mathrm{Cl}\left(S^{3}-W\right), \\
f^{\prime \prime}(v)=f\left(v_{0}\right)\left(=f\left(v_{4}\right),\right. \text { and } \\
f^{\prime \prime} \mid W^{\prime} \text { is simplicial. }
\end{gathered}
$$

It may be easier to see what is happening here if we draw 2-dimensional figures. We started with a situation whose 2-dimensional analogue looks like Figure 4. Here the concentric circles in the annulus are mapped onto points; and the annulus and the vertical segment are mapped by f onto the same 1 -simplex. The first step is to introduce a new 2 -simplex (see Figure $5)$. This shows inverse-images under f^{\prime}. Next we get $f^{\prime \prime}$, for which the inverse image sets look like this (see Figure 6). Intuitively speaking, what we have done is to dig a hole in K so that components of sets $f^{-1}(x)$ which were buried in Int K can get access to Fr K.

Figure 4

Figure 5
Now let

$$
K^{\prime}=\left(K-\sigma^{3}\right) \mathbf{u} W^{\prime} ;
$$

let

$$
\omega_{1}=v v_{0} v_{2} v_{3}
$$

let

$$
\omega_{2}=v v_{2} v_{3} v_{4} ;
$$

and given ω_{i}, let ω_{i+1} be the 3 -simplex of K^{\prime} such that (1) $f^{\prime \prime}\left(\omega_{i+1}\right)=\rho^{2}$ and (2) $\omega_{i+1} \cap \omega_{i}$ is a 2 -simplex whose image is also ρ^{2}, and (3) $\omega_{i+1} \neq \omega_{i+1}$, if such an ω_{i+1} exists. Obviously this process terminates, with a certain ω_{p}; and ω_{p} must be $v v_{0} v_{1} v_{3}$. The reason is that ω_{p} has a 2 -face, lying in $\operatorname{Fr} K^{\prime}$, which is mapped simplicially by $f^{\prime \prime}$ onto ρ^{2}; only two 3 -simplices of K^{\prime} have this property, one of them being ω_{1} and the other being $v v_{0} v_{1} v_{3}$.

We now eliminate $\omega_{1}, \omega_{2}, \cdots, \omega_{p}$ from K^{\prime}, in the reverse of the stated order,

Figure 6
by repeated applications of the operation α. This gives a new mapping $f^{(3)}$ and a new "singularity complex"

$$
K^{\prime \prime}=K^{\prime}-\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{p}\right\}
$$

Note that since we eliminated the ω_{i} 's in reverse order, the new D is the same as the old one.

Thus we have eliminated σ^{3} and other 3 -simplices from K. But we have added to K the 3 -simplices $v v_{0} v_{1} v_{2}$ and $v v_{4} v_{1} v_{2}$. We get rid of these, in the order named, by two applications of the operation δ. The final result is a mapping satisfying all the conditions of Propositions 6.1-6.7, for which the associated complex K has fewer 3 -simplices than the given one.

The only non-trivial verification required is that $f^{(8)} \mid \mathrm{Fr} K^{\prime \prime}$ is monotonic. The only points where this condition might fail are the points y of Int $v_{2} v_{3}$. But it is easy to see, inductively, that each such y is joined to the corresponding $y^{\prime} \in \operatorname{Int} v_{1} v_{3}$ by a broken line in $\operatorname{Fr} K^{\prime \prime} \cap \cup \operatorname{Bd} \omega_{i}$.

The total operation just described is ε. If n is minimal, then the hypotheses for this operation must not be satisfied. Thus we have the following:

Proposition 8.1. If f, K and D satisfy the conditions of Propositions 6.16.6 , and n is minimal, then there do not exist 3 -simplices $\sigma^{3}=v_{1} v_{2} v_{3} v_{4}, \tau^{3}=$ $v_{0} v_{1} v_{2} v_{3}$ such that
(1) $\sigma^{3} \in K$,
(2) $\sigma^{2}=v_{1} v_{2} v_{3} \in \operatorname{Fr} K$,
(3) $f\left(v_{1}\right)=f\left(v_{2}\right)$,
(4) $f \mid v_{1} v_{3} v_{4}$ and $f \mid v_{2} v_{3} v_{4}$ are one-to-one,
(5) f maps $v_{0} v_{2} v_{3}$ simplicially onto $f\left(v_{1} v_{3} v_{4}\right)$ and
(6) $f \mid\left(\tau^{3}-\sigma^{2}\right)$ is one-to-one, and
(7) $v_{0} v_{1} ¢ K \cup D$.

In the following section, we shall refer to conditions (1)-(7) as the hypothesis for ε.

9. A reduction of the hypothesis for ε

To apply the operation ε to a 3 -simplex $\sigma^{3}=v_{1} v_{2} v_{3} v_{4}$, we needed to know that there was a 2 -simplex $v_{0} v_{2} v_{3}$ of D, in exactly the right position, such that $f\left(v_{0} v_{2} v_{3}\right)=\rho^{2}=f\left(v_{2} v_{3} v_{4}\right)$. Under the conditions for f, K and D in Sec. 6 , all that we know is that there is some 2 -simplex τ^{2} of D which is mapped simplicially onto ρ^{2}. Thus we need to show that τ^{2} can be moved into the position required for the operation ε. What we need is the following:

Proposition 9.1. Given f, K and D, satisfying the conditions of Propositions 6.1-6.6, and $a 3$-simplex $\sigma^{3}=v_{1} v_{2} v_{3} v_{4}$ with $a 2$-face $\sigma^{2}=v_{1} v_{2} v_{3}$, satisfying conditions (1)-(4) of the hypothesis for ε. Then there exist $f^{\prime}, K^{\prime}, D^{\prime}$, satisfying the same conditions, such that the 3 -simplices of K^{\prime} are those of K, and such that $f^{\prime}, K^{\prime}, D^{\prime}$, and σ^{3} satisfy the entire hypothesis for ε.

Proof. We recall that S^{3} has a triangulation T in which K u D forms a subcomplex. We subdivide this T by introducing, as new vertices, the barycenters of the 2 -faces and 3 -simplices of T that do not lie in K. Let T^{\prime} be the resulting subdivision of T. Then K is a subcomplex of T^{\prime}, but D is not; the latter creates a slight technical problem, to be taken care of presently. Note that every simplex of T^{\prime} intersects K in a simplex (or in the empty set.)

Let $\tau_{1}^{3}=v_{0} v_{1} v_{2} v_{3}$ be the 3 -simplex of T^{\prime} which intersects σ^{3} in $\sigma^{2}=v_{1} v_{2} v_{3}$. Let G be the complex formed by all 3 -simplices τ of T, not lying in K, such that $\tau \cap K$ is a 1 - or 2 -simplex $w_{0} w_{1}$ or $w_{0} w_{1} w_{2}$ such that $f\left(w_{0} w_{1}\right)=f\left(v_{2} v_{3}\right)$ (or $f\left(w_{0} w_{1} w_{2}\right)=f\left(v_{2} v_{3}\right)$). Then the 3 -simplices of G are arranged in a natural cyclic order

$$
\tau^{3}=\tau_{1}^{3}, \tau_{2}^{3}, \cdots, \tau_{p}^{3}
$$

such that for each $i, \tau_{i-1}^{3} \cap \tau_{i}^{3}$ is a 2 -simplex τ_{i}^{2}, not lying in K, but having an edge τ_{i}^{1} such that $f\left(\tau_{i}^{1}\right)=f\left(v_{1} v_{3}\right)$. To see this, let $\tau_{1}^{2}=v_{0} v_{1} v_{3}, \tau_{1}^{1}=v_{1} v_{3}$, $\tau_{2}^{2}=v_{0} v_{2} v_{3}, \tau_{2}^{1}=v_{2} v_{3}$. Let τ_{2}^{3} be the other 3-simplex of T^{\prime} (that is, the one not mentioned so far) that contains τ_{2}^{2}. If $\tau_{2}^{3} \cap K=\tau_{2}^{1}$, let $\tau_{3}^{1}=\tau_{2}^{1}$; if $\tau_{2}^{3} \cap K$ is a 2-simplex τ^{2}, let τ_{3}^{1} be the other edge of τ^{2} for which $f\left(\tau_{3}^{1}\right)=f\left(\tau_{2}^{1}\right)\left(=f\left(\tau_{1}^{1}\right)\right)$; in either case, let τ_{3}^{2} be the 2 -face of τ_{2}^{3} which contains τ_{3}^{1} but does not lie in K or in τ_{1}^{3}, and let τ_{3}^{3} be the other 3 -simplex of T^{\prime} that contains τ_{3}^{2}. Inductively, this defines a sequence $\tau_{1}^{3}, \tau_{2}^{3}, \cdots$. The sequence ultimately repeats, with $\tau_{p+1}^{3}=\tau_{1}^{3}$ for some (minimal) p. Evidently each set $f\left(\tau_{i}^{3}\right)$ is a 3-cell, because each set $\tau_{i}^{3} \cap K$ is an edge or 2 -simplex τ in $\mathrm{Bd} \tau_{i}^{3}$, and $f(\tau)=f\left(v_{1} v_{3}\right)$. And each set $f\left(\tau_{i}^{3}\right)(i>1)$ intersects the union of its predecessors in a disk, namely, the disk $f\left(\tau_{i}^{2}\right)$. It follows that $\bigcup_{i=1}^{p} f\left(\tau_{j}^{3}\right)$ is a 3-cell, whose interior contains Int $f\left(v_{1} v_{3}\right)$. Since $M=f\left(S^{3}\right)$ is locally Euclidean, Int $\bigcup_{i=1}^{p} f\left(\tau_{i}^{3}\right)$ is open in M; and this means that $\bigcup_{i=1}^{p} \tau_{i}^{3}$ is all of G.

Now let d be a 2 -simplex of D such that $f(d)$ contains the edge $f\left(\sigma^{2}\right)$ of L. Since $U_{\tau_{i}^{3}}^{3}$ is all of G, it follows that some τ_{k+1}^{2} lies in d.

Lemma 9.1.1. If none of the simplices $\tau_{1}^{2}, \tau_{2}^{2}, \cdots, \tau_{k}^{2}$ lie in D, then there are objects $f^{\prime}, K^{\prime}, D^{\prime}$, satisfying the conclusion of Proposition 9.1, such that (1) $f^{\prime}\left(\tau_{1}^{2}\right)=f(d)$, (2) $K^{\prime} \cup D^{\prime}$ is a subcomplex of T^{\prime}, and (3) $D^{\prime} \cap \bigcup_{i=1}^{k+1} \tau_{i}^{2}=\tau_{1}^{2}$.

Proof of lemma. Let $d=w_{0} w_{1} w_{2}$, where $w_{1} w_{2} \in K$ and $w_{0} \Subset K$; and let w be the barycenter of d, so that $\tau_{k+1}^{2}=w w_{1} w_{2}$. By two applications of the operation α^{\prime}, defined in the preceding section, we can get a mapping f_{1}, such that (1) f_{1} agrees with f except in a small neighborhood of Int d, (2) $f_{1}(w)=$ $f_{1}\left(w_{0}\right)=f\left(w_{0}\right)$, and (3) f|ww$w_{0} w_{1}$ and $f \mid w w_{0} w_{2}$ are linear. Thus we have added $w w_{0} w_{1}$ and $w w_{0} w_{2}$ to K, and replaced d by τ_{k+1}^{2} in D.

We repeat this operation, in exactly the same form, for each 2 -simplex d^{\prime} of D which contains a 2 -simplex τ_{i}^{2}. Finally, we repeat it for the other 2 -simplices of D. This gives a new mapping f_{2}, and a new complex D_{2}, having the stated properties of D, such that D_{2} is a subcomplex of T^{\prime}.

There are now two cases to consider.
Case 1. $\quad \tau_{k}^{3} \cap K$ is a 2 -simplex. Let $\tau_{k}^{3}=w x_{1} x_{2} x_{3}$, with $x_{1} x_{2} x_{3} \in K, f_{2}\left(x_{1}\right)=$ $f_{2}\left(x_{2}\right), f_{2}\left(x_{1} x_{2} x_{3}\right)=f\left(v_{2} v_{3}\right)$. By one application of α^{\prime}, we can get a mapping f_{3} such that (1) f_{3} agrees with f_{2} except in a small neighborhood of Int $w x_{1} x_{2}$ u Int $w x_{2}$ and (2) $f_{3} \mid w x_{1} x_{2}$ is linear. Thus we have added $w x_{1} x_{2}$ to K. By one application of the operation α^{-1}, we can get a mapping f_{4} such that (1) f_{4} agrees with f_{3} except in a small neighborhood of Int $\tau_{k}^{3} \cup$ Int $w x_{1} x_{3}$ and (2) $f_{4} \mid \tau_{k}^{3}$ is linear. By one application of α, we can get a mapping f_{5} such that (1) f_{5} agrees with f_{4} except in a small neighborhood of Int $\tau_{k}^{3} \cup$ Int $w x_{2} x_{3}$, (2) $f_{5} \mid$ Int τ_{k}^{3} is one-to-one, and (3) $f_{5}\left(w x_{1} x_{3}\right)=f_{4}\left(w x_{2} x_{3}\right)$.

But $w x_{2} x_{3}=\tau_{k+1}^{2} \subset d$, and $w_{1} x_{3}=\tau_{k}^{2}$. Thus the effect of our operations so far has been to replace d by τ_{k}^{2} in D.

Case 2. $\quad \tau_{k}^{3} \cap K$ is a 1 -simplex. Let $\tau_{k}^{3}=w w_{1} x_{2} x_{3}$, with $\tau_{k+1}^{2}=w x_{2} x_{3}$, $\tau_{k}^{2}=w_{1} w_{2} w_{3}, f\left(x_{2} x_{3}\right)=f\left(v_{2} v_{3}\right)$. The method here is precisely analogous to that used in Case 1: first we incorporate $w w_{1} x_{2}$ and $w w_{1} x_{3}$ into K (by two applications of α^{\prime}) and then we replace τ_{k+1}^{2} by τ_{k}^{2} in D (by α^{-1}, followed by α).

In k steps of this kind, we can replace d by τ_{1}^{2} in D, which is what we wanted in the conclusion of the lemma.

We now conclude the proof of Proposition 9.1. If the d of the lemma is such that $f(d)=f\left(\sigma^{3}\right)$, then Proposition 9.1 follows immediately from the lemma. If not, we apply the lemma to d, thus "moving d to the position τ_{1}^{2} "; we then subdivide T^{\prime}, just as we subdivided T, getting a complex $T^{\prime \prime}$; we form a new sequence $\tau_{1}^{3}, \tau_{2}^{3}, \cdots, \tau_{q}^{3}$ of 3 -simplices of $T^{\prime \prime}$, and apply the lemma to the first τ_{i+1}^{2} that lies in a simplex of D. Since D is a finite complex, this process terminates, giving a mapping of the sort desired in the conclusion of Proposition 9.1.

10. Proof of Theorem 3.1: conclusion

Consider now f, K, and D, satisfying the conditions of Propositions 6.1-6.7, such that the number n of 3 -simplices of K is minimal.

Suppose that K contains a 3 -simplex; and let K^{3} be the complex consisting of the 3 -simplices of K and their faces.
(1) If $\sigma^{2} \epsilon \operatorname{Fr} K^{3}$, then $f\left(\sigma^{2}\right)$ is not a 2 -simplex. (If it were, $f \mid \mathrm{Fr} K$ could not be monotonic.)
(2) If $\sigma^{2} \epsilon \sigma^{3} \epsilon K^{3}$, and $\sigma^{2} \epsilon$ Fr K^{3}, then $f\left(\sigma^{2}\right)$ is not a 1 -simplex.

Proof. If σ^{3} is mapped onto the same 1 -simplex, then n can be reduced by one of the operations γ, δ. If $f\left(\sigma^{3}\right)$ is a 2 -simplex, then n can be reduced by Proposition 9.1 and the operation ε.
(3) It follows from (1) and (2) that every 2 -simplex of Fr K^{3} is mapped into a point. Let.

$$
V=\operatorname{Fr}\left(S^{3}-K^{3}\right)
$$

and let W be a component of V. Then W is the union of a finite number of 2-simplices of Fr K^{3}; and since W is connected, $f(W)$ is a point. If $\sigma^{2} \in V$, and $\sigma^{2} \epsilon \sigma^{3} \in K^{3}$, then $f\left(\sigma^{3}\right)$ cannot be the point $f\left(\sigma^{2}\right)$, because n could then be reduced by operation β. On the other hand, $f\left(\sigma^{3}\right)$ cannot be a 1 -simplex, because then $f^{-1} f\left(\sigma^{2}\right)$ would separate S^{3}, which contradicts Proposition 6.7.

Therefore the assumption $K^{3} \neq 0$ is false, and $\operatorname{dim} K \leqq 2$. As indicated at the end of Sec. 6, this is sufficient to complete the proof of Theorem 3.1.

11. First modification of the f of Theorem 3.1

The f and K given by Theorem 3.1 satisfy all the conditions of the Monotonic Mapping Theorem, except that some of the inverse-image sets $f^{-1}(x)$ may be 2-dimensional. It remains, therefore, to get a mapping for which all inverse-image sets are linear graphs.

Proposition 11.1. There is a subcomplex K^{\prime} of a subdivision of S^{3}, and a mapping

$$
f^{\prime}: S^{3} \rightarrow M
$$

such that
(1) $f^{\prime} \mid\left(S^{3}-K^{\prime}\right)$ is one-to-one,
(2) $f^{\prime} \mid K^{\prime}$ is piecewise linear,
(3) $f^{\prime}\left(K^{\prime}\right) \cap f^{\prime}\left(S^{3}-K^{\prime}\right)=0$,
(4) f^{\prime} is monotonic and
(5) every set $f^{\prime-1}(x)$ is either a point or the union of a linear graph and a 3-manifold with boundary.

Proof. Step 1. Let σ^{2} be a 2 -simplex of the K of Theorem 3.1, such that $f\left(\sigma^{2}\right)$ is a point. (It follows, of course, that $f\left(\sigma^{2}\right)$ is a vertex of L.) Let σ^{3} be a 3 -simplex such that $\sigma^{3} \cap K=\sigma^{2}$ and σ^{2} is a face of σ^{3}; let

$$
\beta=\mathrm{Cl}\left(\mathrm{Bd} \sigma^{3}-\sigma^{2}\right)
$$

and let

$$
\phi: \beta \rightarrow \sigma^{2}
$$

be a piecewise linear homeomorphism of β onto σ^{2}, such that $\phi \mid \operatorname{Bd} \beta$ is the identity. We define $\phi \mid \sigma^{2}$ to be the identity. Then ϕ can be extended to give a piecewise linear mapping

$$
\phi: \mathrm{Cl}\left(S^{3}-\sigma^{3}\right) \rightarrow S^{3} \quad(\text { onto }),
$$

such that $\phi \mid\left(S^{3}-\sigma^{3}\right)$ is one-to-one. For each $p \in S^{3}-\sigma^{3}$, let

$$
g(p)=f \phi(p)
$$

and let

$$
g\left(\sigma^{3}\right)=f\left(\sigma^{2}\right)
$$

Theng $\mid\left(K \cup \sigma^{3}\right)$ is piecewise linear.
We perform this process for each $\sigma^{2} \epsilon K$ for which $f\left(\sigma^{2}\right)$ is a point; for each σ^{2}, we let $\sigma^{3}=v \sigma^{2}$, where v is very close to the barycenter of σ^{2}; and so different 3 -simplices $\sigma_{i}^{3}, \sigma_{j}^{3}$ intersect one another only where they must, in the corresponding sets $\sigma_{i}^{2} \cap \sigma_{j}^{2}$. But K is a finite complex. Therefore, in a finite number of such steps (one for each such σ^{2}), we get an f_{1}, K_{1} which satisfy (1)-(4) of Proposition 11.1 and also
(5') Every set $f_{1}^{-1}(x)$ is a point, a linear graph, or a finite union of linear graphs and 3 -simplices which intersect one another only in edges and vertices

Step 2. Let e be an edge of a 3 -simplex of K_{1} which is mapped onto a point by f_{1}, and let V be the union of all 3 -simplices of K_{1} that have e as an edge. Thus

$$
V=\sigma_{1}^{3} \mathbf{u} \sigma_{2}^{3} \mathbf{u} \cdots \mathbf{u} \sigma_{n}^{3}
$$

where the σ_{i}^{3} 's are listed in the cyclic order in which they appear around e in S^{3}. Then V is not a neighborhood of Int e in S^{3}, because no two 3 -simplices of K_{1} have a 2 -face in common. But for each pair $\sigma_{i}^{3}, \sigma_{i+1}^{3}$ there is a polyhedral 3-cell Σ such that $\Sigma \cap V$ is a polyhedral disk d_{1}, lying in $\operatorname{Bd} \sigma_{i}^{3} \cup \operatorname{Bd} \sigma_{i+1}^{3}$, containing Int e in its interior, and such that Σ intersects K_{1} only in d_{1}. Let

$$
d_{2}=\mathrm{Cl}\left(\operatorname{Bd} \Sigma-d_{1}\right)
$$

and let ϕ be a piecewise linear homeomorphism d_{2} onto d_{1}, such that $\phi \mid \mathrm{Bd} d_{2}$ is the identity. We define $\phi \mid d_{1}$ as the identity. Then ϕ can be extended to give a piecewise linear mapping

$$
\phi: \mathrm{Cl}\left(S^{3}-\Sigma\right) \rightarrow S^{3} \quad(\text { onto })
$$

such that $\phi \mid\left(S^{3}-\Sigma\right)$ is one-to-one. For each $p \in S^{3}-\Sigma$, let

$$
g(p)=f_{1} \phi(p)
$$

and let

$$
g(\Sigma)=f_{1}\left(d_{1}\right)
$$

Then $g \mid\left(K_{1} \cup \Sigma\right)$ is piecewise linear. In a finite number of such steps we get an f_{2}, K_{2} which satisfy (1)-(4) of Theorem 1 and also
($5^{\prime \prime}$) Every set $f_{2}^{-1}(x)$ is a finite polyhedron. This polyhedron is a point, or a linear graph, or the union of a linear graph and a set in which all but a finite number of points have 3-cell neighborhoods.

Under condition ($5^{\prime \prime}$), if $v \in f_{2}^{-1}(x)$, and U is a small convex polyhedral neighborhood of v in S^{3}, then $f_{2}^{-1}(x) \cap \mathrm{Bd} U$ is the union of a finite set and a 2 -manifold with boundary (the latter being not necessarily connected.) Let F_{x} be the union of the 3 -simplices in $f_{2}^{-1}(x)$. Then (a) $F_{x} \cap U$ is empty, or (b) $F_{x} \cap U$ is a 3-cell, or (c) $F_{x} \cap \mathrm{Bd} U$ is not connected, or (d) $\mathrm{Bd} U-F_{x}$ is not connected. If (a) or (b) hold, we have no problem. And (c) and (d) hold, at most, at a finite number of points v, because such a v must be a vertex of $f_{2}^{-1}(x)$. Steps 3 and 4 below apply in cases (c) and (d) respectively.

Step 3. If (c) holds at v, then there is a polyhedral disk d, containing v in its interior, intersecting $f_{2}^{-1}(x)$ only at v, and separating S^{3} locally into two connected sets each of which intersects $f_{2}^{-1}(x)$. If d is taken in general position, then d will intersect each set $f_{2}^{-1}(y)$ only in isolated points. We shall think of S^{3} as Euclidean 3 -space E^{3}, compactified at infinity. We may then assume that d is a 2 -simplex in a horizontal plane, since the given d can be mapped onto such a simplex by a piecewise linear homeomorphism of S^{3} onto itself. (We recall that f_{2} is supposed to be merely piecewise linear, and not necessarily simplicial.) Let σ_{1}^{3} and σ_{2}^{3} be 3 -simplices such that $\sigma_{1}^{3} \cap \sigma_{2}^{3}=d$, and such that v lies on the linear segment joining the fourth vertices of σ_{1}^{3} and σ_{2}^{3}. Let

$$
d_{1}=\mathrm{Cl}\left(\operatorname{Bd} \sigma_{1}^{3}-d\right)
$$

and let

$$
d_{2}=\mathrm{Cl}\left(\mathrm{Bd} \sigma_{2}^{3}-d\right)
$$

Let

$$
\phi: \mathrm{Cl}\left(S^{3}-W\right) \rightarrow S^{3} \quad \text { (onto) }
$$

be a piecewise linear mapping such that (1) $\phi \mid\left(S^{3}-W\right)$ is one-to-one, (2) $\phi \mid \mathrm{Bd} d$ is the identity, (3) $\phi \mid d_{1}$ is the vertical projection of d_{1} onto d and (4)
$\phi \mid d_{2}$ is the vertical projection of d_{2} onto d.
We now define a new mapping $g: S^{3} \rightarrow M$, as follows:
(1) If $p \in \mathrm{Cl}\left(S^{3}-W\right)$, then

$$
g(p)=f_{2} \phi(p)
$$

(2) If p lies on a vertical segment $x x^{\prime}\left(x \in d_{1}, x^{\prime} \in d_{2}\right)$, then $g(p)=g(x)$.

Consider now the points x of d_{1} for which $\phi(x)$ is in K. The set of all such points forms a polyhedral linear graph A, and thus forms a subcomplex of a triangulation of d_{1}. If τ^{2} is a 2 -simplex of such a triangulation of d_{1}, and

Figure 7
$W=\sigma_{1}^{3} \mathbf{U} \tau_{2}^{3}$
$y \in \operatorname{Int} \tau^{2}$, then $g^{-1} g(y)=y y^{\prime}$ can be eliminated by repeated applications of the operation α.

When we replace f_{3} by g, we get a new "singularity complex" K_{g}, on which g is piecewise linear, and we have reduced by 1 the number of points at which (c) holds. In a finite number of such steps we obtain an f_{3}, K_{3} which satisfy (1)-(4) and also
($5^{\prime \prime \prime}$) If $v \in f_{3}^{-1}(x)$, then v satisfies (a), (b), or (d).
Step 4. If $v \in f_{3}^{-1}(x)$, and v satisfies (d), then there is a polyhedral disk d, with v in its interior, such that

$$
d-v \subset f_{3}^{-1}(x)-\operatorname{Fr} f_{3}^{-1}(x)
$$

and such that d separates S^{3} locally into two connected sets each of which intersects $\operatorname{Fr} f_{3}^{-1}(x)$.

As before, we suppose that d is a simplex lying in a horizontal plane; we take

$$
W=\sigma_{1}^{3} \cup \sigma_{2}^{3}
$$

d_{1}, d_{2} and ϕ as in Step 3; and we define a new mapping

$$
g: S^{3} \rightarrow M
$$

by the following conditions
(1) If $p \in \mathrm{Cl}\left(S^{3}-W\right)$, then

$$
g(p)=f_{3} \phi(p)
$$

(2) $g(W)=f_{3}(d)$.

In a finite number of such steps, we get an f^{\prime}, K^{\prime} of the sort described in Proposition 11.1.

12. Fox's Theorem. An unknotting process

The following theorem has been proved by Ralph H. Fox [F_{2}]:
Theorem (Fox). Let W be a polyhedral 3-manifold with boundary, in S^{3}. Then there is a piecewise linear homeomorphism ϕ, of W into \mathbb{S}^{3}, such that $\mathrm{Cl}\left[S^{3}-\phi(W)\right]$ is a tube.

Here by a tube we mean a set T which is homeomorphic to a regular neighborhood of a polyhedral linear graph. This is equivalent to the statement that T contains a finite collection $d_{1}, d_{2}, \cdots, d_{k}$ of disjoint polyhderal disks, such that $\mathrm{Bd} d_{i} \subset \mathrm{Bd} T$ for each i, such that the closure of every component of $T-U d_{i}$ is a c-cell, and such that no set $\mathrm{Bd} d_{i}$ separates $\mathrm{Bd} T$.

A trivial illustration of the process involved in Fox's theorem is the case in which W is a knotted tube and ϕ maps W onto an unknotted tube. Obviously very non-trivial cases can occur.

Given f^{\prime} and K^{\prime} as in Proposition 11.1, let V be the union of all 3-simplices lying in sets $f^{-1}(x)$, and let $W=\mathrm{Cl}\left(S^{3}-V\right)$. We apply Fox's Theorem to this W, getting a mapping

$$
\phi: W \rightarrow S^{3}
$$

such that the set

$$
T=\mathrm{Cl}\left[S^{3}-\phi(W)\right]
$$

is a tube. We now define the mapping

$$
f^{\prime \prime}: S^{3} \rightarrow M
$$

by the conditions
(1) $f^{\prime \prime} \mid \phi(W)=f \phi^{-1}$,
(2) if A is a component of T, then

$$
f^{\prime \prime}(A)=f^{\prime \prime}(\operatorname{Bd} A)
$$

Thus we can rewrite Proposition 11.1, with condition (5) in a stronger form, as follows:

Proposition 12.1. There is a subcomplex K of a subdivision of the 3 -sphere, and a mapping

$$
f: S^{3} \rightarrow M
$$

such that
(1) $f \mid\left(S^{3}-K\right)$ is one-to-one,
(2) $f \mid K$ is piecewise linear,
(3) $f(K) \cap f\left(S^{3}-K\right)=0$,
(4) f is monotonic and
(5) every set $f^{-1}(x)$ is a point, a linear graph or the union of a linear graph and a tube.

Thus, to complete the proof of the Monotonic Mapping Theorem, we need to reduce to linear graphs the tubes mentioned in (5), and we need to make $f \mid K$ simplicial, rather than merely piecewise linear.

13. Conclusion

Let T be a polyhedral tube, such that $\operatorname{Bd} T$ lies in a set $\operatorname{Fr} f^{-1}(x)$, as in Proposition 12.1. Let d be a (polyhedral) disk in T, with $\operatorname{Bd} D \subset \operatorname{Bd} T$, as in the definition of a tube, at the beginning of Sec. 12, so that d does not separate T. We may assume that d is a convex polyhedral disk lying in a plane E, since this situation can be obtained by a piecewise linear homeomorphism of S^{3} onto itself. And if d is in general position, then E will intersect K, in the neighborhood of d, in the union of d and a 1 -dimensional set.

It is now an elementary matter to show that there is a mapping

$$
\phi: S^{3} \rightarrow S^{3}
$$

such that $\phi \mid\left(S^{3}-d\right)$ is one-to-one, $\phi(d)$ is a point, and $\phi \mid K$ is piecewise linear. This gives us a new $K^{\prime}=\phi(K)$, and a new mapping

$$
f^{\prime}=f \phi^{-1}
$$

We can now "pull $f^{\prime-1} f^{\prime}(d)$ apart at $\phi(d)$," by the process used in Step 3 of the proof of Proposition 11.1. This reduces the 1-dimensional Betti number of T. Thus, in a finite number of such steps, we get a mapping f_{1} and a complex K_{1}, satisfying (1)-(4) of Proposition 12.1 and also
(5') Every set $f_{1}^{-1}(x)$ is a point, a linear graph, or a finite union of linear graphs and disjoint polyhedral 3 -cells.

We can now define a mapping

$$
\psi: S^{3} \rightarrow S^{3}
$$

such that $\psi \mid K_{1}$ is piecewise linear, ψ maps every 3 -cell in $f^{-1}(x)$ onto a point, and ψ is one-to-one except on the union of these 3-cells. Let $K_{2}=\psi\left(K_{1}\right)$, and let

$$
f_{2}=f_{1} \psi^{-1}
$$

Then all of the sets $f_{2}^{-1}(x)$ are points or linear graphs. It remains only to show that f_{2} is simplicial relative to a suitable subdivision of K_{2}.

We know that for every simplex σ of $K_{2}, f_{2} \mid \sigma$ is linear, though not necessarily simplicial. For each vertex v of K_{2}, the set $f_{2}^{-1} f_{2}(v)$ is a linear graph. Let V be the union of these graphs. Then V decomposes each $\sigma^{2} \epsilon K_{2}$ into 2 -simplices and quadrilateral regions. Decomposing each of the latter into two 2 -simplices, using either diagonal, we get a subdivision relative to which $f_{2} \mid K_{2}$ is simplicial.

Bibliography

[B] R. H. Bing, Decompositions of E^{3}, Topology of 3-manifolds and related topics, Pren-tice-Hall, Englewood Cliffs, 1962, pp. 5-21.
[F] Ross Lee Finney, Some cellular decompositions and pseudo-isotopic mappings of n-manifolds, Dissertation, University of Michigan, 1961.
[F_{2}] Ralph H. Fox, On the imbedding of polyhedra in 3-space, Ann. of Math. (2), vol. 49 (1948), pp. 462-470.
[H_{1}] Wolfgang Haken, On homotopy 9 -spheres, Illinois J. Math., vol. 10 (1966), pp. 159178.
$\left[\mathrm{H}_{2}\right]$ W. Hurewicz, Beiträge zur Topologie der Deformationen. II. Homotopie und Homologiegruppen, Proceedings, Akademie van Wetenschappen, Amsterdam, vol. 38, Part I (1935), pp. 521-528.
[K] C. Kuratowski, Topologie II, Warsaw, 1950.
[M] Edwin E. Morse, Simply connected s-manifolds, Topology of 3-manifolds and related topics, Prentice-Hall, Englewood Cliffs, 1962, pp. 196-197.
[ST] H. Seifert and W. Threlfall, Lehrbuch der Topologie, Leipzig, 1934.
[Z] E. C. Zeeman, Relative simplicial approximation, Proc. Cambridge Philos. Soc., vol. 60 (1964), pp. 39-43.

Harvard University

Cambridge, Massachusetts

[^0]: Received March 16, 1967.
 ${ }^{1}$ A portion of the work reported here (in Sections 3 through 10 below) was done while the author held a Guggenheim Memorial Foundation Fellowship. This portion of the paper was also sponsored by the National Science Foundation and the Institute for Advanced Study.
 ${ }^{2}$ Theorem 3.1 below was announced in [M] (see the bibliography at the end), and earlier, in colloquia at Warsaw and Madison. Since then, a weaker version of the theorem has been proved by Wolfgang Haken $\left[\mathrm{H}_{1}\right]$.

