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1. Introduction
This report concerns real- or complex-valued harmonic functions defined

on discs in the plane. The principal result may be stated as

THEOaEM A. A function f is harmonic on the unit disc if and only if there is
a sequence {g,l of continuous functions on the unit circle such that

(1.1) lim (n! g jj)l/ 0

and

P(’)(O t)g,,(t) dt.(1.2) f(r, O) 1n----0

In (1.1) the norm is defined by Iigll sup{ig(t)]:O -<

_
2andin

(1.2)
P(O t) ([(e -}- rei)/(e re’)]

is the Poisson kernel for the unit disc. P) is the nth derivative of Pr.
This theorem was reported in [5]. It has been used by Douglas [2] as

global constraint for harmonic continuation in the disc of a function which is
approximated at a finite set of points. Saylor, a student of Douglas, has
extended these results to the case of solutions of a linear elliptic second order
partial differential equation with analytic coefficients on domain in R
bounded by a compact analytic boundary [10].
There is a rich boundary-value theory concerning the Poisson and the

Poisson-Stieltjes integrals beginning with the work of Fatou. A nice treat-
ment of old and new results in this theory may be found in [4]. In view of the
above result it is natural to ask whether there is a boundary function, in
some generalized sense, associated with an arbitrary harmonic function by
means of a Poisson representation. In fact, denoting fr(O) f(r, O) and
using (1.2) we have, formally

fr E:-oP(’)
*g, E:--oPr*g’*) P,* E:=0g()= P*g.

The appropriate setting in which these calculations have meaning is a gen-
eralized function space having analytic test functions. Let denote the
linear space of analytic complex-valued functions on the unit circle F. K6the
[14], [15] introduced a certain locally convex topology for . The-strong
dual/tC’ is the space of generalized functions. The Fantappie indicator of an
element f e ’ is a function holomorphic on r and zero at . denotes
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the Riemann sphere. It converges to f at 1 in the topology of C’. Provided
with the topology of uniform convergence on compact subsets of t2 F, the
space of indicators is isomorphic to

In various settings such spaces of analytic functionals have been studied
by Grothendieck [13], Gelfand and Silov [12], Sato [18], Roumieu [17], Lions
and Magenes [8], and Metman [16]. The topology for the test function
space usually appears as the inductive limit of a sequence of normed spaces
although the choice of the normed spaces differs among the authors.

In this paper I present an independent description of the 2 and 2’ topolo-
gies using the corresponding sequence spaces of Fourier coefficients. It differs
from previous presentations in that no intermediate normed spaces appear.
A neighborhood is obtained directly from a dominant sequence. Also, the
harmonic functions on the unit disc take the place of the holomorphic indi-
cators, a possibility suggested by Sato [18] and used by Lions and Magenes
[8]. The properties for C and 2’ are those obtained by K6the [14], [15] and
by Grothendieck [13].

Let Y denote the space of complex-valued harmonic functions on the unit
disc provided with the topology of uniform convergence on compact sets.
A very special case of Theorem 9.1 in [8] establishes a linear and topological
isomorphism between ff and C’ in which the element ] e C’ corresponding to
f e ff is the trace of f on r. They consider, much more generally, elliptic
systems on a domain in R" with compact analytic boundary.
Returning to the question of boundary values we show that the isomorphism

of Lions and Magenes is realized by the mapping ] --. f defined by the Poisson
representation fr Pr * ]. Moreover, fr -- ] in ’ as r / 1.
One may replace the sequence of functions {gn} in Theorem A with a

sequence {unl of Radon measures on 1. In this case one has

lira (n! g= II) TM 0
and

(1.3) ](r, O) _, P()(O t)d,(t)

where II gn total variation of g on r.
If P is replaced with the kernel

H(O t) (et + re)/(et re)
one obtains a representation for the cIass of analytic functions oa the unit
disc. Using (1.3) this may be written

(1.4) f(r, O) _, H(’)(O t) d,,,(t).

This formula has as antecedent a theorem of Leau and Faber in the theory
of Taylor series. (See [9, p. 3131). An analytic function if(z) _,=oavzv

has a holomorphic continuation on the Riemann sphere with exactly one
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singularity which is located at z 1 if and only if a g(p), p 0, 1,
where g is an entire function of exponential type zero. Setting g(w)
":ffio bw the latter condition is equivalent to lim (n![ b [)i/ 0 and we
obtain after substitution and rearrangement

bo i)b r(’)y(rei) +,,ffio 2
0 ).

This is a representation of the form (1.4) with point measures at 0.
If the support of each in (1.4) is contained in a fixed compact set K

then (1.4) defines a holomorphic function on the complement of this set
relative to the sphere. The converse question has not been investigated.
That is, if f is holomorphic on the complement of a compact proper subset of
the unit circle, is there a representation (1.4) for which supp # c K,
n 0, 1, ? Such a result would constitute a precise generalization of
the Leau-Faber theorem.

Considering generalized functions on the real axis, Roumieu (see [17, p. 80])
has derived a structure theorem which leads to a representation of the form
(1.4) in which Hr is replaced by the Cauehy kernel and the sequence {} is
restricted by the same condition. Metman (see [16, 4]) has obtained a
similar result. Metman was led to this class of generalized functions from a
problem in scattering theory. Theorem A is a consequence of a structure
theorem of Lions and Magenes (see [8, Prop. 1.3]) but a direct proof is pre-
sented in this paper. A structure theorem then follows from Theorem A.
We give here a brief outline of the topics to follow. An estimate of the

growth of P() and H() with n is derived in Section 2. It is used in the proof
of the representation theorem in Section 3. Section 4 contains a description
of and proof that it is a nonmetrizable complete space. Following a de-
scription of C’ in Section 5, C and c’ are shown to be dual Montel spaces.
The Poisson representation of is given in the last section together with a
structure theorem for ’.

2. An estimate for the kernel and its derivatives
The estimate is found as aa application of an inequality derived by S.

Mandelbrojt in his lectures. If z is the complex variable denote by the
operator z(d/dz) and set (z) f(1/(1 z)). Then is holomorphic
on the z-sphere less the point, z 1.

PgOVOSTO 1. For each p > 0 there is an a > 0 such that

(2.1) [(z)

_
n!a’+

on {Iz II >= p} forn 0:1,....
Proof. If z e’ and b(s) 1/(1 e’), then ,(z) b()(s) for s 2i.

For 0 p p. 1, consider the domains

in the s-plane. The function k is holomorphic in R and bounded by lips.
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Thus for s e R and d dist (0R1, OR)

n!f ()’) dX 1 n!

Setting a max (l/p1, 1/d) and transforming back to the z-plane we ob-
tain (2.1).

By comparing the power series expansions on r < 1} one finds that
Hr(O) 2o0(re) 1 and Hr(n)(0) 2io.(re) for n 1, 2, .... If
p > 0 choose a as in Proposition I so that in addition we have 21 o0(z) q- 1 <_- a
on{iz- 11 >_-pl. Then

(2.2)

for n 0, 1, and Ire et >= p.

Thus if t*. is a measure on I’ and z re then

A(z) fr H(’")(O t) dta,(t)

is analytic on {I z < 1} and if(z) -< n! a"+tl t, on {I z } if
p < 1. For a sequence {t,} satisfying lim (n!!l )" 0 it follows readily
that

(2.3) f(z) _, f(z)

_
H(’)( t) dt,,(t)

is an analytic function on {I z < 1} where the series converges uniformly on
compact sets. We will use the convenient terminology of G. MacLane in
describing this as subuniform convergence.
Our object is to show that any analytic function has such a representation.

The next estimate for H() leads to a clue for the proof of this fact. Using a
power series expansion on {r < 1} one obtains

(2.4) H(’*)( t) <= B,/( 1 r)’+.

Thus If,(z) <= B, t [I/(1 r)+. Writing f,(z) ’oaz and using
Cauchy’s estimate for the coefficients we find

(2.5) a 0(]c’+1)

An arbitrary analytic function on {I z < 1} has power series coefficients
{a} satisfying lim sup a <_- 1. If success is to be achieved, there must be
a decomposition of this sequence into a sum of sequences which grow as in
(2.5). Such a decomposition is the result in Lemma 1.
Evans observed that there are functions which are not of the type

that is, representable as a Stielties integral. (See [3, p. 59]). In his ex-
ample a a, a > 1.
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3. The representation theorem
According to the remarks of the last section we seek a decomposition

ak ak,, so that for each n the sequence {a,n} grows as a power of k.
Further, some uniformity must prevail for the constants involved as one
varies n. The precise manner is expressed in

LEMMA 1. Let {ak} be a sequence satisfying lim sup ]a / -<_ 1. Then
there are sequences {a,,l and a finite-valued function B such that

a ’=0ak,n
and

a, < B()+
(n + 2)!

z"

for O _<_ n-<_ k,k 1,2, and for all e > O.
llkProof. Let d sup,_]a 1, 2, .... Then the sequence

decreases to a limit no greater than 1. This may be expressed by writing
d =< 1 + ewheree, 0. Then fork _>_ 1

and it is possible to write a1 ak,0 + -t- ak,n -t- -b a, so that

for n 0, 1, k. Setting a0 a0,0 we have a decomposition of the de-
sired form and it remains to show that the growth condition is valid.

If e > O, choose k(e) such that ek/e < e- for k >= k(e). Using the inequality
(n + 1)(n + 2)e-" < 3 we have (n + 1)(n + 2)(e/e)" < 3 for k >= k(e).
There are only finitely many pairs k, n such that 0 <= n -< k < k(e) so that

and

B(e) sup
(n+ 1)(n+ 2) (_)"0_n e

<
k==l,2,"

(n + 2)!

This completes the proof and we are now in a position to prove the representa-
tion theorem.

There are several forms in which the representation may be written cor-
responding to the various classes of functions which have been studied in
connection with the Poisson integral. There are for example the Hardy Hv
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classes or the positive harmonic functions. All these forms are obtained on
starting with the class A of functions continuous on {I z _-< 1} and analytic
on {! z] < 1}. Provided with the norm

l[ell 0 _<_ <
A is a Banach space. (See [4, Chapter 6]).

THEOREM 1. A function f is analytic on z < 11 if and only if there is a
sequence g,l A such that

(3.1) lim (n! an ]1) 1/n 0

and

0
P(’*) ( t)g,(et) dt

Proof. The sufficiency of (3.1) and (3.2) is proved using (2.2). Con-
versely, if f(z) ’=0 ak z is analytic then lira sup a 11/k <_- 1. Let {a/be
decomposed into the sequences {a,,l of Lemma 1. For notational con-
venience suppose a0 a0,0 0. Except for a trivial modification when
n 2,

(3.3) ’k,-2.] a,n/Ion -- (B(e)e’/n!) n-2:l/] <
which implies that

() (_i). a,,-. 1 ’

is an element of A. Differentiating times with respect to 0

z
1 fo P(") (0 t)g,,(e) dt.

k-n--2

Denoting this function f.(z) we have

f(z) E S,(z) E -=2 :2
P’)(O t)g,(et) dt

provided (3.1) is satisfied. But (3.3) implies

g -<- 2B()e’/n!

for each > 0 and (3.1) is an immediate consequence.
If a0 0 set g0(z) a0 and include the integral for n 0. This com-

pletes the proof of the theorem.
It is obvious from the process of decomposition that the representation is

not unique. More directly this is evident from the possibility of integration
by parts, If a is a function of bounded variation on the interval [0, 2]
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with a(0) a(2r), then

’ t) da(t) $)a(t) dr.p(# p+l(#

Thus it may be possible to replace an integral with one of higher order or one
of lower order. It is even possible to write a Poisson integral as the sum of a
nonterminating .series of integrals.
The possibility of a canonical representation will be discussed in a follow-

ing paper.

4. The space

The distributions on the unit circle F are the continuous linear functionals
on the space of infinitely differentiable functions on 1 provided with the
topology of Schwartz [11]. In this topology a sequence , 0 if and only
if --. 0 uniformly on I’ for each n. A functional g is a distribution, i.e.

eg e ".D’, if and only if it has a Fourier series 011 a such that ]a] -<
B( k q- 1) for some constants B and n.
A harmonic function has a trace on I which is a distribution if and only if

it has a terminating representation of the form
r 1 f0 p(4.1) /(r, 0) (0 )g(t) dr.

In fact f has such a representation if and only if

rlklekaf(r, #)

with coefficient growth as above. (See (2.5) and (3.3)). Moreover

in the topology of ’ as r/ 1. The mapping f -* ] thus establishes a one to
one correspondence between the two spaces. Using the convolution product
in ’ this correspondence may be written as the Poisson representation

f= P.]
since P,(O) o_1 rifle.

If one replaces ) by C and :D’ by ’ then the structure described above
extends to the class $ of all harmonic functions. The topology of C will be
introduced in this section.

In terms of Fourier series developments the class may be defined by

ekO, il/Ikl(4.2) { (0) -’0sl,i c limsuplt, c, < 1}.

C is dense in ) and its topology will be finer than the relative topology.
A description of the topology will make use of a certain class of sequences.
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will denote the class of sequences a {a}0 which satisfy

a,

_
av > 0 for all

(4.3)
lira a,+ 1.

The collection of sets

V(a) {,. c,]

_
al for all k}

for all a a is a base for the neighborhood system at the origin for the desired
topology on .
To facilitate a proof that C is a linear topological space with this topology

and the derivation of other properties we first obtain three facts concerning
the sequences in a.
PROPOSITION 2. If a e a, then for each a > 0 and p < 1 there exists ,o such

that

(4.4) a,"

_
a /or >=

If a a and p < 1, then there is an a > 0 such that

(4.5) ap" <= a, for all

If {’} o is a sequence with the property that for each a a there is a b > 0 such
that , <= ba for all , then there exists a > 0 and p < 1 such that

(4.6) , <= ap for all v.

Proof. To prove (4.4) choose n > 1 such that py < 1 and choose such
that a+/a, >= py ]or , >= ,. Then

a, >= for v

and

One obtains (4.4) on choosing ,0

_
, so that the multiplier of , is smaller

than 1. The .property (4.5) is an immediate consequence of (4.4).

The validity of (4.6) is established indirectly. Suppose to the contrary that
for each a > 0 and p < 1 there is a v such that > ap’. If this is so, then
may be chosen as large as one wishes. For if $ ap for v v0, we may
choose c > 0 such that , -<_ cp for 0

_
v < vo, and then <= max (a, c

for all .
In particular let p/ 1, and choose vx for which / > p. Now define a

sequence {} inductively as follows. If vx,’" v-x have been selected,
choose to satisfy
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(4.8) .)% > np".

Now let pn pl/n where p < 1 and define the sequence a {,}0.-. by

(4.9)

0<9<91

Because of (4.7) the sequence is decreasing and a+i/a > pl/" for ,
which implies lim (a+/a) 1.
The sequence a e ( and by hypothesis there is a b > 0 such that ,

_
ba for

all . But this is contradictory for we should have according to (4.8) and
(4.9)

np""m < %,, <-- ba,, bp

or n < b. The alternative is that there does exist a > 0 and p < 1 satisfying
(4.6). This completes the proof of the proposition.
We are now in a position to prove the assertions of the following four propo-

sitions.

PROPOSITION 3. The collection of sets V(a), a a, determines a topology on
with which C is locally convex.

Proof. The collection V(a) is a local base. For if a, a, there is a , e a
such that V(7) c V(a) n V(/). In fact, the sequence , {min (av ,t3v)} e(g

and V(,) V(a) n V(/3).

To prove that a topology is determined which is compatible with the linear
structure it is sufficient to show that each V(a) is circled and radial and that
the collection forms a uniform structure.

Since c -<- i[all -< all for I),1 =< 1, V(a) is circled. If 5C, then
lim sup c < 1. There is an a > 0 and a p < 1 such that [ci -< apI1 for
all k. Using (4.5) there is a ?, > 0 such that XapIl <- alk for all/. It follows
that , e V(a) which means that V(a) absorbs . Therefore V(a) is radial.
If a e a and/3 {a/2} then V(/3) -t- V(/3) c V(a).
The proof is completed on observing that each V(a) is convex.

PROPOSITION 4. 5( is complete.

Proof. Let {o,} beaCauchynetin3C. Theno ,p, eV(a) foru, u >_- #(a).
Thus [c c[ =< all for , u -> u(a) and for all k. This implies that {c} is
a Cauchy net having a limit c for each k.

We have c c[ -< all for >_-- (a). For a particular the condition
lim suplc [/!*1 < 1 implies the existence of a > 0 and p < 1 such that
ct -<_ ap for all k. By (4.5) there is a b > 0 such that apI1 <= bal for all
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/c. Therefore

for all k. But this happens for each a e a. Now applying (4.6), there is an
a > 0andap < lsuchthatlc]<- apIlforallk. Hence

(o) o_11 c c.
Since , e V(a) for >= #(a), the net converges to in C proving the

proposition.

PROPOSITION 5. The collection of sets

E(a, p) { e. C c <- apI1 for all k}

for all a > 0 and p < 1 is a fundamental system of bounded sets for C. Each
E(a, p) is compact.

Proof. If a e a choose b > 0 such that apll

_
bal for M1 . Then

(1/b)E(a, p) V(a). This proves that E(a, p) is bounded.

Conversely, if A is a bounded set, then hA V(a), X X(a) > 0, for each
aea. Wehave

sup { c " A} 6 (/x(-))-

for all k and each a e a. According to (4.6) there is a pa a > 0, p < 1 such
that apIl for all k. Consequently A E(a, p).
The Tychonoff product theorem may be used to prove that E(a, p) is com-

pact. For each k, D {] z apIl is a compact disc the complex plane
and E(a, p) may be identified with the cartesian product X0 D. If the
product topology is finer than the relative topology on E(a, p) then E(a, p) is
compact.
Let .e E(a, p) have Fourier coefficient sequence {c} and consider its

neighborhood

( + V(.)) E(a, )

{e" ]g c a and d aP for all k}

where {d} is the sequence of coefficients of . Assung only that, e E(a, p) we have d c] 2ap and using (4.4) there isa v0 such that
]d c] a for k] v0. Therefore

( + V(a)) , E(a, p)

{e" Ida-c] a for k] < vo,]d] ap forall k}.

This however is a neighborhood of in the product topology provg that the
product topology is finer. This completes the proof. It is easy to show
fact that the two topologies are the same.
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PROPOSITION 6. C is not metrizable.

Proof. If C were metrizable there would be a countable collection V(am)
constituting a local base at the origin. We will describe a sequence a e ( such
that no V(an) is contained in V(a).

It is clear t!at V(am) V(a) if and only if a a for all .. Thus we seek
a such that for each n, a a for some . This occurs if there is a quence
{} such that a < a.
Choose a such that 0 < a < a and 1. Applying (4.4) to the se-

quences ()-’a,} and {a} choose such that

Define a ()--a for < < . If , ,,_ huve been defined
choose such that

and define

for Pn--1 l) 1)n

n

Then the sequence a {a} is decreasing and

for
_

-< < , so that lim (a,+./a,) 1 and a

Since a, < a, we obtain the desired contradiction. Therefore a base at
the origin is necessarily uncountable and is not metrizable.

Before considering the dual space, let us note that the topology of C is finer
than the topology on C. The topology of ) is described by the increasing
sequence of norms

p() sup0_ll (I k + 1)lc i, n 0, 1, ....
Observing that a {s/(, + 1) "} e a we have V(a) { e 3C p()

_
e} so

that each ) neighborhood is also a neighborhood in
One fact about ;E remains to be proved. The space is barrelled. We defer

the verification until the next section where some properties of the dual space
may be used. Since, according to Proposition 5, closed bounded subsets of
are compact, is u Montel space. (See [1, p. 89]).

5. The Space ’We turn now to a study of the dual space ’ of continuous linear fuactionals
on C. The duality (, f) on C C will be chosen to be linear oa C and
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antilinear (complex conjugate of linear) on ’. Thus

The Fourier coefficients of f C’ are defined by a
Our immediate object is to show that C’may be identified with the space of

/11 < 1. In the correspondencesequences a} satisfying lira supll a
{a} is the sequence of Fourier coefficients of an element of C’. A sequence
satisfies the above condition if and only if there is finite-valued function B
such that a <= B()I1 for all/ and all > 1, However, for certain calcu-
lations we need two other characterizations of such sequences.

Let us first observe that one may limit attention to those functions B Which.
are convex and decreasing (not necessarily strictly decreasing). For if

BI(/) supo_ll lal-’1

for each / > 1, then B has these properties and
We define now a class 53 of sequences B {f,}0_v which satisfy

0 < fl, =< fl,+ for all

lim +/fl 1.

It may be noted that 53 is the dual of the class a defined by (4.3) in the. sense
that {/} e 53 if and only if {1/} e a. As may be guessed, the class 53 plays
a role in describing the bounded subsets of ’ analogous to that of a in deter-
mining a base for the topology of .
PROPOSITION 7. If 53 there is a convex decreasing function B such that

(5.2) fv <- inf>l B(/)

for all >= O. If B is a convex decreasing function there is a e 53 such that

(5.3) inf,> B(/)/ -<_ f
for all , >= O.

Proof. The first assertion can be proved readily but the second requires
somewhat more effort. If f e 53 and /> 1 there is, using (4.4), a v0 such that
v- =< 1/ for >= 0. This implies that B(7) sup0_ - is finite. The
function B satisfies (5.2).

Now let B be a strictly positive convex decreasing function on the interval
(1, ). Define B to be the derivative of B from the right at each point of
(1, and denote f(/) -/B(/)/B(/). Then f is nonnegative, subuni-
formly bounded on (1, ), continuous from the right on (1, ), and con-
tinuous except at a countable set of points. If 1 < to < then

B() B(to) exp dt.
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It will be helpful to replace B by a larger function Bt for which the function
ft corresponding to f is decreasing. The properties of f make it possible to
choose anf which is strictly decreasing, continuous, and greaterthan f on the
interval (1, to]. We may as well assume that lim, f(,) . Take f to
be zero on (t0, ). The function Bt defined by

Bt(,) B(t0) exp dt

dominates B and is convex decreasing on 1, with minimum value Bt(t0).
The function B also has the property that B(,) is convex for each > 0

which will make it easy to find its minimum value. For > 0

(B(n)nv)’= (--f() + u)-lB(y), 1 < ? < to,

u-lBl(to), to < 7.

If we let 90 min {’ft(to) < 9} and define byf() for -> 0, then
,v " land

inf,> B(,)v= B(to)t, 0 <-_ v < 90,

B(v),:, 0 -<_ .
suitable estimate for Bt(v)v: will provide us with the desired sequence

(B. On the interval [o, to], f(t) <- f(o) 9o so that

B(wo) B(to)exp f__t) dt =< B(to)
o kWo/

or B(,to):o -<_ Bt(to)tg. For each > 90, f(t) <= f(w) oa the interval
[y, y_] implying

fl(t) dt

l(tO)(to/o) H-,o+ (-/)
Thus B() -<_ Bl(to) oto o" -t for , > ,o.

The sequence defined by

fBl(t)t$
[Bt(t0) oto 90 Y,

is in the class and satisfies (5.3). This completes the proof of the propo-
sition.

PROPOSITION 8. The following conditions for a sequence{a,} are equivalent.

(5.4) o=<1i c a. < for all sequences c} such that

II/Ikllim supl01- c < 1.
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(5.5)

(5.6)

(5.7)

o11 Ckdk is convergent for all sequences {ck} such that

{l/Ikllim suplkl c < 1.

lim sup a 1.

There is a finite valued function B such that a B(v) for all and
all v > 1.

(5.8) There is a sequence e 5 such that a

_
/11 for all k.

Proof. The implications (5.4) (5.5) (5.6) (5.4) are either trivial
or straightforward. The equivalence (5.6) = (5.7) is immediate from the
definitions and the equivalence (5.7) =, (5.8) is a consequence of Proposition 7.

As a side remark we mention that the equivalence of (5.8) with (5.6) leads
to an apparently new elementary condition, in the form of a ratio test, for
determining the radius of convergence for power series.
With these preliminary results in hand it is possible to establish the identifi-

cation of 3C’ with the space of sequences {ak} satisfying the conditions of
Proposition 8 and at the same time to obtain the appropriate Parseval relation
for the duality (,

THEOREM 2. Iff e 3C’ and ak} is the sequence of Fourier coecients of f, then
(, f} o_,, c for all e 3C where c} is the sequence of Fourier coeicients
of . The series is absolutely convergent. Conversely, any sequence {a} such
that the series is convergent for all e is the sequence of Fourier coecients of
an f e

Proof. Consider first the casef e 3C’. if e 3C there is an a > 0 and a p < 1
eikOsuch that c! < apIlforall]. Setv 0_ll< ck Ifaathereis,

according to (4.4), a v0 such that ap -<_ av for v >-_ 0. This implies

for v >= v0. Consequently v -- in 3C and

o_ ca ,, f) - (, f).

For the converse define (, f) 0__<11 c de for all 3C. Then f is linear
and condition (5.8) yields a f such that a --< fl.l for all/. The sequence
a {/(5)/ 0 and V(a) implies

Thereforef is continuous and the proof is completed on noting that (dk, f) a
for all k.
Having characterized the elements of E’ we wish to describe convergence

in this space. C’ is to be provided with the strong topology. This is the
topology of uniform convergence on the bounded subsets of 3C. The first
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result below gives a simple description of a base for the topology of C and
the second result concerns the bounded subsets of .
PROPOSITION 9. The sets

V’(,) {f, e’’lai - 11 for all

for all e > 0 and > 1 form a base for the neighborhood system at he origin.

Proof. By the definition of the strong topology a base is formed by the
sets

W’ a, p) {f e" {, f)l 1 for all e E( a,

for all a > 0 and p < 1. That is, the polars of a fundamental system of
bounded sets in . It will be shown that these bases, are equivalent.

Given a > 0 and p < 1 choose > 1 such that p < 1 .and > 0 such that
1 + py)/[a( 1 py)]. Then f e V’(e, y) and e E(a, p) imply

Therefore V(e, ) W’(a, p).
On the other hand if f W’(a, p) then (, f) 1 for all e such that

and c 0 for k0 then]c[ ap1 In particular if Co ap
apl5 1. Therefore ]a (1/a)(1/p) for all k. Therefore given
e > 0 and y > 1 choose a 1/e and p 1/ to obtain W’(a, p) W(, ).
This proves the proposition.

PROPOSiTiON 10. Each of the collecgons

E’(B) {fe’" ]a[ B() for all k and all > 1}

for l cvex decreasing functions B and

F’() {fe’’la[ for all

for all e is a fundament.al system of bounded sets for ’.

Proof. These two collections are equivalent as a consequence of Propo-
sition 7 in the sense that each E’(B) contains an F’(5) and conversely.
Therefore we need only prove that the collection of set E’(B) is a fundamental
system.

For each > 0 and v > 1, (/B())E’(B) V’(e, ). Ts proves that
E’(B) is bounded. Conversely, if A is bounded then kA V’(e, ),
k k(, ) for all > 0 and > 1. In particular IX(l,
and all > 1 if f e A. Therefore

B(y) sup{]a]:" for all leA and all
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The function B is convex decreasing and A E’(B). This establishes the
proposition.
We may retur now to the question left open at the end of Section 4. The

space is barrelled if each barrel in C is a neighborhood of the origin. A
subset V of C is a barrel if it is closed, convex, circled and radial. Since V is
closed, convex, and contains the origin it is the polar of its polar, V V.
The radial property for V is equivalent to the boundedness of V relative to the
weak topology on ’ (pointwise boundedaess).
But since C is complete the weakly bounded sets are also strongly bounded.

(See [1, p. 86]). Therefore euch barrel in is the polar of a bounded subset
of :E. We need only show that the polar of u bounded subset of is
neighborhood of the origin in . It is sufficient to consider the fundamental
sets F(/).

If V {C: [(, f)l <-- 1 for all fF’()} for some ( define
a 1/(52)} a. Then V(a) and f F’() implies

Therefore V(a) V and V is a neighborhood of zero.
We have therefore proved with the help of Proposition 5 that C is a Montel

space. Each Montel space is reflexive, the strong dual of the strong dual is the
original space, and its dual is a Montel space. Thus

THEOREM 3. The spaces C and C’ are Montel spaces. is the strong dual
of C’.

A number of properties of C’ follow readily from the results already estab-
lished. Since {e} is total in we conclude from the Banach-Steinhaus
theorem that boundedness in ’ and convergence of the Fourier coefficients
implies strong convergence. In particular the Fourier series of each f
converges to f in ’. As remarked by KSthe, after Schwartz,, this result sup-
presses further the distinction between Fourier series and trigonometric series
which are not Fourier series.

’ is a Frechet space and contains )’ s a dense subspace. The topology
of ’ is finer than the C’ topology on lI)’. Convolution may be defined by

f* g 0_1.1 a b e

eikOwhere f ’0_il a and g 0_lkl b e. The mapping f --, f ,g is
continuous for each g e ’.

Differentiation may be defined as in )’ and it commutes with convolution.
Antidifferentiation is possible if and only if a0 (1, f) 0. In the closed
hyperplane 0 {f C (1, f), 0} antidifferentiation is always possible and
is unique. The element F e C0 such that F() f will be called the n-th in-
tegral of f.
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The real elements of ’ are those with Fourier coefficients satisfying
a_k ak and each positive f is a positive measure.

6. The Poisson Integral and a Structure Theorem
The generalized functions serve as a boundary space for the harmonic func-

tions. A generalized function is called analytic if it has a Fourier series of the
ekOform 0_k a The closed subspace of analytic generalized functions serve

as a boundary space for the holomorphic functions. These correspondences
are realized by means of the Poisson integral.
The Poisson kernel is defined for 0 -<_ r _<_ 1 by P o_1! rlle. Ia pr-

ticular P1 is the Dirac delta function. If 1 for >-_ 0 then
and P e F’(). Since the coefficients are continuous functions of r and the
family {P} is bounded, P is a continuous mapping of [0, 1] into ’. Hence
Pr g is a continuous mapping for each g e

THEOREM 4. A function f is harmonic on {r < p} if and only if there is a
generalized function f such that

(6.1) fr Pr/p*]

for each r < p. Moreover f ---, f in ’ as r , p and consequently f is uniquely
determined.

Proof. A function f is harmonic ou r < p} if and only if

f(r, O) 0_lkl bkrlkleik

where lim supll-, bk [/ll _<_ lip. Denoting a b pill and] 0_lkl a e

]/11 < 1 andwe have lim suplkl_ a

fr(O) Z(_lkl a(r/P)

for r < p. Therefore ] e ’ and f Pp ,].

The convergence f -- P,] as r 2 p was established in the remarks pre-
ceding the theorem and P1 ] ]. This completes the proof.

COaOLLY. A function f is holomorphic on r < p} if and only if there is an
analytic generalized function f such that (6.1) holds.

At this point we may confirm that the topological spaces and C’ are the
same as those defined by Lions and M:agenes [8]. We have remarked earlier
that C was chosen the same in both instances. Theorem 4 above and their
Theorem 9.1 both establish linear isomorphisms of C’ with . Since the
strong dual topology is used also by them for C’ is sufficient to equate the
topologies for C. In their construction C is the limit of an increasing sequence
of Banach spaces. The inductive limit topology is used and it is bornological
(see [7, p. 406]). But this is the Mackey topology for the duality (,
The same is true in the present paper because C is barrelled.
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Denote by P the one to one linear mapping ] - f of C’ onto the space ff of
harmonic functions on {r < 1} defined by fr Pr *]. The isomorphism of
C’ and ff established by Lions and Magenes is realized by the mapping P.

THEOREM 5. If ff is provided with the topology of subuniform convergence,
then P is a topological isomorphism of C’ onto ft.

Proof. Recall that a base at the origin for ’ is formed by the sets

V’(e, 7) {]e’:lakl - e,Ikl for all k}
for all > 0 and v > 1. A base at the origin for ff is given by the sets

U(a, p) {f c lf(r, O)[ <= a for r

_
p}

for alla > 0andp < 1.

Ifa > 0andp < lwehave

V(, 7) P-1U(a, p)

for e a(1 p)/(3 -t- p) and (1 -t- p)/2p. This proves that P is con-
tinuous. If > 0andv > 1 seta aadp 1/7. Then U(a, p) c
PV’(, 7) proving that p-1 is continuuos and completing the proof of the
theorem.
We may remark that the bounded subsets of ff are the families of harmonic

functions which are subuniformly bounded on {r < 1}. It is interesting to
compare this description with that of the bounded subsets F’() of ’ in
Proposition 10.
Theorem 1 leads to a structure theorem similar to Proposition 1.3 in [8] for

generalized functions. To instroduce this idea we recall the structure theorem
for distributions. If ]’ there is a finite sequence {go,"’, g} of con-
tinuous functions on F such that ] 0g(). Using Theorem 4 this yields
the representation (4.1) for those harmonic functions having a boundary func-
tion which is a distribution.

THEOREM 6. If f is a generalized function there is a sequence {g,} =o of con-
tinuous functions on F such that

(6.2) limn (n! g II)ln 0

(6.3) f :=ogY).

Conversely, if {g} is a sequence of continuous functions satisfying (6.2) then
(6.3) defines a generalized function f

Proof. It is convenient to prove first that (6.2) implies the convergence of
-’0__< g(’) in C’. Condition (6.2) is equivalent the existence of a convex de-
creasing function B such that n! II g -<- B(e)e for all n >= 0 and all e > 0.
Each g(’) is a generalized function and has a Fourier series. For n > 0,

eik (n) elkS,g()e. Set go 0=<lla andg 0__<lla Forn > 0the
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nth integral of g will differ from g by a constant

which may as well be assumed to be zero. Then g 0<1! (i/c)-a e.
Thus for all k and n and > 0

1 B(e)

or U(v)v k

Denotingb a + +a,y e,andB(y) B(logv) wehave

]b B()[1 W [kl +’" + (lk I)/Ni] U(e)e

for all k and N and all > 1. For each N

is an element of the bounded set E’(B). For each k, the sequence {b} has
a limit b since it is the sequence of partial sums of a dominated series.

Therefore the sequence {h,} is bounded and has convergent Fourier co-
efficient It converges in ’ to a generalized function

Now let ] e ’ and define fi P ,]. By Theorem 1 there is a sequence
g] of continuous functions satisfying (6.2) such that

f(O) :=0 (1/2) P’)(O t)g,(t) dt.

Thus

for M1 r < 1. The lust equality mukes use of the first purt of this proof.
Applyg the iqueness part of Theorem 4 we find ]
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