HARMONIC FUNCTIONS ON THE UNIT DISC I'

BY
Guy JoHNSON, JR.

1. Introduction

This report concerns real- or complex-valued harmonic functions defined
on discs in the plane. The principal result may be stated as

TarorEM A. A function f is harmonic on the unit disc if and only if there s
a sequence {g,} of continuous functions on the unit circle such that

(1.1) lim (n! || g. )" = 0

and
= 1 o n)

(12) Jr0) =2 o [P0 — 0)gu(0) d
n=0 21 Jo

In (1.1) the norm is defined by ||g| = sup {|g(¢)]|:0 £ ¢ £ 2r and in

(1.2)
P60 — t) = ®(e" + re”) /(e — re”)]
is the Poisson kernel for the unit disc. P.™ is the nth derivative of P, .

This theorem was reported in [5]. It has been used by Douglas [2] as a
global constraint for harmonic continuation in the dise of a function which is
approximated at a finite set of points. Saylor, a student of Douglas, has
extended these results to the case of solutions of a linear elliptic second order
partial differential equation with analytic coefficients on a domain in R”
bounded by a compact analytic boundary [10].

There is a rich boundary-value theory concerning the Poisson and the
Poisson-Stieltjes integrals beginning with the work of Fatou. A nice treat-
ment of old and new results in this theory may be found in [4]. In view of the
above result it is natural to ask whether there is a boundary function, in
some generalized sense, associated with an arbitrary harmonic function by
means of a Poisson representation. In fact, denoting f.(8) = f(r, ) and
using (1.2) we have, formally

Fr= Dm0 P sgy = 2 omao Prgl” = Pox 2 mogs” = Poxg.

The appropriate setting in which these calculations have meaning is a gen-
eralized function space having analytic test functions. Let 3C denote the
linear space of analytic complex-valued functions on the unit circle I'.  Kothe
[14], [15] introduced a certain locally convex topology for 3¢. The strong
dual 3¢’ is the space of generalized functions. The Fantappie indicator of an
element f € 3¢ is a function holomorphic on @ — I" and zero at . Q denotes
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the Riemann sphere. It converges to f at I' in the topology of 5¢’. Provided
with the topology of uniform convergence on compact subsets of @ — T, the
space of indicators is isomorphic to 3¢’.

In various settings such spaces of analytic functionals have been studied
by Grothendieck [13], Gelfand and Silov [12], Sato [18], Roumieu [17], Lions
and Magenes [8], and Meiman [16]. The topology for the test function
space usually appears as the inductive limit of a sequence of normed spaces
although the choice of the normed spaces differs among the authors.

In this paper I present an independent description of the 3¢ and 3¢’ topolo-
gies using the corresponding sequence spaces of Fourier coefficients. It differs
from previous presentations in that no intermediate normed spaces appear.
A neighborhood is obtained directly from a dominant sequence. Also, the
harmonic functions on the unit dise take the place of the holomorphic indi-
cators, a possibility suggested by Sato [18] and used by Lions and Magenes
[8]. The properties for 3¢ and 3¢’ are those obtained by Kaothe [14], [15] and
by Grothendieck [13].

Let ¥ denote the space of complex-valued harmonic functions on the unit
disc provided with the topology of uniform convergence on compact sets.
A very speeial case of Theorem 9.1 in [8] establishes a linear and topological
isomorphism between ¥ and 3¢ in which the element f e 5¢’ corresponding to
feF is the trace of f on I'. They consider, much more generally, elliptic
systems on a domain in R” with compact analytic boundary.

Returning to the question of boundary values we show that the isomorphism
of Lions and Magenes is realized by the mapping f — f defined by the Poisson
representation f, = P, *f. Moreover, f, — fin 5" as r 2 1.

One may replace the sequence of functions {g.} in Theorem A with a
sequence {u,} of Radon measures on I'. In this case one has

lim (n! || g )" = 0

and

(13) §r,0) = 2 [ P = 0) dual®)
n=0 JT

where || ua || = total variation of u, on T'.

If P, is replaced with the kernel
H.(0 —t) = (" + re?) /(e — re”

one obtains a representation for the class of analytic functions on the unit
disc. Using (1.3) this may be written

(L4) 5,00 = 3= [ B0~ 0) duae),

This formula has as antecedent a theorem of Leau and Faber in the theory
of Taylor series. (See [9, p. 313]). An analytic function f(2) =  p=oa2®
has a holomorphic continuation on the Riemann sphere with exactly one



368 GUY JOHNSON, JR.

singularity which is located at 2 = 1 if and only if a, = g(p),p =0,1, -+,
where ¢ is an entire function of exponential type zero. Setting g(w) =
> % obaw" the latter condition is equivalent to lim (n!|b,|)'™ = 0 and we
obtain after substitution and rearrangement
O MUY )
n=0
This is a representation of the form (1.4) with point measures at { = 0.

If the support of each u, in (1.4) is contained in a fixed compact set K
then (1.4) defines a holomorphic function on the complement of this set
relative to the sphere. The converse question has not been investigated.
That is, if f is holomorphic on the complement of a compact proper subset of
the unit circle, is there a representation (1.4) for which supp . C K,
n =20,1, ---? Such a result would constitute a precise generalization of
the Leau-Faber theorem.

Considering generalized functions on the real axis, Roumieu (see [17, p. 80])
has derived a structure theorem which leads to a representation of the form
(1.4) in which H, is replaced by the Cauchy kernel and the sequence {u,} is
restricted by the same condition. Melman (see [16, §4]) has obtained a
similar result. Melman was led to this class of generalized functions from a
problem in scattering theory. Theorem A is a consequence of a structure
theorem of Lions and Magenes (see [8, Prop. 1.3]) but a direct proof is pre-
sented in this paper. A structure theorem then follows from Theorem A.

We give here a brief outline of the topics to follow. An estimate of the
growth of P{™ and H{™ with n is derived in Section 2. It is used in the proof
of the representation theorem in Section 3. Section 4 contains a description
of 3¢ and proof that it is a nonmetrizable complete space. Following a de-
seription of 3¢’ in Section 5, 3¢ and 3¢’ are shown to be dual Montel spaces.
The Poisson representation of & is given in the last section together with a
structure theorem for 3¢’

2. An estimate for the kernel and its derivatives

The estimate is found as an application of an inequality derived by S.
Mandelbrojt in his lectures. If z is the complex variable denote by 9 the
operator z(d/dz) and set ¢,(z) = D"(1/(1 — 2)). Then ¢, is holomorphic
on the z-sphere less the point.z = 1.

ProrosiTioN 1. For each p > O there is an a > 0 such that
(2.1) lea(2) | < nla™™
onf{lz—1|=p}forn=0,1, --.

Proof. Ifz = " and ¢(s) = 1/(1 — €), then ¢,(2) = ¢™(s) for s # v2mi.
For 0 < p1 < p2 < 1, consider the domains

Ri={l¢—1|>pm} and R, = {|e — 1| > py}
in the s-plane. The function ¢ is holomorphic in R; and bounded by 1/p; .
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Thus for se R: and d = dist (dR;, 0R:)
nl f VNP R

27t Jr—sj=¢ (A—s)7Ht T padr’

ly™(s)| =

Setting @ = max (1/p1, 1/d) and transforming back to the z-plane we ob-
tain (2.1).

By comparing the power series expansions on {r < 1} one finds that
H,(0) = 2¢0(re”) — 1 and H,"(0) = 2"¢n(re®) forn = 1,2, ---. If
p > 0 choose a as in Proposition 1 so that in addition we have 2| gy(2) | + 1 S @
onf{|z — 1| = p}. Then

(2.2) [HM(0 — )| € nla

forn = 0,1, --- and |re® — | = p.
. . (]
Thus if . is & measure on I" and 2z = re’ , then

i) = [ HP6 = 0 duat)

is analytic on {|z| < 1} and |fa(2) | £ n! @™ .|| on {|z| S p} if
p < 1. For a sequence {u,} satisfying lim (n! | u [|)""* = 0 it follows readily
that

(23) 1) = S 0ule) = 5 [ BP0 — 1) duatt)

is an analytic function on {|z| < 1} where the series converges uniformly on
compact sets. We will use the convenient terminology of G. MacLane in
describing this as subuniform convergence.

Our object is to show that any analytic function has such a representation.
The next estimate for H™ leads to a clue for the proof of this fact. Using a
power series expansion on {r < 1} one obtains

(2.4) |H™(8 — t)| £ B./(1 — )"

Thus |fu(2) | £ Ball s ||/(1 — 7)™, Writing fu(2) = > o2’ and using
Cauchy’s estimate for the coefficients we find

(2.5) la| = O(K™™)

An arbitrary analytic function on {|z| < 1} has power series coefficients
{a:} satisfying lim sup | ax |'* < 1. If success is to be achieved, there must be
a decomposition of this sequence into a sum of sequences which grow as in
(2.5). Such a decomposition is the result in Lemma 1.

Evans observed that there are functions which are not of the type fu;
that is, representable as a Stieltjes integral. (See [3, p. 59]). In his ex-
ample a; = aV¥, a > 1.
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3. The representation theorem

According to the remarks of the last section we seek a decomposition
@k = D n Q. S0 that for each n the sequence {arn} grows as a power of k.
Further, some uniformity must prevail for the constants involved as one
varies n. The precise manner is expressed in

Lemma 1. Let {a:} be a sequence satisfying lim sup |ax|"™ < 1. Then
there are sequences {ay .} and a finite-valued function B such that

ap = Z/;uzo (279

and .
B(e)e™
< 21808
lak,nl = (n + 2)'16
for0=n =k k=12 --- andforalle > 0.
Proof. Let d, = supez,|ax|"™, » = 1,2, ---. Then the sequence {d,}

decreases to a limit no greater than 1. This may be expressed by writing
d, £ 14 ¢ wheree, M 0. Thenfork = 1

1+(§)ek+~--+<ﬁ)ez+~--+ei

and it is possible to write @, = az,0 + -+ + @xn + -+ + arx s0 that

ol = (4)

forn = 0,1, ---, k. Setting ao = ao,0 we have a decomposition of the de-
sired form and it remains to show that the growth condition is valid.

E\ » _ K" .
|aen| = (n) & = - &k

lax] < di £ (1 + &))"

If ¢ > 0, choose k(&) such that e,/ < ¢ ' fork = k(e). Using the inequality
(n4+1)(n+2)e" < 3wehave (n + 1)(n + 2)(ar/e)" < 3fork = k(e).
There are only finitely many pairs k, n such that 0 < n £ k < k(¢) so that

B(e) = sup (n 4+ 1)(n + 2) <§£>” < w

0<n<k &? e
k=1,2,"'
and
n+2
| = BEIE
(n + 2)!

This completes the proof and we are now in a position to prove the representa-
tion theorem.

There are several forms in which the representation may be written cor-
responding to the various classes of functions which have been studied in
connection with the Poisson integral. There are for example the Hardy H”
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classes or the positive harmonic functions. All these forms are obtained on
starting with the class A of functions continuous on {|z| = 1} and analytic
on {|z| < 1}. Provided with the norm

gl = sup{|g(e”)]:0 =< 2a},
A is a Banach space. (See [4, Chapter 6]).

TuroreM 1. A function f is analytic on {|z| < 1} if and only if there is a
sequence {g,} C A such that

(3.1) lim (! g )" =

and \

(32) &) =3 o [ P = Dgale™) as
n=0 4T JO

where z = re*’.

Proof. The sufficiency of (3.1) and (3.2) is proved using (2.2). Con-
versely, if f(2) = D imoax 2" is analytic then lim sup | a: ["* £ 1. Let {a:} be
decomposed into the sequences {ax,} of Lemma 1. For notational con-
venience suppose @y = o0 = 0. Except for a trivial modification when
n = 2,

(3.3) Dbena| /K| S (B(e)e" /) D penal/E <
which implies that

0 2T

p(a) = (=i 2 g o L [P0 — 0gae) &
k=n—2 ™ Jo

is an element of A. Differentiating n times with respect to 6

0

Z A2’ = —f P™(6 — 8)ga(e™) dt.

k=n—2

Denoting this function f,(z) we have

fz) = an(z) = E

n=2 2

f PS(6 — £)ga(e™) dt

provided (3.1) is satisfied. But (3.3) implies
[ gx |l = 2B(e)e"/n!

for each ¢ > 0 and (3.1) is an immediate consequence.

If ap %~ O set go(2) = ao and include the integral for n = 0. This com-
pletes the proof of the theorem.

It is obvious from the process of decomposition that the representation is
not unique. More directly this is evident from the possibility of integration
by parts, If « is a function of bounded variation on the interval [0, 2]
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with a(0) = a(2r), then
27 2r
fo P™ (0 — 1) da(t) = fo P (9 — 1)alt) dt.

Thus it may be possible to replace an integral with one of higher order or one
of lower order. It is even possible to write a Poisson integral as the sum of a
nonterminating series of integrals.

The possibility of a canonical representation will be discussed in a follow-
ing paper.

4. The space 3¢

The distributions on the unit circle I' are the continuous linear functionals
on the space D of infinitely differentiable functions on I' provided with the
topology of Schwartz [11]. In this topology a sequence ¢, — 0 if and only
if o — 0 uniformly on T' for each n. A functional g is a distribution, i.e.
g e D', if and only if it has a Fourier series Eosw ar ™ such that lax| =
B(|k |+ 1) for some constants B and n.

A harmonic function has a trace on I' which is a distribution if and only if
it has a terminating representation of the form
N 1 27
(41) 1r,8) = 2 om [ P8 — 0ga(0) .

n-02

In fact f has such a representation if and only if
1(r,0) = 2ogm axr™e™

with coefficient growth as above. (See (2.5) and (3.3)). Moreover
frm T = 2o axe™

in the topology of ®’ asr A 1. The mapping f — f thus establishes a one to
one correspondence between the two spaces. Using the convolution product
in D’ this correspondence may be written as the Poisson representation

fr =P, *f
since P(8) = D o r''e™.

If one replaces © by 3¢ and D’ by 3¢’ then the structure described above
extends to the class § of all harmonic functions. The topology of 3¢ will be
introduced in this section.

In terms of Fourier series developments the class 3¢ may be defined by

(42) 5= {o:0(0) = Doz o™, limsuppiow | e |'™ < 1},

3¢ is dense in D and its topology will be finer than the relative topology.
A description of the topology will make use of a certain class of sequences.
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@ will denote the class of sequences & = {a,}0<, which satisfy

(43) lim 2 = 1,

y>0 Oy

The collection of sets
V(a) = {pedC:|c] £ oypy forall K}

for all « € @ is a base for the neighborhood system at the origin for the desired
topology on JC.

To facilitate a proof that 3C is a linear topological space with this topology
and the derivation of other properties we first obtain three facts coneerning
the sequences in Q.

ProposITION 2. If a € @, then for each a > 0 and p < 1 there exists vo such
that

(44) ap’ S o, for v = .
If a ¢ @ and p < 1, then there 18 an a > 0 such that
(4.5) ap” £ oy foral .

If {v,}0<» 18 @ sequence with the property that for each o € @ there is a b > 0 such
that v, < ba, for all v, then there exists a > 0 and p < 1 such that

(4.6) v < ap” forall v.

Praof. To prove (4.4) choose 5 > 1 such that pn < 1 and choose » such
that a,p1/ay = pnfor v = vi. Then

a2 () "o, for v n
and
V1
a
o < a (:m) .
N0y

One obtains (4.4) on choosing v = » so that the multiplier of e, is smaller
than 1. The property (4.5) is an immediate consequence of (4.4).

The validity of (4.6) is established indirectly. Suppose to the contrary that
for each @ > 0 and p < 1 there is a » such that v, > ap’. If this is so, then »
may be chosen as large as one wishes. For if v, < ap” for v = vy, we may
choose ¢ > 0 such that v, < ¢p” for 0 < v < 1y, and then v, < max (@, ¢)p’
for all ».

In particular let p, 2 1, and choose »; for which v,, > pi'. Now define a
sequence {v,} inductively as follows. If vy, --:, v,y have been selected,
choose v, to satisfy

47) v > L
n—1
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(4.8) Yoy > Npu.
Now let p, = p"'" where p < 1 and define the sequence a = {a,}o<, by
a, = p’, 0=v <,
49 et
(49) * n+1 n Vn
=p*where x = (0 — »,) ————+ 2, vy = v < Vpi1.
Vnt1l —Vn n

Because of (4.7) the sequence is decreasing and a,41/a, > p/" for vy, £ v < vapt
which implies lim (oy41/a,) = 1.

The sequence a ¢ @ and by hypothesis there is a b > 0 such that v, £ ba, for
all ». But this is contradictory for we should have according to (4.8) and
(4.9)

™" < ., £ bay, = bp™'"

orn < b. The alternative is that there does exist ¢ > 0 and p < 1 satisfying
(4.6). This completes the proof of the proposition.

We are now in a position to prove the assertions of the following four propo-
sitions.

Prorosition 3. The collection of sets V(a), o € @, determines a topology on
3JC with which 3C s locally conver.

Proof. The collection V() is a local base. Forif @, 8€e@, thereisaye@
such that V(vy) € V(a) n V(8). Infact, the sequence y = {min (o, B,)} €@
and V(v) = V(a) n V(B).

To prove that a topology is determined which is compatible with the linear
structure it is sufficient to show that each V() is circled and radial and that
the collection forms a uniform structure.

Since | Ack | £ [N o £ ap for [ M| £ 1, V(a) is circled. If ¢ e3¢, then
limsup | ¢ ["™ < 1. Thereisana > 0and a p < 1 such that | ;| < ap™' for
allk. Using (4.5) thereisa X > 0 such that Aap™' < ay, forallk. It follows
that Ap € V(a) which means that V(a) absorbs ¢. Therefore V(a) is radial.
If ae@and B = {,/2} then V(B) 4+ V(B) < V(a).

The proof is completed on observing that each V(a) is convex.

ProrosiTiON 4. 3C 7s complete.

Proof. Let {¢,} be a Cauchy net in 3¢. Then ¢, — ¢, ¢ V() for u,» = p(a).
Thus | ¢ — ¢&| = oy for p, » = p(a) and for all k. This implies that {ci} is
a Cauchy net having a limit ¢; for each k.

We have | ¢k — cx| = ap for p = u(a). For a particular u the condition
limsup | ¢k ['™ < 1 implies the existence of @ > 0 and p < 1 such that
| k| < ap™ forallk. By (4.5) thereisad > 0 such that ap™' < bayy for all
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k. Therefore
lee| = ||+ o = (b + Dapw

for all k. But this happens for each & ¢ @. Now applying (4.6), there is an
a > 0andap < 1such that |¢,| < ap™ for all k. Hence

o(0) = Zogm Cr. ™ ¢ 30,

Since ¢, — ¢ € V() for p = u(ea), the net converges to ¢ in 3¢ proving the
proposition.

ProposiTioN 5.  The collection of sets
E(a,p) = {oede:|c| < ap™ forall k}

forall a > 0 and p < 1 s a fundamental system of bounded sets for 3¢. Each
E(a, p) is compact.

Proof. If ae@ choose b > 0 such that ap™ =< bayy for all k. Then
(1/b)E(a, p) < V(a). This proves that E(a, p) is bounded.

Conversely, if A is a bounded set, then AA < V(a), N = AMa) > 0, for each
ae® Wehave

vi = sup{|a|:eed} £ (1/Ma))ap

for all k and each a ¢ @. According to (4.6) there is a pair a > 0, p < 1 such
that v < ap™ for allk. Consequently A C E(a, p).

The Tychonoff product theorem may be used to prove that E(a, p) is com-
pact. For each k, D, = {|z| < ap™'} is a compact disc in the complex plane
and E(a, p) may be identified with the cartesian product Xo<x D . If the
product topology is finer than the relative topology on E(a, p) then E(a, p) is
compact.,

Let ¢ e E(a, p) have Fourier coefficient sequence {c;} and consider its
neighborhood

(¢ + V(e)) n E(a, p)
={¢ed:|d —c| £ ap and |di| S ap™ forall k)

where {d;} is the sequence of coefficients of . Assuming only that
o, ¥ e E(a,p) wehave | dy — ¢ | < 2ap™ and using (4.4) there is a v, such that
|dr — cx| < e for |k| = vo. Therefore

(¢ + V(a)) n E(a, p)
={¢e$€:|dk—-ck|§oc|k; for |’(§|<l/o,|d1.:|§ap”cl for all k}

This however is a neighborhood of ¢ in the product topology proving that the
product topology is finer. This completes the proof. It is easy to show in
fact that the two topologies are the same.
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ProrosiTiON 6. 3C 25 not metrizable.

Proof. If 3 were metrizable there would be a countable collection V(")
constituting a local base at the origin. We will describe a sequence « € @ such
that no V(a") is contained in V(a).

It is clear that V(a") C V(a) if and only if &0’ < o, for ally. Thus we seek
a such that for each n, o, < o for some ». This occurs if there is a sequence
{va} such that e, < oy, .

Choose oy such that 0 < oy < o1 and », = 1. Applying (4.4) to the se-
quences { (%) "a,,} and {o} choose », such that

()" ", < a,.

Define a, = () ey, for i < v < vo. If v, -+, o1 have been defined

choose v, such that
—_ YnVn—-1

_ n — 1 rp—1
oy = n Oy, _

for voy < v £ vn. Then the sequence & = {a,} is decreasing and

and define

/oy = (n —1)/n

for v,.1 £ v < v, 50 that im (@y41/0) = 1 and a e @.

Since a,, < a, we obtain the desired contradiction. Therefore a base at
the origin is necessarily uncountable and 3C is not metrizable.

Before considering the dual space, let us note that the topology of 3¢ is finer
than the D topology on 3¢. The topology of D is described by the increasing
sequence of norms

pa@) = supog (| k| + 1)" | exl, n=01---.

Observing that « = {&/(v + 1)"} ¢ @ we have V(a) = {p e 3 : p.(@) = €} s0
that each D neighborhood is also a neighborhood in 3¢.

One fact about 3¢ remains to be proved. The space is barrelled. We defer
the verification until the next section where some properties of the dual space
may be used. Since, according to Proposition 5, closed bounded subsets of 3¢
are compact, 3¢ is a Montel space. (See [1, p. 89]).

5. The Space '

We turn now to a study of the dual space 3¢’ of continuous linear functionals
on 3. The duality (¢, f) on 3¢ X 3¢’ will be chosen to be linear on 3 and
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antilinear (complex conjugate of linear) on 3¢’. Thus

(QD, fl + f2> = <¢) f1> + <¢’) f2> and <‘P7 Cf) = 6(‘?7 f)'

The Fourier coefficients of f e 3¢’ are defined by ax = (e?, f).

Our immediate object is to show that 3¢'may be identified with the space of
sequences {a;} satisfying lim supjrioe | @ |""* = 1. In the correspondence
{ax} is the sequence of Fourier coefficients of an element of 3¢’. A sequence
satisfies the above condition if and only if there is finite-valued function B
such that | @ | £ B(n)n"™ for all k and all n > 1. However, for certain calou-
lations we need two other characterizations of such sequences.

Let us first observe that one may limit attention to those functions B which:
are convex and decreasing (not necessarily strictly decreasing). For if

By(n) = supog |ax|n ™ < B(n) <
for each # > 1, then B, has these properties and | az| < By(n)9"™'.
We define now a class ® of sequences 8 = {B,}o<» which satisfy
0<B =B forall »
lim,+e By4a/Bs = 1.

It may be noted that ® is the dual of the class @ defined by (4.3) in the sense
that {8,} € ® if and only if {1/8,} e @. As may be guessed, the class ® plays
a role in describing the bounded subsets of 3¢’ analogous to that of @ in deter-
mining a base for the topology of 3¢.

(5.1)

ProrosITION 7. If B € ® there is a convex decreasing function B such that

(5.2) By < inf51 B(n)n’
for allv = 0. If B s a convex decreasing function there is a B ¢ & such that
(5.3) infis1 B(n)n” = B

for all v z 0.

Proof. 'The first assertion can be proved readily but the second requires
somewhat more effort. If 8¢ ® and 4 > 1 there is, using (4.4), a », such that
n " £ 1/B8,forv = »,. This implies that B(n) = supe<, 8,9  is finite. The
function B satisfies (5.2).

Now let B be a strictly positive convex decreasing function on the interval
(1, ©). Define B} to be the derivative of B from the right at each point of
(1, ») and denote f(9) = —nB+(n)/B(n). Then f is nonnegative, subuni-
formly bounded on (1, « ), continuous from the right on (1, «), and con-
tinuous except at a countable set of points. If 1 < & < o then

B(n) = B(t) exp fﬂto‘itt) dt.
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It will be helpful to replace B by a larger function B; for which the function
f1 corresponding to f is decreasing. The properties of f make it possible to
choose an f; which is strictly decreasing, continuous, and greater than f on the
interval (1, t]. We may as well assume that lim, ;1 fi(y) = «. Take f; to
be zero on (fy, ©). The function B, defined by

Bin) = Bw) exp [ G

dominates B and is convex decreasing on (1, « ) with minimum value B;({).
The function B; also has the property that Bi(n)n’ is convex for each v > 0
which will make it easy to find its minimum value. For» > 0

(Bu)") = (=fi(n) + »)0""Bi(n), 1 < 1 < t,
= V‘I)”_lBl(to), to < n.

If we let vo = min {» : fi(%) < »} and define 9, by fi(,) = v for » = vy, then
7 N 1 and

infy1 Bi(g)n” = Bi(do)lo, 0 = v < m,
= Bi(m)m, w = »

A suitable estimate for Bi(n,)n, will provide us with the desired sequence
Be®. On the interval [n,, , to], fi(£) = fi(m,) = wo s0 that

to tO Vo

Bi(nmy,) = Bi(t) expf ‘ﬁ(tﬁdt =< Bi(th) ("")

L)

Yo

or Bi(my)m? < Bi(t)t’. For each v > o, fi(t) < fi(n,) = v on the interval
[ , mv—1] implying

Bi(ny) = Bi(my,) exp Z fﬂj_lé@dt

j=vot+l Jq; ¢

< Bito) (to/140)" TLG=vetr (mis/ns)’

Thus Bi(n)ny < Bi(f)t e + -+ + mv—s fOr v > vy
The sequence 8 defined by

{Bx(to)ts , 0=v = w,
Bi(t)te e 0 M, vo < v,

is in the class ® and satisfies (5.3). This completes the proof of the propo-
sition.

ProrosiTiON 8. The following conditions for a sequence{axr} are equivalent.
(54) D o<k | cedr| < o for all sequences {ci} such that

lim Sup xjw | I”Ikl <1
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(5.5) D o<kl Ckdx s convergent for all sequences {ci} such that
lim SUpkw | o [V < 1.
(5.6)  Lim supjjoe | @ [ = 1.

(5.7)  There is a finite valued function B such that | ax | £ B(n)n™ for all k and
all g > 1.

(5.8) There is a sequence B € ® such that | ax | < By for all k.

Proof. The implications (5.4) = (5.5) = (5.6) = (5.4) are either trivial
or straightforward. The equivalence (5.6) < (5.7) is immediate from the
definitions and the equivalence (5.7) < (5.8) is a consequence of Proposition 7.

As a side remark we mention that the equivalence of (5.8) with (5.6) leads
to an apparently new elementary condition, in the form of a ratio test, for
determining the radius of convergence for power series.

With these preliminary results in hand it is possible to establish the identifi-
cation of 3¢’ with the space of sequences {a;} satisfying the conditions of
Proposition 8 and at the same time to obtain the appropriate Parseval relation
for the duality (e, f).

TueoreM 2. If f € 3¢’ and {ai} is the sequence of Fourier coefficients of f, then
(o, ) = Do<ixl & s for all ¢ € 3¢ where {ci} is the sequence of Fourier coefficients
of ¢. The series is absolutely convergent. Conversely, any sequence {ax} such
that the .,series 1s convergent for all ¢ € 3C is the sequence of Fourier coefficients of
an fe3C.

Proof. Consider first the case f e 5¢’. If ¢ € 3C thereisana > 0 andap <1
such that | ;| < ap™ for all k. Set o, = D ogmizrcue™. If ae@ there s,
according to (4.4), a v, such that ap” < a, for » = »o. This implies

Q — Oy = 2y<|k[ Cx eiko € V(a)

forv = ». Consequently ¢, — ¢ in 3€ and

2 osiki<r Ce i = (ov , ) = (0, ).

For the converse define (o, f) = > o<s ¢x @ for all p ¢ 3¢. Then f is linear
and condition (5.8) yields a 8 ¢ ® such that | a, | £ B forallk. The sequence
o = {&/(5,’8,)} € @ and ¢ € V() implies

Ko, )l = 2ogi el a@| £ 2ogiv am B < &

Therefore f is continuous and the proof is completed on noting that (¢, f) = a,
for all k.

Having characterized the elements of 3¢’ we wish to describe convergence
in this space. 3¢’ is to be provided with the strong topology. This is the
topology of uniform convergence on the bounded subsets of 3¢. The first
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result below gives a simple description of a base for the topology of 3¢’ and
the second result concerns the bounded subsets of 3¢’.

ProrositioN 9. The sets
Viie,n) = {fex!: |ax| < en™  forall k)
Jor all ¢ > 0 and ¢ > 1 form a base for the neighborhood system at the origin.

Proof. By the definition of the strong topology a base is formed by the
sets

W'(a,p) = {fex’: [{o, )l =1 forall ¢eE(a,p)}

for all @ > 0 and p < 1. That is, the polars of a fundamental system of
bounded sets in 3¢. It will be shown that these bases are equivalent.

Given a > 0 and p < 1 choose n > 1 such that pn < 1.and £ > 0 such that
£ = (14 pn)/la(1 — pn)]. Then feV'(e, 1) and ¢ € E(a, p) imply

e, N = 2osim el 1@ | S ae2ogm (o)™ = 1.

Therefore V'(¢e, n) < W'(a, p).

On the other hand if f e W’(a, p) then |(p, f)| = 1 for all ¢ € 3¢ such that
ler| < ap™. In particular if c,, = o™ and ¢ = 0 for k 5 k, then
| @p™'@, | < 1. Therefore |a;| < (1/a)(1/p)™ for all k. Therefore given
£ > 0and g > 1choosea = 1/¢ and p = 1/9 to obtain W'(a, p) < V'(e, 3).
This proves the proposition.

ProrosrrioN 10. Each of the collections
E'(B) = {fe3 : |a| < B(n)g™ forall k andall 5 > 1}
for all convex decreasing functions B and
F'(B) = {fex’: |ax| < By forall k}
Jor all B € ® s a fundamental system of bounded sets for 3¢'.

Proof. These two collections are equivalent as a consequence of Propo-
sition 7 in the sense that each E’(B) contains an F’(8) and conversely.
Therefore we need only prove that the collection of set E'(B) is a fundamental
system.

Foreach e > 0and g > 1, (¢/B(n))E'(B) C V'(g, 7). This proves that
E'(B) is bounded. Conversely, if A is bounded then NMA < V’(e, 1),
N = A&, ) foralle > 0andn > 1. In particular |N(1, 9)ax| = 7' for all k
and alln > 1if feA. Therefore

B(n) = sup {|lax|n™ : forall fed andall k} < 1/A(1,9) < =
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The function B is convex decreasing and A < E’(B). This establishes the
proposition.

We may return now to the question left open at the end of Section 4. The
space 3C is barrelled if each barrel in 3C is a neighborhood of the origin. A
subset V of 3¢ is a barrel if it is closed, convex, circled and radial. Since V is
closed, convex, and contains the origin it is the polar of its polar, V = V.
The radial property for V is equivalent to the boundedness of V° relative to the
weak topology on 3¢’ (pointwise boundedness).

But since 3¢C is complete the weakly bounded sets are also strongly bounded.
(See [1, p. 86]). Therefore each barrel in 3C is the polar of a bounded subset
of 3¢’. We need only show that the polar of a bounded subset of 3¢ is a
neighborhood of the origin in 3¢. It is sufficient to consider the fundamental
sets F'(B).

ItV = {ped:|{o, )l = 1 for all feF'(B)} for some Be® define
a = {1/(5,'8,)} €@ Then ¢ e V(a) and f ¢ F'(B) implies

o, HI = 2o lexl @ | £ 2ogim am B < L.

Therefore V(a) € V and V is a neighborhood of zero.

We have therefore proved with the help of Proposition 5 that 3¢ is a Montel
space. Each Montel space is reflexive, the strong dual of the strong dual is the
original space, and its dual is a Montel space. Thus

Tueorem 3. The spaces 3C and 3¢’ are Montel spaces. 3C s the strong dual
of 3¢,

A number of properties of 3¢’ follow readily from the results already estab-
lished. Since {¢™} is total in 3¢ we conclude from the Banach-Steinhaus
theorem that boundedness in 3¢’ and convergence of the Fourier coefficients
implies strong convergence. In particular the Fourier series of each fe 3¢’
converges to fin 3¢’. As remarked by Kothe, after Schwartz, this result sup-
presses further the distinction between Fourier series and trigonometric series
which are not Fourier series.

3¢’ is a Frechet space and contains D’ as a dense subspace. The topology
of o’ is finer than the 3¢’ topology on ©’. Convolution may be defined by

Frg = Dog onbie™

where f = D ogu axe™ and g = D o< bre™. The mapping f — f*g is
continuous for each g € 3¢,

Differentiation may be defined as in © and it commutes with convolution.
Antidifferentiation is possible if and only if @y = (1, f) = 0. In the closed
hyperplane 3¢ = {f e3¢’ : (1,f) = 0} antidifferentiation is always possible and
is unique. The element F € 3¢, such that F™ = f will be called the n-th in-
tegral of f.
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The real elements of 3¢’ are those with Fourier coefficients satisfying
a_; = @, and each positive f is a positive measure.

6. The Poisson Integral and a Structure Theorem

The generalized functions serve as a boundary space for the harmonic fune-
tions. A generalized function is called analytic if it has a Fourier series of the
form Zoék are™. The closed subspace of analytic generalized functions serve
as a boundary space for the holomorphic functions. These correspondences
are realized by means of the Poisson integral.

The Poisson kernel is defined for0 < r < 1by P, = Y o5 r'*'e™. Inpar-
ticular P; is the Dirac delta function. If8, = 1forv = Othen 8 = {8,} ¢ ®
and P, e F’'(B8). Since the coefficients are continuous functions of r and the
family {P,} is bounded, P, is a continuous mapping of [0, 1] into 3¢’. Hence
P, x g is a continuous mapping for each ¢ € 3¢'.

TuroREM 4. A function f s harmonic on {r < p} if and only if there is a
generalized function f such that

(6.1) fr = Py *f

for each r < p. Moreover f, — f in 3¢ as r 2 p and consequently f is uniquely
determined.

Proof. A function f is harmonic on {r < p} if and only if
F(r, 0) = Do bur'le™

where lim supjj-« | bx |[""*' < 1/p. Denoting a; = b o' and J = > o< ax ™
we have Hm suppj.. | & [V*' < 1 and

£:(0) = 2o ax(r/p) "™
for r < p. Therefore f e 3’ and f, = P, »J.

The convergence f, — Py *f as r 2 p was established in the remarks pre-
ceding the theorem and P; *f = f. This completes the proof.

CoroLLARY. A function f s holomorphic on {r < p} if and only if there is an
analytic generalized function f such that (6.1) holds.

At this point we may confirm that the topological spaces 3C and 3¢’ are the
same as those defined by Lions and Magenes [8]. We have remarked earlier
that 3¢ was chosen the same in both instances. Theorem 4 above and their
Theorem 9.1 both establish linear isomorphisms of 3¢’ with &. Since the
strong dual topology is used also by them for 3¢’ is sufficient to equate the
topologies for 3¢. In their construction 3¢ is the limit of an increasing sequence
of Banach spaces. The inductive limit topology is used and it is bornological
(see [7, p. 406]). But this is the Mackey topology for the duality (3¢, 3¢’).
The same is true in the present paper because 3¢ is barrelled.
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Denote by P the one to one linear mapping f — f of 3¢’ onto the space & of
harmonic functions on {r < 1} defined by f. = P,*f. The isomorphism of
3¢’ and & established by Lions and Magenes is realized by the mapping P.

TueorEM 5. If & s provided with the topology of subuniform convergence,
then P is a topological tsomorphism of 3¢’ onto F.

Proof. Recall that a base at the origin for 3¢’ is formed by the sets
Vi(e,n) = {fed :|ax| S en'™ forall kK
foralle > 0andn > 1. A base at the origin for & is given by the sets
Ula,p) ={fcF:|f(r,0)] £a for r = p}
for alla > 0and p < 1.
If a > 0and p < 1 we have
V(e,n) © P'U(a, p)

fore = a(1 — p)/(8 + p) and 9 = (1 + p)/2p. This proves that P is con-
tinuous. If e > O0andy > 1seta = c¢and p = 1/9. Then U(a, p) C
PV'(e, 3) proving that P~' is continuuos and completing the proof of the
theorem.

We may remark that the bounded subsets of & are the families of harmonic
functions which are subuniformly bounded on {r < 1}. It is interesting to
compare this description with that of the bounded subsets F’(8) of 3¢’ in
Proposition 10.

Theorem 1 leads to a structure theorem similar to Proposition 1.3 in [8] for
generalized functions. To instroduce this idea we recall the structure theorem
for distributions. If fe®’ there is a finite sequence {go, -+, gy} of con-
tinuous functions on I' such that f = > ¥_, g™, Using Theorem 4 this yields
the representation (4.1) for those harmonie functions having a boundary fune-
tion which is a distribution.

TuEOREM 6. If f is a generalized function there is a sequence {gn}n—o of con-
tinuous functions on I' such that

(6.2) limye (n!]] ga [N = 0
(6.3) f=2na0g.

Conversely, if {g.} 1s a sequence of continuous functions satisfying (6.2) then
(6.3) defines a generalized function f.

Proof. It is convenient to prove first that (6.2) implies the convergence of
D ogn gt in %/. Condition (6.2) is equivalent the existence of a convex de-
creasing function B such that n!|| g. || < B(e)e" foralln = 0and alle > 0.
Each ¢{® is a generalized function and has a Fourier series. For n > 0,

o n

g™ €3 . Setgo = Do are™ and gi” = Y o<u ok €. Forn > 0 the
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nth integral of ¢4 will differ from g, by a constant
27
= (/2o) [ gu0) a8

which may as well be assumed to be zero. Then g, = > o< (k) "ap ™.
Thus for all k andn and ¢ > 0

|t = | L [ """g,.(o)day Jo s 22

or |ar | £ B(e)e" | k["/nl.

Denoting by = ap + -+ + ap ,n = ¢, and By(n) = B(logn) we have
|6k | = B(e)[L + elk| + -+ + (¢|k )"/NT = B(e)e'™ = Bu(n)n™
for allk and N and ally > 1. For each N

( N k6
by = Dognsngn® = Dogik i €

is an element of the bounded set E’(B;). For each k, the sequence {bz} has
a limit b, since it is the sequence of partial sums of a dominated series.

Therefore the sequence {h,} is bounded and has convergent Fourier co-
efficients. It converges in 3¢’ to a generalized function

f= Zog.g(n") = Zogm by, €.

Now let fe 3¢’ and define f, = P,*f. By Theorem 1 there is a sequence
{g} of continuous functions satisfying (6.2) such that

7.(0) = T5wo (1/20) [ TR0 — 1)ga(2) d.

Thus ~
P, *f =fr= =0 Pﬁ") *Gn = L:=o Pr*g(n" P, x _4:—0 gﬁ.”’

for all » < 1. The last equality makes use of the first part of this proof.
Applying the uniqueness part of Theorem 4 we find f = S wagih,
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