THE CHOQUET THEORY AND REPRESENTATION OF ORDERED
BANACH SPACES

BY
E. B. Davies

1. Infroduction

Choquet boundary theory has mainly been developed so far for ordered
Banach spaces which have a strict order unit and the order unit norm, or
equivalently for the space of continuous affine functionals on a compact convex
set in a locally convex topological linear space. However Choquet, [4], showed
that much of the theory can be extended to the case where there is no order
unit, and in particular he showed how to define conical measures and their
barycentres for such spaces. In [6] his methods were used to characterize
intrinsically the ordered Banach spaces whose duals are Banach lattices; these
spaces are called R-spaces.

In this paper we show how all these concepts are preserved under the con-
tinuous embedding of one ordered Banach space as a subspace of another.
Under the weak filtering condition of §3, we find that there is a very close con-
nection between the Choquet theories of the two spaces, and if the one space is
also dense in the other the two theories coincide in a certain exact sense.

In §4 this is used to provide a representation of any ordered Banach space
with a topological order unit as a space of extended-valued affine functionals
on a compact convex set. The Choquet theory of such spaces reduces to the
usual Choquet theory of a compact convex set. We then analyse a large class
of R-spaces, including all separable ones.

For a Banach lattice with a topological order unit this provides a representa-
tion as a vector lattice of extended-valued continuous functions on a compact
Hausdorff space, which is unique up to homeomorphism. We indicate how
this representation is related to that of Bernau, [3], which exists under much
weaker hypotheses.

2. The general theory

We recall some of the basic definitions and notation of the Choquet theory
for ordered Banach spaces developed in [4], [6]. An ordered Banach space is
said to be regular if it satisfies the conditions:

(i) ifz,yeVand —z <y <zthen|y| < |zl;
(ii) if zeV and € > O then there is some y eV with y > 2, —z and
lyll <zl + e
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The stump of the positive cone V' of V is defined as the set
freV:0<z and |=z| <1}.

If V is a regular ordered Banach space then V* is regular, and the stump X of
the positive cone of V* is a compact convex set in the weak™ topology. V is
canonically order-isomorphic and homeomorphic with A¢(X), the space of con-
tinuous linear functionals on X. Welet S be the cone of functions on X which
are the pointwise suprema of a finite number of functions of A¢(X). If
L= 8 — S then L is a vector lattice of continuous functions on X, and in [6]
we showed how to give L a norm so that it is a normal lattice and the natural
injection a : V — L is an isometric order injection. The positive elements of
L* are called conical measures and the stump of the positive cone of L* is
denoted P. The injection a: V — L has a dual 8: L* — V™ such that
B(P) € X; this is called the barycentre map. We denote the set of conical
measures p such that Bu = z e V* by R(x, V) and observe that it follows
quickly from the definition of the norm in L, [6], that if xeX then
R(z, V) € P.
If N, peP wewrite N < pif (\,f) < (u,f) forallfeS. This makes P into
a partially ordered set and it is shown in [4, 6] that every element of P is domi-
nated by a maximal element. If z;e X fori =1, ---,nand > o= zeX
then the functional

F= @) + -+ (@)

defined for all f € L is an element of R(x, V) C P and is called a discrete conical
representing measure for x. In [6] we showed that the discrete conical meas-
ures are dense in R(x, V) for all z ¢ X.

Now suppose that Vy, V; are two regular ordered Banach spaces. We call a
one-one continuous map ¢ : Vi — V, with || ¢|| = 1 an embedding if for any
x e Vi wehave 0 < zif and only if 0 < <z.

Tueorem 1. Let ¢: Vi — V, be an embedding between the regular ordered
Banach spaces Vi, Va. Then © induces a one-one lattice homomorphism
1Ly — Lywith ||| = 1suchthatif o, : V,— L, ,r = 1,2, are the natural em-
beddings then oy = ast. The maps induce dual maps

jiXo— Xy and j:Py— Py

such that if 8, : P, — X, ,r = 1, 2, are the barycentre maps then jB, = B1j. The
map j . Py — P s order-preserving.

Proof. Thedualj: Vs — Vi of i: Vy — V,is positive and of norm = 1 so
we have j(X,) € X;. If Vit is the positive cone of Vi forr = 1, 2, then
F(V3F) is weak™ dense in Vi+. For otherwise Ey the Hahn-Banach theorem

we could find some z e V; with x 2 Obut | j(V> *) > 0. But then we would
have iz |(V31) > 0so that sz > 0, and this is impossible as 7 is an embedding.
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The map j : X;— X; induces a dual map ¢ : Ly — L, which is an extension of
t: Vi— V.. Itisclear that ¢is alattice homomorphism. Suppose f e L; and
if = 0. Thenf|(jX,) = 0and asfislinear on theraysof Vi*sof|(jV3') = 0
Now f is the restriction to X; of a continuous function defined on the cone Vit
with the weak™ topology and j(V3™") is dense in Vi+. Therefore f = 0 and we
conclude that 7 : Ly — L, is one-one. Now suppose that fe L and | f|| < 1.
Then by the definition of the norm of L, [6] there is some ¢ ¢ V, with g > f,
—fand|g|| < 1. As%:L;— Lyisa-+vemap and an extensionof ¢ : Vi— V.
so 19 > (#f), (—1f), and so as L is a normed lattice we have || if || < || 79 || <
lgll < 1. Therefore<: Ly - L; has norm = 1.

The dual j: Ly — LY of ¢ : L, — Ly is positive and of norm = 1 and so
j(P2) € Py. The equation j8; = (17 is the dual of the equation ey = a» 1.
We now show that j : P, — Py preserves order. Let\,pe P;and N < u. For
any f e S; we have if € Sz and so (f, 7A) = (4f, \) < (¢f, u) = (f,ju). There-
fore jA < ju.

CoROLLARY 2. If1: Vi— V;1is an embedding of the regular ordered Banach
space V1 onto a dense subspace of the regular ordered Banach space V,, then the
maps

jiXo— Xy and j:Py— Py

are one-one. For \, u e Py we have N < u if and only if jx < ju.

For if 4V, is dense in V, we see that, as 7: L; — L, is an extension of
1 : Vi — V, and the lattice operations in a normed lattice are continuous [7] so
2L, is dense in L, and 48; is dense in S, .

Without stronger conditions on the embedding ¢ : V; — V, little more can be
said about the above situation. We now call a subspace L of an ordered
Banach space V a weakly filtering subspace of V when

IfzeL,yeV,y > z,0 and € > 0 then there exist x1 ¢ L and y, ¢ V such that
m2m20ad|y—nl <e

This condition was first used for the special case of a subspace of the space of
all continuous affine functionals on a Choquet simplex by Jellett, [13]. See also
[10].

TueoreMm 3. Let L be a weakly filtering subspace of an ordered positively gener-
ated Banach space V. Let ¢ be a positive functional on L and ¢ a positive func-
tional on V such that ¢ < ¢ | L. Then there exists a linear extension ¢ of ¢ to
V such that 0 < ¢ < .

Proof. First recall [15] that a positive functional on an ordered positively
generated Banach space is continuous, and suppose for definiteness that
||| £ 1. We define a sublinear functional p on V by

p(z) = inf {(¢,9):0,2 < yeV}
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and observe that for 0 < z ¢ V we have p(z) = (¢, z) and for 0 > 2 ¢V we
have p(z) = 0. We now assert that for all x ¢ L we have (¢, z) < p(z).
Forlete > 0andlet 0,2 < y e V satisfy (¢, y) < p(z) + ¢/2. Using the fact
that L is a weakly filtering subspace of Vet 21 e L, y1e V, 41 > 21 > 2, 0 and
ly — wni|| < €/2. Then we have the chain of inequalities

(¢,2) < () < (b, m) < (b)) S¥() +e/2<p) +e

and as € > 0is arbitrary so (¢, ) < p(z). Weuse the Hahn-Banach theorem
to obtain an extension ¢ of ¢ to V such that (¢, ) < p(z) forallze V. If
0> 2eV then (¢, z) < p(x) = 0, 80 ¢is a positive functional. If0 < zeV
then (¢, z) < p(z) = (¥, 2) s0 ¢ < ¥

We now define an ideal I in an ordered vector space V as a positively gener-
ated subspace such that if 0 <z < yelthenzxel.

CoROLLARY 4. Let i : Vi— V, be an embedding of the regular ordered Banach
space as a dense weakly filtering subspace of the regular ordered Banach space V, .
Then the dual map j : Vs — Vi is an embedding of Vs as a weak® dense ideal
nVy.

TeEOREM 5. Let ¢ : Vi — V, be an embedding of the reqular ordered Banach
space Vi as a weakly filtering subspace of the regular ordered Banach space V.
Then the induced map j : Py — P, between the sets of conical measures has range
equal to all the conical measures in Py whose barycentre is in jX,. Specifically

we have the formula
J{R(x, V2)} = R(jz, V1)

for all xeX,. j: Py — Py preserves the partial ordering and maps maximal
conical measures to maximal conical measures.

Note. A related theorem for the space of continuous affine functionals on a
Choquet simplex has been proved in [13].

Proof. It followsinductively from Theorem 3 that if z, e Xy forr =1, --- ,n
and D, 2, = jy € X1 where y € X, then there are y, ¢ X, forr = 1, - -+ , n with
>y, =yandjy, = a.forr = 1, .-+ ,n. Now the mapj: P, — P, is linear
80

.7'(2:;1 ei/r) = Z;l"l jey, = Z‘:‘=l 8jllr = Z:’;l exr’

Therefore j{ R (x, V2)} is compact and contains all discrete conical measures in
R(jx, V1). Asisshownin [4, 6], the set of all discrete conical measures is dense
in R(jz, V1) so we see that the formula of the theorem holds.

Choquet, [4], has shown that a conical measure p on a regular ordered
Banach space V is maximal if and only if for all f ¢ S we have

(w,f) = inf {(g, ) :f < ge—8}
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Now let u € P, be maximal andlet fe Si,g ¢ —S;,4f < gande > 0. Itfollows
inductively from the fact that 2V is a weakly filtering subspace of V; and from
the continuity of the lattice operations in a normed lattice that there exist
fie =81, gpe—8withif < ifi <grand | g — g1 ]| < e Therefore

ey ) = (1, %)
= inf {(u, g) : 4f < ge —Sy}
= inf {(y, 9) 1 if < ge—18y
inf {(ju, h) 1f < he—8}

and we see that ju is a maximal conical measure.

i

CoROLLARY 6. Ifin the situation of Theorem 5,1V s a dense weakly filtering
subspace of V, then j : Py — Py maps Py homeomorphically and order tsomorphi-
cally onto the set of conical measures in Py whose barycentre is in 7 X, .

3. Topological order units

An interesting case of the theory of the least section occurs when V; is an
order unit norm space. The Choquet theory of these spaces is well understood,
see for example [2, 16], and it is indicated in [6] how our theory reduces to the
usual one for order unit norm spaces. Thus under the conditions of Corollary
6 the Choquet theory of V; can be reduced to the Choquet theory of a compact
convex set, and in particular the maximal conical measures on V: can be re-
garded as those which are concentrated on the extreme rays of the locally
compact positive cone of V7 ; these extreme rays can be regarded as “virtual”’
extreme rays of the positive cone of Vs . We now show how this situation
arises in the general case.

If V,is a regular ordered Banach space then any element 0 < e e V; such that
lle]l = 1 defines an ideal

Vi={zeVy: —ne <z < ne forsome n}
and if we give V; the order unit norm
lz] = inf {a: —ae < z < ae}

then V; becomes a regular ordered Banach space and the injection ¢ : V1 — V,
is an embedding of Vyinto V.. We now define a topological order unit e in V
as a non-negative element generating the ideal V; with || e | = 1 and such that
(1) fzeVi,yeVa,e > 0andy — ee > x, 0 then there exists some z eV,
withy > 2> z,0and ||y — 2| < g
() 0L zeV1,0<y1,%:¢6Vs,e> 0andy + y. = x then there exist
Xy, oeViwithy, > zifort =1,2and x; + 2 + ee = .

Ezample. Let V be the subspace of L'[0, 1] & L'[2, 3] of measurable func-
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folfdx—_—ffdx

111 =max{fo 1 [ 171 a2}

and the ordering given by saying that 0 < fe V if and only if f > 0 almost
everywhere. Then V is a regular ordered Banach space and the element e
which is constantly one is a topological order unit. We note from this example
that it is not generally possible to eliminate the ¢ > 0 from (i) and (ii) in the
above definition.

If e is a topolocial order unit in the regular ordered Banach space V, then
e: Vi— V,embeds Vi as a dense weakly filtering subspace of V, and so all our
previous theory applies. Define B & VT as

B=1{¢eVi:0<¢ and ¢(e) =1}

so that B is a compact convex base for the locally compact positive cone in V7§ ,
[8]. Itis well known that V, is canonically isometrically and order isomorphic
with A (B), the space of continuous affine functionals on B, in such a way that
e ¢ V1 corresponds to the function one. j: Vs — V7 identifies V; with a dense
ideal in V7 .

THEOREM 7. Let e be a topological order unit in the regular ordered Banach
space V, and let B be the natural base of the dual cone of the ideal V' generated by e.
Then there is a natural one-one, linear, order-preserving map j from the positive
cone Vi to the cone of lower semi-continuous affine functionals on B which extends
the identification j : Vi— A(B). There is also a natural, one-one, linear, order
preserving map j' from the positive cone L3 to the cone of regular Borel measures
on B such that if 0 < fe Vs and u 2s a conical measure for V, then

G = [ @) at.

Proof. 1If fe Vi we define the function jf on B by

tions f such that

with the norm

Jf =sup {jg 1 f = ge Vi
=sup {jg:f —ee>geV, forsome &> 0}.
By condition (i) on e we can show that the second family of g ¢ V; filters up-
wards and converges in norm to f. Therefore jf is lower semi-continuous affine

and
(f,n) =sup {(g,u):f —ee>geV: forsome e > 0}.

Also because of the filtering condition we see that for g e Vy wehavef — ce > ¢
for some £ > 0if and only if jf > jg on B, and it follows that j is one-one. It
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clearly preserves order and has the properties that j(af) = a(jf) foralla > 0
and feVa,and that j(f + ¢) > 4f + jgforallf,ge Vs .

We now show that j is subadditive. Let f, g e Vs and let f+ heVi. For
some positive integer n we have

(f + ne) 4+ (g + ne) > h + 2ne > 0.

By condition (ii) on e, for any ¢ > 0 we can find hy, o e V with f + ne > by,
g + me > hy and
h + hy + ee = h + 2ne.

Therefore f > (l — ne), g = (h; — ne) and

(hy — ne) + (hy — ne) > h — ee.
Therefore
Jif 4+ g = j(h — ne) + j(hy — ne) > jh — e.

As & > 01is arbitrary and h e V; is arbitrary subject to 2 < f + ¢ so by the
definition of j(f 4+ ¢g) we have

i +dg =i+ 9.

The other map j of the theorem is the restriction of the map from Ly into Lf
defined earlier. Our general theory tells us that the formula of this theorem
holds for all fe Vy. It therefore holds for all fe V3 in consequence of the
formula

f () d(G'w) = sup{ f (jg) d(j'w) : ge V1 and jg < jf}

and the remarks at the beginning of the proof.

In [6] we defined an R-space as a regular ordered Banach space with the Riesz
decomposition property, and proved that an ordered Banach space is an
R-space if and only if its dual is a Banach lattice. We also investigated the
ideal structure of these spaces. Further light on their structure is thrown by
the following theorem.

TurorREM 8. An element 0 < e € Vy in an R-space V, 1s a topological order
unit if and only if || e || = 1 and the ideal V, generated by e is dense in V ; every
separable R-space has a topological order unit. If V, s an R-space with a topo-
logical order unit e then there is a natural one-one map j” from the set of closed
sdeals of V, to a sublattice of the set of closed faces of the Choquet simplex B as-
sociated with V1 , such that if I is a closed ideal tn V; then

I" = {feVi: (GNIGT) = 0}
where j on V3 is the map of the last theorem.

Before we prove this theorem we shall need a lemma on ideals in R-spaces
which is of the same type as the results in [6].

Lemma 9. If I is an ideal in an R-space V then its closure I is also an ideal
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and if 0 < f eI we can write
f = Z:—l fn
where 0 < foel and D mes || fa || < .
Proof. We first show that I is positively generated.

If feI we can certainly find f, el such that D mei|fa] < » and
> nsfa=1f Now for each n let £f, < g, hn where g, ¢ I and h, ¢ V with
lha|] < 2] fall- By the Riesz decomposition property we obtain k, e V with

+fo L kn L gy b

and then see that k, e I and || kn || < 2|/ fa|l. Now as D mer || #n || < « so0
a=1 ks = keI converges and as =D n1 fa < D nat ks for all m so by the
closedness of V' we have =+f < k.
Nowlet 0 < 1 < fel. Then we have

0< 1< 20k =k + D naka.
Using the Riesz decomposition property we can write I = Iy + m; where
0< L<kiand
O S my S Z,Z:=2kno

Proceeding inductively we see that we can write

l= le—l ln + my
where 0 < I, < I, k, and

0 < my <1, mns1kn.

Then 2 ni ||l £ 201 ke <
and
17— 2l = myll < || Zaewsrkal] =0

sol= 2 mal,.
Finally as 0 < I, < k, eI sol, eI. This both proves that I is an ideal and
on putting [ = f gives us the formula of the lemma.

Proof of theorem. TFor 0 < e eV, to be a topological order unit it is clearly
necessary for Vy to be dense in V,. Conversely suppose this is the case. We
prove a strengthened form of condition (i) one. LetyeV,,zeVi,y > 2,0
ande > 0. By thelemma thereexistsweVywith0 <w <yand|w—y| < e
By a simple use of the Riesz decomposition property we can now find 2 ¢ V; with
2,0 <2<y ThenO,z<z<yandl|z—y]| <e& Astrengthened form of
condition (ii) on e is immediate from the Riesz decomposition property.

Let V be a separable R-space. Then if e, is a countable dense set in V*

then
e=a ) m16/2"| e

is a topological order unit for some o > 0, using the previous criterion.
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If ¢ is a topological order unit in the E-space V, then V; is a simplex space
and the base B of Vi+ is a Choquet simplex. See [5], [9], [11]. The facial
structure of Choquet simplexes is deseribed in [11]. If I is a closed ideal in
Vs then I n Vi is a closed ideal in V7 and so corresponds to a face j”I of B. In
fact I = I n V, by the lemma so we see that j7 is a one-one map. To prove
that the set of closed faces 7”1 which arise in this way is a sublattice of the
lattice of all faces in B it is sufficient to prove that if I, J are closed ideals in
Vz then

Ind)nVi=UaVi)n(JnV)
and
T+I)aVi=UnVy)+ (JnTy)

since it is shown in [6] that the sum and intersection of two closed ideals in an
R-space are closed ideals. The first equation is trivial and it is also obvious
that the right-hand side of the second equation is contained in the left-hand
side, both sides representing ideals in V. Now let 0 < fe (I + J)n V;.
As in Theorem 5.3 of [6] we see that we can write f = g + h where 0 < gel
and0 < heJ. AsViisanidealsogelnViandheJnVi. As(I+J)nV;
is an ideal it is positively generated and this concludes the proof of the second
equation.

For 0 < feV; we have by the definition of j”I that fe if and only if
(GNIG"T) = 0. Now using the lemma and the definition of jf for 0 < fe V,
it is clear that the formula of the theorem holds.

4. Banach lattices

For a Banach lattice V> it is more natural to present this theory in a rather
different form, although the situation is essentially the same as that of Theorem
8. An element 0 < eeV, with || e| = 1 is a topological order unit if and
only if for all0 < fe Vs, limu,o f /A ne = f. The ideal V; generated by eis a
Kakutani M -space [13] under the order unit norm and the Choquet simplex B
has a closed boundary @ and we can identify

Vi= A(B) = C(Q)

by [1]. Ifj: Vi— C(R) is this identification then the representation j of Vi
of Theorems 7, 8 is essentially the same as the map j from V7 to the cone of
lower semi-continuous functions on Q given by

J(f) = SUpnaw {7(f N\ me)}

and this map j is also one-one, linear, and preserves the lattice operations of
Vi. Now forany 0 < fe V. we have]

() N n=3f N jlne) = j(f A ne) e C(Q).

We can conclude that each function jf : @ — [0, »] is actually continuous.
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Moreover as (jf, ) is finite for a weak™*-dense family of measures on  so jf is
finite on an open dense subset of Q.

If Q is any compact Hausdorff space then the set C(2) of all continuous
functions f : @ — [— «, «] which are finite on an open dense set is a lattice but
not generally a vector space. C(Q) is a sublattice of the vector lattice D (Q)
of all finite continuous functions defined on open dense sets with the obvious
operations and identification of two functions which are almost everywhere
equal. By a vector sublattice of C(Q) we shall mean a vector sublattice of
D(Q) each element of which is in C(2). By an ideal in C(Q) we shall mean a
vector sublattice L of C(Q) such that if 0 < f < ge L and fe C(Q) then fe L.

TaeorEM 10. If V is a Banach lattice with a topological order unat, for ex-
ample a separable Banach lattice, then each topological order unil e defines a
compact Hausdorff space @ and a faithful representation j of V as an ideal in
C(Q). The space Q is independent of the unit e up to homeomorphism and there
18 a one-one correspondence between the closed ideals of V and a sublattice of the
set of closed subsets of Q. V™ may be identified with an ideal in M (Q), the dual
of C(9).

Proof. We shall not prove those parts of this theorem which are obvious
corollaries of previous theorems though in fact simple direct proofs for this
special case can often be produced.

If j: Vt — C(Q) is as defined above then we extend j to V by defining

i) =i(fVv o) —i(—=fVo0)
and see quickly that this is a faithful representation of V as a vector sublattice
of 0(2). Now let 0 < f < jg where feC(Q) and 0 < geV. We have
g = lim,.w (g /\ ne) and so there is a sequence m, of integers such that
Mugr > My and

w0 [ A\ Marre — g A\ mael < oo

Now
J9) N\ Magr — (G9) A\ ma = {(§g) N\ Mna} V M — ma
> (f A\ Mpa) V Mo — m,
= (f A\ Mapa) — (f A\ ma)
> 0.
As f A Maa) — (f A\ ma) eC(R)

so we can find a unique &, e V with

Jhn = (f/\ mn+1) - (f/\ Mn)
and this h, satisfies

0 < he < (g A\ Mpgre) — (g /\ mne).
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Therefore D _meo || hn || < ® and the sum

:==0 hn = h € V
converges.

Now Jh \om = j(h N\ me)
= 7 limy.e {me A Z’Z—o ha}
= j liMyaw i {m A (f A\ map)}
= j limyaw i (f A m)

=f A\ m.

Therefore j& = f and we have shown that jV is an ideal in C(Q).

As in Theorem 8 we see that there is a one-one correspondence between the
set of closed ideals in V' and a certain sublattice of the set of closed ideals in
C(Q). Asthe closed ideals in C(Q) correspond exactly to the closed subsets of
Q so we get a natural one-one correspondence j” between the set of closed ideals
in V and a sublattice of the set of closed subsets in @, as in Theorem 8. Let
K C Qbe a closed regular set, that is a closed subset of @ with K = int K. Let
I C V be the closed ideal given by

I={feV:|fl]\]gl=0 forall geV suchthat supp (jg) < int K}.

Then we can show that 7”1 = K, so that the family of sets 7”1 where I are
closed ideals in V, contains all regular closed sets.

We can now identify the points of @ with the maximal increasing filtering
families of proper closed ideals of V. We say a set K C Qis in 3C if it consists
of all the maximal filtering families containing a particular closed ideal of V.
Then the family 3¢ forms a base for the closed sets of the topology of 2, so
that Q is indeed independent of the unit ee V.

Finally V* can be identified with an ideal in M (2) as in Corollary 4 and
Theorem 7. This concludes the proof.

We now indicate how this representation is related to that of Bernau, [3],
obtained under more general conditions by purely algebraic methods. It
is easy to show that his polar subspaces are precisely those closed ideals I
such that j”I are closed regular subsets of . The space Bernau construects is
the Stone space @ of the complete Boolean algebra of regular closed subsets
of Q, [12], and there is a natural map A : & — Q. Bernau’s representation
is obtained by lifting our representation from @ to &. If V is order-complete
then M is a homeomorphism and the representations coincide.
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