
NORMAL SUBSETS OF FINITE GROUPS

BY

EINST SNAPPER

Introduction

G stands for a finite group of order g. If T is a non-empty subset of G and
n a rational integer, we denote the solution set of the equation x’e T by
S(T, n); i.e.,

Z(T, n) T}.

The absolute value sign IT [, IS(T, n)[, etc., indicates the number of ele-
ments in the set inside the sign. We refer to the following theorem as "the
Frobenius theorem": If C is a class of conjugate elements of G, IS(C, n)[ is
divisible by (IC In, g). See [2, page 136], for an elegant proof of this theorem;
the notation S(T, n) is taken from the same source. (Square brackets
refer to the references.)
The solution set S(C, n) is closed under inner automorphism of G, i.e.,

it is a normal subset of G. Consequently, the Frobenius theorem gives in-
formation about the number of elements in certain normal subsets of the
group. In the present paper, we obtain information about the size of many
other normal subsets of G, most of which have nothing to do with solving
equations.
The main tool is Theorem 1.1 of [4], reviewed in Section 1. It enables us to

associate a numerical polynomial with many a normal subset of G (Sections
2, 3); and this polynomial gives the information about the size of that set
(Section 4). In Section 5, we discuss the connection with the Frobenius
theorem.

1. Review of [4]
A permutation representation (G, D) of G consists of a finite, non-empty

set D on which G acts on the left. The unit element of G is unit operator
and, if p, z e G and d e D, (pz)d p(z d). We introduce a variable xi for
each divisor i of g, and consider the polynomial ring R in these variables
with rational numbers as coefficients. (Divisor always means positive divisor,
and g G I.) An element z e G gives rise to a permutation of the set D,
and hence to the partitioning of D into the cycles of that permutation. We
refer to these cycles also as the cycles of z. The moaomial M(z) R of a

is defined as IIt] xi(); the product IIt] is taken over the set [g] of all
divisors i of g, and ci(z) is the number of cycles of whose length is i. We
observe that every cycle of z has a length which divides the order of z, and
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hence divides g. Consequently, every cycle of contributes a factor to the
monomial M(a). The polynomial (1 + g) aM(a) of R, where the sum

is taken over all e G, is the cycle index P(G, D) of the representation
(G, D). This cycle index is used in combinatorial mathematics in the case
that (G, D) is faithful (i.e., when the unit element of G is the only unit
operator [1]), but is equally useful when (G, D) is not faithful.
A polynomial of R is called numerical if its value is au integer, when integers

are substituted for the variables. (Integer always means rational integer.)
The cycle index P(G, D) is practically never numerical (Section 1 of [4]).
Consider now, for each positive integer i, the integral polynomial
F tl jxj, where the sum E is taken over the set [i] of all divisors j
of i. For instance, F6 xl 2x2 3x3 -t- 6x6. Theorem 1.1 of [4] states
that, if each variable x of P(G, D) is replaced by the polynomial F, the result-
ing polynomial q(G, D) of R is numerical. We refer to q(G, D) as the nu-
merical polynomial of the permutation representation G, D).
We shall use the following notation.

Notation 1.1. (a) If/ is positive integer, [k] denotes the set of divisors of
k. We have used this notation already in [g] and [i].

(b) If E is a non empty set, II indicates that the product is taken over
all elements of E; and _., indicates that the sum is taken over all elements of
E. We have used this notation already in IIE, and a.

Observe that in II and the E is not a dummy variable. It should be
clear from the context what the dummy variables are. For instance,

P(G, D) (1 + g) a (IIx,
and

q(G, D) (1 + g) o (IIof’()).
2. The sets U (r, B) and V(r, B)

We choose set = of prime divisors of g; r may consist of all the primes of g
or may be empty. We lso choose a non-empty set B of divisors of g which
are r-numbers; i.e., each s e B divides g and all the prime divisors of s belong to
r. If r , the only r-number is 1, and hence then B {1}. No matter
how r is chosen, 1 counts as a r-number. We follow [3, page 125] and call
the largest r-number which divides a positive integer i, the r-share of i. We
mean by the r-share of a finite, non-empty set Y, the r-share of Y I.
We consider a permutation representation (G, D). The cycles of a e G

all have lengths which divide g, but they may of course not be r-numbers.
The r-share of a cycle Y of has iust been defined as the r-share of the length
[Y! of that cycle.

Dv,vNxTo 2.1. U(r, B) {1 e G, the r-sh=re of every cycle of
belongs to B.}
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It is clear that U(r, B) may be empty. We now define the set V(, B)
U(u, B), which hence may also be empty.

DEFINITION 2.2. V(r, B) { e U(r, B), every s e B is the v-share
of at least one cycle of

We denote the cyclic subgroup, generated by an element

DEFINITION 2.3. A subset T of G is called closed if a e T implies that all
the generators of (a) also belong to T.

It is convenient to regard the empty subset of G as both normal and closed.

PROPOSITION" 2.1. The sets U(, B) and V(-, B) are normal and closed.
Furthermore, U(-, B) is the disjoint union of the sets V(r, A) where A runs
through the non empty subsets of B.

Proof. If o and a are conjugate elements of G, i.e., if they correspond under
an inner automorphism of G, the permutations of D to which they give rise
are conjugate in the symmetric group of all permutations of D. Consequently,
the monomials M(o) and M(a) of Section 1 are then the same, which shows
that U and V are normal. (We omit (, B) when this can not lead to con-
fusion.) If (o) (a}, the two partitionings of D into the cycles of p re-
spectively , are the same and hence again M(p) M(a). This shows that
U and V are closed. The remainder of Proposition 2.1 is an immediate con-
sequence of Definitions 2.1 and 2.2.

3. The numerical polynomials of U and V

We study the sets U(r, B) and V(r, B) of the previous section. To each
a e U(r, B) we associate the monomial M(r, B, a) e R, defined by: M(r, B,
IB x() where the product IIB is taken over all i e B, and where /()

is the number of cycles of whose r-share is i. If r consists of all the prime
divisors of g, "v(a) is the number of cycles of a whose length is i. If further-
fore B is the set of all divisors of g, M(r, B, a) is the monomial M(a) of
Section 1.
We denote by r’ the set of prime divisors of g which is complementary to

r; and by a the r-share of g. If U(r, B) 0, we define the polynomial
q(U(, B))eR as (1 / a) M(, B, );the sum is taken over all
aeU(v,B). If U(,B) 9, wedefineq(U(r,B)) OeR.

If consists of all the primes of g, a 1, and hence q(U) is then an in-
tegral polynomial. If furthermore B is the set of all divisors of g,
q(U) gP(G, D) (see Section 1). In general, however, the coefficients of
q(U) are not integers.
The polynomial q(V(r, B)) is defined in the same way. If V 0,

q(V(r, B)) (1 + a) M(, B, )



where the sum r is taken over all e V(r, B). If

q(’V(r, B) 0 R.

THEOREM 3.1. The polynomials q( U(r, B) and q(V(r, B) are numerical.

Proof. We denote the r-share of g by $ and, from now on, will use Nota-
tion 1.1 without explanation. In particular, [$] is the set of divisors of $
and hence B c [$]. We first deal with q(U).

Case 1. B []. Since U(r, [f]) G,

q(U(r, [])) (1 + a) o(Holx’(’))
where we use Notation 1.1, and where () denotes again the number of
cycles of whose r-share is i.
We choose an integer y for each divisor i of f, and have to show that

Hereto, we consider the system of congruences F ---- y (mod a), where
F Ejx is the integral polynomial of Section 1; there is one congruence
for each divisor i of . It is trivial that this system of congruences has a
solution in integers z., since each j in Ejx divides B and hence is a unit
modulo a. For i 1, we choose zl yl. We then solve the congruences
y + px y (mod a), where p is a prime divisor of ; his determines the
integers z. Next we solve the congruences F y (mod a) where the
divisor i of has two prime divisors (not necessarily distinct); and so on.
(Actually, the solution is unique modulo a.) Let then {zlj e [/]} be a
solution in integers of this system of congruences. We also put z. 0
when j divides g but j [f].
We now return to the numerical polynomial

q(G, D) (1 + Eo .. (Section 1.)

We substitute zi for x. and obtain, since q(G, D) is numerical and a lg, that

o (Ho (F(z))’()) 0 (mod a).

(We write F(z) for F(z, z).) It will hence be sufficient to show that,
for each e G,

H (Fi(z))()-- H y’() (mod a).

Select e G. If a cycle of has r-share i, then i iB and the length of that
cycle is ai, where a In. Consequently,

’() -t c,() (Notation 1.1),
and hence

We conclude that
(Notation 1.1).
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In this product, i runs through the divisors of f nd a runs through the
divisors of a, while i is the -shre of ai. Consequently,

where the product IX[g] is taken over all divisors i of g nd where i(r) de-
dotes the r-share of i.
We now compute F(z) J[] jz where i lg. We put i ai(-), where

a is the ’-share of i nd i() is again the -shre of i. Since z. 0 when
j , F,(z) ’ jz where the sum ’ is now tken over only the divisors
j of i(r). The congruences, discussed bove, hve {z]j divides t} s solution
nd hence F(z) y,) (mod a). We conclude that

and Cse 1 is done.
Case 2. The set B is n rbitrry non-empty subset of [t]. In the numeri-

cal polynomial q( U(, []) of Cse 1, we put x 0 if i B. The resulting
numerical polynomial is q(U(r, B)) nd Cse 2 is done.
We now discuss q(V(, B)). If B! 1, V(, B) U(, B) nd hence

q(V(-, B)) is then numerical. We now mke induction on BI nd ssume
that q(V(, A)) is numerical for ll proper, non-empty subsets A of B. By
Proposition 2.1,

q(U(-, B)) q(V(r, B)) + q(V(r, A)),

where the sum is tken over 11 proper, non-empty subsets A of B. Since
q(U(, B)) is numerical nd, by induction, ech q( V(, A)) is numerical,
q(V(, B) ) is numerical. Done.

Example 3.1. We return to Cse 1 of the proof of Theorem 3.1, where
B []. We sw that then

+

We showed that II y’() H y?, nd the sme reasoning shows tht
(,) Consequently,

We now carry out the substitution x x(.) in the cycle index
()P(G, D) (1 + g) o (IIo]x (Section 1

We obtain the polynomial

P(G, D; x x()) (1 + g) a (II[] )c’())
(o / g)q(U(r, [B])) (1 / )q(U(, [B])).

Consequently, P(G, D; x x(,) is the numerical polynomial q(U(, []))
which proves"
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THEOREM 3.2. Let r be a set of prime divisors of g and that --share of g.
The polynomial P(G, D; x x() is numerical. Here, i(-) is the r-share
ofi.
Theorem 3.2 gives an easy method to obtain a numerical polynomial from

the non numerical cycle index P(G, D) for each set of prime divisors of g.
If r 0,/ 1 and x() xl. Hence, in this case, we merely put all the
variables of P(G, D) equal to one another. The resulting numerical poly-
nomial is (1 + g) o xe(), where e(z) is the total number of cycles of z. This
polynomial was also obtained in Section 1 of [4].

Example 3.2. Suppose that B consists of only one divisor i of . Then,

l/l)

There is only one variable x and we write x for xi. Furthermore, since
e U(r, li} ), i(z) is the total number of cycles e(z) of z. We hence obtain

xe() If r 0, then i 1 andthe numerical polynomial (1 + a) v
x() of Example 3 1U(O, 1}) G, and we obtain the polynomial (1 + g) o

Example 3.3. Let (G, D) be the regular representation; i.e., D G and G
acts on G by left multiplication. Then,

U(r,B) the r-share of the order of z belongs to B}

and V(-, B) 0 if B > 1. Consequently, by Proposition 2.1, U(-, B) is
the disioint union of the sets U(r, li} for i e B; and q(U(r, B)) is the sum
of the polynomials q(U(r, li} ). Furthermore, by Example 3.2,

Xe(oI/l)) (i +

in the present case, e(z) g + order (), and U consists of those group
elements whose order is equal to ai where a la. It follows that, if/ denotes
the number of elements of G of order s,

q(U(-, {i1)) (1 + a) r, aiXg’l’ai

where the sum r, is taken over M1 divisors a of a. If we put x I in this
numerical polynomial, we conclude that ,/ 0 (mod a). If a p
where p is a prime, we obtain the congruence

(mod pn)
of Section 2 of [4].

4. Sizes of U, V and related sets

If we put all the variables in the numerical polynomials q(U(r, B)) and
q(V(r, V)) equal to 1, we obtain"

THEOREM 4.1. U(r, B)[ - 0 (moda) and V(’, B)[ 0 (moda).
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We want to strengthen Theorem 4.1 so that it can handle the Frobenius
theorem. Hereto, we introduce the number i(e, E), where e is a positive
integer and E is a set of divisors of e; E may be empty or may consist of all the
divisors of e. Let p,l p be the factorization into prime factors of
the greatest common divisor of all those divisors of e which do not belong to
E. We define

(e, E) p- p-.
If b 1, we put (e, E) 1; if E consists of all the divisors of e, we put
(e, E) e. Under all circumstances ti(e, E)[e.
Example 4.1. Let e p p be the factorization of e into prime

factors. We denote n - + n n nd call n "the order of e"; for
instance, the order of 1 is 0. The greatest common divisor of those divisors
of e whose order is h (0 _< h _< n), is equal to p...p, where
/ max (n n -{- h, 0) for i 1, w. It follows esily thut this number
p p is equal to t(e, E), if E consists of ul divisors of e whose order is at
most h. For instance, if e p" and 0

_
h

_
n, then E 1, p, pa} and

(e, E) p. We also observe that, if e is arbitrary but E consists of precisely
one divisor of e, t(e, E) 1.
The reason for introducing the number (e, E) is the following lemmu;

denotes the Euler number.

LEMMA 4.1. If G and U(r, B), then

q(order ()) 0 (mod t(f, B)).

Proof. Since U(, B), B can not consist of ull the divisors of/ (see Ex-
umple 3.1), and it will be sufficient to show that there exists a divisor r of ,
sutisfying" (1) r B; (2) if r p p is the factorizution of r into prime
fuctors,

(order ()) 0 (mod p- p-).
Since U(, B), hs u cycle whose -share r does not belong to B; this
shows that r has property (1). Furthermore, the length of that cycle is di-
visible by r and in turn divides order (). Consequently, r order () from
which it follows that (r)l q(order ()). Since p-.., p-iq(r), r has
lso property (2). Done.

COROLnV 4.1. Let T be a closed subset of G (Definition 2.3) and
T U(,B) 0. Then, TI 0 (mod(,B)).

Proof. The corollary is trivial when T 0 and hence we assume that T 0.
We consider the prtitioning gt of T, corresponding to the equivalence relution
"p a if (p} {}". Every element T belongs to unique "cycle" of 12
and, since T is closed, It (order ()). By Lemma 4.1, ] ]-- 0
(modi(fl, B)). Done.

We now combine Theorem 4.1 nd Corollury 4.1. Hereto, we choose two
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sets of prime divisors rl and r2 of g, where 1 n 2 0. We choose a set of
divisors B1 of the l-share of g, and a set of divisors B2 of the 2-share f. of g.
We also denote the set of prime divisors of g which do not occur in 1 u . by r,
and the r-share of g by .
THEOREM 4.2. U(, B) n U(2, B) is divisible by
( B)(. B).

Proof. We put U(, B1) a U(2, B)I c and, since a, i(/1, B) and
i(/., B) are relatively prime in pairs, we only have to show that c is divisible
by each of these three numbers individually. We observe that

V(r, B) a U(, B.) V( u 2, B B),

where BB {rslr e B and s e B}. Consequently, Theorem 4.1 gives that
a lc. Since the sets U(, B) and U(v, B:) play symmetricalroles, there
only remains to be shown that (B, B1) c. Using again Theorem 4.1,
U(r, B2) is divisible by the r-share of g, where is the set of prime divisors

B)I is divisible byof g which is complementary to . Since r ., U(.,
tl and hence certainly by t(t, B). We denote the subset of U(, B) whose
elements do not belong to U(I, B) by T, and hence we only have to prove
that T is divisible by ti(, B). Since U(, B) and U(., B) are closed
(Proposition 2.1), and intersections of closed sets and complements (in G) of
closed sets are evidently closed, T is closed. Hence, by Corollary 4.1, T is
divisible by (t, B1). Done.

COROLLARY 4.2. In the notation of Theorem 4.1,

V(, B)! 0 (mod a(t, B)).

Proof. Using Theorem 4.1 and the fact that a and (f, B) are relatively
prime, we only have to show that U(, B)I 0 (mod(, B)). If we
choose in Theorem 4.2, B equal to the set of all divisors of t, U(r., B) G
and we conclude that

V(v, B)I 0 (mod i(f, B)).
Done.

THEORE 4.3. U(r, B1) V(., B)I 0 (mod (B, B)).

Proof. The reasoning in the proof of Theorem 4.2 that i(f, B) divides
V(, B2)], now gives that V(r, B)i 0 (mod (t, B)). We con-

clude again from Proposition 2.1 that the subset T of V(, B.), whose ele-
ments do not belong to U(v, B1), is closed. Consequently, by Corollary 4.1,
T 0 (mod (, B)), and the theorem follows.

Example 4.2. We study the set U(, B) and choose a prime divisor p of g,
vhere p t r. If p" is the p-share of g, every cycle of an element e G has
p-share equal to p, where 0

_
h

_
n. We now consider only those elements
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of U(r, B) whose cycles have p-share at most equal to ph for some fixed
0

_
h

_
n. These elements form the set

T U(, B) n U({p}, {1, p, ph})
and hence, by Theorem 4.2 and Example 4.1,
B consists of only one divisor of , (, B) 1 (Example 4.1) and we can only
conclude that T --- 0 (mod ph).
Example 4.3. Let (G, D) be the regular representation, and p a prime di-

visor of g where p is the p-share of g. Suppose that s is a divisor of g where
p s. We choose for the set of prime divisors of g, distinct from p, and
choose B s}. The set T of Example 4.2 now consists of those elements of G
whose order is p"s, where 0

_
m

_
h. Hence, if ki has the same meaning as in

Example 3.3,
TI ks-t-k8- -l-]%-= 0 (modph)

for h 1, n. These congruences express the Frobenius theorem in the
special case that C 1} (see the Introduction), as proved in Proposition 2.1
of [4].

5. The Frobenius theorem

See the introductiol for the formulation "IS(C, n)l is divisible by
(] C in, g)" of this theorem. It follows immediately that, if T is a normalsub-
set of G, IS(T, n)l is divisible by (n, g); merely partition T into classes of con-
jugate elements and apply the Frobenius theorem to each class. If (G, D) is a
permutation representation, its kernel K is defined as the normal subgroup of
G whose elements leave all points of D fixed. Hence, by the above remark,
IS(K, n)l is divisible by (n, g). This result can also be obtained as follows
from Example 4.2.

It is clear that S(K, n) S(K, (n, g) and hence we only have to show: If
n ig, IS(K, n)l 0 (modn). Let M(a) IIEI x) be the monomial of
an element a e G (Section 1). The number of points of D, left fixed by a’, is
equal to .1 jc(r) where the sum is taken over the set In] of all divisors j
of n. Hence a e K if and only if [n] jcj(o’) D !. Since, obviously,

jc(a) D I, this means that every cycle of a has a length which divides
n. Consequently, we have to show:

PaOPOSITION 5.1. Let n g and T {1 G, every cycle of has a length
which divides n}. Then, T =-- 0 (mod n).

Proof. We choose a prime divisor p of n and denote the p-share of n by p.
We only have to show that T 0 (mod p). Now

T V(, B) n V({p}, {1, p,..., p}),

where is the set of prime divisors of g different from p, and where B consists
of all the divisors of n / pa. By Example 4.2, T 0 (mod p). Done.
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If K is an arbitrary normal subgroup of G, the transitive permutation
representation (G, G/K) has K as kernel, and hence IS(K, n)i is divisible by
(n, g). Although it is easy to prove the general Frobenius theorem from this
special case, Ave are not able to do this by the methods of this paper. The
reason is that the only normal subsets of G which our theory can handle di-
rectly, are the closed ones; this could have been predicted from Proposition 2.1.
Observe that the normal set S(K, n), above is closed. In order to obtain a
theory which can deal directly with all the normal subsets of G, it will be neces-
sary to extend the theory of the cycle index, in particular the theorems of
P61ya and de Bruyn [1], from permutation representations to linear repre-
sentations.
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